

392

Naur, Ehn, Musashi

PETER NAUR, PROGRAMMING AS THEORY BUILDING . . . 393
“Programming as Theory Building”. 393
Applying “Theory Building” . 405

PELLE EHN, WITTGENSTEIN’S LANGUAGE GAMES 407
“On Participation and Skill” . 408
Reflections on Ehn’s Writing . 420

MUSASHI . 420
The Book of Five Rings . 421
Applying Musashi to Software Development. 423

Peter Naur, Programming as Theor y Bui lding • 393

PE T E R NA U R, PR O G R A M M I N G A S TH E O R Y BU I L D I N G

Peter Naur, widely known as one of the
authors of the programming language
syntax notation “Backus-Naur Form”
(BNF), wrote “Programming as Theory
Building” in 1985. It was reprinted in his
collection of works, Computing: A Human
Activity (Naur 1992).

This article is, to my mind, the most
accurate account of what goes on in
designing and coding a program. I refer
to it regularly when discussing how much
documentation to create, how to pass
along tacit knowledge, and the value of
the XP’s metaphor-setting exercise. It also
provides a way to examine a methodol-
ogy’s economic structure.

In the article, which follows, note that
the quality of the designing program-
mer’s work is related to the quality of the
match between his theory of the problem
and his theory of the solution. Note that
the quality of a later programmer’s work
is related to the match between his theo-
ries and the previous programmer’s theo-
ries.

Using Naur’s ideas, the designer’s job
is not to pass along “the design” but to
pass along “the theories” driving the
design. The latter goal is more useful and
more appropriate. It also highlights that
knowledge of the theory is tacit in the
owning, and so passing along the theory
requires passing along both explicit and
tacit knowledge.

Here is Peter Naur’s way of saying it.

“PROGRAMMING AS THEORY
BUILDING”

Introduction
The present discussion is a contribution

to the understanding of what program-
ming is. It suggests that programming
properly should be regarded as an activity
by which the programmers form or
achieve a certain kind of insight, a theory,
of the matters at hand. This suggestion is
in contrast to what appears to be a more
common notion, that programming should
be regarded as a production of a program
and certain other texts.

Some of the background of the views
presented here is to be found in certain
observations of what actually happens to
programs and the teams of programmers
dealing with them, particularly in situa-
tions arising from unexpected and per-
haps erroneous program executions or
reactions, and on the occasion of modifi-
cations of programs. The difficulty of
accommodating such observations in a
production view of programming sug-
gests that this view is misleading. The
theory building view is presented as an
alternative.

A more general background of the pre-
sentation is a conviction that it is important
to have an appropriate understanding of
what programming is. If our understand-
ing is inappropriate we will misunderstand
the difficulties that arise in the activity and
our attempts to overcome them will give
rise to conflicts and frustrations.

394 • Appendix B NAUR , EHN, MUSASHI

In the present discussion some of the
crucial background experience will first be
outlined. This is followed by an explana-
tion of a theory of what programming is,
denoted the Theory Building View. The
subsequent sections enter into some of the
consequences of the Theory Building
View.

Programming and the Programmers’
Knowledge
I shall use the word programming to

denote the whole activity of design and
implementation of programmed solutions.
What I am concerned with is the activity of
matching some significant part and aspect
of an activity in the real world to the for-
mal symbol manipulation that can be done
by a program running on a computer.
With such a notion it follows directly that
the programming activity I am talking
about must include the development in
time corresponding to the changes taking
place in the real world activity being
matched by the program execution, in
other words program modifications.

One way of stating the main point I
want to make is that programming in this
sense primarily must be the program-
mers’ building up knowledge of a certain
kind, knowledge taken to be basically the
programmers’ immediate possession, any
documentation being an auxiliary, sec-
ondary product.

As a background of the further elabora-
tion of this view given in the following
sections, the remainder of the present sec-
tion will describe some real experience of
dealing with large programs that has
seemed to me more and more significant
as I have pondered over the problems. In

either case the experience is my own or
has been communicated to me by persons
having firsthand contact with the activity
in question.

Case 1 concerns a compiler. It has been
developed by a group A for a Language L
and worked very well on computer X.
Now another group B has the task to write
a compiler for a language L + M, a modest
extension of L, for computer Y. Group B
decides that the compiler for L developed
by group A will be a good starting point
for their design, and get a contract with
group A that they will get support in the
form of full documentation, including
annotated program texts and much addi-
tional written design discussion, and also
personal advice. The arrangement was
effective and group B managed to develop
the compiler they wanted. In the present
context the significant issue is the impor-
tance of the personal advice from group A
in the matters that concerned how to
implement the extensions M to the lan-
guage. During the design phase group B
made suggestions for the manner in which
the extensions should be accommodated
and submitted them to group A for review.
In several major cases it turned out that the
solutions suggested by group B were
found by group A to make no use of the
facilities that were not only inherent in the
structure of the existing compiler but were
discussed at length in its documentation,
and to be based instead on additions to
that structure in the form of patches that
effectively destroyed its power and sim-
plicity. The members of group A were able
to spot these cases instantly and could pro-
pose simple and effective solutions,
framed entirely within the existing

Peter Naur, Programming as Theor y Bui lding • 395

structure. This is an example of how the
full program text and additional documen-
tation is insufficient in conveying to even
the highly motivated group B the deeper
insight into the design, that theory which
is immediately present to the members of
group A.

In the years following these events the
compiler developed by group B was taken
over by other programmers of the same
organization, without guidance from
group A. Information obtained by a mem-
ber of group A about the compiler result-
ing from the further modification of it
after about 10 years made it clear that at
that later stage the original powerful
structure was still visible, but made
entirely ineffective by amorphous addi-
tions of many different kinds. Thus, again,
the program text and its documentation
has proved insufficient as a carrier of
some of the most important design ideas.

Case 2 concerns the installation and
fault diagnosis of a large real-time system
for monitoring industrial production
activities. The system is marketed by its
producer, each delivery of the system
being adapted individually to its specific
environment of sensors and display
devices. The size of the program deliv-
ered in each installation is of the order of
200,000 lines. The relevant experience
from the way this kind of system is han-
dled concerns the role and manner of
work of the group of installation and fault
finding programmers. The facts are, first
that these programmers have been closely
concerned with the system as a full time
occupation over a period of several years,
from the time the system was under
design. Second, when diagnosing a fault

these programmers rely almost exclu-
sively on their ready knowledge of the
system and the annotated program text,
and are unable to conceive of any kind of
additional documentation that would be
useful to them. Third, other program-
mers’ groups who are responsible for the
operation of particular installations of the
system, and thus receive documentation
of the system and full guidance on its use
from the producer’s staff, regularly
encounter difficulties that upon consulta-
tion with the producer’s installation and
fault finding programmer are traced to
inadequate understanding of the existing
documentation, but which can be cleared
up easily by the installation and fault
finding programmers.

The conclusion seems inescapable that
at least with certain kinds of large pro-
grams, the continued adaptation, modifi-
cation, and correction of errors in them, is
essentially dependent on a certain kind of
knowledge possessed by a group of pro-
grammers who are closely and continu-
ously connected with them.

Ryle’s Notion of Theory
If it is granted that programming must

involve, as the essential part, a building up
of the programmers’ knowledge, the next
issue is to characterize that knowledge
more closely. What will be considered here
is the suggestion that the programmers’
knowledge properly should be regarded
as a theory, in the sense of Ryle [1949].
Very briefly, a person who has or possesses
a theory in this sense knows how to do
certain things and in addition can support
the actual doing with explanations, justifi-
cations, and answers to queries, about the

396 • Appendix B NAUR , EHN, MUSASHI

activity of concern. It may be noted that
Ryle’s notion of theory appears as an
example of what K. Popper [Popper, and
Eccles, 1977] calls unembodied World 3
objects and thus has a defensible philo-
sophical standing. In the present section
we shall describe Ryle’s notion of theory in
more detail.

Ryle [1949] develops his notion of the-
ory as part of his analysis of the nature of
intellectual activity, particularly the man-
ner in which intellectual activity differs
from, and goes beyond, activity that is
merely intelligent. In intelligent behaviour
the person displays, not any particular
knowledge of facts, but the ability to do
certain things, such as to make and appre-
ciate jokes, to talk grammatically, or to
fish. More particularly, the intelligent per-
formance is characterized in part by the
person’s doing them well, according to
certain criteria, but further displays the
person’s ability to apply the criteria so as
to detect and correct lapses, to learn from
the examples of others, and so forth. It
may be noted that this notion of intelli-
gence does not rely on any notion that the
intelligent behaviour depends on the per-
son’s following or adhering to rules, pre-
scriptions, or methods. On the contrary,
the very act of adhering to rules can be
done more or less intelligently; if the exer-
cise of intelligence depended on following
rules there would have to be rules about
how to follow rules, and about how to fol-
low the rules about following rules, etc., in
an infinite regress, which is absurd.

What characterizes intellectual activity,
over and beyond activity that is merely
intelligent, is the person’s building and
having a theory, where theory is

understood as the knowledge a person
must have in order not only to do certain
things intelligently but also to explain
them, to answer queries about them, to
argue about them, and so forth. A person
who has a theory is prepared to enter into
such activities; while building the theory
the person is trying to get it.

The notion of theory in the sense used
here applies not only to the elaborate con-
structions of specialized fields of enquiry,
but equally to activities that any person
who has received education will partici-
pate in on certain occasions. Even quite
unambitious activities of everyday life
may give rise to people’s theorizing, for
example in planning how to place furni-
ture or how to get to some place by means
of certain means of transportation.

The notion of theory employed here is
explicitly not confined to what may be
called the most general or abstract part of
the insight. For example, to have Newton’s
theory of mechanics as understood here it
is not enough to understand the central
laws, such as that force equals mass times
acceleration. In addition, as described in
more detail by Kuhn [1970, p. 187ff], the
person having the theory must have an
understanding of the manner in which the
central laws apply to certain aspects of
reality, so as to be able to recognize and
apply the theory to other similar aspects. A
person having Newton’s theory of
mechanics must thus understand how it
applies to the motions of pendulums and
the planets, and must be able to recognize
similar phenomena in the world, so as to
be able to employ the mathematically
expressed rules of the theory properly.

Peter Naur, Programming as Theor y Bui lding • 397

The dependence of a theory on a grasp
of certain kinds of similarity between sit-
uations and events of the real world gives
the reason why the knowledge held by
someone who has the theory could not, in
principle, be expressed in terms of rules.
In fact, the similarities in question are not,
and cannot be, expressed in terms of crite-
ria, no more than the similarities of many
other kinds of objects, such as human
faces, tunes, or tastes of wine, can be thus
expressed.

The Theory to Be Built by the
Programmer
In terms of Ryle’s notion of theory,

what has to be built by the programmer is
a theory of how certain affairs of the
world will be handled by, or supported
by, a computer program. On the Theory
Building View of programming the the-
ory built by the programmers has pri-
macy over such other products as
program texts, user documentation, and
additional documentation such as specifi-
cations.

In arguing for the Theory Building
View, the basic issue is to show how the
knowledge possessed by the programmer
by virtue of his or her having the theory
necessarily, and in an essential manner,
transcends that which is recorded in the
documented products. The answers to
this issue is that the programmer’s
knowledge transcends that given in docu-
mentation in at least three essential areas:

1) The programmer having the theory
of the program can explain how the solu-
tion relates to the affairs of the world that
it helps to handle. Such an explanation
will have to be concerned with the manner

in which the affairs of the world, both in
their overall characteristics and their
details, are, in some sense, mapped into
the program text and into any additional
documentation. Thus the programmer
must be able to explain, for each part of
the program text and for each of its overall
structural characteristics, what aspect or
activity of the world is matched by it. Con-
versely, for any aspect or activity of the
world the programmer is able to state its
manner of mapping into the program text.
By far the largest part of the world aspects
and activities will of course lie outside the
scope of the program text, being irrelevant
in the context. However, the decision that
a part of the world is relevant can only be
made by someone who understands the
whole world. This understanding must be
contributed by the programmer.

2) The programmer having the theory
of the program can explain why each part
of the program is what it is, in other
words is able to support the actual pro-
gram text with a justification of some sort.
The final basis of the justification is and
must always remain the programmer’s
direct, intuitive knowledge or estimate.
This holds even where the justification
makes use of reasoning, perhaps with
application of design rules, quantitative
estimates, comparisons with alternatives,
and such like, the point being that the
choice of the principles and rules, and the
decision that they are relevant to the situ-
ation at hand, again must in the final anal-
ysis remain a matter of the programmer’s
direct knowledge.

3) The programmer having the theory of
the program is able to respond construc-
tively to any demand for a modification of

398 • Appendix B NAUR , EHN, MUSASHI

the program so as to support the affairs of
the world in a new manner. Designing
how a modification is best incorporated
into an established program depends on
the perception of the similarity of the new
demand with the operational facilities
already built into the program. The kind of
similarity that has to be perceived is one
between aspects of the world. It only
makes sense to the agent who has knowl-
edge of the world, that is to the program-
mer, and cannot be reduced to any limited
set of criteria or rules, for reasons similar to
the ones given above why the justification
of the program cannot be thus reduced.

While the discussion of the present sec-
tion presents some basic arguments for
adopting the Theory Building View of
programming, an assessment of the view
should take into account to what extent it
may contribute to a coherent understand-
ing of programming and its problems.
Such matters will be discussed in the fol-
lowing sections.

Problems and Costs of Program
Modifications
A prominent reason for proposing the

Theory Building View of programming is
the desire to establish an insight into pro-
gramming suitable for supporting a
sound understanding of program modifi-
cations. This question will therefore be
the first one to be taken up for analysis.

One thing seems to be agreed by every-
one, that software will be modified. It is
invariably the case that a program, once in
operation, will be felt to be only part of the
answer to the problems at hand. Also the
very use of the program itself will inspire
ideas for further useful services that the

program ought to provide. Hence the
need for ways to handle modifications.

The question of program modifications
is closely tied to that of programming
costs. In the face of a need for a changed
manner of operation of the program, one
hopes to achieve a saving of costs by mak-
ing modifications of an existing program
text, rather than by writing an entirely
new program.

The expectation that program modifi-
cations at low cost ought to be possible is
one that calls for closer analysis. First it
should be noted that such an expectation
cannot be supported by analogy with
modifications of other complicated man-
made constructions. Where modifications
are occasionally put into action, for exam-
ple in the case of buildings, they are well
known to be expensive and in fact com-
plete demolition of the existing building
followed by new construction is often
found to be preferable economically. Sec-
ond, the expectation of the possibility of
low cost program modifications conceiv-
ably finds support in the fact that a pro-
gram is a text held in a medium allowing
for easy editing. For this support to be
valid it must clearly be assumed that the
dominating cost is one of text manipula-
tion. This would agree with a notion of
programming as text production. On the
Theory Building View this whole argu-
ment is false. This view gives no support
to an expectation that program modifica-
tions at low cost are generally possible.

A further closely related issue is that of
program flexibility. In including flexibility
in a program we build into the program
certain operational facilities that are not
immediately demanded, but which are

Peter Naur, Programming as Theor y Bui lding • 399

likely to turn out to be useful. Thus a flex-
ible program is able to handle certain
classes of changes of external circum-
stances without being modified.

It is often stated that programs should
be designed to include a lot of flexibility,
so as to be readily adaptable to changing
circumstances. Such advice may be rea-
sonable as far as flexibility that can be eas-
ily achieved is concerned. However,
flexibility can in general only be achieved
at a substantial cost. Each item of it has to
be designed, including what circum-
stances it has to cover and by what kind
of parameters it should be controlled.
Then it has to be implemented, tested,
and described. This cost is incurred in
achieving a program feature whose use-
fulness depends entirely on future events.
It must be obvious that built-in program
flexibility is no answer to the general
demand for adapting programs to the
changing circumstances of the world.

In a program modification an existing
programmed solution has to be changed
so as to cater for a change in the real world
activity it has to match. What is needed in
a modification, first of all, is a confronta-
tion of the existing solution with the
demands called for by the desired modifi-
cation. In this confrontation the degree and
kind of similarity between the capabilities
of the existing solution and the new
demands has to be determined. This need
for a determination of similarity brings out
the merit of the Theory Building View.
Indeed, precisely in a determination of
similarity the shortcoming of any view of
programming that ignores the central
requirement for the direct participation of
persons who possess the appropriate

insight becomes evident. The point is that
the kind of similarity that has to be recog-
nized is accessible to the human beings
who possess the theory of the program,
although entirely outside the reach of what
can be determined by rules, since even the
criteria on which to judge it cannot be for-
mulated. From the insight into the similar-
ity between the new requirements and
those already satisfied by the program, the
programmer is able to design the change
of the program text needed to implement
the modification.

In a certain sense there can be no ques-
tion of a theory modification, only of a pro-
gram modification. Indeed, a person
having the theory must already be pre-
pared to respond to the kinds of questions
and demands that may give rise to pro-
gram modifications. This observation leads
to the important conclusion that the prob-
lems of program modification arise from
acting on the assumption that program-
ming consists of program text production,
instead of recognizing programming as an
activity of theory building.

On the basis of the Theory Building
View the decay of a program text as a
result of modifications made by program-
mers without a proper grasp of the under-
lying theory becomes understandable.
As a matter of fact, if viewed merely as a
change of the program text and of the
external behaviour of the execution, a
given desired modification may usually
be realized in many different ways, all
correct. At the same time, if viewed in
relation to the theory of the program these
ways may look very different, some of
them perhaps conforming to that theory
or extending it in a natural way, while

400 • Appendix B NAUR , EHN, MUSASHI

others may be wholly inconsistent with
that theory, perhaps having the character
of unintegrated patches on the main part
of the program. This difference of charac-
ter of various changes is one that can only
make sense to the programmer who pos-
sesses the theory of the program. At the
same time the character of changes made
in a program text is vital to the longer
term viability of the program. For a pro-
gram to retain its quality it is mandatory
that each modification is firmly grounded
in the theory of it. Indeed, the very notion
of qualities such as simplicity and good
structure can only be understood in terms
of the theory of the program, since they
characterize the actual program text in
relation to such program texts that might
have been written to achieve the same
execution behaviour, but which exist only
as possibilities in the programmer’s
understanding.

Program Life, Death, and Revival
A main claim of the Theory Building

View of programming is that an essential
part of any program, the theory of it, is
something that could not conceivably be
expressed, but is inextricably bound to
human beings. It follows that in describing
the state of the program it is important to
indicate the extent to which programmers
having its theory remain in charge of it. As
a way in which to emphasize this circum-
stance one might extend the notion of pro-
gram building by notions of program life,
death, and revival. The building of the
program is the same as the building of the
theory of it by and in the team of program-
mers. During the program life a program-
mer team possessing its theory remains in

active control of the program, and in par-
ticular retains control over all modifica-
tions. The death of a program happens
when the programmer team possessing its
theory is dissolved. A dead program may
continue to be used for execution in a com-
puter and to produce useful results. The
actual state of death becomes visible when
demands for modifications of the program
cannot be intelligently answered. Revival
of a program is the rebuilding of its theory
by a new programmer team.

The extended life of a program accord-
ing to these notions depends on the taking
over by new generations of programmers
of the theory of the program. For a new
programmer to come to possess an exist-
ing theory of a program it is insufficient
that he or she has the opportunity to
become familiar with the program text
and other documentation. What is
required is that the new programmer has
the opportunity to work in close contact
with the programmers who already pos-
sess the theory, so as to be able to become
familiar with the place of the program in
the wider context of the relevant real
world situations and so as to acquire the
knowledge of how the program works
and how unusual program reactions and
program modifications are handled
within the program theory. This problem
of education of new programmers in an
existing theory of a program is quite simi-
lar to that of the educational problem of
other activities where the knowledge of
how to do certain things dominates over
the knowledge that certain things are the
case, such as writing and playing a music
instrument. The most important educa-
tional activity is the student’s doing the

Peter Naur, Programming as Theor y Bui lding • 401

relevant things under suitable supervi-
sion and guidance. In the case of pro-
gramming the activity should include
discussions of the relation between the
program and the relevant aspects and
activities of the real world, and of the lim-
its set on the real world matters dealt with
by the program.

A very important consequence of the
Theory Building View is that program
revival, that is reestablishing the theory of
a program merely from the documenta-
tion, is strictly impossible. Lest this conse-
quence may seem unreasonable it may be
noted that the need for revival of an
entirely dead program probably will
rarely arise, since it is hardly conceivable
that the revival would be assigned to new
programmers without at least some
knowledge of the theory had by the origi-
nal team. Even so the Theory Building
View suggests strongly that program
revival should only be attempted in
exceptional situations and with full
awareness that it is at best costly, and may
lead to a revived theory that differs from
the one originally had by the program
authors and so may contain discrepancies
with the program text.

In preference to program revival, the
Theory Building View suggests, the exist-
ing program text should be discarded and
the new-formed programmer team
should be given the opportunity to solve
the given problem afresh. Such a
procedure is more likely to produce a
viable program than program revival, and
at no higher, and possibly lower, cost. The
point is that building a theory to fit and
support an existing program text is a diffi-
cult, frustrating, and time consuming

activity. The new programmer is likely to
feel torn between loyalty to the existing
program text, with whatever obscurities
and weaknesses it may contain, and the
new theory that he or she has to build up,
and which, for better or worse, most
likely will differ from the original theory
behind the program text.

Similar problems are likely to arise
even when a program is kept continu-
ously alive by an evolving team of pro-
grammers, as a result of the differences of
competence and background experience
of the individual programmers, particu-
larly as the team is being kept operational
by inevitable replacements of the individ-
ual members.

Method and Theory Building
Recent years [have] seen much interest

in programming methods. In the present
section some comments will be made on
the relation between the Theory Building
View and the notions behind program-
ming methods.

To begin with, what is a programming
method? This is not always made clear,
even by authors who recommend a par-
ticular method. Here a programming
method will be taken to be a set of work
rules for programmers, telling what kind
of things the programmers should do, in
what order, which notations or languages
to use, and what kinds of documents to
produce at various stages.

In comparing this notion of method
with the Theory Building View of pro-
gramming, the most important issue is
that of actions or operations and their
ordering. A method implies a claim that
program development can and should

402 • Appendix B NAUR , EHN, MUSASHI

proceed as a sequence of actions of certain
kinds, each action leading to a particular
kind of documented result. In building
the theory there can be no particular
sequence of actions, for the reason that a
theory held by a person has no inherent
division into parts and no inherent order-
ing. Rather, the person possessing a the-
ory will be able to produce presentations
of various sorts on the basis of it, in
response to questions or demands.

As to the use of particular kinds of
notation or formalization, again this can
only be a secondary issue since the pri-
mary item, the theory, is not, and cannot
be, expressed, and so no question of the
form of its expression arises.

It follows that on the Theory Building
View, for the primary activity of the pro-
gramming there can be no right method.

This conclusion may seem to conflict
with established opinion, in several ways,
and might thus be taken to be an argu-
ment against the Theory Building View.
Two such apparent contradictions shall be
taken up here, the first relating to the
importance of method in the pursuit of
science, the second concerning the success
of methods as actually used in software
development.

The first argument is that software
development should be based on scien-
tific manners, and so should employ pro-
cedures similar to scientific methods. The
flaw of this argument is the assumption
that there is such a thing as scientific
method and that it is helpful to scientists.
This question has been the subject of
much debate in recent years, and the con-
clusion of such authors as Feyerabend
[1978], taking his illustrations from the

history of physics, and Medawar [1982],
arguing as a biologist, is that the notion of
scientific method as a set of guidelines for
the practising scientist is mistaken.

This conclusion is not contradicted by
such work as that of Polya [1954, 1957] on
problem solving. This work takes its illus-
trations from the field of mathematics and
leads to insight which is also highly rele-
vant to programming. However, it cannot
be claimed to present a method on which
to proceed. Rather, it is a collection of sug-
gestions aiming at stimulating the mental
activity of the problem solver, by pointing
out different modes of work that may be
applied in any sequence.

The second argument that may seem to
contradict the dismissal of method of the
Theory Building View is that the use of
particular methods has been successful,
according to published reports. To this
argument it may be answered that a
methodically satisfactory study of the effi-
cacy of programming methods so far
never seems to have been made. Such a
study would have to employ the well
established technique of controlled experi-
ments (cf. [Brooks, 1980] or [Moher and
Schneider, 1982]). The lack of such studies
is explainable partly by the high cost that
would undoubtedly be incurred in such
investigations if the results were to be sig-
nificant, partly by the problems of estab-
lishing in an operational fashion the
concepts underlying what is called
methods in the field of program develop-
ment. Most published reports on such
methods merely describe and recommend
certain techniques and procedures, with-
out establishing their usefulness or effi-
cacy in any systematic way. An elaborate

Peter Naur, Programming as Theor y Bui lding • 403

study of five different methods by C.
Floyd and several co-workers [Floyd,
1984] concludes that the notion of meth-
ods as systems of rules that in an arbitrary
context and mechanically will lead to
good solutions is an illusion. What
remains is the effect of methods in the
education of programmers. This conclu-
sion is entirely compatible with the The-
ory Building View of programming.
Indeed, on this view the quality of the the-
ory built by the programmer will depend
to a large extent on the programmer's
familiarity with model solutions of typical
problems, with techniques of description
and verification, and with principles of
structuring systems consisting of many
parts in complicated interactions. Thus
many of the items of concern of methods
are relevant to theory building. Where the
Theory Building View departs from that of
the methodologists is on the question of
which techniques to use and in what
order. On the Theory Building View this
must remain entirely a matter for the pro-
grammer to decide, taking into account
the actual problem to be solved.

Programmers’ Status and the Theory
Building View
The areas where the consequences of

the Theory Building View contrast most
strikingly with those of the more prevalent
current views are those of the program-
mers’ personal contribution to the activity
and of the programmers’ proper status.

The contrast between the Theory Build-
ing View and the more prevalent view of
the programmers’ personal contribution
is apparent in much of the common dis-
cussion of programming. As just one

example, consider the study of modifi-
ability of large software systems by Osk-
arsson [1982]. This study gives extensive
information on a considerable number of
modifications in one release of a large
commercial system. The description cov-
ers the background, substance, and
implementation, of each modification,
with particular attention to the manner in
which the program changes are confined
to particular program modules. However,
there is no suggestion whatsoever that the
implementation of the modifications
might depend on the background of the
500 programmers employed on the
project, such as the length of time they
have been working on it, and there is no
indication of the manner in which the
design decisions are distributed among
the 500 programmers. Even so the signifi-
cance of an underlying theory is admitted
indirectly in statements such as that ‘deci-
sions were implemented in the wrong
block’ and in a reference to ‘a philosophy
of AXE.’ However, by the manner in which
the study is conducted these admissions
can only remain isolated indications.

More generally, much current discus-
sion of programming seems to assume that
programming is similar to industrial pro-
duction, the programmer being regarded
as a component of that production, a com-
ponent that has to be controlled by rules of
procedure and which can be replaced eas-
ily. Another related view is that human
beings perform best if they act like
machines, by following rules, with a conse-
quent stress on formal modes of expres-
sion, which make it possible to formulate
certain arguments in terms of rules of for-
mal manipulation. Such views agree well

404 • Appendix B NAUR , EHN, MUSASHI

with the notion, seemingly common
among persons working with computers,
that the human mind works like a com-
puter. At the level of industrial manage-
ment these views support treating
programmers as workers of fairly low
responsibility, and only brief education.

On the Theory Building View the pri-
mary result of the programming activity is
the theory held by the programmers. Since
this theory by its very nature is part of the
mental possession of each programmer, it
follows that the notion of the programmer
as an easily replaceable component in the
program production activity has to be
abandoned. Instead the programmer must
be regarded as a responsible developer
and manager of the activity in which the
computer is a part. In order to fill this
position he or she must be given a perma-
nent position, of a status similar to that of
other professionals, such as engineers and
lawyers, whose active contributions as
employers of enterprises rest on their
intellectual proficiency.

The raising of the status of program-
mers suggested by the Theory Building
View will have to be supported by a cor-
responding reorientation of the program-
mer education. While skills such as the
mastery of notations, data representa-
tions, and data processes, remain
important, the primary emphasis would
have to turn in the direction of furthering
the understanding and talent for theory
formation. To what extent this can be
taught at all must remain an open ques-
tion. The most hopeful approach would
be to have the student work on concrete
problems under guidance, in an active
and constructive environment.

Conclusions
Accepting program modifications

demanded by changing external circum-
stances to be an essential part of program-
ming, it is argued that the primary aim of
programming is to have the programmers
build a theory of the way the matters at
hand may be supported by the execution
of a program. Such a view leads to a
notion of program life that depends on
the continued support of the program by
programmers having its theory. Further,
on this view the notion of a programming
method, understood as a set of rules of
procedure to be followed by the program-
mer, is based on invalid assumptions and
so has to be rejected. As further conse-
quences of the view, programmers have
to be accorded the status of responsible,
permanent developers and managers of
the activity of which the computer is a
part, and their education has to empha-
size the exercise of theory building, side
by side with the acquisition of knowledge
of data processing and notations.

References
Brooks, R. E. Studying programmer

behaviour experimentally. Comm. ACM
23(4): 207–213, 1980.

Feyerabend, P. Against Method. London,
Verso Editions, 1978; ISBN: 86091-700-2.

Floyd, C. Eine Untersuchung von Soft-
ware-Entwicklungs-Methoden. Pp.
248–274 in Programmierumgebungen und
Compiler, ed H. Morgenbrod and W.
Sammer, Tagung I/1984 des German
Chapter of the ACM, Stuttgart, Teubner
Verlag, 1984; ISBN: 3-519-02437-3.

Kuhn, T. S. The Structure of Scientific Revo-
lutions, Second Edition. Chicago,

Peter Naur, Programming as Theor y Bui lding • 405

University of Chicago Press, 1970;
ISBN: 0-226-45803-2.

Medawar, P. Pluto's Republic. Oxford,
University Press, 1982:
ISBN: 0-19-217726-5.

Moher, T., and Schneider, G. M. Method-
ology and experimental research in
software engineering, Int. J. Man-Mach.
Stud. 16: 65-87, 1. Jan. 1982.

Oskarsson, Ö Mechanisms of modifiabil-
ity in large software systems Linköping
Studies in Science and Technology, Disser-
tations, no. 77, Linköping, 1982; ISBN:
91-7372-527-7.

Polya, G. How To Solve It . New York, Dou-
bleday Anchor Book, 1957.

Polya, G. Mathematics and Plausible Rea-
soning. New Jersey, Princeton Univer-
sity Press, 1954.

Popper, K. R., and Eccles, J. C. The Self and
Its Brain. London, Routledge and
Kegan Paul, 1977.

Ryle, G. The Concept of Mind. Harmond-
sworth, England, Penguin, 1963, first
published 1949.

APPLYING “THEORY BUILDING”
Viewing programming as theory building
helps us understand “metaphor building”
activity in Extreme Programming (XP),
and the respective roles of tacit knowl-
edge and documentation in passing along
design knowledge.

The Metaphor as a Theory
Kent Beck suggested that it is useful to

a design team to simplify the general
design of a program to match a single
metaphor. Examples might be, “This
program really looks like an assembly

line, with things getting added to a chas-
sis along the line,” or “This program
really looks like a restaurant, with waiters
and menus, cooks and cashiers.”

If the metaphor is good, the many asso-
ciations the designers create around the
metaphor turn out to be appropriate to
their programming situation.

That is exactly Naur’s idea of passing
along a theory of the design.

If “assembly line” is an appropriate
metaphor, then later programmers, con-
sidering what they know about assembly
lines, will make guesses about the struc-
ture of the software at hand and find that
their guesses are “close.” That is an
extraordinary power for just the two
words, “assembly line.”

The value of a good metaphor increases
with the number of designers. The closer
each person’s guess is “close” to the other
people’s guesses, the greater the resulting
consistency in the final system design.

Imagine 10 programmers working as
fast as they can, in parallel, each making
design decisions and adding classes as
she goes. Each will necessarily develop
her own theory as she goes. As each adds
code, the theory that binds their work
becomes less and less coherent, more and
more complicated. Not only maintenance
gets harder, but their own work gets
harder. The design easily becomes a
“kludge.” If they have a common theory,
on the other hand, they add code in ways
that fit together.

An appropriate, shared metaphor lets a
person guess accurately where someone
else on the team just added code, and
how to fit her new piece in with it.

406 • Appendix B NAUR , EHN, MUSASHI

Tacit Knowledge and Documentation
The documentation is almost certainly

behind the current state of the program,
but people are good at looking around.
What should you put into the documenta-
tion?

That which helps the next programmer
build an adequate theory of the program.

This is enormously important. The pur-
pose of the documentation is to jog mem-
ories in the reader, set up relevant
pathways of thought about experiences
and metaphors.

This sort of documentation is more sta-
ble over the life of the program than just
naming the pieces of the system currently
in place.

The designers are allowed to use what-
ever forms of expression are necessary to
set up those relevant pathways. They can
even use multiple metaphors, if they
don’t find one that is adequate for the
entire program. They might say that one
section implements a fractal compression
algorithm, a second is like an accounting

ledger, the user interface follows the
model-observer design pattern, and so on.

Experienced designers often start their
documentation with just

• The metaphors
• Text describing the purpose of each

major component
• Drawings of the major interactions

between the major components

These three items alone take the next
team a long way to constructing a useful
theory of the design.

The source code itself serves to commu-
nicate a theory to the next programmer.
Simple, consistent naming conventions
help the next person build a coherent the-
ory. When people talk about “clean code,”
a large part of what they are referring to is
how easily the reader can build a coherent
theory of the system.

Documentation cannot—and so need
not—say everything. Its purpose is to
help the next programmer build an accu-
rate theory about the system.

Pel le Ehn, Wittgenstein’s Language Games • 407

PE L L E EH N, WI T T G E N S T E I N’S LA N G U A G E GA M E S

In Work-Oriented Development of Software
Artifacts (Ehn 1988), Pelle Ehn describes a
series of projects that explored ways of
making software more appropriate to its
final use, easier to use, and made by both
programmers and end users.

The high point of the book for me is the
way in which he considers software
development in the context of four philos-
ophers: Descartes, Marx, Heidegger, and
Wittgenstein.

A person working in the style of Des-
cartes thinks of an external reality worth
describing and turns her efforts toward
capturing that reality. She is therefore
interested in the match to reality of the
requirements, models, and code. This
Cartesian approach filled our field’s first
half-century.

A person working in the style of Marx
first asks, “Whom does this new system
benefit? How does its deployment change
the social power structure?” This is a
meaningful question to consider, whether
you like Marx’s political theories or not.

A person working in the style of
Heidegger considers the efficacy of the
system as a tool. Ideally, the user should
not “see” the system at all. She should see
through the system to the task being per-
formed. When I am typing a document, for
example, I see the page growing text; I
don’t “see” the word processor. An accom-
plished pianist sees the music being
formed, not the piano; a good carpenter
sees the nail going into the wood, not the
hammering tool. Heidegger’s frame of
evaluation helps us produce systems more
fit for use.

It is only the style of Wittgenstein that
opposes the style of Descartes. A person
working in this style views the unfolding
of the software design as the unfolding of
a language game, in which new words are
added to the language over time.

This immediately links to software
development as a cooperative game of
invention and communication. I proba-
bly owe a good deal of my construction of
the cooperative game model to Ehn’s
writings. I had read and forgotten the fol-
lowing article years before working out
the cooperative game idea. As I started to
write this book, I reviewed this article and
was shocked to see how many of my
words echoed Ehn’s.

Ehn is concerned with the building of
shared experience through shared prac-
tice, of using practice directly as a basis
for discovering needs. In other words, he
is working with tacit knowledge. More
than that, he highlights the place of skill in
carrying out practices (it is interesting to
read Musashi’s words pointing out much
the same). Although skill is a topic I have
mentioned, Ehn develops it much more
thoughtfully and completely.

I took the game thinking in a different
direction. I am concerned with playing a
group game amicably, so that communi-
cation can take place at all. You will see
that Ehn’s ideas complement the rest of
the ideas in this book.

Pelle Ehn expresses it much better in his
own words than I can through summaries.
Work-Oriented Development of Software Arti-
facts is out of print, sadly. However, this
excerpt from “Scandinavian Design: On

408 • Appendix B NAUR , EHN, MUSASHI

Participation and Skill” (Ehn 1992) contains
the line of thinking I feel is so important.

The article is longer than I can repro-
duce here. In this extract, I added italics to
emphasize points relevant to the notion of
cooperative games.

“ON PARTICIPATION AND SKILL”
. . .
In the following, I will propose that this
new understanding can be buttressed by
an awareness of language games and the
ordinary language philosophy of Ludwig
Wittgenstein. My focus is on the shift in
design from language as description
towards language as action.

Rethinking Systems Descriptions
A few years ago I was struck by some-

thing I had not noticed before. While
thinking about how perspectives make us
select certain aspects of reality as impor-
tant in a description, I realized I had com-
pletely overlooked my own presumption
that descriptions in one way or another are
mirror images of a given reality. My earlier
reasoning had been that because there are
different interests in the world, we should
always question the objectivity of design
choices that claimed to flow from design
as a process of rational decision making.
Hence, I had argued that we needed to create
descriptions from different perspectives in
order to form a truer picture. I did not, how-
ever, question the Cartesian epis ontology
of an inner world of experiences (mind)
and an outer world of objects (external
reality). Nor did I question the assumption
that language was our way of mirroring this
outer world of real objects. By focusing on

which objects and which relations should
be represented in a systems description, I
took for granted the Cartesian mind-body
dualism that Wittgenstein had so convinc-
ingly rejected in Philosophical Investiga-
tions (1953). Hence, although my purpose
was the opposite, my perspective blinded
me to the subjectivity of craft, artistry,
passion, love, and care in the system
descriptions.

Our experiences with the UTOPIA
project caused me to re-examine my
philosophical assumptions. Working with
the end users of the design, the graphics
workers, some design methods failed
while others succeeded. Requirement speci-
fications and systems descriptions based on
information from interviews were not very
successful. Improvements came when we
made joint visits to interesting plants,
trade shows, and vendors and had dis-
cussions with other users; when we dedi-
cated considerably more time to learning
from each other, designers from graphics
workers and graphics workers from
designers; when we started to use design-by-
doing methods and descriptions such as mock-
ups and work organization games; and when
we started to understand and use tradi-
tional tools as a design ideal for com-
puter-based systems.

The turnaround can be understood in the
light of two Wittgensteinian lessons. The first
is not to underestimate the importance of skill
in design. As Peter Winch (1958) has put it,
“A cook is not a man who first has a vision of
a pie and then tries to make it. He is a man
skilled in cookery, and both his projects and
his achievements spring from that skill.” The
second is not to mistake the role of description
methods in design: Wittgenstein argues

Pel le Ehn, Wittgenstein’s Language Games • 409

convincingly that what a picture describes is
determined by its use.

In the following I will illustrate how our
“new” UTOPIAN design methods may be
understood from a Wittgensteinian posi-
tion, that is, why design-by-doing and a
skill-based participatory design process
works. More generally, I will argue that
design tools such as models, prototypes, mock-
ups, descriptions, and representations act as
reminders and paradigm cases for our contem-
plation of future computer-based systems and
their use. Such design tools are effective
because they recall earlier experiences to mind.
It is in this sense that we should under-
stand them as representations. I will begin
with a few words on practice, the alterna-
tive to the “picture theory of reality.”

Practice Is Reality
Practice as the social construction of

reality is a strong candidate for replacing
the picture theory of reality. In short, prac-
tice is our everyday practical activity. It is
the human form of life. It precedes subject-
object relations. Through practice, we pro-
duce the world, both the world of objects
and our knowledge about this world.
Practice is both action and reflection. But
practice is also a social activity; it is pro-
duced in cooperation with others. To share
practice is also to share an understanding
of the world with others. However, this
production of the world and our under-
standing of it take place in an already
existing world. The world is also the prod-
uct of former practice. Hence, as part of
practice, knowledge has to be understood
socially—as producing or reproducing
social processes and structures as well as

being the product of them (Kosik, 1967;
Berger & Luckmann, 1966).

Against this background, we can
understand the design of computer
applications as a concerned social- and
historical-conditioned activity in which
tools and their use are envisioned. This is
an activity and form of knowledge that is
both planned and creative.

Once struck by the “naive” Cartesian
presumptions of a picture theory, what
can be gained in design by shifting focus
from the correctness of descriptions to
intervention into practice? What does it
imply to take the position that what a pic-
ture describes is determined by its use?
Most importantly, it sensitizes us to the cru-
cial role of skill and participation in design,
and to the opportunity in practical design
to transcend some of the limits of formal-
ization through the use of more action-
oriented design artifacts.

Language as Action
Think of the classical example of a car-

penter and his or her hammering activity.
In the professional language of carpenters,
there are not only hammers and nails. If
the carpenter were making a chair, other
tools used would include a draw-knife, a
brace, a trying plane, a hollow plane, a
round plane, a bow-saw, a marking gauge,
and chisels (Seymour, 1984). The materials
that he works with are elm planks for the
seats, ash for the arms, and oak for the
legs. He is involved in saddling, making
spindles, and steaming.

Are we as designers of new tools for
chairmaking helped by this labeling of
tools, materials, and activities? In a
Wittgensteinian approach the answer

410 • Appendix B NAUR , EHN, MUSASHI

would be: only if we understand the prac-
tice in which these names make sense. To
label our experiences is to act deliberately.
To label deliberately, we have to be trained
to do so. Hence, the activity of labeling has
to be learned. Language is not private but
social. The labels we create are part of a
practice that constitutes social meaning.
We cannot learn without learning some-
thing specific. To understand and to be
able to use is one and the same (Wittgen-
stein, 1953). Understanding the profes-
sional language of chairmaking, and any
other language-game (to use Wittgen-
stein’s term), is to be able to master practi-
cal rules we did not create ourselves. The
rules are techniques and conventions for
chairmaking that are an inseparable part
of a given practice.

To master the professional language of
chairmaking means to be able to act in an
effective way together with other people
who know chairmaking. To “know” does
not mean explicitly knowing the rules
you have learned, but rather recognizing
when something is done in a correct or
incorrect way. To have a concept is to
have learned to follow rules as part of a
given practice. Speech acts are, as a unity
of language and action, part of practice.
They are not descriptions but below I will
elaborate on language-games, focusing on
the design process descriptions in design,
design artifacts, and knowledge in the
design of computer applications.

Language-Games
To use language is to participate in lan-

guage-games. In discussing how we in
practice follow (and sometimes break)
rules as a social activity, Wittgenstein asks

us to think of games, how they are made
up and played. We often think of games
in terms of a playful, pleasurable engage-
ment. I think this aspect should not be
denied, but a more important aspect for
our purpose here is that games are activi-
ties, as are most of the common language-
games we play in our ordinary language.

Language-games, like the games we
play as children, are social activities. To be
able to play these games, we have to learn
to follow rules, rules that are socially cre-
ated but far from always explicit. The rule-
following behavior of being able to play
together with others is more important to a
game than the specific explicit rules. Playing
is interaction and cooperation. To follow
the rules in practice means to be able to act in
a way that others in the game can understand.
These rules are embedded in a given prac-
tice from which they cannot be distin-
guished. To know them is to be able to
“embody” them, to be able to apply them
to an open class of cases.

We understand what counts as a game
not because we have an explicit definition
but because we are already familiar with
other games. There is a kind of family
resemblance between games. Similarly,
professional language-games can be
learned and understood because of their
family resemblance to other language-
games that we know how to play.

Language-games are performed both
as speech acts and as other activities, as
meaningful practice within societal and
cultural institutional frameworks. To be
able to participate in the practice of a spe-
cific language-game, one has to share the
form of life within which that practice is
possible. This form of life includes our

Pel le Ehn, Wittgenstein’s Language Games • 411

natural history as well as the social insti-
tutions and traditions into which we are
born. This condition precedes agreed
social conventions and rational reasoning.
Language as a means of communication
requires agreement not only in definitions,
but also in judgments. Hence, intersubjec-
tive consensus is more fundamentally a
question of shared background and lan-
guage than of stated opinions (Wittgen-
stein, 1953).

This definition seems to make us pris-
oners of language and tradition, which is
not really the case. Being socially created,
the rules of language games, like those of
other games, can also be socially altered.
There are, according to Wittgenstein, even
games in which we make up and alter the
rules as we go along. Think of systems design
and use as language games. The very idea of
the interventionistic design language-game is
to change the rules of the language-game of
use in a proper way.

The idea of language-games entails an
emphasis on how we linguistically dis-
cover and construct our world. However,
language is understood as our use of it, as
our social, historic, and intersubjective
application of linguistic artifacts. As I see
it, the language-game perspective there-
fore does not preclude consideration of
how we also come to understand the
world by use of other tools.

Tools and objects play a fundamental
role in many language-games. A hammer is
in itself a sign of what one can do with it in
certain language-games. And so is a com-
puter application. These signs remind one of
what can be done with them. In this light, an
important aspect in the design of computer
applications is that its signs remind the

users of what they can do with the applica-
tion in the language-games of use (Brock,
1986). The success of “what-you-see-is-
what-you-get” and “direct manipulation”
user interfaces does not have to do with
how they mirror reality in a more natural
way, but with how they provide better
reminders of the users’ earlier experiences
(Bødker, forthcoming). This is also, as will
be discussed in the following, the case with
the tools that we use in the design process.

Knowledge and Design Artifacts
As designers we are involved in

reforming practice, in our case typically
computer-based systems and the way
people use them. Hence, the language-
games of design change the rules for
other language-games, in particular those
of the application’s use. What are the con-
ditions for this interplay and change to
operate effectively?

A common assumption behind most
design approaches seems to be that the
users must be able to give complete and
explicit descriptions of their demands.
Hence, the emphasis is on methods to
support this elucidation by means of
requirement specifications or system
descriptions (Jackson, 1983; Yourdon,
1982).

In a Wittgensteinian approach, the
focus is not on the “correctness” of sys-
tems descriptions in design, on how well
they mirror the desires in the mind of the
users, or on how correctly they describe
existing and future systems and their use.
Systems descriptions are design artifacts.
In a Wittgensteinian approach, the crucial
question is how we use them, that is,
what role they play in the design process.

412 • Appendix B NAUR , EHN, MUSASHI

The rejection of an emphasis on the
“correctness” of descriptions is especially
important. In this, we are advised by the
author of perhaps the strongest argu-
ments for a picture theory and the Carte-
sian approach to design—the young
Wittgenstein in Tractatus Logico-Philo-
sophicus (1923). The reason for this rejec-
tion is the fundamental role of practical
knowledge and creative rule following in
language-games.

Nevertheless, we know that systems
descriptions are useful in the language-
game of design. The new orientation sug-
gested in a Wittgensteinian approach is
that we see such descriptions as a special
kind of artifact that we use as “typical
examples” or “paradigm cases.” They are
not models in the sense of Cartesian mirror
images of reality (Nordenstam, 1984). In the
language-game of design, we use these tools as
reminders for our reflection on future com-
puter applications and their use. By using
such design artifacts, we bring earlier experi-
ences to mind, and they bend our way of
thinking of the past and the future. I think
that this is why we should understand
them as representations (Kaasboll, forth-
coming). And this is how they inform our
practice. If they are good design artifacts,
they will support good moves within a specific
design language-game.

The meaning of a design artifact is its use
in a design language-game, not how it “mir-
rors reality.” Its ability to support such use
depends on the kinds of experience it evokes,
its family resemblance to tools that the
participants use in their everyday work
activity. Therein lies a clue to why the
breakthrough in the UTOPIA project was
related to the use of prototypes and mock-

ups. Since the design artifacts took the
form of reminders or paradigm cases,
they did not merely attempt to mirror a
given or future practice linguistically.
They could be experienced through the
practical use of a prototype or mockup.
This experience could be further reflected
upon in the language-game of design,
either in ordinary language or in an artifi-
cial one.

A good example from the UTOPIA
project is an empty cardboard box with
“desktop laser printer” written on the top.
There is no functionality in this mockup.
Still, it works very well in the design game
of envisioning the future work of makeup
staff. It reminded the participating typogra-
phers of the old “proof machine” they used
to work with in lead technology. At the
same time, it suggested that with the help of
new technology, the old proof machine
could be reinvented and enhanced.

This design language-game was played
in 1982. At that time, desktop laser print-
ers only existed in advanced research lab-
oratories, and certainly typographers had
never heard of them. To them, the idea of
a cheap laser printer was “unreal.”

It was our responsibility as profes-
sional designers to be aware of such
future possibilities and to suggest them to
the users. It was also our role to suggest
this technical and organizational solution
in such a way that the users could experi-
ence and envision what it would mean in
their practical work, before the invest-
ment of too much time, money, and devel-
opment work. Hence, the design game
with the mockup laser printer. The
mockup made sense to all participants—
users and designers (Ehn & Kyng, 1991).

Pel le Ehn, Wittgenstein’s Language Games • 413

This focus on nonlinguistic design arti-
facts is not a rejection of the importance of
linguistic ones. Understood as triggers for
our imagination rather than as mirror
images of reality, they may well be our
most wonderful human inventions. Lin-
guistic design artifacts are very effective
when they challenge us to tell stories that
make sense to all participants.

Practical Understanding and Propositional
Knowledge
There are many actions in a language-

game, not least in the use of prototypes
and mockups, that cannot be explicitly
described in a formal language. What is it
that the users know, that is, what have
they learned that they can express in
action, but not state explicitly in lan-
guage? Wittgenstein (1953) asks us to
“compare knowing and saying: how
many feet high Mont Blanc is—how the
word ‘game’ is used—how a clarinet
sounds. If you are surprised that one can
know something you are perhaps think-
ing of a case like the first. Certainly not of
one of the third.”

In the UTOPIA project, we were
designing new computer applications to
be used in typographical page makeup.
The typographers could tell us the names
of the different tools and materials that
they use such as knife, page ground, body
text, galley, logo, halftone, frame, and
spread. They could also tell when, and
perhaps in which order, they use specific
tools and materials to place an article. For
example, they could say, “First you pick
up the body text with the knife and place
it at the bottom of the designated area on
the page ground. Then you adjust it to the

galley line. When the body text fits you
get the headline, if there is not a picture,”
and so forth. What I, as designer, get to
know from such an account is equivalent
to knowing the height of Mont Blanc.
What I get to know is very different from
the practical understanding of really mak-
ing up pages, just as knowing the height
of Mont Blanc gives me very little of
understanding the practical experience of
climbing the mountain.

Knowledge of the first kind has been
called propositional knowledge. It is what
you have “when you know that some-
thing is the case and when you also can
describe what you know in so many
words” (Nordenstam, 1985). Proposi-
tional knowledge is not necessarily more
reflective than practical understanding. It
might just be something that I have been
told, but of which I have neither practical
experience nor theoretical understanding.

The second case, corresponding to
knowing how the word game is used, was
more complicated for our typographers.
How could they, for example, tell us the
skill they possess in knowing how to han-
dle the knife when making up the page in
pasteup technology? This is their practical
experience from the language-games of
typographic design. To show it, they have
to do it.

And how should they relate what
counts as good layout, the complex inter-
play of presence and absence, light and
dark, symmetry and asymmetry, unifor-
mity and variety? Could they do it in any
other way than by giving examples of
good and bad layouts, examples that they
have learned by participating in the
games of typographical design? As in the

414 • Appendix B NAUR , EHN, MUSASHI

case of knowing how a clarinet sounds,
this is typically sensuous knowing by
familiarity with earlier cases of how
something is, sounds, smells, and so on.

Practical understanding—in the sense
of practical experience from doing some-
thing and having sensuous experiences
from earlier cases—defies formal descrip-
tion. If it were transformed into proposi-
tional knowledge, it would become
something totally different.

It is hard to see how we as designers of
computer systems for page makeup could
manage to come up with useful designs
without understanding how the knife is
used or what counts as good layout. For
this reason we had to have access to more
than what can be stated as explicit propo-
sitional knowledge. We could only
achieve this understanding by participat-
ing to some extent in the language-games
of use of the typographical tools. Hence,
participation applies not only to users
participating in the language-game of
design, but perhaps more importantly to
designers participating in use. Some con-
sequences of this position for organizing
design language-games will be discussed
in the following.

Rule Following and Tradition
Now, I turn to the paradox of rule-

following behavior. As mentioned,
many rules that we follow in practice
can scarcely be distinguished from the
behavior in which we perform them.
We do not know that we have followed a
rule until we have done it. The most
important rules we follow in skillful per-
formance defy formalization, but we still
understand them. As Michael Polanyi

(1973), the philosopher of tacit knowl-
edge, has put it: “It is pathetic to watch
the endless efforts—equipped with
microscopy and chemistry, with mathe-
matics and electronics—to reproduce a
single violin of the kind the half-literate
Stradevarius turned out as a matter of
routine more than 200 years ago.” This is
the traditional aspect of human rule-fol-
lowing behavior. Polanyi points out that
what may be our most widely recognized,
explicit, rule-based system—the practice
of Common Law—also uses earlier exam-
ples as paradigm cases. Says Polanyi,
“[Common Law] recognizes the principle
of all traditionalism that practical wisdom
is more truly embodied in action than
expressed in the rules of action.” Accord-
ing to Polanyi this is also true for science,
no matter how rationalistic and explicit it
claims to be: “While the articulate con-
tents of science are successfully taught all
over the world in hundreds of new uni-
versities, the unspecifiable art of scientific
research has not yet penetrated to many
of these.” The art of scientific research
defies complete formalization; it must be
learned partly by examples from a master
whose behavior the student trusts.

Involving skilled users in the design of
new computer application when their old
tools and working habits are redesigned is
an excellent illustration of Polanyi’s thesis.
If activities that have been under such pres-
sure for formalization as Law and Science
are so dependent on practical experience
and paradigm cases, why should we expect
other social institutions that have been
under less pressure of formalization to be
less based on practical experience, para-
digm cases, and tacit knowledge?

Pel le Ehn, Wittgenstein’s Language Games • 415

Rule Following and Transcendence
If design is rule-following behavior, is it

also creative transcendence of traditional
behavior. Again, this is what is typical of
skillful human behavior, and is exactly
what defies precise formalization. Through
mastery of the rules comes the freedom to
extend them. This creativity is based on the
open-textured character of rule-following
behavior. To begin with, we learn to follow a
rule as a kind of dressage, but in the end we do
it as creative activity (Dreyfus & Dreyfus,
1986). Mastery of the rules puts us in a
position to invent new ways of proceed-
ing. As the Wittgenstein commentator
Alan Janik has put it: “There is always
and ineliminably the possibility that we
can follow the rule in a wholly unforeseen
way. This could not happen if we had to
have an explicit rule to go on from the
start . . . the possibility of radical innova-
tion is, however, the logical limit of
description. This is what tacit knowledge
is all about” (Janik, 1988). This is why we
need a strong focus on skill both in design
and in the use of computer systems. We
focus on existing skills, not as to inhibit
creative transcendence, but as a necessary
condition for it.

But what is the role of “new” external
ideas and experiences in design? How are
tradition and transcendence united in a
Wittgensteinian approach? It could, I
believe, mean utilizing something like Ber-
thold Brecht’s theatrical “alienation” effect
Verfremdungseffekt to highlight transcen-
dental untried possibilities in the everyday
practice by presenting a well-known prac-
tice in a new light: “the aspects of things
that are most important to us are hidden
because of their simplicity and familiarity”

(Wittgenstein, 1953). However, as Peter
Winch (1958, p. 119) put it, in a Wittgen-
steinian approach: “the only legitimate use
of such a Verfremdungseffekt is to draw
attention to the familiar and obvious, not
to show that it is dispensable from our
understanding.”

Design artifacts, linguistic or not, may
in a Wittgensteinian approach certainly
be used to break down traditional under-
standing, but they must make sense in the
users’ ordinary language-games. If the
design tools are effective, it is because
they help users and designers to see new
aspects of an already well-known prac-
tice, not because they convey such new
ideas. It is I think fair to say that this focus
on traditional skill in interplay with
design skill may be a hindrance to really
revolutionary designs. The development
of radically new designs might require
leveraging other skills and involving
other potential users. Few designs, how-
ever, are really revolutionary, and for nor-
mal everyday design situations, the
participation of traditionally skilled users
is critical to the quality of the resulting
product.

The tension between tradition and
transcendence is fundamental to design.
There can be a focus on tradition or tran-
scendence in the systems being created.
Should a word processor be designed as
an extension of the traditional typewriter
or as something totally new? Another
dimension is professional competence:
Should one design for the “old” skills of
typographers or should new knowledge
replace those skills in future use? Or
again, with the division of labor and
cooperation: Should the new design

416 • Appendix B NAUR , EHN, MUSASHI

support the traditional organization in a
composing room or suggest new ways of
cooperation between typographers and
journalists? There is also the tension
between tradition and transcendence in
the goods or services to be produced
using the new system: Should the design
support the traditional graphical produc-
tion or completely new services, such as
desktop publishing?

Tradition and transcendence, that is the
dialectical foundation of design.

Design by Doing: New “Rules of
the Game”
What do we as designers have to do to

qualify as participants in the language-
games of the users? What do users have
to learn to qualify as participants in the
language-game of design? And what
means can we develop in design to facili-
tate these learning processes?

If designers and users share the same
form of life, it should be possible to over-
come the gap between the different lan-
guage-games. It should, at least in
principle, be possible to develop the prac-
tice of design to the point where there is
enough family resemblance between a
specific language-game of the users and
the language-games in which the design-
ers of the computer application are inter-
vening. A mediation should be possible.

But what are the conditions required to
establish this mediation? For Wittgen-
stein, it would make no sense to ask this
question outside a given form of life: “If a
lion could talk, we could not understand
him” (1953). In the arguments below, I
have assumed that the conditions for a
common form of life are possible to create,

that the lions and sheep of industrial life,
as discussed in the first part of this chap-
ter, can live together. This is more a nor-
mative standpoint of how design ought to
be, a democratic hope rather than a reflec-
tion on current political conditions.

To develop the competence required to
participate in a language-game requires a
lot of learning within that practice. But, in
the beginning, all one can understand is what
one has already understood in another lan-
guage-game. If we understand anything at
all, it is because of the family resemblance
between the two language-games.

What kind of design tools could support
this interplay between language-games? I
think that what we in the UTOPIA project
called design-by-doing methods—proto-
typing, mockups, and scenarios—are good
candidates. Even joint visits to workplaces,
especially ones similar to the ones being
designed for, served as a kind of design
tool through which designers and users
bridged their language-games.

The language-games played in design-
by-doing can be viewed both from the
point of view of the users and of the
designers. This kind of design becomes a
language-game in which the users learn
about possibilities and constraints of new
computer tools that may become part of
their ordinary language-games. The
designers become the teachers that teach
the users how to participate in this partic-
ular language-game of design. However,
to set up these kind of language-games,
the designers have to learn from the users.

However, paradoxical as it sounds,
users and designers do not have to under-
stand each other fully in playing lan-
guage-games of design-by-doing together.

Pel le Ehn, Wittgenstein’s Language Games • 417

Participation in a language-game of
design and the use of design artifacts can
make constructive but different sense to
users and designers. Wittgenstein (1953)
notes that “when children play at trains
their game is connected with their knowl-
edge of trains. It would nevertheless be
possible for the children of a tribe unac-
quainted with trains to learn this game
from others, and to play it without know-
ing that it was copied from anything. One
might say that the game did not make the
same sense as to us.” As long as the lan-
guage-game of design is not a nonsense
activity to any participant but a shared
activity for better understanding and
good design, mutual understanding may
be desired but not really required.

User Participation and Skill
The users can participate in the lan-

guage-game of design because the appli-
cation of the design artifacts gives their
design activities a family resemblance
with the language-games that they play in
ordinary use situations. An example from
the UTOPIA project is a typographer sit-
ting at a mockup of a future workstation
for page makeup, doing page makeup on
the simulated future computer tool.

The family resemblance is only one
aspect of the methods. Another aspect
involves what can be expressed. In design-
by-doing, the user is able to express both
propositional knowledge and practical
understanding. Not only could, for exam-
ple, the typographer working at the
mockup tell that the screen should be big-
ger to show a full page spread—something
important in page makeup—he could also
show what he meant by “cropping a

picture” by actually doing it as he said it. It
was thus possible for him to express his
practical understanding, his sensuous
knowledge by familiarity. He could, while
working at the mockup, express the fact
that when the system is designed one way
he can get a good balanced page, but not
when it is designed another way.

Designer Participation and Skill
For us as designers, it was possible to

express both propositional knowledge and
practical understanding about design and
computer systems. Not only could we
express propositional knowledge such as
“design-by-doing design tools have many
advantages as compared with traditional
systems descriptions” or “bit-map displays
bigger than 22 inches and with a resolution
of more than 2000 x 2000 pixels are very
expensive,” but in the language-game of
design-by-doing, we could also express
practical understanding of technical con-
straints and possibilities by “implement-
ing” them in the mockup, prototype,
simulation, or experimental situation. Sim-
ulations of the user interface were also
important in this language-game of design.

As designers, our practical understand-
ing will mainly be expressed in the ability
to construct specific language-games of
design in such a way that the users can
develop their understanding of future use
by participating in design processes.

As mentioned above, there is a further
important aspect of language-games: We
make up the rules as we go along. A
skilled designer should be able to assist in
such transcendental rule-breaking activi-
ties. Perhaps, this is the artistic compe-
tence that a good designer needs.

418 • Appendix B NAUR , EHN, MUSASHI

To really learn the language-game of
the use activity by fully participating in
that language-game is, of course, an even
more radical approach for the designer.
Less radical but perhaps more practical
would be for designers to concentrate
design activity on just a few language-
games of use, and for us to develop a
practical understanding of useful specific
language-games of design (Ehn & Kyng,
1987). Finally, there seems to be a new role
for the designer as the one who sets the
stage for a shared design language-game
that makes sense to all participants.

Some Lessons on Design, Skill, and
Participation
As in the first practice-oriented part of

this paper on designing for democracy at
work, I end this second philosophically
oriented part on skill-based participatory
design with some lessons for work-
oriented design.

General lessons on work-oriented design
include:

1. Understanding design as a process of
creating new language-games that
have family resemblance with the lan-
guage-games of both users and design-
ers gives us an orientation for doing
work-oriented design through skill-
based participation—a way of doing
design that may help us transcend
some of the limits of formalization. Set-
ting up these design language-games is
a new role for the designer.

2. Traditional “systems descriptions” are
not sufficient in a skill-based participa-
tory design approach. Design artifacts
should not be seen primarily as means

for creating true “pictures of reality,”
but as means to help users and design-
ers discuss and experience current sit-
uations and envision future ones.

3. “Design-by-doing” design approaches
such as the use of mockups and other
prototyping design artifacts make it
possible for ordinary users to use their
practical skill when participating in
the design process.

Lessons on skill in the design of com-
puter-based systems include:

1. Participatory design is a learning pro-
cess in which designers and users
learn from each other.

2. Besides propositional knowledge, prac-
tical understanding is a type of skill
that should be taken seriously in a
design language-game since the most
important rules we follow in skillful
performance are embedded in practice
and defy formalization.

3. Creativity depends on the open-tex-
tured character of rule-following
behavior, hence a focus on traditional
skill is not a drawback to creative tran-
scendence but a necessary condition.
Supporting the dialectics between
tradition and transcendence is the
heart of design.

Lessons on participation in design of
computer-based systems include:

1. Really participatory design requires a
shared form of life—a shared social
and cultural background and a shared
language. Hence, participatory design
means not only users participating in

Pel le Ehn, Wittgenstein’s Language Games • 419

design but also designers participating
in use. The professional designer will
try to share practice with the users.

2. To make real user participation possi-
ble, a design language-game must be
set up in such a way that it has a family
resemblance to language-games the
users have participated in before.
Hence, the creative designer should be
concerned with the practice of the users
in organizing the design process, and
understand that every new design lan-
guage-game is a unique situated design
experience. There is, however paradox-
ical it may sound, no requirement that
the design language-game make the
same sense to users and designers.
There is only [the] requirement that the
designer set the stage for a design lan-
guage-game in which participation
makes sense to all participants.

Beyond the Boredom of Design
Given the Scandinavian societal, histor-

ical, and cultural setting, the first part of
this chapter focused on the democratic
aspect of skill-based participatory design,
especially the important role of local trade
unions and their strategies for user
participation. In the second part, some
ideas inspired by Ludwig Wittgenstein’s
philosophical investigations were applied
to the everyday practice of skill-based
participatory design. Practical under-
standing and family resemblance between
language-games were presented as funda-
mental concepts for work-oriented
design.

The concept of language-games is asso-
ciated with playful activity, but what

practical conditions are needed for such
pleasurable engagement in design? Is the
right to democratic participation enough?

In fact, the experiences from the work-
oriented design projects indicates that
most users find design work boring, some-
times to the point where they stop partici-
pating. This problem is not unique to the
Scandinavian work-oriented design tradi-
tion. It has, for example, been addressed
by Russell Ackoff (1974), who concluded
that participation in design can be only
successful if it meets three conditions: (1) it
makes a difference for the participants, (2)
implementation of the results is likely, and
(3) it is fun.

The first two points concern the political
side of participation in design. Users must
have a guarantee that their design efforts
are taken seriously. The last point concerns
the design process. No matter how much
influence participation may give, it has to
transcend the boredom of traditional
design meetings to really make design
meaningful and full of involved action.
The design work should be playful. In our
own later projects, we have tried to take
this challenge seriously and have inte-
grated the use of future workshops, meta-
phorical design, role playing and
organizational games into work-oriented
design (Ehn & Sjogren, 1991).

Hence, the last lesson from Scandina-
vian designs is that formal democratic
and participatory procedures for design-
ing computer-based systems for democ-
racy at work are not sufficient. Our design
language-games must also be organized
in a way that makes it possible for ordi-
nary users not only to utilize their

420 • Appendix B NAUR , EHN, MUSASHI

practical skill in the design work, but also
to have fun while doing so.

. . .

REFLECTIONS ON EHN’S WRITING

Each time I read Ehn’s article, I discover
that I may be more in debt to his writing
than I previously thought. Rereading it
just prior to writing this paragraph, I was
struck by his use of the Shu-Ha-Ri con-

struct, to his attention to “understanding
through doing,” and his understanding of
how people grow new understanding
through the act of doing.

I evidently wasn’t ready to read very
many of his words in 1993 and have
grown into them over the years. It makes
me wonder how many other concepts he
mentions, but which I haven’t yet noticed.

I hope you will take the time to reread
this article in another year or two.

MU S A S H I

Miyamoto Musashi was a 17th-century
samurai who never wrote software.

He claimed never to have lost a fight.
Losing a fight meant serious body dam-
age, and it was quite an accomplishment
to be alive with all limbs in place at the
age of 70.

A romantic novel series about Musashi
depicts his early life, fights, and mental
development. It is a wonderful read and
also vividly portrays his fighting approach,
which his personal book describes.

His personal book is the Go Rin No Sho,
in English The Book of Five Rings (I have
the Thomas Cleary translation, Sham-
bhala, 2000), which he wrote at age 70.
That book outlines his approach as clearly
as he can make it, describing mental
states, specific moves, and the use of large
groups. It is short, clear, and wonderfully
absent of the usual Zen doubletalk, “Be
by not being, fight by not fighting, win by
losing,” and so on.

I include Musashi here because three
characteristics of his fighting style match
my software development style, and he
describes them so well:

• Do not develop an attachment to any
one weapon or any one school of
fighting.

• Practice and observe reflectively.
• Win.

The first recommendation is to use any
and all schools and techniques, without
great attachment.

At the time of his writing, warriors
formed schools around particular stances,
styles, weapons, and tactics. His view was
that each had its merits and weaknesses;
one should use the range of them without
getting stuck in any one.

The same is true in software design
techniques. Don’t get stuck in UML, RUP,
CMM, SEI, XP, CRC (insert your favorite
school’s or tool’s acronym here). Use
whichever you need at the instant you

Musashi • 421

need it. Discover what you need at differ-
ent moments, so you can develop a tool-
and method-attack strategy that will tell
you which one to pick up and when to
put it down.

The second recommendation is to
reflect on what you do and how you do it.
Reflective practice has been discussed
throughout this book.

The third recommendation is to pay
more attention to winning than to looking
good.

Winning the software development
game is shipping the software. If you can
do so without process, do so. My favorite-
ever recommendation to a group was:

“What? You have a five-week project,
with three developers who have done this
before in the same technology? You don’t
need a development coordinator—just do
it and go home.”

Musashi said, “Do not do anything
useless.”

Musashi cared about winning the
game, which in his case was life-or-death.
I am attached to delivering the software.
The prettiness of the dance doesn’t matter
if the software comes out at the wrong
time.

In the following, notice that even in the
17th century, Musashi describes Shu-Ha-
Ri and the importance of developing skill.

The “opponent” in software develop-
ment is the problem to be solved. “Killing
the opponent” is delivering the software
and winning the game. Here are some of
his words (or Cleary’s translation of
them), presented as individual excerpts.

THE BOOK OF FIVE RINGS

1. Now, in composing this book, I have
not borrowed the old saying of Bud-
dhism or Confucianism, nor do I make
use of old stories from military records
or books on military science . . .

2. The field of martial arts is particularly
rife with flamboyant showmanship,
with commercial popularization and
profiteering on the part of both those
who teach the science and those who
study it. The result of this must be, as
someone said, that “amateuristic mar-
tial arts are a source of serious
wounds.” . . .

3. The master carpenter, knowing the
measurements and designs of all sorts
of structures, employs people to build
houses. In this respect, the master car-
penter is the same as the master
warrior. . . . As the master carpenter
directs the journeymen, he knows their
various levels of skill and gives them
appropriate tasks. . . . Efficiency and
smooth progress, prudence in all mat-
ters, recognizing true courage, recog-
nizing different levels of morale,
instilling confidence, and realizing
what can and cannot be reasonably
expected-such are the matters on the
mind of the master carpenter. The
principle of martial arts is like this. . . .

4. Speaking in terms of carpentry, sol-
diers sharpen their own tools, make
various useful implements, and keep
them in their utility boxes. . . . An
essential habit for carpenters is to have
sharp tools and keep them
whetted. . . .

422 • Appendix B NAUR , EHN, MUSASHI

5. You should observe reflectively, with
overall awareness of the large picture
as well as precise attention to small
details. . . .

6. Having attained a principle, one
detaches from the principle; thus one
has spontaneous independence in the
science of martial arts and naturally
attains marvels: discerning the rhythm
when the time comes, one strikes
spontaneously and naturally
scores. . . .

7. In my individual school, one can win
with the long sword, and one can win
with the short sword as well. For this
reason, the precise size of the sword is
not fixed. The way of my school is the
spirit of gaining victory by any
means. . . .

8. When your life is on the line, you want
to make use of all your tools. . . . We
find that whatever the weapon, there
is a time and situation in which it is
appropriate. . . . Both the spear and the
halberd depend on circumstances; nei-
ther is very useful in crowded
situations. . . . they should be reserved
for use on the battlefield. . . . [the bow]
is inadequate for seiging a castle. . . .

9. In the present age, not only the bow
but also the other arts have more flow-
ers than fruit. Such skills are useless
where there is a real need. . . .

10.You should not have any particular
fondness for a particular weapon, or
anything else for that matter. Too
much is the same as not enough. . . .
Pragmatic thinking is essential. . . .

11.Whatever guard you adopt, do not
think of it as being on guard; think of it
as part of the act of killing. . . .

12.Whether you adopt a large or small
guard depends on the situation; follow
whatever is most advantageous. . . .

13. (FIRST TECHNIQUE) . . . your sword
now having bounced upward, leave it
as it is until the opponent strikes again,
whereupon you strike the opponent's
hands from below. . . .

14. (SECOND TECHNIQUE) . . . If your
sword misses the opponent, leave it
there for the moment, until the oppo-
nent strikes again, whereupon you
strike from below, sweeping
upwards. . . .

15. (THIRD TECHNIQUE) . . . as the
opponent strikes, you strike at his
hands from below. . . . as he tries to
knock your sword down, bring it up in
rhythm, then chop off his arms side-
ways. The point is to strike an oppo-
nent down all at once from the lower
position just as he strikes. . . .

16.Having a position without a position,
or a guard without a guard, means
that the long sword is not supposed to
be kept in a fixed position. . . Where
you hold your sword depends on your
relationship to the opponent, depends
on the place, and must conform to the
situation; wherever you hold it, the
idea is to hold it so that it will be easy
to kill the opponent. . . . Even though
you may catch, hit, or block an oppo-
nent’s slashing sword, or tie it up or
obstruct it, all of these moves are

Musashi • 423

opportunities for cutting the oppo-
nent down. This must be
understood. . . .

17. . . . how to win using the long sword
according to the laws of martial arts.
This cannot be written down in detail;
one must realize how to win by
practice.

18. . . . the power of knowledge of the art
of the sword. This is something that
requires thorough examination, with a
thousand days of practice for training
and ten thousand days of practice for
refinement. . . .

19.Other schools become theatrical, dress-
ing up and showing off to make a liv-
ing, commercializing martial arts. . . .
Do you think you have realized how to
attain victory just by learning to wield
a long sword and training your body
and your hands? This is not a certain
way in any case. . . .

20. . . . the views of each school, and the
logic of each path, are realized differ-
ently, according to the individual per-
son, depending on the mentality. . . .

21.Thus in my individual school there is
an aversion to a narrow, biased
attitude. . . .

22. In my school, no consideration is given
to anything unreasonable; the heart of
the matter is to use the power of the
knowledge of martial arts to gain vic-
tory any way you can. . . .

APPLYING MUSASHI TO SOFTWARE
DEVELOPMENT

I share three views with Musashi. I differ
on the fourth.

Appropriate Tool, Appropriate Technique
Know your tools, know what you need

at the moment, and you will know how to
get value out of the tools at your disposal,
even if they aren't perfect. You can even
profitably use tools that were not originally
constructed for software development.

Here is how I work in two different cir-
cumstances.

When given a CASE tool to use, I first
exclude from use all of the tool’s capabili-
ties that do not lend value to the project at
hand. Although this is an underutilization
of an expensive tool, my goal is not to use
a tool to its maximum, it is to deliver
software.

On a different project, we may select as
our primary strategy having the CASE tool
create the final code. On this project, we
plan on extending the tool as we need to so
that it performs the job we want it to do.

Know your favorite tools and tech-
niques for key tasks without getting
overly attached to any one. Learn to adapt
to whatever is available.

Direct Solution
See if you can just “cut off your oppo-

nent's arm with a single blow,” as in
sword fighting. In software terms, see if
you can just “do it and go home.” Avoid
waste.

When you have to feint, block, and
parry, understand that you are doing that
because there is no alternative. Do just

424 • Appendix B NAUR , EHN, MUSASHI

enough of it to win. Avoid flamboyant
showmanship, because it does not help
deliver the system.

In software development, look for sim-
ple solutions to your process problems
just as you look for simple solutions to
your technical problems. Recall the one-
sentence summary of Crystal Clear: “Put
the people in a room with printing white-
boards, give them access to user experts,
and have them deliver running tested
software every two months.” If you can
do that, then just do that.

Reflection and Skill Development
Continue to develop your skill, and

take time to reflect at regular intervals.

Microtouch Intervention
I do part company with Musashi in one

area. He was in the business of killing or
getting killed. I am in the business of
helping people deliver software. There is
a dramatic difference.

I like to cut quickly to the heart of the
problem but keep the people fully intact.
Arm-chopping is not an effective inter-
vention strategy. I am after the smallest
possible changes to the people on a
project that accomplishes the job: micro-
touch intervention. (Actually, I suspect
Musashi would agree with me, if he were
in my business.)

Microtouch intervention is based on
two ideas:

• With better understanding, smaller
interventions are required.

• Many microscopic changes can pro-
duce a very large effect in unison.

Better understanding, smaller interven-
tions. Two centuries ago, syphilis
patients died. A century ago they under-
went near-fatal arsenic treatments. These
days they are given antibiotics. Early anti-
biotics were broad-spectrum bacteria kill-
ers; nowadays the antibiotics are targeted
to the specific bacteria they are to kill.

Early computers were made with large
vacuum tubes. Then, they were made
with transistors. Now they are made with
only a few thousands of atoms, recently
even just single atoms.

Less energy is needed to effect a
needed change the better we understand
what we are doing. When we understand
enough, we need only move molecules
small distances, and the consequences
will ripple out to produce the macro-
effect we are interested in.

In software development, we are still in
the amputation stage. As we better under-
stand the forces underlying our profession,
we can make smaller and smaller changes
to improve a situation. I know that asking
people to change their personal habits is a
big request, so I prefer to change team seat-
ing or a few job assignments and let the
human communications mechanism effect
the much larger changes.

Small changes add up. I find it remark-
able that just aligning many, microscopi-
cally small magnetic domains in a metal
converts a nonmagnet to a strong magnet.

Aligning people's purposes has the
same effect on a project.

Imagine many people, working to their
own value systems, pursuing whatever
goals happen to hit them each day. They

Musashi • 425

will sometimes, almost randomly, help
each other or thwart each other.

Suppose you ask each person to make a
tiny change, one that they find acceptably
small. You can arrange the changes so that
the people thwart each other less, help
each other more. They are oriented in the
same direction. With almost no energy
change, the project team achieves a result-
ing power all out of proportion to the
changes made (this is shown graphically
in Figure 3-17 and Figure 3-18). This is
summed up in Kent Arett’s statement,
“Paint the vision and get motivated

people, and it’s ‘Game Over.’” (see
“Fewer and Better” on page 195).

Microtouch intervention has its limits,
of course. Sometimes, the correct move is
not to continue with microtouch interven-
tion but to replace the entire project struc-
ture with a new one. This happened once
when we saw that a 30-person, colocated
team could deliver the same as the failing
300-person multinational team.

The art, of course, is knowing when to
rebuild the project and when microtouch
intervention will work. Makes me won-
der how Musashi would express that.

This page intentionally left blank

427

APPENDIX B.1

Naur, Ehn, Musashi:
Evolution

I have referred at length in this book to the ideas of the three people
quoted in Appendix B: Peter Naur, Pelle Ehn, and Musashi.

After five years of living with their words, I can mostly suggest that
you read and reread those extracts. I continue to find value in them.

428

Naur, Ehn, Musashi: Evolution

NAUR . 429

EHN. 429

MUSASHI . 429

Naur • 429

NA U R

From Peter Naur’s writing, we get the
idea that the team is working to create a
common theory for their work. In terms
of the Swamp Game (p. 49), the team
starts off not knowing what they are sup-
posed to build, where in the swamp to
build it, or what the layout of the swamp
is. The theory they are building is the
answer to those three questions.

Part of the communication aspect of the
cooperative game is establishing a shared
direction for the team and a shared view
of what the results need to look like. This
is called common vision in some writings.
Naur’s theory includes this idea and also
a common understanding of why the
thing is put together the way it is.

Common vision and common under-
standing of why the thing is put together
the way it is are both part of any coopera-
tive game, and most certainly our cooper-
ative games of invention and
communication.

Naur’s discussion of theory building as
a personal activity helps us to understand
modes of transmitting understanding
from one person to another. There is noth-
ing that says that written documentation
is the best way to convey understanding;
possibly it is the worst. If we take the
challenge to “convey understanding,”
then we can experiment with different
ways until we find some that work better.

EH N

From Pelle Ehn’s writing, we get the idea
that the understanding of the task to be
done may never be perfect, but it may
never need to be perfect. The magic lies in
the back-and-forth between developer
and user, creating new understanding
about the task at hand and the tools being
created.

It is easy to look at Ehn’s team’s assign-
ment from 1986 and think that we are
long past the days when people couldn’t

understand how the computer could help
them. However, every organization work-
ing on improving their organizational
process is faced with this problem. Until
the system gets delivered and put into
use, there is really no way that the users
can tell how the presence of the new sys-
tem will change the ways they work with
each other, and the ways they carry out
their jobs.

MU S A S H I

I use the Musashi quotes to start off my
one-day workshops introducing agile
development. At first, it seems strange to

use samurai quotes to understand soft-
ware development, but then later it be-
comes so obvious how much his writings

430 • Appendix B .1 NAUR , EHN, MUSASHI: EVOLUTION

have in common with modern software
development.

I highlight three of his motifs:

• Waste no movement.
• Learn each tool’s strength; don’t

become attached to any one tool.
• Reflect and adapt.

The one difference to resolve between
Musashi’s writings and software develop-
ment is that Musashi keeps referring to
killing the opponent. Who or what is the
opponent in software development?

I was shocked in one organization
when someone answered, “The users!”
Looking for other opinions, I asked
another person, who said, “The other

specialists, like the database administra-
tor!” Another person tried to clarify:
“Sometimes you have to take out one of
the other people on your team in order to
get your work done.”

Just in case you are tempted to make a
similar response, I wish to stress that your
teammate is not the opponent, nor is the
user, your manager, or the sponsor.

The “opponent” is the problem you are
trying to solve, the obstacles to delivering
the system. “Killing the opponent” is solv-
ing the problem, delivering the system.
Your situation will throw enough obstacles
in your way that you don’t need to con-
sider your teammates as opponents.

Remember: “There’s only us.”

