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Abstract

Decision making using Thompson Sampling

Joseph Mellor
A thesis submitted to the University of Manchester

for the degree of Doctor of Philosophy, 2014

The ability to make decisions is a crucial ability of many autonomous systems.

In many scenarios the consequence of a decision is unknown and often stochastic.

The same decision may lead to a different outcome every time it is taken. An

agent that can learn to make decisions based purely on its past experience needs

less tuning and is likely more robust. An agent must often balance between

learning the payoff of actions by exploring, and exploiting the knowledge they

currently have. The multi-armed bandit problem exhibits such an exploration-

exploitation dilemma. Thompson Sampling is a strategy for the problem, first

proposed in 1933. In the last several years there has been renewed interest in it,

with the emergence of strong empirical and theoretical justification for its use.

This thesis seeks to take advantage of the benefits of Thompson Sampling

while applying it to other decision-making models. In doing so we propose dif-

ferent algorithms for these scenarios. Firstly we explore a switching multi-armed

bandit problem. In real applications the most appropriate decision to take often

changes over time. We show that an agent assuming switching is often robust to

many types of changing environment. Secondly we consider the best arm identifi-

cation problem. Unlike the multi-armed bandit problem, where an agent wants to

increase reward over the entire period of decision making, the best arm identifica-

tion is concerned in increasing the reward gained by a final decision. This thesis

argues that both problems can be tackled effectively using Thompson Sampling

based approaches and provides empirical evidence to support this claim.
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Chapter 1

Introduction

The need to make decisions permeates our lives. We are continuously making

them in order to affect the world around us. Decisions range from the trivial, like

‘what should I have for breakfast?’, to the much more serious, like ‘how should

a power station be controlled safely?’. Many of these decisions are now made

on our behalf by automated systems. From automated stock trading systems, to

cars that can navigate and drive, there are an increasing number of automated

decision-making systems that already, or soon will, have an increasing effect on

our lives. With the increased ubiquity of computing devices and sensors, the

importance of automating decision making based on this influx of data becomes

of greater interest. How should we make systems that can make these decisions

for us?

The first attempts at making decision-making “expert” systems concentrated

on the use of logic and formal reasoning. Such systems were brittle since feeding

the system with sufficient ground truths is difficult and time consuming, and more

importantly not all outcomes are entailed by a purely logic system especially when

they are probabilistic or uncertain. More recently progress has been made towards

more robust systems that take a different approach, which instead learn how to

make decisions through experience. This thesis is interested in this aspect of

decision-making systems, how a decision-making agent should make decisions and

interact with an environment, improving their behaviour through experience. The

specific decision-making problems with which we are concerned can be explained

by way of examples.

Every morning I get up and prepare to travel to the University, leaving my

house at roughly the same time. At the end of my road is a bus stop and, a

20
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few minutes further down from that, a tram stop. Each day I have a 9 o’clock

lecture and being studious I decide that I do not want to be late. Amongst my

options are a couple of different bus routes, the tram or walking. Unfortunately

I do not know the most efficient option. I decide that I will try to discover which

is the best journey purely through experience, by trying commutes available to

me and forming some conclusion on which will get me in on time. I might be

tempted to try each of the commutes once and then from my experience of these

trips decide which commute is best. Then from there on in stick forever more to

a single route. Although this may appeal to some sense of habit or routine, if my

aim is to be punctual it is unlikely to be a satisfactory strategy.

What is it about my morning commute problem that makes this so? The

key reason is that the arrival time for my journey depends on a variety of factors

potentially unknown to me. A bus could get a flat tyre or there could be leaves on

the tram line on any given day, and so whether I am late using any particular route

can vary from one day to the next. This variation makes my problem stochastic

in nature. Since the outcome of my decisions are not deterministic I want to

take the transport that in general gets me in on time most often, as to reduce

the number of days I am late. That is, I want to pick the commute with highest

expected success rate. Now to get a estimate of the expected success rate of a

given route, through just my experience, involves taking the transport a number

of times and taking an average. The more a route is taken the more accurate the

estimate is likely to be. I could try allocating a fixed amount of time taking each

of the transport options, observing which got me in on time most frequently and

then choosing this option. If my aim is to be as punctual as possible there are two

main problems with this approach. Firstly, I can never be sure my estimates are

accurate enough to make a final decision. My initial journeys may end up being

largely unrepresentative of future journeys, just down to dumb luck. Secondly,

every time I take a (unbeknownst to me) slower-on-average route I make it more

likely the number of times I am late increases. However in order to avoid taking

a slow route I need to know which routes are slow (conversely which routes are

fast). There is therefore a balance, or tradeoff, between choosing what I perceive

as the most punctual commute (which involves exploiting the knowledge I have

thus far gained), and improving the my estimate of the performance of other

commutes in order to reduce my uncertainty of what is the best journey to take

( exploring my options). This is known as the exploration-exploitation dilemma.
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My morning commute predicament is well characterised by a simple model

called the Multi-armed Bandit Problem that captures the above dilemma. Being

simple the problem is a good model in which to study the automation of decision

making in the presence of uncertainty. I could then use a strategy suited to the

multi-armed bandit problem to guide the way in which I chose to travel each

morning.

As the statistician George Box observed “all models are wrong, but some are

useful”. Despite being a useful model, the multi-armed bandit problem is not

without its limitations. There are some assumptions made in the model that

might degrade the performance of my commuting strategy and hinder me from

getting to University on time as often. Factors that affect a journey, such as my

bus getting a flat tyre, make the problem stochastic.

Some factors, like a flat tyre, can be seen as independent in two ways. Firstly,

one bus getting a flat tyre has little to no bearing on the journey times of the

other bus routes or the tram. The actions I choose are independent of each other.

This is not necessarily true of all factors. Severe weather is likely to have an

impact on all transport simultaneously, and road works on one route may cause

more people to use an alternative route, increasing the chance you will have to

wait for the next one due to overcrowding.

Secondly, the event of a flat tyre is temporally independent with respect to

a given bus route. That is, given I have decided to take the route 86 bus, the

chances that the 86 bus gets a flat tyre is independent of whether it got a flat tyre

yesterday. The model is temporally invariant and so the probability of getting to

work on time follows a stationary statistical law.

However, making this stationarity assumption does not serve my punctuality

objective well. Imagine I have happily been following my multi-armed bandit

strategy to choose my commutes each morning for some time comforted by the

idea that I am being as punctual as I can be. It happens that this means that I

more often or not take the route 86 bus. However, unfortunately for me the route

follows a road with a major and aging gas pipe running under it. The road must

be reduced to a single lane while maintenance and upgrades are made to the gas

pipe. This severely detriments the quality of the 86 bus service for a significant

amount of time. The number of times I am late by using the 86 bus now soars for

the duration of the maintenance. My multi-armed bandit strategy unfortunately

is not assuming that such changes occur and so this change in behaviour goes
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largely ignored and I do not adapt my decision making quickly enough to the new

state of affairs. I begin to get more of a reputation for tardiness. What I should

be doing is noticing that the frequency of lateness has dramatically increased and

adapt my journey choices to account for this. In my predicament the journey

times jump starkly, or switch as a result of external factors like road works. I

need to be able to account for the switching to ensure I make better decisions.

To account for these effects we need to enrich our models. This leads to the

consideration of non-stationary switching multi-armed bandit problems.

The tram and bus companies offer significantly discounted prices for journeys

with them in terms of season tickets. A price is paid upfront for a pass or ticket

that lets me travel for an extended period. The above mentioned bandit models

may assume I can choose a different journey to the University every day. Again

this assumption is not always suitable. I may have competing concerns. I want to

arrive in time every day but I also want to take advantage of the low-price season

tickets in order to save money. By using a season ticket I prevent myself from

exploring other options, so I want to be as confident as possible that I’m choosing

the season ticket for the right service. To do this I decide that I will allow myself a

set period of time to explore my options before committing myself to a particular

journey. The question then becomes how do I choose my initial journeys so that

when it comes to buying a season pass I am more probable to choose the right

one. This sort of decision-making dilemma again requires a different model to

usefully capture the important concerns. The best arm identification problem is

such a model.

The problems that this thesis explores are thus, the multi-armed bandit prob-

lem (with particular focus on a non-stationary switching environment) and the

best arm identification problem.

The multi-armed bandit problem has been explored extensively with many

solutions proposed. One of the oldest, which until recently had been largely ig-

nored, is Thompson Sampling. It has shown empirically impressive results and

has strong theoretical guarantees for the stationary multi-armed bandit problem.

It also has the advantages of simplicity of implementation and a low computa-

tional cost.

This thesis proposes that the general principles behind the Thompson Sam-

pling solution are appropriate for a wider selection of decision-making problems.



CHAPTER 1. INTRODUCTION 24

We thus propose Thompson Sampling-inspired algorithms for the switching multi-

armed bandit problem and for the best arm identification problem.

1.1 Research questions

The main questions this thesis wishes to investigate are,

• What is an appropriate Thompson Sampling model for non-stationary multi-

armed bandit problems?

• Does the idea of sampling to guide exploration compare favourably to other

non-stationary policies?

• How do we modify Thompson Sampling so that the level of exploration is

appropriate for the best arm identification problem?

1.2 Contributions

The contributions of this thesis are as follows,

Regret bounds for Optimistic Thompson Sampling A proof is given for a

bound on Optimistic Thompson Sampling (an existing algorithm in the lit-

erature) using the proof techniques used by Agrawal and Goyal to bound

the Thompson Sampling algorithm. This is also shown for a modifica-

tion to Optimistic Thompson Sampling we call Optimism for the Underdog

Thompson Sampling (OUTS).

Changepoint Thompson Sampling A class of Thompson Sampling algorithm

is developed for non-stationary switching environments. Instances of the

class are made for two models of switching

• Global Where all actions change behaviour at the same time.

• Per-ArmWhere the behaviour of an action can change independently

of the other actions.

For each model of switching two scenarios are considered,

• Known switching rate The switching rate is specified by a param-

eter.
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• Unknown switching rate The switching rate is inferred.

A large set of experiments are also presented to demonstrate the effective-

ness of the algorithms developed.

Order-Statistic Thompson Sampling A class of algorithm generalising Thomp-

son Sampling is developed for the best arm identification problem. The

following is shown,

• Empirical results Comparing the algorithm to others in the litera-

ture to show the effectiveness of the approach.

• Bound on Simple Regret A weak bound on simple regret is given

for the entire class of algorithm.

Maximum Boundary of Pairs An alternative best arm identification algo-

rithm using a Thompson Sampling step is developed and empirical results

are shown to demonstrate its effectiveness.

Measure of Aggression A measure is proposed to characterise the behaviour

of a bandit algorithm as opposed to characterising the problem. The main

purpose of the measure is to compare different variants of the Order-Statistic

Thompson Sampling strategy. However it is not limited in use to just this

algorithm class.

1.3 Thesis structure

In chapter 2 we introduce much of the background material and literature review

discussing the required concepts and existing solutions to the problems this thesis

considers.

In chapter 3 we introduce the Thompson Sampling algorithm (as well as Op-

timistic Thompson Sampling). We present the proof of an upper-bound on the

cumulative regret of Optimistic Thompson Sampling as a secondary contribution.

This follows closely the proof structure of Agrawal and Goyal for the Thompson

Sampling algorithm. We also contribute another minor modification to Thomp-

son Sampling that we term “Optimism for the Underdog” Thompson Sampling

(OUTS) and show its regret is bounded similarly, providing some empirical evi-

dence it also marginally outperforms Thompson Sampling.



CHAPTER 1. INTRODUCTION 26

In chapter 4 we contribute a class of algorithm appropriate for switching

multi-armed bandit problems. We derive a Thompson Sampling style algorithm

for two types of switching model and provide a large set of empirical evaluations

to ascertain their performance. This forms one of the major contributions of the

thesis.

In chapter 5 we introduce another major contribution, a class of algorithm

we call Ordered-Statistic Thompson Sampling. We provide a weak-bound on

the probability of error for this class of algorithm and empirically show it to be

an effective solution. We further contribute an alternative algorithm we term

Maximum Boundary of Pairs (MBoP) and also empirically show its effectiveness.

Chapter 6 then concludes with a discussion of the work, its context and spec-

ulations concerning further work.



Chapter 2

Background

Before presenting the contributions of this thesis we must first cover the relevant

background material, both for understanding and in order to place the contribu-

tions in the wider context of the literature.

The explanation of Thompson Sampling itself is left until Chapter 3. The al-

gorithm is a Bayesian method which, as the name implies, uses sampling. There-

fore Bayesian modelling and, for completeness, methods for sampling from some

common distributions are given. Following this, the major theoretical results

and algorithms from the stationary multi-armed bandit problem, non-stationary

multi-armed bandit problem and best arm identification problem are summarised.

2.1 Bayesian modelling

There are two distinct views about how probabilities should be interpreted. The

frequentist interpretation views the probability of an event to be the proportion

of times the event occurs in repeated trials of a given experiment or process. The

Bayesian interpretation instead views a probability as a degree of belief in a given

event. The Bayesian perspective allows one to model the uncertainty of a given

process as probabilities. A given process could be described by a space of possible

hypotheses. The higher the probability for a given hypothesis the more certain

we are the hypothesis is true. The Bayesian view has been employed extensively

in the machine learning community. The belief of an agent can be modelled by

a probability distribution. As observations from the world are seen these beliefs

can then be updated. Baye’s rule is a thereom of probability that can be used to

perform this update process. Letting h be a hypothesis and o an observation
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Baye’s rule can be stated as

P (h|o) = P (o|h)P (h)

P (o)
. (2.1)

P (h) is the prior belief in the hypothesis before observing o. P (o|h) is the

likelihood of observing o given the hypotheis h. P (h|o) is the posterior belief

in he hypothesis after observing o. This update rule naturally chains in scenarios

where observations arrive sequentially; the posterior resulting from the update of

one observation becomes the prior for the update from the next observation.

2.2 Choice of prior

When modelling using the Bayesian framework the practitioner is forced to spec-

ify explicitly their prior beliefs upfront in the form of the distribution P (h). A

question is how to choose the prior beliefs? Naturally without any knowledge

about the phenomenon to be modelled we may want to make all possible hy-

potheses equally likely, so that no hypothesis is more likely than any other. This

is known as the principle of indifference. Another popular method of choosing

a prior is the principle of maximum entropy [29]. As the name implies the prior

is chosen to maximise its entropy given what is known. A motivating interpre-

tation of this is that, from an information theoretic perspective (in the sense of

Shannon), by maximising the entropy the information gain between the prior and

posterior distribution is also minimised.

It is also desirable for the prior (and posterior) to be closed-form expressions.

This is especially true in online situations where updates occur repeatedly in a

sequential fashion through time. The main benefits of a closed form solution

are the reduced space and computational costs for storing and calculating the

updated beliefs. Bayes rule can be viewed as a function that takes a prior belief

as an argument and returns a posterior belief. The scenario being modelled

determines the hypothesis space and the likelihood term P (o|h), and so therefore

specifies the function Baye’s rule describes. Therefore for a given likelihood, it

is desirable to have a closed-form input prior distribution function that leads to

a closed-form output posterior distribution function. Since in sequential update

settings a posterior becomes a new prior, the posterior under the action of Bayes

rule should also result in a closed-form distribution, and so on. Such pairings of
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likelihood functions and prior/posterior closed-form families exist. A functional

form whose prior maps to a posterior with the same functional form for a given

likelihood is a special case of this property. A functional form which exhibits

this behaviour is called a conjugate prior. An example pair of a likelihood and

conjugate prior is the Bernoulli distribution and the Beta distribution.

The Bernoulli distribution can be defined by a parameter p. Intuitively we

might think of this parameter as modelling the probability of flipping a head from

a biased coin. The likelihood is then defined as,

P (o|h = p) =

{

p; if o = heads

1− p; if o = tails
(2.2)

The Beta distribution is the conjugate prior for the Bernoulli likelihood. Contin-

uing the biased coin example, the Beta distribution assigns a belief (probability)

to each hypothesis. The hypothesis space is candidate values of the parameter

p, p is in a fixed range between 0 and 1 as is the Beta distribution. The Beta

distribution has two parameters, α and β, and can be defined as,

P (h = p) =
pα−1(1− p)β−1

B(α, β)
, (2.3)

where B(α, β) is the Beta function. To see that the Beta distribution is conjugate

to the Bernoulli distribution, we apply Bayes rule and show that the form of the

posterior is also a Beta distribution. Consider the case where we flip a coin and

observed a head, we get,

P (h = p|o = head) =
P (o = head|h = p)P (h = p)

P (o = head)
(2.4)

=
ppα−1(1−p)β−1

B(α,β)
∫ 1

0
qqα−1(1−q)β−1

B(α,β)
dq

(2.5)

=
pα(1− p)β−1

B(α + 1, β)
. (2.6)

We see that the posterior is also a Beta distribution. The case of o = tails follows

similarly.

There are quite a few conjugate priors, mostly in the exponential family of

distributions. Table 2.1 lists a few; a more extensive list can be found in a

technical report by Fink [20].



CHAPTER 2. BACKGROUND 30

Likelihood Likelihood Conjugate Prior Posterior
parameters prior parameters parameters

Bernoulli θ Beta α, β α + 1(x = 1) , β + 1(x = 0)
(where x ∈ {0, 1})

Normal µ, σ Normal m, s m+θ2+xs2

θ2+s2
,
(

1
s2
+ 1

σ2

)−1

with known (where x ∈ R)
variance σ2

Poisson λ Gamma k,θ k + x, θ
θ+1

Uniform θ Pareto xmax, k max(x, xmax), k + 1

Table 2.1: Table of conjugate priors

2.3 Generating random variates

The main contributed algorithms in this thesis require the ability to sample ran-

domly from various distributions. In this section we will briefly review common

methods used to sample from some of these distributions such as the Normal and

Beta distribution. It is first useful to question what do we mean by random? A

“true” random number generator would return a random variate according to a

distribution independently from any other random variates previous generated.

This may be required in applications such as security or gambling where an ad-

versary would predict the generated variates to exploit you if this was not the

case. In practice generating “true” random numbers normally involves the mea-

surement of physical processes assumed to themselves be random. For instance

the decay of a radioactive material. However, this can potentially be a time

consuming process. In many other applications, such as statistical modelling,

it is not required to be truly random. The process just needs to statistically

appear random. Random variates can then be produced by pseudo-random num-

ber generators. Pseudo-random number generators are deterministic put produce

outputs that to many statistical tests appear random. They start at some seed

state and then update this state to produce successive variates. Due to this

determinism when the generator returns to the same state it will produce the

same variate. This and the finite representation of the numbers means that the

generator will eventually re-enter a state and so the generator will cycle through

the variates it generates for a particular seed. The longer the period until the

repetition happens the better the random number generator is judged be. An-

other measure of a good random number generator is whether it is k-distributed.
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Matsumoto and Nishimura define k-distributed as follows [52],

Definition 2.3.1 (Matsumoto and Nishimura). A pseudo-random sequence xi

of w-bit integers of period P satisfying the following condition is said to be k-

distributed to v-bit accuracy: let truncv(x) denote the number formed by the lead-

ing v bits of x, and consider P of the kv-bit vectors

(truncv(xi), truncv(xi+1), . . . , truncv(xi+k−1))(0 ≤ i < P ). (2.7)

Then,each of the 2kv possible combinations of bits occurs the same number of

times in a period, except for the all-zero combination that occurs once less of-

ten. For each v = 1, . . . , w, let k(v) denote the maximum number such that the

sequence is k(v)-distributed to v-bit accuracy.

We will now go on to mention some methods for generating pseudo-random

uniform variates, and then using these, how variates from some other distributions

are generated.

2.3.1 Uniform variates

The uniform distribution is the simplest distribution for which to generate pseudo-

random variates. A popular procedure to produce pseudo-random numbers pro-

vided in the standard library of many current programming languages and many

numerical libraries [42, 30, 16, 56] is the Mersenne Twister, developed by Mat-

sumoto and Nishimura [52]. Some benefits of the Mersenne Twister over some

other pseudo-random number generators like most linear congruential generators

[36] are,

• A large prime period of 219937 − 1 using only 634 words.

• 623-distributed to 32 bits (equidistributed up to 623 dimensions for 32-bit

values).

2.3.2 Normal variates

In order to generate any Normal random variates we just need a method to sample

variates from a standard Normal distribution (N (µ, σ)). Once we have such a

procedure the variate for a standard Normal distribution can be shifted to obtain
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the variate for the desired parameters. Given a standard Normal variate Zs we

can obtain the desired variate Zd by the following transformation,

Zd = Zsσ + µ. (2.8)

There are many methods to sample Normal variates. Two such methods are the

Box-Muller transform and polar method. Both assume that Uniform random

variates can be generated.

Box-Muller Transform

The Box-Muller transform was introduced by Box and Muller in 1958 [11]. The

procedure requires the generation of two independent uniform variates U1 and U2

(Uniform(0, 1)). It produces two Normally distributed random variates Z1 and

Z2. It is described in Algorithm 2.1.

Algorithm 2.1 Box-Muller Transform

Generate U1 ∼ Uniform(0, 1).
Generate U2 ∼ Uniform(0, 1).

Return Z1 =
√
−2 lnU1 cos (2πU2)

and Z2 =
√
−2 lnU1 sin (2πU2).

Polar method

The polar method is very similar to the Box-Muller transform [68]. It requires

two uniform random variates U1 and U2 but avoids the need to compute the sine

and cosine functions which can be computationally expensive. It is the method

implemented in the numpy.random library for the Python programming language

and is described in Algorithm 2.2.

2.3.3 Beta variates

Again there are many methods to produce Beta variates [17]. The best method

to use depends on the hyperparameters of the distribution α and β. One method

used requires the generation of two Gamma variates. This procedure is specified in

Algorithm 2.3. We will not discuss how to generate Gamma variates in this thesis,

but the interested reader can refer to one such method by Marsaglia and Tsang
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Algorithm 2.2 Polar Method

repeat
Generate U1 ∼ Uniform(0, 1).
Generate U2 ∼ Uniform(0, 1).
Let V1 = 2U1 − 1.
Let V2 = 2U2 − 1.
Let S = V 2

1 + V 2
2 .

until S > 1

Return Z1 =
√

−2 lnS
S

V1

and Z2 =
√

−2 lnS
S

V2.

[51]. The SciPy library for the Python programming language uses a combination

of the method requiring Gamma variates and a method called Johnk’s method

[17] which is described in Algorithm 2.4.

Algorithm 2.3 Beta variate generation using Gamma variates

Generate G1 ∼ Γ(α, θ).
Generate G2 ∼ Γ(β, θ).

Return B1 =
G1

G1+G2
.

Algorithm 2.4 Johnk’s Method

repeat
Generate U1 ∼ Uniform(0, 1).
Generate U2 ∼ Uniform(0, 1).

Let Y1 = U
1
α

1

Let Y2 = U
1
β

2

Let S = Y1 + Y2.
until S ≤ 1

Return B = Y
S

2.4 Concentration of measure

The decision making problems we will present are stochastic in nature, and the

algorithms we propose are themselves probabilistic. In this section we will cover a
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family of powerful statistical techniques that are extensively used in the analysis

of probabilistic algorithms. The techniques concern concentration of measure.

Although a function of a large number of random variables can assume a large

range of possible values, with many such processes we observe that values actually

tend to occupy a very narrow range. That is, they tend to concentrate in this

fixed range. Concentration of measure is the phenomenon of this tendency. An

example stems from a staple process in probability theory, coin flipping. Imagine

flipping a fair coin for a large number of times and recording the number of heads

that are observed. Then imagine repeating this process itself many times. What

we would find is that the number of heads recorded would concentrate near to

half the number of flips, and never stray, relatively, that far from it. We will

briefly summarise and present some of the useful results in this body of work.

2.4.1 Markov’s Inequality

Probably one of the most general statements for concentration of measure is

Markov’s inequality. Markov’s inequality bounds the probability of a non-negative

random variable exceeding a given value in terms of its expected value. We now

formally state the result.

Theorem 2.4.1. Let X be a non-negative random variable and let a > 0, then

P (X ≥ a) ≤ E [X]

a
.

Proof. Denote the indicator function of an event A as 1(A). 1(A) = 1 if event A

occurs and 0 if it does not. By the definition of 1(A) and the fact a > 0,

1(A) ≤ 1, (2.9)

a1(A) ≤ a, (2.10)

for any event A. It then follows that for the event X ≥ a,

a1(X ≥ a) ≤ a, (2.11)

≤ X. (2.12)
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Now taking expectations of both sides we get,

E [a1(X ≥ a)] = aP (X ≥ a), (2.13)

≤ E [X] . (2.14)

Since a > 0 it then follows that,

P (X ≥ a) =
E(X)

a
. (2.15)

2.4.2 Chernoff-Hoeffding Inequality

If we think back to the coin flipping example described earlier, where we notice

that after a large number of trials the amount of heads we have observed is never

too far from the expected value. Chernoff-Hoeffding inequalities formalise this

notion for processes described by sums of independent random variables. The

inequalities bound the probability of the sum being larger (or smaller) than the

expected value. The two most useful forms of the bounds are given below.

Theorem 2.4.2. Let Xi, i ∈ {1, . . . , N}, be independently random variables in

[0, 1] and let X =
∑N

i=1 Xi. Then for t > 0,

P (X > E [X] + t) ≤ e
−2t2

N , (2.16)

P (X < E [X]− t) ≤ e
−2t2

N . (2.17)

Theorem 2.4.3. Let Xi, i ∈ {1, . . . , N}, be independently random variables in

[0, 1] with mean pi and let X =
∑N

i=1 Xi. Then for δ ∈ (0, 1),

P (X > (1 + δ)E [X]) ≤ e
−δ2E[X]

3 , (2.18)

P (X < (1− δ)E [X]) ≤ e
−δ2E[X]

2 . (2.19)

Proof. Here we just proof the bound for the right tail (equation 2.18) to illustrate
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the general technique for showing Chernoff-type bounds.

P (X > (1 + δ)E [X]) = P
(
eλX > eλ(1+δ)E[X]

)
(monotonicity of exponentiation)

(2.20)

≤ E
[
eλX
]

eλ(1+δ)E[X]
(Markov’s inequality) (2.21)

≤
∏N

i=1 E
[
eλXi

]

eλ(1+δ)E[X]
(independence of Xi) (2.22)

Now each Xi lies in the interval [0, 1]. Since eλXi is convex then we can upper

bound it by a straight line between points (0, eλ.0 = 1) and (1, eλ.1 = eλ). This

means that,

eλXi ≤ (eλ − 1)Xi + 1, (2.23)

E
[
eλXi

]
≤ E

[
(eλ − 1)Xi + 1

]
, (2.24)

= (eλ − 1)E [Xi] + 1, (2.25)

= (eλ − 1)pi + 1, (2.26)

= eλpi + 1− pi. (2.27)

Therefore,

P (X > (1 + δ)E [X]) ≤
∏N

i=1(pie
λ + 1− pi)

eλ(1+δ)E[X]
(2.28)

The arithmetic mean of non-negative values upper bounds the geometric mean

of those same values. That is, for xi ≥ 0,

1

n

n∑

i=1

xi ≥
(

n∏

i=1

xi

)1/n

. (2.29)

Applying this to Equation 2.28 we get,

P (X > (1 + δ)E [X]) ≤
(
peλ + 1− p

)N

eλ(1+δ)Np
, (2.30)

where p =
∑N

i=1 pi/N .

The bound is minimised with respect to λ by differentiating with respect to

λ and finding the value of λ that makes the derivative equal zero. The value of λ
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is such that eλ = (1+δ)(1−p)
(1−p−δp)

.

P (X > (1 + δ)E [X]) ≤
((

(1− p− δp)

(1 + δ)(1− p)

)(1+δ)p
(1− p)

(1− p− δp)

)N

= e−N(p(1+δ) log(1+δ)+(1−p−δp) log( 1−p−δp
1−p

))

= e−N(p(1+δ) log(1+δ)−(1−p−δp) log( 1−p
1−p−δp

))

= e−N(p(1+δ) log(1+δ)−(1−p−δp) log(1+ pδ
1−p−δp

))

≤ e−N(p(1+δ) log(1+δ)−δp) (since log(1 + x) < x)

≤ e−E[X](
2δ(1+δ)

2+δ
−δ) (since log(1 + δ) >

2δ

2 + δ
)

= e−E[X]( δ2

2+δ
)

= e−
δ2

3
E[X] (since 1 ≥ δ)

2.5 Reinforcement learning

This thesis focuses on a variety of multi-armed bandit problem. This problem can

be viewed as a special simplified model within the wider Reinforcement Learning

problem. Reinforcement Learning concerns learning via a process of interaction

with an environment. This differs from the most common area of focus in the field

of Machine Learning, Supervised Learning, where learning is done via examples

provided by a supervisor. Reinforcement Learning has its history in two fields,

that of Psychology and also of Dynamic Programming. The paradigm considers

an agent which exists in some environment. The agent may possibly be able to

sense or observe measurements about the environment and their place within it

(this is not necessarily the case ). The agent can perform actions in the environ-

ment, and can make decisions as to what actions to perform. How appropriate

a decision was is measured by a reward signal, which is a scalar valued function

mapping how good a decision was to a real number. When the agent performs

an action it may have an effect on the environment and the agents place in it and

then the environment reveals the value of the reward to the agent, which it can

then use to improve future decisions. This process is summarised in Figure 2.1.
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The objective is for the agent to learn a policy or strategy, that is a method of

choosing actions that maximises the reward they receive. From this perspective

Agent Environment

Action

Reward

State

Figure 2.1: Model of Reinforcement Learning

the classic multi-armed bandit problem is Reinforcement Learning where there

is not an observable state and where there is an assumption that the reward re-

ceived by an action at one time step is independent but identically distributed to

the reward received at another time step.

2.6 Stationary stochastic multi-armed bandits

The multi-armed bandit is a common and arguably the simplest model which ex-

hibits the exploration-exploitation trade-off. The dilemma in sequential decision-

making, between choosing actions because they are thought to be good, and

choosing actions in order to learn more about their consequences. The model has

been around since at least 1933 [69]. Robbins introduced his formalisation of the

problem in 1952 [60].

The model takes its name from the one-arm bandit, a gambling machine with

an arm that when pulled wins the gambler some money with given probability.

The model considers a number of such machines, and imagines repeatedly being

given the option to choose between them. The gambler wants to get the best

return, and play the strategy that in expectation provides them with the most

winnings.
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In general we can define the problem as follows. Let there be a set of possible

arms, K, where a given arm k ∈ K. At time, t, the agent chooses an arm at.

The agent receives a reward xk,t by pulling arm k at time t. An agent wants to

maximise the expected cumulative reward they receive,

S(T ) = E

[
T∑

t=1

xat,t

]

. (2.31)

So the problem is to find a strategy that maximises this quantity. However,

we more commonly consider a equivalent problem of minimising an alternative

measure of performance called regret. There are many forms of regret. The most

common form compares between a given strategy and the strategy that chooses

the single arm that in expectation has the highest cumulative reward. The regret

felt up to time, T , can be written as,

R(T ) = max
k∈K

E

[
T∑

t=1

xk,t

]

− E

[
T∑

t=1

xat,t

]

(2.32)

The above formulation makes no assumptions about the rewards and the arms

from which they come. Different assumptions on the rewards lead to different

versions of the problem. In the stochastic multi-armed bandit problem we assume

that the rewards associated with arm k come from some stationary distribution

πk parameterised by ρk with mean µk. The regret felt by a strategy for the

stochastic multi-armed bandit can be expressed as,

R(T ) =
T∑

t=1

µmax − µat , (2.33)

where µmax = maxk∈K µk. The quantity ∆k = µmax − µk is known as the gap

between the best arm and arm k.

In this section we will introduce some theoretical results known about the

multi-armed bandit problem, as well as highlight some empirical studies of the

problem in the literature. We will then introduce some of proposed strategies

for this problem. Since this thesis is about Thompson Sampling, and its applica-

tion to a broader set of problem domains, we will defer formally introducing the

algorithm to chapter 3, where we will give it a more thorough treatment.
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2.6.1 Lower bound of regret for the stochastic multi-armed

bandit

Lai and Robbins provided asymptotic lower bounds of the expected regret for the

stochastic multi-armed bandit problem [41]. The result applies to any strategy

for which R(T ) = o(T a) for all a > 0 as T → ∞. This intuitively means that

the strategy is greedy in the limit. Kaufmann et al. call this condition strongly

consistent (since it implies the strategy is what Lai and Robbins call consistent,

that limT→∞ E [S(T )] /T = µmax). Let DKL(µi, µj) = µi ln
µi

µj
+(1−µi) ln

1−µi

1−µj
(the

Kullback-Leibler divergence between two Bernoulli distributions with parameters

µi and µj ). The theorem states that

lim
T→∞

inf
R(T )

lnT
≥
∑

k∈K

µmax − µk

DKL(µk, µmax)
. (2.34)

Letting Nk,T be the number of times the strategy pulled arm k up to time T ,

the bound can be written as,

lim
T→∞

inf

∑

k∈K E [Nk,T (µmax − µk)]

lnT
≥
∑

k∈K

µmax − µk

DKL(µk, µmax)
.

They call any strategy that meets this lower bound with equality asymptotically

efficient ( alternatively it can be called asymptotically optimal ). It also is useful

to note that for a strategy that satisfies

lim
T→∞

E [Nk,T ]

lnT
≥ 1

DKL(K, µmax)
, (2.35)

with equality for all k ∈ K then (2.34) is satisfied with equality and the strategy

is asymptotically optimal.

2.6.2 Empirical studies for stochastic multi-armed ban-

dits

Most theory related to bandit algorithms gives asymptotic optimality guarantees.

To the practitioner this may not be of much use if the performance initially

for small time horizons is poor. Empirical studies may give more confidence

as to an algorithms viability in this respect. There have been several papers
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that have compared many of the algorithms to be mentioned in this section.

Vermorel and Mohri as well as Kuleshov and Precup have empirically evaluated

many algorithms in the literature for the standard stochastic multi-armed bandit

problem [72, 40]. One surprising observation of such studies is that some of the

simpler strategies such as epsilon-greedy (described later in this section) are

often hard to beat. However this assumes appropriate tuning of parameters for

the problem. We also mention here an empirical study by Chapelle and Li [15]

that gave an empirical evaluation of Thompson Sampling, along with many other

popular bandit algorithms.

2.6.3 Gittins index

An index policy is any strategy for which an agent can compute an index inde-

pendently for each arm without knowledge of the other arms. The arm associated

with the largest index is the arm chosen. The Gittins index is one such index

policy introduced by Gittins as a dynamic allocation index [23] and further de-

scribed in [12]. The Gittins index was first proposed in the context of a discounted

multi-armed bandit problem.

The discounted multi-armed bandit problem has the same basic setup as the

standard multi-armed bandit. However, the difference is in the objective. Instead

of defining an optimal strategy as one which minimises the expected regret, an op-

timal strategy is instead defined as one which minimises the expected discounted

regret. We can define this as,

Rξ(T ) =
T∑

t=1

ξT−t(µmax − µXt
). (2.36)

Gittins showed that this can be solved by, at each round, pulling the arm with

the highest dynamic allocation index, or Gittins index, for that round. The

calculation of the indices corresponds to finding optimal stopping times for a

given Markov chain. Let the reward received by pulling arm k at time t be Xk,t.

The Gittins index method is Bayesian in the sense that in order to calculate an

index for an arm, k, an agent must have a prior “belief” distribution, P (µk) over



CHAPTER 2. BACKGROUND 42

the mean of the arm, µk. The Gittins index, κ(P (µk)), is defined as,

κ(P (µk)) = sup
τ

[∫
Eµk

[Xk,1] +
∑τ−1

t=1 ξ
t
E [Xk,t|Xk,1, . . . , Xk,t−1] dP (µk)

∫ ∑τ
t=0 ξ

tdP (µk)

]

.

(2.37)

The indices can be found using dynamic programming. For the discounted multi-

armed bandit this is the optimal solution, and completely solves the exploration-

exploitation trade off for this case [75]. The solution maximises the expected

cumulative discounted reward the agent receives. The limit to this solution as

ξ → 1 can be found and so the technique can be applied to the undiscounted

stochastic multi-armed bandit problem. There are some disadvantages to the

Gittins index as a strategy in the stochastic multi-armed bandit problem. Firstly

the best time complexity for computing the indices is O(|K|3) [57], so even for the

problems where this can be directly applied, if the number of arms is reasonably

large then the calculation becomes unfeasible if the decisions need to be made

quickly. Secondly, Brezzi and Lai show that the Gittins index policy leads to

incomplete learning. That is, the policy eventually fixes on pulling only a single

arm, and that this arm has a non-zero probability of being sub-optimal [12].

This may at first appear inconsistent since the Gittins index is suppose to be an

optimal policy. However as they state

Such incomplete learning by the optimal policy can be attributed to

the discount factor which downweights the need for acquiring infor-

mation to benefit long-run future performance

Scott points out two further concerns [63]. The Gittins index policy is only

optimal for scenarios in which the arms are independent and can be far from

optimal when this is not the case. The geometric nature of the discounting

implies that the decisions should be equally spaced in time. In many applications

this is not necessarily true. It is important then to look at other policies for the

multi-armed bandit problem that tackle some of these perceived problems.

2.6.4 Semi-uniform methods

ε-greedy

ε-greedy policies make an explicit trade-off between exploration and exploitation.

The policy chooses the perceived best action, with probability 1 − ε. It instead
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explores and picks a random action uniformly over the possible choices with prob-

ability ε. The algorithm is presented in Algorithm 2.5. The policy was introduced

by Sutton [66]. He produced positive results in applying reinforcement learning

to control problems that had previously eluded reinforcement techniques. One

aspect different to previous attempts was his use of online algorithms. The online

nature of the algorithms exhibit the exploration-exploitation dilemma and so re-

quired an exploration strategy. As stated ε-greedy will eventually over explore in

terms of the multi-armed bandit problem. This is because ε is fixed, and so the

number of times a sub-optimal arm is chosen must grow linearly with the running

time of the strategy. However, ε can be adapted as a function of time, εt. Singh

et al. showed that when εt = c/t ( 0 < c < 1), that is the exploration is decreased

at a particular rate, then the strategy falls into the category of GLIE (Greedy

in the limit with infinite exploration) strategies [64]. In non-stationary scenarios,

which are covered later in this chapter, the proposed adaptation explores too lit-

tle and so alternative adaptations must be used. A key disadvantage of ε-greedy,

regardless of the adaptation, is that the exploration is agnostic to the quality of

the arms. When exploration happens ε amount of the times, the worst arm is

chosen equally likely as any other arm (the best, the second best).

Algorithm 2.5 ε-Greedy

Let X̂t,k, be the empirical mean reward for arm k at time t.

Pull each arm once.

for t = K, . . . , T do

Pull arm at =

{

argmaxi X̂t,i with probability ε
select randomly with probability 1− ε

Update X̂t,at

end for

2.6.5 Softmax

We have discussed how ε-greedy is disadvantaged given that when it elects to ex-

plore, it chooses amongst arms with equal probability. An arm that is considered

the next best is as likely to be pulled as one that is considered the worst. This

suggests that a more effective strategy would be one where the rank of the arm
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determined the amount the arm was pulled. Any strategy that determines the se-

lection probability of an arm based on the weighting or ranking of their estimated

reward, such that arms with higher estimates have higher selection probabilities,

is known as a softmax strategy. Such strategies can be seen to take the greedy

myopic max policy and soften it.

A popular softmax strategy is the Boltzmann exploration policy (also known

as the Gibbs exploration policy) that uses the Boltzmann distribution in defining

the selection probabilities of the arms. The algorithm is parametrised by τ >

0, known as a temperature. The term temperature stems from the use of the

Boltzmann distribution in statistic physics, where the distribution can be used

to describe the proportion of particles occupying given energy levels in a physical

system. The strategy is presented in Algorithm 2.6.

Algorithm 2.6 Boltzmann exploration

Let τ be an exploration parameter.
Let X̂t,k, be the empirical mean reward for arm k at time t.

Pull each arm once.

for t = K, . . . , T do

Let at = i with probability eτX̂t−1,i

∑K
k=1 e

τX̂t−1,k

Pull arm at
Update X̂t,k

end for

2.6.6 Optimism under uncertainty

A popular class of algorithms for the multi armed bandit are collectively known as

upper confidence bound methods (UCB). The guiding idea for the strategy is the

principle of optimism in the face of uncertainty. That is, when we are uncertain

to the payoff of a given action/arm we should be optimistic and assume the

payoff will be the highest we can statistically expect. The method then employs

standard statistical tools in the form of upper confidence bounds to determine

what is considered statistically expected.

In general the estimated payoff for an arm in UCB methods can be decom-

posed in to two parts. The first term is the empirical average payoff X̂t, and the

second is a padding term Pt determined by the upper confidence methods. The
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optimistic payoff Ut of an arm then becomes,

Ut = X̂t + Pt. (2.38)

The padding function needs to be large when we are most uncertain about an

arm, and get smaller as we learn about the arm’s true expected payoff. The

general algorithm is presented in Figure 2.7.

Algorithm 2.7 General UCB based method

Let X̂i,t be the empirical mean reward of arm i and time t.
Let K be the number of arms
Let ni,t be the number of times arm i has been pulled at time t
Let Pi,t be a padding function for arm i at time t.
Initialisation:
Play each arm once.
Main Loop:
for t = K + 1, . . . , T do
Let Ui = X̂i,t + Pi,t.
Pull arm at = argmaxi Ui.
Update X̂at,t+1.

end for

Methods using confidence bounds to balance the exploration-exploitation trade

off go back at least to work by Kaelbling [32]. Auer applied the ideas to more

challenging settings [6] and provided the first finite-time analysis of confidence

based algorithms with UCB1 [7]. This popularised the method and fits the de-

composition of Equation 2.38. UCB1 assumes rewards in the interval [0, 1]. The

padding function is Pt =
√

2 ln t
nt

, where nt is the number of times the arm has

been pulled up until time t. The algorithm is described in Algorithm 2.8.

The expected regret of UCB1 can be bounded as follows,

E [RT ] ≤
[

8
K∑

i=2

1

∆i

]

lnT + (1 +
π2

3
)

(
K∑

i=2

∆i

)

, (2.39)

as shown by Auer et al. [7]. The main focus in the area of research is on developing

more sophisticated padding functions. This often relies on subtle understanding

of concentration of measure. There has been a slow but steady improvement of

UCB algorithms in the quest to employ new bounding techniques to improve these

padding functions. The current state of the art in this arms race are algorithms
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Algorithm 2.8 UCB1

Let X̂i,t be the empirical mean reward of arm i and time t.
Let K be the number of arms
Let ni,t be the number of times arm i has been pulled at time t
Initialisation:
Play each arm once.
Main Loop:
for t = K + 1, . . . , T do

Let Ui = X̂i,t +
√

2 ln t
ni,t

Pull arm at = argmaxi Ui.
Update X̂at,t+1.

end for

such as KL-UCB [49], which uses the Kullback-Liebler divergence, and Bayes-

UCB, which employs a Bayesian model of the arms [33]. These are asymptotically

efficient in that their upper bound matches the lower bound on cumulative regret.

A potential weakness of such methods is their determinism given the past

history of actions and rewards. For some applications the scenario is better

modelled by a bandit algorithm with delayed rewards. That is, the reward is not

known immediately after an arm is pulled, and may be received some time after.

In the prevailing time before the reward has been received the agent must still

make decisions. In this scenario UCB methods tend to get stuck selecting the

same arm and are less likely to opt to explore [15].

2.6.7 POKER

POKER, standing for the Price Of Knowledge And Estimated Reward, is a ban-

dit strategy proposed by Vermorel and Mehryar [72]. It is similar to UCB style

algorithms since the index of an arm is computed as the sum of two components,

the empirical mean of an arm, and an added exploratory value. The arm indexes

take the form,

Ik = µ̂k + P [µk ≥ µ̂max + δµ] δµH, (2.40)

where µk is the true mean and µ̂k is the empirical mean of arm k, µ̂max is the

largest empirical mean, and H is the remaining time horizon left in the problem.

They consider δµ as an estimate of the ‘expected reward improvement’ and it is
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estimated as,

δµ =
µ̂σ(1) − µ̂σ(

√
K)√

K
, (2.41)

where µ̂σ(i) ≥ µ̂σ(j) iff i < j. This is intended to be an estimate of the expected

difference E [µmax − µ̂max]. The terms δµ and H are the same for all arms and

serve only to globally manage the tradeoff between exploiting (based on the index

being the empirical mean) and exploring. The quantity P [µk ≥ µ̂max + δµ] is thus

the component of exploration specific to a given arm. It denotes the probability

of an arm having a mean larger than the current largest empirical mean plus the

expected reward improvement. This is estimated as,

P [µk ≥ µ̂max + δµ] =

∫ ∞

µ̂max+δµ

N
(

x; µ̂k,
σ̂k√
nk

)

dx, (2.42)

where σ̂k is the empirical standard deviation and nk is the number of times arm k

has been pulled. Vermorel and Mehryar found this method to perform favourably

in their empirical evaluation of bandit algorithms and showed that in the limit

of large H the strategy converges to one that will just pull the best arm.

2.7 Non-stationary stochastic multi-armed ban-

dits

The multi-armed bandit problem concisely formalises a tradeoff present in deci-

sion making in the presence of uncertainty. It has seen useful application or been

used to model scenarios as far-ranging as clinical trials to news story placement

on websites [69, 45]. The standard treatment of the problem however assumes a

well-behaved stationary stochastic process from which rewards are drawn. Sutton

and Barto [67] noted,

There are many sophisticated methods for balancing exploration and

exploitation for particular mathematical formulations of the n-armed

bandit and related problems. However, most of these methods make

strong assumptions about stationarity and prior knowledge that are

either violated or impossible to verify in applications and in the full

reinforcement learning problem. . .
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The stochastic nature of sequential decision problems for which multi-armed ban-

dits are employed are usually never fully known. A stationary process might be

appropriate for a limited number of applications, however in many cases it is not.

The world in which an agent acts is prone to changes and the agent should be

sufficiently capable of adapting to such changes.

An example of a multi-armed bandit application is a news story placement

problem. A company wishes to place a top news story on their homepage. The

more people that click on the news story the more revenue is generated for the

company by way of advertisements. The company has sourced a list of stories

from a news vendor and must decide which to show to a user when they visit

the homepage. This clearly maps to a multi-armed bandit, where a news story is

an arm in the bandit problem. The users can be imagined to come from a fixed

population, with each user having a fixed interest in a given news story. The task

might then be to learn which news story has the best average interest (indicated

by whether a user clicked through to the story or not) for the population. The

assumption that this problem is stationary may be a poor one, however. The

population of users visiting the homepage may not be fixed, the number and

type of people visiting the website at 02:00 GMT may be significantly different

than those that visit the site at 14:00 GMT. The change in population would

then account for a change in average population interest in a given story. The

assumption that a user has a fixed interest level in a story is also most likely

flawed; if the story is topical the interest of the story will wane as it gets further

in time from the event taking place, for example.

We briefly introduce to types of non-stationary behaviour that may occur

that it would be useful for an agent to adapt to, before reviewing some proposed

bandit algorithms designed to do just that.

2.7.1 Types of non-stationary environment

We assume that at a particular point in time the behaviour of a system can

be described by a fixed statistical law. The system at this fixed time can then

be modelled by a probability distribution. The probability distribution can be

parameterised by a set of sufficient statistics. It is possible that the number of

sufficient statistics may be denumerable but let us assume that the distribution

is specified by a finite set of parameters. Let θt be the parameters that specify

the system at time t. In a non-stationary system the behaviour of the system can
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change from one time point to the next. So that it is possible that θt 6= θt+1. This

can be characterised in two ways dependent on how stark the change is between

θt and θt+1. The case where any change between the state of the system from

one time to the next is small and gradual we call a drifting environment. For

example the electricity used for lighting might steadily creep up as the nights

draw in more quickly. The usage changes but the past allows us to make a good

prediction of future usage. When the change between states is larger and less

gradual we call this a switching environment. For instance the stock price of

a pharmaceutical company might starkly fall, and a competitor’s stock might

rise, suddenly if a new drug does not get approval by a regulating body (for

example the Medicines and Healthcare products Regulatory Agency in the UK).

The price before and after may be largely uncorrelated and could be sensibly

modelled as switching. An extreme type of switching environment, that is of

most relevance to this thesis, is one where there is no dependence between the

parameters before and after a change. Let st be an indicator variable denoting

whether at some change occurred at time t. Either P (θt+1|st, θt) = P (θt+1|st),
meaning that the system in its current state is independent from previous states,

or P (θt+1|θt, st) 6= P (θt+1|st) in which case the current state is dependent on the

past. The form of switching is known as a change-point environment. It is possible

that change in the environment is locally as we describe above, either drifting or

switching, but returns to the same statistical law after a long period of time,

possibly in a cyclic way. This for example would reflect processes dependent on

seasonal change. It may also be advantageous to model this repeating or periodic

behaviour. However, when the environment changes, locally the change will either

be of a drifting or switching type.

2.7.2 Non-stationary policies

Here we cover just a few multi-armed bandit algorithms specifically designed for

adapting in non-stationary environments.

Discounted-UCB

UCB policies are dependent on two statistics for each arm in order to calculate

their upper confidence bounds, the number of times the arm has been pulled and

the empirical mean of the rewards received by that arm. The number of times
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an arm has been pulled the less effect the padding function has on the UCB

estimate and the less effect a new reward will have on the empirical estimate

of the mean. This means the longer the algorithm has been running the more

inertia the algorithm has in adapting to a change in environment. Reducing this

inertia will allow the strategy to adapt to a change. This can be done by making

the strategy “forgetful”. An easy way to do this is to discount the rewards (and

the number of times the arm has been pulled), so that past rewards are weighted

less important than recent rewards. This is done by use of a discount factor ξ.

The algorithm is called Discounted UCB and is described in Algorithm 2.9. For

UCB1 we assumed that the reward was from the unit interval, but we present

Discounted UCB assuming that the reward is bounded by B.

Algorithm 2.9 Discounted UCB

Parameters: ξ, η
Let B be an upper bound on the rewards received.
Let X̂i,t be the discounted empirical mean reward of arm i and time t.
Let K be the number of arms
Let ni,t be the discounted number of times arm i has been pulled at time t
Initialisation:
Play each arm once.
Main Loop:
for t = K + 1, . . . , T do

Let Ui = X̂i,t + 2B
√

η log
∑K

i=1 ni,t

ni,t

Pull arm at = argmaxi Ui.
nat,t+1 = ξnat,t + 1,

X̂at,t+1 = X̂at,t +
xat,t−X̂at,t

nat,t+1
.

ni,t+1 = ξni,t for i 6= at,

X̂i,t+1 = X̂i,t for i 6= at.
end for

A difficulty is in how to set the discount factor. Too small and the algorithm is

too forgetful, and never manages to produce good estimates on the arms, causing

the strategy to explore more than it ought to. Too large and the algorithm has

too much inertia and can not adapt to the changes that occur quickly enough.

Garivier et al. considered Discounted UCB in a switching environment and gave

regret bounds for this case [22]. Given the number of switches that occurred

as a function of time the bound could be used to select suitable values for the

parameters of the algorithm. However, the bounds are only meaningful for an

environment where the number of switches grows sub-linearly with time. This
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may not necessarily be applicable or at least verifiable in a practical setting, but

is still a significant step in the right direction for theoretical results for algorithms

designed for these settings.

Windowed-UCB

To adapt UCB-style algorithms to adapt to a changing environment the inertia

present in the algorithm has to be reduced. An alternative strategy to discount-

ing the rewards, as with Discounted UCB, is to consider only rewards from a

recent window of time, and forget all rewards that are too old. This leads to the

strategy Sliding-Window UCB, also studied by Garivier et al. [22] and described

in Algorithm 2.10.

Algorithm 2.10 Sliding-Window UCB

Parameters: τ , η
Let B be an upper bound on the rewards received.
Let ni,t(τ) =

∑t
s=t−τ+1 1{as=i}.

Let X̂i,t(τ) =
1

ni,t(τ)

∑t
s=t−τ+1 xi,t1{as=i} .

Let K be the number of arms
Initialisation:
Play each arm once.
Main Loop:
for t = K + 1, . . . , T do

Let Ui = X̂i,t(τ) + B
√

η logmin(τ,t)
ni,t(τ)

.

Pull arm at = argmaxi Ui.
end for

Adapt-EvE

Motivated by a real-time website optimisation problem, Hartland et al. proposed

the Adapt-EvE algorithm [26]. The context of the problem was to provide a

community of users with the news they are most interested in. The problem was

posed as a multi-armed bandit problem where the arms were the news items, with

the goal to pick the most interesting news item available. The objective of Adapt-

Eve was to formulate a strategy that was able to cope with the potential dynamic

changes to every user’s interest, which in turn would affect which news item was

the most salient. The focus was not to try to model the environment or the causes

of the changes, but be capable of reacting when a change could be observed via
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the lack of interest in a news item. Adapt-EvE is an extension of UCBT designed

to cope with such a scenario. UCBT (UCB-Tuned) is a variant of the UCB bandit

strategy proposed by Auer et al. [7]. It has been found to empirically perform

much better than UCB1 in many situations. UCBT estimates the variance of

the rewards from each arm in order to adapt the padding function used and is

presented in Algorithm 2.12. Adapt-EvE augments UCBT with a change point

mechanism, namely the Page-Hinkley test which is shown in Algorithm 2.11.

The Page-Hinkley test is a frequentist changepoint hypothesis test. The null

hypothesis is that the sequence of rewards can be attributed to a single statistical

law, otherwise a change has occurred. The test can be computed efficiently in a

recursive online fashion and under some reasonable conditions can be proved to

minimise the time taken to detect a change for a given false alarm rate. The Page-

Hinkley test is run along with the UCBT algorithm. When a change is detected

this allows the algorithm to “reset” the UCBT bandit strategy by setting both

the empirical mean, X̂i,t, and times pulled, ni,t, of each arm to zero. A perceived

problem with this approach is that when a false alarm occurs all information

of the state of the arms is lost. The cost of relearning the payoff of each arm

sufficiently well before making good decisions again is relatively high. In order

to mitigate this problem Hartland et al. proposed a mechanism to decide, on the

event of a change being detected, if the best option was to acknowledge the change

and reset the UCBT bandit algorithm, or to consider the change a false alarm

and keep the UCBT bandit algorithm with its existing estimates. They posed

this conundrum as a separate multi-armed bandit problem. When the Page-

Hinkley test detects a change, a second UCBT algorithm is initialised (called the

new bandit) to “compete” against the existing UCBT algorithm (called the old

bandit). Another two arm bandit algorithm is run for a set period to decide

between which of the two algorithms, the old or the new bandit, will be used

to select an arm/news item. During this period all new changes detected are

ignored. Since the mechanism is based on using a bandit algorithm to make a

decision outside of the direct question of which news item is more interesting, they

call the technique meta-bandits. The strategy is summarised in Algorithm 2.13.

2.7.3 Connection to adversarial multi-armed bandits

In the bandit problems we have considered the rewards are assumed to come from

well-behaved stochastic processes. This assumption, due to the phenomenon of



CHAPTER 2. BACKGROUND 53

Algorithm 2.11 Page-Hinkley Test

Parameters: δ,λ
Let x̂t =

1
t

∑t
l=1 xl (the empirical mean reward)

Let mT =
∑T

t=1(xt − x̂t + δ)
Let MT = max1≤t≤T mt

Let HT = MT −mT (Page-Hinkley statistic)
if HT > λ then
Change occurred.

else
No change occurred.

end if

Algorithm 2.12 Discounted-UCBT(ρ)

Let X̂i,t be the empirical mean reward of arm i and time t.
Let K be the number of arms
Let ni,t be the discounted number of times arm i has been pulled at time t
Let Var(µi,t) be an upper confidence bound on the reward variance of arm i at
time t.
Initialisation:
Play each arm once.
Main Loop:
for t = K + 1, . . . , T do

Let Ui = X̂i,t +

√

2 log(min(1/4,Var(µi,t))
∑K

i=1 ni,t)
ni,t

Pull arm at = argmaxi Ui.
nat,t+1 = ρnat,t + 1,

X̂at,t+1 = X̂at,t +
xat,t−X̂at,t

nat,t+1
.

ni,t+1 = ρni,t for i 6= at,

X̂i,t+1 = X̂i,t for i 6= at.
end for

concentration of measure, allows an agent to learn which arm is best reasonably

quickly. A question one might ask is how well can an agent perform in a bandit

environment when no such statistical assumptions are made? Auer et al. consid-

ered this case [8]. They consider that the rewards of each arm are generated by

an adversary. In their work they use a general definition of regret. The regret

is with respect to a specified series of actions. The regret for an agent is then

the reward accumulated by the agent subtracted from the rewards accumulated

by the reference sequence of actions. Let the sum of rewards accumulated by a
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Algorithm 2.13 Pseudo-code for Adapt-EvE

Let K be the number of arms
Initialisation:
Initialise bcurr to an instance of UCB-Tuned with K arms.
Initialise dP-H to an instance of the Page-Hinkley change detector
Initialise isMetaBanditPhase = false.
Main Loop:
for t = K + 1, . . . , T do
if isMetaBanditPhase = true then
Decrement count.
Let ameta be the arm chosen by bmeta ( either bcurr or bnew )
if bcurr chosen by bmeta then
Pull arm at according to bcurr.
Update bandit bcurr ( at,xat(t)).
Update bandit bmeta with pair ( 1,xat(t)).

else
Pull arm at according to bnew.
Update bandit bnew with pair ( at,xat(t)).
Update bandit bmeta with pair ( 2,xat(t)).

end if
if count = 0 then
Set isMetaBanditPhase = false
if Arm 2 of bmeta pulled most then
Set bcurr = bnew
Reinitialise dP-H to an instance of the Page-Hinkley change

end if
end if

else
Pull arm at according to bcurr.
Update bandit bcurr and detector dP-H with pair ( at,xat(t)).
if dP-H detects change then
Set isMetaBanditPhase = true
Initialise bnew to new instance of UCB-Tuned with K arms.
Initialise bmeta to new instance of UCB-Tuned with 2 arms.
Associate arm 1 of bmeta to bcurr and arm 2 to bnew.
Set count = tmeta

end if
end if

end for

series of actions, (j1, . . . , jT ), be denoted as S(j1,...,jT ), such that,

S(j1,...,jT ) =
T∑

t=1

xjt,t. (2.43)
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For a given strategy A that chooses actions i1, . . . , iT up until time T , let the

reward accumulated be denoted as,

SA(T ) =
T∑

t=1

xit,t. (2.44)

The expected regret felt with respect to a given sequence of actions (j1, . . . , jT )

up to time T is then,

S(j1,...,jT ) − E [SA(T )] . (2.45)

Notice that due to the adversarial nature of the environment the expectation

is now only over any stochastic processes internal to the agent’s strategy A.

Auer et al. produce bounds on this regret felt by some strategies. The bound

obviously depends on the arbitrary sequence of actions, (j1, . . . , jT ), the strategy

is being compared against. They introduce a measure of hardness in order to rank

sequences of actions. The harder a sequence of actions is to compete against the

higher the measure is. The hardness measure, H(j1, . . . , jT ), is defined as,

H(j1, . . . , jT ) = 1 + |{1 ≤ l < T : jl 6= jl+1}|. (2.46)

We can see how this hardness measure corresponds to how frequently the arbitrary

sequence of actions, that we compare a strategy against, switches between a series

of actions. In this way the regret defined in this section with a given hardness

has a striking resemblance to the regret felt in a switching system with a given

switching rate. We then might expect an algorithm designed for such a switching

system to perform reasonably in an adversarial setting. It must be noted however

that the switching environment still assumes a well-behaved stochastic process

generates the rewards of arms in between switches, so it is unclear how penalised

a strategy that assumes this will be when the assumption fails to hold. A family

of algorithms designed for the adversarial bandit setting are those designed by

Auer et al. called Exp3. The basic version of this is presented in Algorithm 2.14.

2.8 Best arm identification

The stochastic multi-armed bandit captures the inherit tradeoff in sequential

decision making under uncertainty. We can think of two quantities the cost in
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Algorithm 2.14 Exp3

Let γ ∈ (0, 1].
Let K be the number of arms
Initialisation:
Set wi(1) = 1 for i = 1, . . . , K.
Main Loop:
for t = 1, . . . , T do
Let pi(t) = (1− γ) wi(t)∑K

j=1 wj(t)
+ γ

K
for i = 1, . . . , K.

Pull arm at s.t. P (at = i) = pi(t) for i = 1, . . . , K.
Receive reward xat ∈ [0, 1].

Let x̂i(t) =

{
xi(t)/pi(t) if i = at,
0 otherwise,

for i = 1, . . . , K.

Let wi(t+ 1) = wi(t)e
γx̂i(t)/K .

end for

taking an action, and the reward in taking an action. In the multi-armed bandit

problem these two quantities are tied to one another since we consider the cost of

an action to be the regret the agent feels in having chosen it. The cost an agent

pays in its exploration is traded off with the reward it receives in its exploitation.

The tie between the cost of exploring and the reward of exploitation need not

always be so intimately linked. Bubeck et al. considered a scenario where the

cost of choosing an arm was tied to resources rather than being linked to the

reward [13]. In their model the cost of actions dictate the length of time for

which actions can be explored. The reward is confined to the reward received

by the final decision at the end of exploration. The goal of the problem they

describe is to maximise the expected reward of the final decision. Equivalently

the goal is to minimise the expected simple regret of the final decision, where

the simple regret is the difference between the mean reward of the chosen action

and the mean reward of the best action (best meaning having highest mean).

The problem can be thought of as a period of pure exploration, followed by one

purely exploitative decision. An agent must then decide on an allocation strategy

that is used to explore the performance of arms in the exploratory phase, and a

recommendation strategy that is used to make the final decision. The problem is

known as the best arm identification problem. There are objectives other than

the simple regret that have been studied. One such objective is to identify an

ε-best arm. An ε-best arm is any arm whose mean is a distance no further than

ε away from the mean of the best arm.
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2.8.1 Are multi-arm bandit algorithms good for best arm

identification?

One might assume that a strategy that is good for the stochastic multi-armed

bandit problem may also be good for the best arm identification problem. A

strategy for the multi-armed bandit requires an agent to pull the best arm with

larger and larger probability as time elapses. In this way we might expect the

probability that we pull an arm far from optimal decreases rapidly and so too

should the simple regret the agent feels in performing the strategy. Another way

to think of this intuition is that an upper bound on the expected cumulative

regret leads to upper bounds on the expected simple regret, which is certainly

true. Bubeck et al.’s investigation of the best arm identification problem showed a

less obvious connection between the expected cumulative regret and the expected

simple regret [13]. The main result shows that an upper bound on the expected

cumulative regret using a given allocation strategy leads to a lower bound on the

expected simple regret. The theorem is as follows,

Theorem 2.8.1 (Bubeck 2009). For any pair of allocation and recommendation

strategies and for any function ε : {1, 2, . . . } → R such that for all Bernoulli dis-

tributions ν1, . . . , νK on the rewards, there exists a constant C ≥ 0 with E [RT ] ≤
Cε(T ), for which it holds that: for all sets of K ≥ 3 distinct Bernoulli distri-

butions on the rewards that are different from 1, there exists an ordering of the

arms’ distributions, ν1, . . . , νK such that for some constant D ≥ 0,

E
[
µσ(1) − xT

]
≥ ∆

2
e−Dε(T ), (2.47)

where ∆ = mink:µmax−µk>0 µmax − µk, the smallest gap between the mean of the

best arm and the mean of another suboptimal arm.

As a consequence of this theorem any strategy that is asymptotically optimal

for the stochastic multi-armed bandit problem (which means the cumulative re-

gret is O(lnT )) has a lower bound on the simple regret that is polynomial in the

time of the exploratory phase. By considering a uniform strategy that allocates

bT/Kc pulls to each arm, and using a simple Chernoff inequality concentration

of measure argument, it can be shown that the expected simple regret using the

uniform strategy is upper bounded by a term exponential in the exploratory time.

This clearly shows that any asymptotically optimal multi-armed bandit strategy
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is sub-optimal for the best arm identification problem. Intuitively, strategies de-

signed for the multi-armed bandit problem pay a cost for exploring sub-optimal

arms that strategies in the best arm identification problem do not pay. This

forces the strategy to exploit the best arm in order to minimise this cost, whereas

the exploitation reduces the opportunity to explore.

2.8.2 Quantifying problem difficulty

A bound on the error of not identifying the best arm is dependent on the setup of

the problem. The closer the means of the best arm and other suboptimal arms,

the longer it will take to sufficiently reduce the error. Audibert et al. introduced

two measures of hardness in this setting. These are,

H1 =
K∑

k=1

1

∆2
σ(k)

, (2.48)

and,

H2 = max
k∈{1,...,K}

k

∆2
σ(k)

, (2.49)

where ∆k = µσ(1) − µk denotes the distance between the largest expected reward

and that of arm k. Audibert et al. show that these two quantities are within a

logarithmic factor of one another. They further present the following theorem

stated below.

Theorem 2.8.2 (Audibert 2010). Let ν1, . . . , νK be Bernoulli distributions with

parameters in [p, 1−p], p ∈ (0, 1/2). For any forecaster, there exists a permutation

σ : {1, . . . , K} → {1, . . . , K} such that the probability of error of the forecaster

on the bandit problem defined by ν̂1 = νσ(1), . . . , ν̂K = νσ(K) satisfies

Pe ≥ exp

(

−(5 + o(1))T

p(1− p)H2

)

, (2.50)

where the o(1) term depends only on K, p and T and goes to 0 when T goes to

infinity.

This theorem can be used to justify the use of H2 (and therefore H1) as a

measure of hardness for a problem. This is because for any Bernoulli armed

problem instance whose rewards have non-zero variance can be lower bounded by
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a function of H2, and so this measure of hardness determines how well one can

hope to do in solving the best arm identification problem.

A good strategy should have a sample complexity of order H2. By sample

complexity we mean the order of the number of samples needed to have a good

chance of identifying the best arm.

2.8.3 Race algorithms

Race algorithms are a class of algorithms suitable for the best arm identification

problem. The basic algorithm makes use of upper and lower bound estimates

of the average payoff of each arm. The strategy proceeds in rounds, with the

initial round starting with all arms considered. At the end of each round the

arms whose best average payoff (their upper bound estimate) are worse than the

best arm’s worst average payoff (its lower bound estimate) are eliminated from

further consideration. The procedure continues until there is one remaining arm

which is then considered the best arm. In this way, the arms can be considered

to be in a “race” to become the candidate best arm, and thus the name of racing

algorithms. The upper and lower bounds are based on concentration of measure

results. A popular choice is Hoeffding bounds leading to Hoeffding racing [55],

however Bernstein inequalities have also been used [48].

2.8.4 Gap algorithms

Gap-based algorithms use ideas from upper confidence bound based strategies.

In upper confidence bound strategies the best arm is estimated not as a empir-

ical mean of rewards received, but as an upper confidence estimate. This is an

application of the principle of optimism under uncertainty. In the best arm iden-

tification problem Gabillon et al. argued that estimating the mean of the best

arm is not the more salient information [21]. What is more crucial is estimating

the difference between the mean of the best arm and second best arm, which

they call the gap. In a similar way, that an UCB estimate for an arms mean

is an optimistic estimate, the gap-based strategies produce optimistic estimates

for what the gap is, and pull the least pulled arm associated with that estimate.

Gabillon et al. called their approach unified gap-based exploration (UGapE). The

meta-algorithm can be parametrised for two separate scenarios that were consid-

ered. The first when the exploration phase has a fixed known time period called
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fixed budget. In this case the bound is on the performance measure of interest (for

example the expected simple regret). The second when an agent has a predeter-

mined level of risk they agree to incur and they explore until they have identified

the best arm up to the corresponding confidence for the risk. This is called fixed

confidence. The fixed confidence will equate to a given expected simple regret

and so the bound is on the expected number of trials before this confidence is

reached.

Hoffman et al. extended the idea of gap-based exploration and considered it

from a Bayesian perspective [27]. The confidence intervals used in their proposed

algorithm, BayesGap, are taken from Bayesian estimates rather than frequentist

approaches as with Gabillon. In order to use confidence bounds on Bayesian

models they generalise the procedure to cope with asymmetry of the bounds

around the empirical mean. BayesGap is presented in Algorithm 2.15. The

variant given assumes the rewards of the arms are Bernoulli distributed. This

means that the arm beliefs are modelled as Beta distributions with parameters α

and β.

Algorithm 2.15 BayesGap

Let Ui(t, γbgap) be the upper confidence of arm i at time t
Let Li(t, γbgap) be the lower confidence of arm i at time t

Exploratory Phase:

for t = 1, . . . , T do
Let Bk(t) = maxi 6=k Ui(t, γbgap)− Lk(t, γbgap)
sk(t) = Uk(t, γbgap)− Lk(t, γbgap)
J(t) = argmink Bk(t)
j(t) = argmink 6=J(t) Uk(t, γbgap)
Pull arm at = argmaxk∈{j(t),J(t)} sk(t).
Let αt+1,at = αt,at + 1(xat(t) = 1)

βt+1,at = βt,at + 1(xat(t) = 0)
Let αt+1,j = αt,j

βt+1,j = βt,j for j ∈ {1, . . . , K} \ {at}.
end for

Final Decision:

Let Ψ(T ) = J(argmint≤T BJ(t)(t))
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2.8.5 Upper confidence bound algorithms

Bubeck et al. considered UCB-style algorithms and produced bounds on the sim-

ple regret for such a method assuming a given time horizon for the exploratory

phase [13]. Audibert et al. also considered an UCB type algorithm they called

UCB-E (Upper Confidence Bound Exploration) instead producing bounds on the

probability of error [5]. The padding function, rather than being of the form

C
√

ln t
ni,t

(where C is a constant, t the total pulls so far, and ni,t the number of

pulls of arm i up to time t), is instead of the form
√

a
ni,t

for some constant a.

Since the padding function no longer contains a factor that grows with t, a period

of inactivity in pulling an arm no longer increases the UCB estimate for that arm.

This causes the algorithm to focus more on arms that have not been pulled, than

with for example UCB1 and therefore increases the exploration in the algorithm.

The larger the constant a the more the algorithm explores. The algorithm is

described in Algorithm 2.16.

Audibert et al. show that the probability of error in identifying the best arm

after T pulls, eT is bounded from above as,

eT ≤ 2TKe−2a/25, (2.51)

for 0 < a ≤ 25
36

T−K
H1

. This bound requires knowledge of H1, a measure of hardness

for the problem discussed in section 2.8.2. This could be estimated online during

the running of the algorithm, however Audibert et al. did not prove this and

in fact believe that for the case of UCB-E such a strategy would often lie far

away from the desired rate of convergence. However, they propose an alternative

UCB-E algorithm for which they can use more appropriate online estimates of

the hardness of the problem. They call this adaptive UCB-E.

2.8.6 Successive Rejects

Successive Rejects was proposed by Audibert et al. [5]. It resembles a race algo-

rithm. The time horizon, T , of the exploratory phase is assumed to be known in

advance. The exploration is split into K − 1 phases. The algorithm starts con-

sidering all arms, in the first phase the arms are pulled in a round-robin fashion

an equal number of times. At the end of the phase, the worst performing arm is

discarded and no longer pulled from then on in. The next phase continues with
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Algorithm 2.16 UCB-E

Let X̂i,t be the empirical mean reward of arm i and time t.
Let K be the number of arms
Let ni,t be the number of times arm i has been pulled at time t
Let a > 0.
Initialisation:
Play each arm once.
Main Loop:
for t = K + 1, . . . , T do

Let Ui = X̂i,t +
√

a
ni,t

Pull arm at = argmaxi Ui.
Update X̂at,t+1

end for

the remaining arms being pulled round-robin until the end of the phase. The

procedure is repeated until the algorithm is left with a single arm. The arm that

remains is chosen as the recommendation in the final decision. Algorithm 2.17

describes the procedure. The length of the phases are carefully chosen through

knowledge of T , to produce a bound on the probability of error that is optimal

up to a logarithmic factor in K. This bound is,

Pe ≤
K(K − 1)

2
exp

(

− T −K

log(K)H2

)

, (2.52)

where log(K) = 1
2
+
∑K

i=2
1
i
. The time horizon needs to be of a scale similar to

log(K)H2 to identify the best arm, whereas an optimal solution would only need

a time horizon with a scale of H2.

2.9 Summary

We have presented the core background knowledge that underpins the themes

in this thesis. Firstly we have covered the basic mathematics required such as

Bayesian modelling and some classic concentration of measure results. The aim

of the thesis is to propose extensions to Thompson Sampling, a stochastic multi-

armed bandit strategy, to problem settings beyond the standard model for which

it was designed. To put the algorithm in context we have defined the stochastic

multi-armed bandit problem, described competing strategies that have been pro-

posed for the problem and covered some of the theoretical results known about
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Algorithm 2.17 Successive Rejects

Let K1 = {1, . . . , K},
log(K) = 1

2
+
∑K

i=2
1
i
,

n0 = 0
Let nk = d n−K

log(K)(K+1−k)
e for k ∈ {1, . . . , K − 1}.

Exploratory Phase:

for phase k = 1, . . . , K − 1 do
Pull arm i nk − nk−1 times, for i ∈ Kk.
Kk+1 = Kk \ {argmini∈Kk

X̂i,nk
} (in case of a tie randomly select an arm to

remove from set argmini∈Kk
X̂i,nk

)
end for

Final Decision:

Let Ψ(T ) be the remaining element in KK

the problem. The two problems for which we propose Thompson Sampling style

algorithms are the non-stationary switching multi-armed bandit problems and

the best arm identification problem. Again, known results for these two problem

settings along with competing strategies for them were presented to further put

the work in this thesis in a fuller context.



Chapter 3

Thompson Sampling in

Multi-Armed Bandit Problems

This chapter introduces Thompson Sampling. The algorithm and the idea behind

it form a unifying theme to the original contributions presented in later chapters.

Thompson Sampling falls in the category of a probability matching algorithm, like

Softmax, and is Bayesian in nature. The origins of Thompson Sampling stem from

the procedure’s inventor, William R. Thompson [69]. Thompson was interested

in the general problem of research planning. He was concerned with being able

to utilise a small numbers of observations in order to steer actions taken before

more data could be collected. This was in the context of a perceived objection to

argument based on small numbers of observations at the time. Thompson posed

his problem in terms of deciding between two treatments in a clinical trial. One

of the treatments would be administered to a patient in the trials population and

the effect could be observed. These observations could then be incorporated into

the decision-making process to improve the odds of the most effective treatment

being administered to further patients.

Although an old technique, predating many popular approaches in the liter-

ature such as UCB, it had been surprisingly absent in the bandit and machine

learning literature. However, it has recently seen something of a revival [63, 24,

15] and is now considered a state-of-the-art baseline bandit algorithm. It has

been given several names including posterior sampling, Bayesian sampling and

Bayesian learning automaton, however Thompson Sampling is more prevalent

and so we will use this term to describe the procedure.

64
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3.1 Thompson Sampling

Thompson Sampling, as previously mentioned, is a randomised probability match-

ing strategy for the multi-armed bandit problem. We mean this in the sense that,

for each decision, the probability of an arm being pulled matches the probability

that the arm is in fact the optimal arm, given all past observations of arm pulls.

The algorithm is Bayesian in that the probability that an arm is the best is a

Bayesian estimate. Being more precise, let θ be the parameter vector defining

behaviour of a particular multi-armed bandit problem. The probability that an

arm k is optimal (it is equal to the optimal arm k∗) is,

P (k = k∗) =

∫

θ

1(k = k∗|θ)P (θ)dθ. (3.1)

An arm is thus pulled with the probability P (k = k∗). The algorithm can be

viewed as forming a decision based on a one-step Monte-Carlo sample estimate

of the probability of an arm being the best.

The integral above may not have a closed form solution. The integral may be

approximated by quadrature. However, this is undesirable as the running cost

of each decision will depend on the difficulty of the multi-armed bandit problem.

The insight used in Thompson Sampling is that instead we can sample from a

distribution defined by P (k = k∗) by simply first sampling a candidate θ from

the distribution P (θ). Given a candidate θ we can then just pull the arm that

is best given this candidate (1(k = k∗|θ)). P (θ) is initially specified as a prior

and then later inferred using Bayes rule as rewards from arm pulls are observed.

The general Thompson Sampling algorithm for a K-armed bandit is therefore

described by the following pseudo-code.

Initialise P (µ1, . . . , µK), the prior belief of the mean payoffs of arms 1, . . . , K.

Let Ht be the history of action,reward pairs (aτ , xτ ) for 1 ≤ τ ≤ t.

Initialise H1 = {}.

for t = 1, . . . , T do

Sample θi, . . . , θK ∼ P (µ1, . . . , µK |Ht).

Pull arm at = argmaxi θi

Receive reward xt

Let Ht+1 = Ht ∪ (at, xt).
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end for

Thompson Sampling for Bernoulli-armed bandit problems

For much of the work in this thesis we will, for simplicity, restrict ourselves

to considering multi-armed bandit problems with Bernoulli rewards (the reward

received is either a zero or a one). We will thus derive the Thompson Sampling

algorithm for this case (the most common in the literature). For the multi-

armed bandit with Bernoulli rewards there are a finite set of arms k ∈ 1, . . . , K.

The payoffs for arm k are distributed Bernoulli with parameter µk, the expected

reward of the arm. The bandit problem can thus be specified by the set of

parameters {µi : i = 1, . . . , K}, therefore θ = (µ1, . . . , µK). The probability of an

arm is now defined as

P (k = k∗) =
∫

µ1

. . .

∫

µK

1(k = k∗|µ1, . . . , µK)P (µ1, . . . , µK)dµ1 . . . dµK . (3.2)

The arms are independent and so we can write this integral as

P (k = k∗) =
∫

µ1

. . .

∫

µK

1(k = k∗|µ1, . . . , µK)P (µ1) . . . P (µK)dµ1 . . . dµK . (3.3)

We can therefore infer the distributions, P (µ1), . . . , P (µK), separately. When

making a decision a sample is drawn from each P (µk) to estimate the true mean

µk of arm k. The arm with highest corresponding estimate is then pulled. When

the arms are Bernoulli it makes sense to model P (µk) as a Beta distribution. This

is because the Beta distribution is a conjugate prior to the Bernoulli distribution.

When we pull arm k and receive a reward, x, then need to update the belief P (µk)

(i.e. infer P (µk|x)). Since P (µk) is a Beta distribution, which in conjugate to

the Bernoulli distribution, then P (µk|x) is also a Beta distribution. This makes

the algorithm incredibly efficient as for the case of a Beta distribution only the

counts of number of successes (x = 1) and number of failures (x = 0) for each arm

need to be stored. Algorithm 3.1 presents the Thompson Sampling algorithm for

the stationary Bernoulli multi-armed bandit problem and Figure 3.1 shows the

evolution of the posterior Beta distributions as the strategy is performed on a

two armed bandit problem.

Of course a similar derivation could be performed for any bandit problem

whose reward distribution had a corresponding conjugate prior. For example an
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Algorithm 3.1 Thompson Sampling for Bernoulli Bandits

Let α1,k = 1,
β1,k = 1 for k ∈ {1, . . . , K}.

for t = 1, . . . , T do
Sample θi ∼ Beta(αt,i, βt,i), for i ∈ {1, . . . , K}..
Pull arm at = argmaxi θi
Let αt+1,at = αt,at + 1(xat(t) = 1)

βt+1,at = βt,at + 1(xat(t) = 0)
Let αt+1,j = αt,j

βt+1,j = βt,j for j ∈ {1, . . . , K} \ {at}.
end for

alternative would be if the reward of the arms were distributed as Gaussian (Nor-

mally) with a known variance but unknown mean. The corresponding conjugate

prior from which we would sample from (and whose hyperparameters would be

stored and updated via observations) would also be a Normal distribution.

Normal Thompson Sampling in the Bernoulli-armed bandit

As we have stated, other conjugate prior pairs can be used other than the

Bernoulli-Beta pair. The Bernoulli-Beta pair is picked because the reward for

each arm is assumed to be a Bernoulli random variable. However it is useful

to investigate how the performance of a Thompson Sampling strategy is affected

when the underlying assumptions are wrong. In order to see this an experiment is

performed. The bandit algorithm is tested on a Bernoulli-armed bandit, however

a Thompson Sampling algorithm that assumes that the rewards are distributed

as a Gaussian with known variance is used instead. The strategy is described in

Algorithm 3.2. The known variance of the reward is set to 1/4 (the maximum

variance of a Bernoulli trial), the mean of the prior to 1/2 and the variance of the

prior to 1. Figure 3.2 shows the results of three different problem instances. We

can see that surprisingly the Normal Thompson Sampling strategy outperforms

the Beta Thompson Sampling strategy on these three problems. It is unclear as

to whether this is true more broadly.
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Figure 3.1: The evolution of the posterior Beta distributions for a two armed
Bernoulli bandit problem. The agent starts with no knowledge of the arm means
and so the distributions are uniform (Beta(1, 1)). As more observations are made
the distributions become more concentrated so that it becomes more likely that
a sample estimate is draw close to the true mean of a given arm.

3.1.1 Perceived advantages

Computationally efficient

For many of the standard multi-armed bandit problems, including the stochastic

Bernoulli multi-armed bandit problem, the relevant posterior distribution that

models the expected arm payoffs can be modelled in closed form. Due to conju-

gate priors updates to beliefs lead to simple update rules to a small fixed set of

parameters.
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Algorithm 3.2 Thompson Sampling for Normal Bandits (with known variance
σ2)

Let µ1,k = 0,
s21,k = 1 for k ∈ {1, . . . , K}.

for t = 1, . . . , T do
Sample θi ∼ N (µt,i, s

2
t,i), for i ∈ {1, . . . , K}..

Pull arm at = argmaxi θi

Let µt+1,at =
µt,atσ

2+xats
2
t,at

σ2+s2t,at

s2t+1,at =
s2t,atσ

2

s2t,at+σ2

Let µt+1,j = µt,j

s2t+1,j = s2t,j for j ∈ {1, . . . , K} \ {at}.
end for

A principle for decision making under uncertainty

Like UCB algorithms use the principle of “optimism under uncertainty” to moti-

vate a class of algorithm, Thompson Sampling too provides a principle in which

to tackle decision making under uncertainty. The principle is to model the uncer-

tainty directly using Bayesian methods, and to manage exploration by adaptively

producing estimates that reflect this uncertainty via random sampling. This the-

sis is focused on extending the general principle to decision making models beyond

the multi-armed bandit problem.

Applicable to complicated bandit problems

Bandit problems that have arms with interdependence, or arms with compli-

cated reward distributions can also be tackled straightforwardly with Thompson

Sampling. Even if distributions can not be represented exactly in closed form,

Bayesian modelling techniques such as Markov Chain Monte Carlo, variational

techniques or particle filtering can be applied to form the posterior distributions

necessary from which to sample from.

Resilience to delayed rewards

In the multi-armed bandit problem we assume that the reward associated with

a given action is observed instantaneously by the agent. In some contexts this

is unrealistic. An agent may have to wait a period of time before learning the
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Figure 3.2: Three plots showing the expected cumulative regret for Beta Thomp-
son Sampling and Normal Thompson Sampling for a Bernoulli-armed bandit.
Surprisingly the results show that the Normal Thompson Sampling strategy out-
performs the Beta Thompson Sampling despite the conjugate prior being more
appropriate for a Bernoulli reward distribution in some sense.

effect of their decision. In the intervening time the agent can not simply stop the

world and wait for the information to arrive. The rewards are therefore delayed.

The agent still needs to interact with the environment they are in and make

further decisions. One claimed advantage of Thompson Sampling by Chapelle

and Li is that it should be resilient to delayed rewards [15]. The reason for this

is down to its randomised nature. Since each action is randomised the strategy

will continue to explore actions regardless of receiving no new information. This

appears to be the case, however, of itself it is not a particularly strong claim

about the algorithm. Many algorithms can also claim this advantage, including

UCB. For instance Joulani et al. showed that the regret of UCB in a environment

with delayed feedback is only greater than that of the undelayed case by an

additive term linear in the expected largest number of unseen rewards [31]. Their

paper also summarises results for different delayed scenarios showing that for the

adversarial setting the upper-bound on reward for the delayed setting is different

to the non-delayed case by a multiplicative term linear in the delay. It is less clear

if a randomised approach based on Thompson Sampling will behave better than

an approach based on UCB in this setting.
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3.1.2 Existing theoretical analysis

Compelling empirical evidence had lead to a resurged interest in Thompson Sam-

pling as a decision-making strategy. Initially only weak theoretical results on

Thompson Sampling were produced. May et al. for instance showed that the

Thompson Sampling strategy was greedy in the limit with infinite exploration

(GLIE) [53]. However frequentist methods such as UCB had enjoyed much firmer

theoretical grounding. Variants of UCB had strong upper bounds on their ex-

pected cumulative regret. These upper bounds were shown to match the lower

bounds derived by Lai and Robbins for the stochastic multi-armed bandit prob-

lem [41]. This lack of analysis, on an equal footing to other bandit algorithms, led

to call for the discovery of tight upper bounds on regret for Thompson Sampling

as an important open problem in the machine learning community [44]. Agrawal

et al. provided the first serious attack on a regret bound but it was not optimal

in the sense of matching the bounds of Lai and Robbins [2]. In the same year

as the open problem was announced, Kaufman et al. did show that Thompson

Sampling was asymptotically optimal for the Bernoulli stochastic multi-armed

bandit problem [34]. This was later improved by Agrawal et al. with asymptot-

ically optimal problem-independent regret bounds [3]. This answered positively

the open problem and showed that Thompson Sampling, a Bayesian algorithm,

was efficient and could compete against other strategies even when measured by

frequentist performance measures. The results show that the Thompson Sam-

pling problem-dependent bound for the K-armed stochastic bandit problem is,

E [RT ] ≤ (1 + ε)
K∑

i=2

lnT

d(µi, µ∗)
∆i +O

(
K

ε2

)

, (3.4)

where d(µi, µ
∗) is the KL divergence between the mean of arm i and the best

arm. The problem-independent bound is such that for any problem the regret is

bounded as,

E [RT ] ≤ O(
√
KT lnT ). (3.5)

Later Korda et al. showed that Thompson Sampling achieves the lower bound

on regret for all one-dimensional exponential family bandits [38]. The result as-

sumes that the prior distribution is chosen as the Jeffreys prior, an uninformative

prior. This puts the Thompson Sampling strategy on an equal theoretical stand-

ing to state of the art upper confidence bound strategies such as KL-UCB.
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Other lines of theoretical investigation have extended this work. Russo and

Roy later showed that there is a connection between the expected cumulative re-

gret bound of a UCB algorithm and the upper bound on Bayes Risk for Thompson

Sampling. For the finite armed Bernoulli bandit the Bayes Risk is defined as,

BayesRisk(T ) =
T∑

t=1

E

[

max
k∈K

µk − µat

]

. (3.6)

The expectation is taken over the prior distribution over the arm means µ1, . . . , µK

of the problem, unlike the regret which is defined with respect to known arm

means. This allows one to easily take advantage of existing bounds found for

the regret of UCB algorithms and apply them to Thompson Sampling. One big

advantage of this approach is that bounds can be produced for bandit problems

where the arms are interdependent and also for the contextual bandit problem.

The bounds they produce depend on the amount of dependence amongst the

arms and this is captured by a notion referred to as margin dimension [62]. Li

argues that a downside to this approach is its reliance on a correct prior from

which to take the expectation [43]. Instead Li takes a different approach. By

noticing connection between Thompson Sampling and exponentiated updates Li

generalises Thompson Sampling to the expert-learning framework [43].

3.2 Optimism in Thompson Sampling

A question that arises is what is the tradeoff between exploration and exploitation

that Thompson Sampling makes. May et al. [53] tried to separate the two aspects

of the algorithm. To do this they defined the exploitative value of an action to be

the expected payoff of an action conditioned on the rewards seen to date by the

agent. The estimated value of an action could be seen as the value of the sample

drawn from the posterior distribution for the action. With these the exploratory

value of an action could then by found by subtracting the exploitative value from

the estimated sample value. They observed that this exploratory value could

sometimes be negative and so there would be no value from an exploration point

of view to pull the arm. The exploratory value of an action is only negative when

the sample estimate drawn from the posterior is less than the exploitative value

of the arm (pictured in Figure 3.3). This corresponds to a sample drawn from

the left tail of the posterior distribution. They reasoned that no advantage was
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to be gained by sampling from the left-hand tail of the arm distributions when

performing Thompson Sampling, and proposed Optimistic Thompson Sampling.

In Thompson Sampling samples are drawn from the posterior distributions of

each arm, that is θi(t) ∼ P (µi). Instead Optimistic Thompson Sampling draws

samples such that θi(t) = max(E [µi] , si(t)) where si(t) ∼ P (µi). In other words if

a sample from the posterior distribution is less than the mean of the distribution,

then we take the sample to be the mean. This ensures that the exploratory

value of an action is always positive. Algorithm 3.3 more formally presents the

algorithm specifically for the Bernoulli bandit. May et al. observed empirically

that Optimistic Thompson Sampling performed (in some cases much) better than

standard Thompson Sampling.

Algorithm 3.3 Optimistic Thompson Sampling for Bernoulli Bandits

Let α1,k = 1,
β1,k = 1 for k ∈ {1, . . . , K}.

for t = 1, . . . , T do
Sample θi ∼ Beta(αt,i, βt,i), for i ∈ {1, . . . , K}..
Pull arm at = argmaxi max

(

θi,
αt,i

αt,i+βt,i

)

Let αt+1,at = αt,at + 1(xat(t) = 1)
βt+1,at = βt,at + 1(xat(t) = 0)

Let αt+1,j = αt,j

βt+1,j = βt,j for j ∈ {1, . . . , K} \ {at}.
end for

Here we adapt the proof of Agrawal and Goyal [3] to produce a regret bound

for Optimistic Thompson Sampling. Since asymptotically Thompson Sampling

attains the lower bound of regret for the multi-armed bandit problem then we can

not expect any asymptotic improvement. However, the modification to the proof

does remove some constant terms in the bound. This corroborates the findings

of May, Korda, Lee, and Leslie [53].

3.2.1 Optimistic Thompson Sampling

For this section we switch notation to be the same as that used by Agrawal and

Goyal, to allow easier comparison with their proof. The algorithm remains the

same as stated in Algorithm 3.3. Let ki(t) be the number of plays of arm i. Let
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Figure 3.3: This image shows the area of the posterior distribution for an arm (in
this case distributed Beta(2, 5)) from which a sample can be drawn to give a neg-
ative exploratory value and the region that corresponds to a positive exploratory
value.

i(t) denote the arm played at time t and with out loss of generality let arm 1 be

the optimal arm. Let Si(t) be the number of successes of arm i.

Let µi be the expected payoff of arm i, and µ̂i(t) be the estimated mean of

the Beta distribution the algorithm models arm i with (That is µ̂i(t) = (Si(t) +

1)/(ki(t) + 1)). Define constants xi and yi such that µi < xi < yi < µ1. Let θi(t)

be the sample generated from the Beta distribution for the ith arm at time t.

Let Eµ
i (t) be the event that µ̂i(t) ≤ xi, and Eθ

i (t) be the event that θi(t) < yi.

The Optimistic Thompson Sampling algorithm can be described as follows,

1. For all arms i, sample θi(t) ∼ Beta(1 + Si(t), 1 + ki(t)− Si(t))

2. Pick the arm a such that a = argmaxi max
(

θi(t),
αi(t)

αi(t)+βi(t)

)

3. Receive reward Xa(t) ∈ {0, 1}

4. Update arms hyperparameters, Sa(t + 1) = Sa(t) + Xa(t) and ka(t + 1) =

ka(t) + 1
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5. For unplayed arms j update hyperparameters, Sj(t+1) = Sj(t) and ka(t+

1) = ka(t)

6. Repeat

3.2.2 Proof sketch

In this section we outline the steps to bound the expected regret of Optimistic

Thompson Sampling. The proof techniques used below are all the same as those

that Agrawal and Goyal apply to ordinary Thompson Sampling. The only con-

tribution here is, for completeness, to apply their techniques to the Optimistic

Thompson Sampling case. As with their proof, to bound the regret we just need

to bound the expectation of pulling a suboptimal arm, i,

E [ki(T )] =
T∑

t=1

Pr(i(t)=i). (3.7)

This is because the expected regret can be written in terms of the number of

times each suboptimal arm is pulled, as follows,

E [RT ] =
K∑

k=2

∆kE [ki(T )] (3.8)

The decomposition is the same as that used by Agrawal and Goyal [3],

T∑

t=1

Pr(i(t) = i) =
T∑

t=1

A: well estimated AND sampled
︷ ︸︸ ︷

Pr(i(t) = i, Eµ
i (t), E

θ
i (t)) (3.9)

+
T∑

t=1

B: well estimated, high sample
︷ ︸︸ ︷

Pr(i(t) = i, Eµ
i (t), E

θ
i (t)) (3.10)

+
T∑

t=1

C: poorly estimated
︷ ︸︸ ︷

Pr(i(t) = i, Eµ
i (t)) . (3.11)

Here Eµ
i (t) is the event that µ̂i < xi at time t (µ̂i being the empirical mean of

arm i) and Eθ
i (t) is the event that θi < yi (θi being the sample estimate of arm

i). Remembering xi and yi are defined such that µi < xi < yi < µ1.

We will then consider each of the terms separately.
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Term A

Term A, the probability that the sub-optimal arm is pulled when well estimated

and well sampled, is bounded by an expression in terms of the optimal arm being

sampled sufficiently highly. Let Pi(t) = Pr(i(t)=i, Eµ
i (t), E

θ
i (t)|Ft−1), where Ft−1

is the filtration for the history of action-reward pairs until time t−1. Lemma 3.2.1

is used to bound this term.

Lemma 3.2.1. For all t ∈ [1, T ], and i 6= 1,

Pi(t) ≤
(1− pi,t)

pi,t
Pr
(
i(t) = 1, Eµ

i (t), E
θ
i (t)|Ft−1

)
,

where pi,t = Pr(θ1(t) > yi|Ft−1).

Proof. Either Ft−1 is such that Eµ
i (t) is true, or it is not. In the case where it

is not the the bound is trivially true since in that case Pi(t) = 0. For the case

where Ft−1 is such that Eµ
i (t) is true it suffices to prove that,

Pr
(
i(t) = i|Eθ

i (t),Ft−1

)
≤ (1− pi,t)

pi,t
Pr
(
i(t) = 1|Eθ

i (t),Ft−1

)
. (3.12)

Let Mi(t) be the event that θi(t) ≥ θj(t), ∀j 6= 1 (The event that the sampled

estimate of arm i exceeds that of all other suboptimal arms at time t). Equa-

tion 3.12 holds if the following two inequalities hold,

Pr
(
i(t) = 1|Eθ

i (t),Ft−1

)
≥ pi,t Pr

(
Mi(t)|Eθ

i (t),Ft−1

)
, (3.13)

Pr
(
i(t) = i|Eθ

i (t),Ft−1

)
≤ (1− pi,t) Pr

(
Mi(t)|Eθ

i (t),Ft−1

)
. (3.14)

Starting with the left hand side of Equation 3.13 we have,

Pr
(
i(t) = 1|Eθ

i (t),Ft−1

)
≥ Pr

(
i(t) = 1,Mi(t)|Eθ

i (t),Ft−1

)
, (3.15)

= Pr
(
Mi(t)|Eθ

i (t),Ft−1

)
Pr
(
i(t) = 1|Mi(t), E

θ
i (t),Ft−1

)
.

(3.16)

Since events Mi(t) and Eθ
i (t) occur, it holds that for all j 6= i and j 6= 1 that
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θj(t) ≤ θi(t) ≤ yi. It then follows that,

Pr
(
i(t) = 1|Mi(t), E

θi
i (t),Ft−1

)
≥ Pr

(
θ1(t) > yi|Mi(t), E

θ
i (t),Ft−1

)
, (3.17)

= Pr (θ1(t) > yi|Ft−1) , (3.18)

= pi,t. (3.19)

Equation 3.18 uses the fact that, conditioned on Ft−1, θ1(t) is independent of

Mi(t) and Eθ
i (t). This combined with Equation 3.16 leads to the inequality in

Equation 3.13.

From the definition of Eθ
i (t) the joint event E

θ
i (t), i(t) only occurs if θ1(t) < yi.

Therefore,

Pr
(
i(t) = i|Eθ

i (t),Ft−1

)
≤ Pr

(
θ1(t) ≤ yi, θi ≥ θj(t), ∀j 6= 1|Eθ

i (t),Ft−1

)
, (3.20)

= Pr (θ1(t) ≤ yi|Ft−1) Pr
(
θi(t) ≥ θj(t), ∀j 6= 1|Eθ

i (t),Ft−1

)
,

(3.21)

= (1− pi,t) Pr
(
Mi(t)|Eθ

i (t),Ft−1

)
, (3.22)

which proves the inequality in Equation 3.14.

Letting Γt =
(1−pi,t)

pi,t
, the proof by Agrawal and Goyal [3] proceeds using this

bound as follows,

T∑

t=1

Pi(t) ≤
T∑

t=1

Γt Pr(i(t)=1, Eµ
i (t), E

θ
i (t)|Ft−1) (3.23)

=
T∑

t=1

E
[
ΓtI(i(t)=1, Eθ

i (t), E
µ
i (t))

]
(3.24)

=
T∑

k=0

E

[

Γτk+1

τk+1∑

t=τk+1

I(i(t)=1)

]

, (3.25)

where τk denotes the kth time the optimal arm was pulled. The last line (Equa-

tion 3.25) uses the fact that pi,t only changes when the optimal arm is pulled.

Agrawal and Goyal [3] bound the term
∑T−1

k=1 E

[
1

pi,τk+1
− 1
]

with their Lemma
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4. The proof proceeds as follows,

T−1∑

k=1

E

[
1

pi,τk+1

− 1

]

(3.26)

≤ 24

(µ1 − yi)2
+

T−1∑

j=0

Θ

(

e
−(µ1−yi)

2j

2 +
e−D(µ1,yi)j

(j + 1)(µ1−yi)2
+

1

e
(µ1−yi)

2j

4 −1

)

, (3.27)

where D(µ1, yi) = yi log
yi
µ1

+ (1 − yi) log
1−yi
1−µ1

. The expression defining D(µ1, yi)

is equivalent to the KL divergence between two Bernoulli distributions, one with

parameter µ1 and the other with parameter yi.

The above bound is derived by first bounding

E

[
1

pi,τk+1

]

=

j
∑

s=0

fj,µ1(s)

Fj+1,yi(s)
, (3.28)

where fj,µ1(s) is the pdf of a binomial and Fj,yi(s) is a cdf of a binomial.

The sum in Equation 3.28 can be split in to several sums as follows,

j
∑

s=0

fj,µ1(s)

Fj+1,yi(s)
=

byijc−1
∑

0

fj,µ1(s)

Fj+1,yi(s)
+

byijc∑

byijc
(3.29)

+

bµ1j− (µ1−yi)

2
jc

∑

dyije

fj,µ1(s)

Fj+1,yi(s)
+

j
∑

dµ1j−µ1−yi
2

je

fj,µ1(s)

Fj+1,yi(s)
. (3.30)

For regular Thompson Sampling, Agrawal et al. bound these sums as follows,

Sum (0, byijc − 1) ≤ Θ

(

e−Dj 1

j + 1

1

(µ1 − yi)2

)

+Θ
(

e−2(µ1−yi)
2j
)

,

(3.31)

Sum (byijc, byijc) ≤ 3e−Dj, (3.32)

Sum

(

dyije, bµ1j −
(µ1 − yi)

2
jc
)

≤ Θ

(

e−
(µ1−yi)

2j

2

)

, (3.33)

Sum

(

dµ1j −
µ1 − yi

2
je, j

)

≤ 1 +
1

e
(µ1−yi)

2j

4
−1

. (3.34)

At this point we can reduce the additive components in terms of µ1 − yi from

the bound due to how Optimistic Thompson Sampling behaves. We know that
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in Optimistic Thompson Sampling a sample for arm i is certain to exceed yi as

long as the mean of the Beta distribution for arm i exceeds this value. This

means that if s > yij then pi,τj+1 = 1, the consequence of this is that the sums

Sum(dyije, bµ1j − (µ1−yi)
2

jc) and Sum(dµ1j − µ1−yi
2

je, j) can be discarded. The

bound for Sum(dµ1j− µ1−yi
2

je, j) in the proof by Agrawal and Goyal [3] required

that j ≥ 8/(µ1 − yi), the case for j < 8/(µ1 − yi) treated separately, leading to

additive term 24/(µ1−yi)
2. The bound for Optimistic Thompson Sampling there-

fore does not contain this additive constant. Therefore for Optimistic Thompson

Sampling the following lemma holds,

Lemma 3.2.2. Let τj be the time at which the jth trial of the optimal arm

happens, then,

E

[
1

pi,τj+1

]

≤ 1 + Θ

(

exp

(−(µ1 − yi)
2j

2

)

+
exp (−D(µ1, yi)j)

(j + 1)(µ1 − yi)2

)

. (3.35)

This gives us a bound for term A of,

T−1∑

k=1

E

[
1

pi,τk+1

− 1

]

(3.36)

≤
T−1∑

j=0

Θ

(

e
−(µ1−yi)

2j

2 +
e−D(µ1,yi)j

(j + 1)(µ1−yi)2

)

. (3.37)

We can see that this is less than the bound derived in equation 3.37 for the

original proof for Thompson Sampling.

Term B

Term B is bounded by lemma 3 in the proof by Agrawal and Goyal. The term

captures the event that a sample, θ, from a sub-optimal arm, i, is larger than the

problem-defined constant yi, when the estimated mean of the arm is below the

problem-defined constant xi. Note that the estimated mean µ̄i < xi < yi. This is

therefore a statement about the probability of sampling from the right-hand side

of the posterior distribution for arm i. The modification Optimistic Thompson

Sampling makes is only to the left-hand tail of the distribution. Any sample that

is drawn from the left-hand tail is replaced by the mean. Therefore on the event

that Term B applies Optimistic Thompson Sampling it behaves identically to

Thompson Sampling. Lemma 3 then applies to Optimistic Thompson Sampling
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in the same way. The lemma is given below.

Lemma 3.2.3.

T∑

t=1

Pr(i(t) = i, Eµ
i (t), E

θ
i (t)) ≤

lnT

D(xi, yi)
+ 1. (3.38)

Proof. Firstly we bound the probability Pr
(

i(t) = i, Eθ
i (t)|Eµ

i (t),Ft−1

)

. We bound

this term as follows,

Pr
(

i(t) = i, Eθ
i (t)|Eµ

i (t),Ft−1

)

≤ Pr (θi(t) > yi|µ̂i(t) ≤ xi,Ft−1) . (3.39)

In Optimistic Thompson Sampling,

θi(t) ∼ max(E [µi] , si(t)),

where si(t) ∼ Beta (µ̂i(t)ki(t) + 1, (1− µ̂i(t))ki(t) + 1). On the event Eµ
i (t) a

sample s∗i (t) ∼ Beta (xiki(t) + 1, (1− xi)ki(t) + 1) is likely to be at least as big

since µ̂i(t) ≤ xi. Therefore,

Pr (θi(t) > yi|µ̂i(t) ≤ xi,Ft−1) = Pr (max(E [µi] , s
∗
i (t)) > yi) , (3.40)

= 1− FBeta
xiki(t)+1,(1−xi)ki(t)+1(yi) (3.41)

= FB
ki(t)+1,yi

(xiki(t)), (3.42)

≤ FB
ki(t),yi

(xiki(t)), (3.43)

≤ e−ki(t)D(xi,yi), (3.44)

where FB
n,p(.) is the cumulative density function of a Binomial distribution with

parameters n, p and FBeta
α,β (.) is the cumulative density function of a Beta distri-

bution with parameters α, β.

Therefore, for t where ki(t) >
lnT

D(xi,yi)
, it then follows that

Pr
(

i(t) = i, Eθ
i (t)|Eµ

i (t),Ft−1

)

≤ 1

T
. (3.45)

Letting τ be the largest time until ki(t) ≤ lnT
D(xi,yi)

we can then bound term B
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as follows,

T∑

t=1

Pr
(

i(t) = i, Eθ
i (t), E

µ
i (t)

)

≤
T∑

t=1

Pr
(

i(t) = i, Eθ
i (t)|Eµ

i (t)
)

, (3.46)

= E

[
T∑

t=1

Pr
(

i(t) = i, Eθ
i (t)|Eµ

i (t)Ft−1

)
]

, (3.47)

= E

[
τ∑

t=1

Pr
(

i(t) = i, Eθ
i (t)|Eµ

i (t)Ft−1

)

(3.48)

+
T∑

t=τ+1

Pr
(

i(t) = i, Eθ
i (t)|Eµ

i (t)Ft−1

)
]

,

(3.49)

≤ E

[
τ∑

t=1

Pr
(

i(t) = i, Eθ
i (t)|Eµ

i (t)Ft−1

)

+
T∑

t=τ+1

1

T

]

,

(3.50)

≤ E

[
τ∑

t=1

I(i(t) = i)

]

+ 1, (3.51)

≤ lnT

D(xi, yi)
+ 1. (3.52)

Term C

Term C is bounded by lemma 2 in the proof by Agrawal and Goyal. The term

is the event that a sub-optimal arm is over-estimated. By over-estimated we

mean that the empirical mean of the arm, i, is above the problem-dependent

constant xi. The empirical mean of a suboptimal arm is the same in Optimistic

Thompson Sampling as it is in Thompson Sampling, and so the bound is the

same. The lemma is as follows,

Lemma 3.2.4.
T∑

t=1

Pr(i(t) = i, Eµ
i (t)) ≤

1

D(xi, µi)
+ 1. (3.53)

Proof. Let τk be the time at which the kth trial of arm i happens (τ0 = 0). Then
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it follows that,

T∑

t=1

Pr
(

i(t) = i, Eµ
i (t)

)

≤ E

[
T∑

k=1

τk+1∑

t=τk+1

I(i(t) = i)I(Eµ
i (t))

]

, (3.54)

= E

[
T−1∑

k=0

I(Eµ
i (τk + 1))

τk+1∑

t=τk+1

I(i(t) = i)

]

, (3.55)

= E

[
T−1∑

k=0

I(Eµ
i (τk + 1))

]

, (3.56)

≤ 1 + E

[
T−1∑

k=1

I(Eµ
i (τk + 1))

]

, (3.57)

≤ 1 +
T−1∑

k=1

exp (−kD(xi, µi)) , (3.58)

≤ 1 +
1

D(xi, µi)
. (3.59)

Final bound

We thus end up with the same asymptotic bounds as with Thompson Sampling,

and see that we achieve a problem-dependent bound of,

E [RT ] ≤
∑

i 6=1

(1 + 3ε)
lnT

D(µi, µ1)
∆i +O

(
K

9ε2

)

, (3.60)

and a problem-independent bound of,

E [RT ] ≤ Θ

(
∑

i 6=1

lnT

∆i

)

, (3.61)

which are asymptotically efficient. However, we can see from the bound for term

A, that some additive lower order terms are removed. This supports the empirical

findings that Optimistic Thompson Sampling shows a slight improvement over

conventional Thompson Sampling.



CHAPTER 3. THOMPSON SAMPLING 83

3.2.3 Optimism for the underdog

We here consider a modification to Optimistic Thompson Sampling that will

be useful to us in Chapter 5. In the language of May et al. a greedy strategy

acts purely on the basis of the exploitative value of the actions, only picking

the arm which in expectation can be exploited for most reward. However if we

only ever picked the arm with highest exploitative value we may never learn

which arm is truely the best. Therefore the exploratory value is added to enable

exploration of alternative arms. We can then view the exploratory value as an

added encouragement to pull a given arm. In Optimistic Thompson Sampling this

“encouragement” is applied to all arms, even the arm with highest exploitative

value. However, this arm is the de facto choice so when we exploit we are in effect

exclusively exploring this arm. The question is whether we should be adding this

exploratory value to the current exploitative arm, or only the rest of the arms

(perceived as underdogs in the competition to be picked as “best”). We call

this modification Optimism for the Underdog Thompson Sampling (OUTS). The

sample estimate for the arm with highest empirical mean is taken to be the

empirical mean itself, otherwise the sample estimate is the same as Optimistic

Thompson Sampling for all other arms. OUTS is described in Algorithm 3.4.

Algorithm 3.4 Optimism for Underdogs Thompson Sampling for Bernoulli Ban-
dits
Let α1,k = 1,

β1,k = 1 for k ∈ {1, . . . , K}.

for t = 1, . . . , T do
Find arm b = argmaxk∈{1,...,K}

αt,k

αt,k+βt,k

θb =
αt,b

αt,b+βt,b

Sample θi ∼ Beta(αt,i, βt,i), for i ∈ {1, . . . , K} \ {b}..
Pull arm at = argmaxi max

(

θi,
αt,i

αt,i+βt,i

)

Let αt+1,at = αt,at + 1(xat(t) = 1)
βt+1,at = βt,at + 1(xat(t) = 0)

Let αt+1,j = αt,j

βt+1,j = βt,j for j ∈ {1, . . . , K} \ {at}.
end for

The reasoning in applying the proof techniques of Agrawal and Goyal to Op-

timistic Thompson Sampling also apply for bounding the regret of this modified
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algorithm. Empirically we found that this modification was an improvement on

the original Thompson Sampling algorithm, however it appeared that Optimistic

Thompson Sampling was still more sample efficient. This leads to the assumption

that added exploratory value is useful in all arms. Figure 3.4 shows an experi-

ment comparing the three methods on a 6-armed Bernoulli bandit problem. The

experiment was run 300 times and the average regret was plotted as a function

of time with error bars marking the standard error. Although this result backs

the hypothesis that optimism is advantageous, further investigation is required

to give a fuller picture as to what extent this is true in general.

Figure 3.4: The regret of Thompson Sampling, Optimistic Thompson Sampling
and OUTS on a 6-armed Bernoulli bandit problem. We can see both Optimistic
Thompson Sampling and OUTS performing better than conventional Thompson
Sampling.



Chapter 4

Applying Thompson Sampling to

Non-Stationary Bandits

4.1 Introduction

The assumption made in the multi-armed bandit problem discussed in the previ-

ous chapter is that the distributions from which the environment draws rewards

are stationary. That is, the expected payoff of an arm at a given round is tempo-

rally invariant. This assumption rarely holds in practice. Take the web ad place-

ment problem as an example. The effectiveness (as measured by click through

rates) of an ad can change in all manner of ways. The ad may be for barbecues,

it is likely to be successful in summer and less so in winter. This sort of change is

seasonal, and periodic. Some changes are not periodic, for example, the summer

for a given year might be unusually cold with high rainfall making the ad less

effective, or there could be a once-in-a-generation prolonged heatwave making the

ad desirable for longer.

The above examples show why a system, and therefore actions based on it,

might change. For some examples, the parameters of the system a change depends

on are known. For example, seasonal change in demand for barbecues could be

learned by a decision-making agent if they knew the date. The decision effects

could be directly modelled as a function of this parameter. This approach is

taken with Contextual bandits. In other scenarios, given parameters might be

known to affect the outcome of decision but are not available to the agent. It

may be plausible to model and infer these known unknowns to aid the decision-

making process. However real world systems can often be complex, and not fully

85
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understood. The response of decisions could be influenced by variables that are

not known, or properly accounted for. This falls into the category of unknown

unknowns. Finally the system may change independent of external parameters.

It is desirable for an agent to be able to adapt in the face of all of these sources

of change.

There are two main ways in which an action response can be affected over

time. The action response can drift. An example might be a system where

the mean response of an action changes continuously as a function of time. A

characteristic of a drifting system is that the recent history of the behaviour of

the system has a reasonable correlation with the present mean response. The

second type of change is when the system exhibits switching behaviour. In this

case the mean response can change in such a way that the present is uncorrelated

with the recent past history.

This chapter focuses on non-stationary multi-armed bandit problems. Specif-

ically on Thompson Sampling in these environments. The main contribution in

the chapter is a class of algorithm, Change-point Thompson Sampling, designed

with a switching environment in mind.

4.1.1 Model of dynamic environment

Real decision-making scenarios take place in environments that change over time.

We therefore want to design algorithms that assume the environment changes over

time. Our proposal is that the model of a switching environment is a useful one

on which to base a decision-making agent that can adapt appropriately to changes

that happen in real-world applications. We assume abrupt switching defined by

a hazard function, h(t), such that,

µi(t) =

{

µi(t− 1) with probability h(t)

µnew ∼ U(0, 1) 1− h(t).
(4.1)

The algorithms developed are designed with two such models in mind. The

first model we will refer to as the Global Switching model. This model switches

at a constant rate (γ); when a change point happens all arms change their ex-

pected rewards. The second model will be referred to as Per-Arm Switching. In

this model change points occur independently for each arm, such that the times

when arms switch are uncorrelated from each other (see Figure 4.1 for a pictorial
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representation of each of the two models).

Figure 4.1: Global and Per-Arm Switching Models

4.2 Motivation: examples of switching

We propose that a switching environment is a good model for a wide variety

of decision-making scenarios. In this section, in order to motivate our work we

briefly explore a few scenarios that we deem should exhibit switching behaviour.

4.2.1 Game playing

A common type of decision-making scenario is that of game playing. Two or

more agents must compete against, and sometimes cooperate with, each other in

order to gain reward within a game. For example in the card game Poker there

are a number of agents who play together in a game. Cards are dealt to each

of the agents in a series of rounds such that each agent is unaware of the cards

the others have been dealt. An agent must decide whether to bid, call or fold

in order maximise the size of their winnings. The strategy that leads to largest

winnings for an agent depends not only on the hands of themselves and all other

agents, but on the strategies of the other competitors (how the other agents decide

to bid, call or fold). The strategies of the competing agents might be assumed

to be stationary, such that given the same hand the competitor behaves to the

same statistical law. A common situation however, is that the competitor is

learning by experience and adapting its strategy based on the results of previous

games. This means that the competitor agent’s strategy will change (given the
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same observable state the expected decisions will be different) during the time of

play. This of itself is an argument for an agent to be adaptive to non-stationary

environments in game playing scenarios, but we conjecture that the strategies of

some types of competitor is likely to be switching in nature.

Q-Learning agents

We consider playing some game against a reinforcement learning agent. A pop-

ular category of reinforcement learning is value-function based learning. A value

function maps states or state-action pairs to estimates of the future discounted

rewards for either being in a given state (in the case of mapping from just states)

or choosing an action in a given state (in the case of mapping from state-action

pairs). Value-function based agents then derive a policy (mapping a state to a

distribution over the probability of taking an action) based on the current state

of the value function. When new observations are collected via interacting in the

environment the value-function is updated, which in turn may alter the policy

that the agent uses to choose actions. A popular value-function based algorithm

is Q-Learning. Let the environment the agent acts in be a space of states s ∈ S,
and let the agent have a number of actions k ∈ K available to it. When the agent

performs an action at in state st they receive a reward, xt, and move from state

st to state st+1 ∈ S. The value-function, denoted Q(st, at), learns an estimate

of the expected discounted reward,
∑∞

t=1 ξ
t−1xt, that the agent will receive by

choosing action at in state st. The Q-Learning algorithm updates this estimate

via the following update equation,

Q(st, at) = (1− α)

past estimate
︷ ︸︸ ︷

Q(st, at) +

learning rate
︷︸︸︷
α



xt +

discounted estimate of future rewards
︷ ︸︸ ︷

ξmax
k∈K

Q(st+1, k)



 ,

(4.2)

where α is the learning rate and ξ is the discount factor, both parameters to be

set for the algorithm. It is assumed that both α, ξ ∈ (0, 1). The smaller α the

less influence a new observation has on the updated estimates (learning happens

more slowly). The smaller ξ the more the value-function estimates depend on

immediate rewards and so the more likely the agent is to think only of short term

gain. Alone this does not specify how the agent should act, the agent needs a

strategy of how to use the information in the value function in order to form

a policy. A simple example of a policy is the greedy policy. The greedy policy
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chooses the action in a given state that has the largest value in the value function.

The observation is that for appropriate (and we argue typical) values of α and

ξ an agent’s greedy policy does not change on every update of the value function

when learning to play a game. Instead there is often a period of time where the

value function is updated without changing the greedy action. Eventually after

repeated rounds the value function changes such that the greedy action changes.

Rock, Paper, Scissors

By way of an example we will demonstrate this by considering a Q-Learning

agent playing Rock, Paper, Scissors in self-play. By self-play we mean an agent

competes against another agent that uses the same learning strategy, in this case

Q-Learning. Rock,Paper,Scissors is a two-player game. The agents choose one

of three actions (rock, paper or scissors) without knowledge of their opponent’s

choice. They then reveal their choices to one another simultaneously. The winner,

who gains a reward of one, is decided by the two agents’ choices in the following

way; paper beats rock, rock beats scissors and scissors beats paper. In the case

of a tie (they choose the same action) then both players receive no reward. The

game payoff matrix for Rock,Paper,Scissors can be specified as follows,

Player 1

Rock Paper Scissors

Player 2

Rock 0,0 1,0 0,1

Paper 0,1 0,0 1,0

Scissors 1,0 0,1 0,0

This game can be repeated for many rounds in an iterated fashion. The player

at the end who has won the most number of round is declared the winner.

To make a Q-Learning agent to play this game we need to map the game

to a series of states and associated actions. For Rock, Paper, Scissors this is

straightforward since there is no observable difference between one round and the

next, and so there is just a single state. Since there is one state in our notation we

will omit the state in the value function, so Q(st, at) becomes Q(at). The actions

in the game are just the choices rock, paper and scissors. The value function for

the agent can then be thought of as a lookup table with three values Q(rock),

Q(paper) and Q(scissors), which are then updated as described in Equation 4.2.

The value function is initialised with all values randomly selected between zero

and one.
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When two such agents are played against each other we can observe periodic

switching in the policy of the agents. One agent will gain the upper hand and win

a round. The entry of the value function associated with the action that caused

them to win is updated, it will either increase or stay the same. This means

that they will play the same action again next time. They will continue to do

so until the value associated with the dominant action reduces to be below the

value of one of the other actions. The time this takes depends on the opponents

strategy and the agent’s parameters α and ξ. Figure 4.2 shows the evolution

of the value function of one of the agents in self play. The Q-values for each

action are superimposed on the same graph. The switching in strategy can be

clearly seen. The Q-value for playing paper initially increases as this is a strategy

continues to beat the opponent’s strategy. Eventually the opponent learns this

and switches strategy, and so the Q-value for the player shown goes down. This

continues until the Q-value for playing paper gets sufficiently low that playing

scissors is considered a better option. The Q-value for scissors then increases

until the opponent changes strategy again, and so on.
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Figure 4.2: The evolution of the value function, Q(at), for a Q-Learning agent
in self-play in the game Rock,Paper,Scissors. The value-function was randomly
initialised with values between zero and one, α = 0.1 and ξ = 0.95. The switching
of policy from action to another can be seen. In this self-play setting the switching
appears to be periodic with a characteristic time scale dependent on α and ξ.

If the time for such an agent switching policy is sufficiently long then a

decision-making agent that could respond to their switching behaviour might

be able to exploit them.
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4.2.2 Financial scenarios

The bandit model for decision-making has been employed in economics to model

problems in financial markets. One of the first using the bandit model was due

to Rothschild [61]. Rothschild was interested in the process by which companies

learn the market demand for their goods and services. The problem he considered

is a single company gauging the market demand. The actual demand is given by a

probability distribution over the consumer valuations observable to the company.

The demand is assumed to be one of a finite set of possible values each with a prior

probability of being the true demand. The company can then set its prices in a

sequence of rounds and observe consumer valuations in order to learn what the

true demand is. The problem of Rothschild was assumed to be stationary. Keller

et al. considered a similar problem to Rothschild, but one key difference is they

assume the unknown demand is subject to changes over time and is therefore non-

stationary [35]. Sorensen has also considered bandit-like models in the context of

Venture Capital funding, where a Venture Capitalist must weigh up the continued

investment in a number of different start-up companies [65]. Some research on the

application of bandit problems to financial markets was summarised by a survey

by Bergemann et al. [9]. This body of work shows the interest from the economics

research community in the multi-armed bandit problem.

We have already appealed to a general argument about the changing nature

of real world problems in order to motivate our work, and indeed we believe that

financial markets are subject to such changes. However what is the evidence

that financial markets exhibit switching behaviour? Preis et al. have studied the

dynamics of financial markets and have hypothesised and provided evidence for

switching behaviour [59]. Since switching behaviour is observed in such markets

by extension we believe that bandit algorithms that account for this switching

behaviour are worthy of exploration.

4.2.3 Networks

Networks and graph structure arise in many different applications from computer

networks to road networks. A network is a series of nodes connected by edges.

For instance in a logistic problem for a haulage problem, the nodes might rep-

resent various distribution centres and customer sites, and the edges represent

the possible routes between them. In a computer network, the nodes are instead
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computers and the edges represent communication channels between them. Such

networks are prone to various types of failure. In road networks, changes in traffic

load throughout the day, car accidents and road repairs can all lead to changes in

the network. In computer networks, hardware is prone to failure causing nodes

to become unreachable, fundamentally changing network structure. We propose

that such unpredictable changes constitute a sudden switching change to the net-

work behaviour. We believe therefore that decision-making systems operating in

environments dependent on the behaviour of networks should be adaptable to

sudden abrupt changes as with a switching environment. An example of a net-

work related problem for which multi-armed bandit algorithms have been used is

in information collection by wireless sensor networks proposed by Tran-Thanh et

al. [70]. Wireless sensor networks are a collection of densely deployed, spatially

decentralised autonomous sensor devices communicating through a wireless com-

munication network. The task of such systems is often in monitoring physical

conditions of the environment in which the sensor network is deployed. The mea-

surements of interest may be anything including temperature, noise, pressure,

seismic and magnetic information. The devices are often cheap, with both low

energy and computational power. In order to collect information effectively the

nodes of the network must balance their low computational/energy budget be-

tween routing information collected through the network (either transmitting or

receiving), or sampling new information via their sensors. The balance between

the different tasks constitutes an energy allocation for the device. Tran-Thanh

et al. proposed modelling learning the best energy allocation for a device as a

multi-armed bandit problem. They employed an Exp3 variant [8] for their work,

since it makes no assumptions of the changing nature of the problem. However,

we feel that there is a case that this type of problem could also be suitably

modelled by a switching system.

4.3 Bayesian online change-point detection

The model of the bandit environment we are concerned with is that of a switching

system. That is, at given time points, known as change-points, the statistical

law from which arm rewards are drawn changes (the probability of some reward

before a change-point will be different than the probability of the same reward

after the change-point). If we knew when these change-points happened it could



CHAPTER 4. NON-STATIONARY BANDITS 93

help us to improve the agent’s decision-making ability as we could ensure we

only incorporate data relevant to agent’s current decision. There exists a large

literature on change-point techniques, for example the Page-Hinkley test used in

Adapt-EvE (see section 2.7.2). There are a few requirements that we desire for

our change-point detection mechanism in order for it to be useful for a Thompson

Sampling inspired bandit algorithm. These are:

• online - The mechanism needs to be efficient to compute, scaling reasonably

(both in space and time complexity) with the number of data points.

• Bayesian - The mechanism needs to produce a posterior distribution of

when change-points occurred. In order to remain a Thompson Sampling

strategy we need to be able to sample from a posterior distribution.

It turns out that these conditions can be met by an inference algorithm.

Rather than ask the question “did a change-point occur at time t?” the key is to

ask “how long ago was it since a change-point occurred?”. The time elapsed since

the last change-point occurred is called the runlength. Fearnhead and Liu [19] as

well as Adams and MacKay [1] have independently done work on calculating the

online posterior of the runlength. Fearnhead and Liu applied the method to a

segmenting the genome into Isochores. Adams and MacKay applied the method

to problems like tracking geophysical data and financial market data. They show

exact inference on the runlength can be achieved by a simple message passing

algorithm. Let xt be the reward at time t so that Dt = xt ∪Dt−1 is the history

of past rewards. Let rt be the runlength at time t. The inference procedure can

be easily derived as follows.

P (rt|xt−1, Dt−2) =
P (rt, xt−1, Dt−2)

P (xt−1, Dt−2)
(4.3)

The numerator can then be expressed as

P (rt, xt−1, Dt−2) =
∑

rt−1

P (rt, rt−1, xt−1, Dt−2) (4.4)

=
∑

rt−1

P (rt, xt−1|rt−1, Dt−2)P (rt−1, Dt−2) (4.5)

=
∑

rt−1

switching rate
︷ ︸︸ ︷

P (rt|rt−1)

reward likelihood
︷ ︸︸ ︷

P (xt−1|rt−1, Dt−2)P (rt−1, Dt−2). (4.6)
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The derivation just applies the rules of probability up to and including Equa-

tion 4.5. One assumption is made in Equation 4.6, that the runlength is only

dependent on the runlength at the previous timestep. This forms a simple mes-

sage passing algorithm because rt can only take values depending on rt−1. In fact

rt = rt−1 + 1 when switching does not occur and rt = 0 when it does. P (rt|rt−1)

is defined by a hazard function h(t). Figure 4.3 pictorially represents the message

passing scheme.

0 1 2 3 4

runlength

t=0

t=1

t=2

t=3

Figure 4.3: Message passing for runlength inference. Boxes represent runlengths
in the runlength distribution, and arrows represent messages that are passed be-
tween them in the update algorithm. At the top of the picture the runlength
distribution is shown starting as a single runlength (here we initialise the al-
gorithm such that we assume a change-point has happened, so the runlength
distribution just contains the runlength of zero). After one time step the run-
length distribution grows to two runlengths (zero and one). Either a change occur
and so the runlength remains at zero (shown by a message from zero to zero) or a
change did not happen and the runlength increments to one. The picture shows
how the runlength grows by one after each time step. The update step has a cost
(both in time and space) linear in the number of possible runlengths.

The switching rate and the reward likelihood thus both play a role in the

learning process. When the switching is constant the switching rate represents

a fixed factor that affects the probability of a given runlength, irrespective of

the data seen. The reward likelihood for this case is the term dependent on the

incoming data and so is where learning can be seen to occur.
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4.3.1 Computational complexity

Unfortunately the exact inference has space and time requirements that grow

linearly in time for each step. The space requirements are linear because at each

time step the support set of the posterior runlength distribution (the values of

time for which the runlength has non-zero probability) increases by one, which

means we have to store information for an extra value of the runlength at every

step. The update is also linear in time, as the message passing algorithm requires

an update to each runlength in the support. This not ideal for our use-case. We

want to allow our agent to adapt to changes throughout its use. If the cost of the

algorithm is linear in time, this means the time to make decisions will continue

to get longer as time progresses, and that eventually memory resources for the

agent will be saturated. The algorithm needs to be modified. The runlength

distribution needs to be made approximate in order to reduce the requirements.

Adams and MacKay suggest a simple thresholding technique to eliminate run-

lengths with small probability mass associated with them. This means we can

know in expectation how much memory this algorithm will require. However this

is only in expectation; the memory requirements might deviate significantly from

this, also causing the running time to increase. An alternative with hard guar-

antees on memory requirements is desirable. Fearnhead and Liu suggest a much

more sophisticated particle filter resampling step to maintain a finite sample of

the runlength distribution, which has the benefit that we can be certain on the

upper limit of space the algorithm requires.

4.3.2 Stratified optimal resampling

The runlength distribution is a discrete distribution. Any approximation for the

distribution needs to be compatible with an update inference step. The easiest

approach to this, similarly to the Adams and MacKay approach, is to discard some

of the runlengths in the runlength distribution. As stated the problem with using

a threshold on the probability, under which a runlength is discarded, is that the

memory requirements are harder to specify such that the system remains within

its resource limits. Liu and Fearnhead’s approach is a particle filter technique to

discard runlengths in the runlength distribution. The method is called Stratified

Optimal Resampling. A particle filter is a Monte-Carlo method for approximately

estimating a sequential Bayesian model. Particles are used to represent points
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in the distribution to be estimated and are assigned weights that correspond to

their approximate probabilities. The number of particles can grow at each time

step and so occasionally some particles need to be thrown away. This leaves

us to assign new weights to the remaining particles. This procedure is called

resampling. Since the distribution is discrete each particle is used to represent a

separate runlength. The procedure is designed so the practitioner can specify a

maximum limit to the particles stored. When this maximum limit is reached the

procedure reduces the number of particles down to another pre-specified number.

Let the maximum number of particles to be stored be N . Once this is reached let

M be the number of particles for the distribution to be reduced to (by discarding

N −M). We can write the (possibly approximate) runlength distribution when

it reaches N particles as the set of probabilities p1, . . . , pN . We can think of the

approximate runlength distribution of M particles as an N particles distribution

q1, . . . , qN such that N −M of the qi are zero. Stratified Optimal Resampling is

optimal in the sense that:

• E [qi] = pi for all i (the distributions remain the same in expectation)

• ∑N
i=1(pi − qi)

2 is minimised.

Assume that the particles are ordered by their runlength such that for example

the runlength associated with p1 is smaller than the runlength associated with

p2. Since (p1, . . . , pN) is a distribution
∑N

i=1 pi = 1. Firstly Stratified Optimal

Resampling (SOR) finds the unique solution α to the expression

N∑

i=1

min(1,
pi
α
) = M. (4.7)

Any particle pi in the original distribution that is greater than or equal to α is

kept, such that qi = pi when pi ≥ α. This stage of SOR will have kept A ≤ M

particles. The next stage is a stratified resampling step. The algorithm for this

was proposed by Carpenter et al. [14]. A random variable u is drawn uniformly

from the interval [0, α]. The algorithm proceeds in order through the remaining

N − A particles. u is reduced by the probability of a particle (u = u − pi). If

u becomes zero or lower then keep the particle but now assigned with a new

probability such that qi = α. If the particle is kept update u to u = u + α and

continue to the next particle. The full procedure is summarised in Algorithm 4.1.
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Algorithm 4.1 Stratified Optimal Resampling

Require: Distribution {pi : 0 < i ≤ N}, of N particles with ordering σ(i) s.t.
σ(i) < σ(j) for i < j

Require: Parameter M < N
Find α s.t.

∑N
i=1 min

(
1, pi

α

)
= M

Initialise u by drawing uniformly from [0, α].
for i = N do
if pi ≥ α then
qi = pi

else
u = u− pi
if u ≤ 0 then
qi = α
u = u+ α

else
qi = 0

end if
end if

end for

The particles with probability pi > α contribute 1 to the sum
∑N

j=1 min(1,
pj
α
),

and so are kept with their probability unchanged. Given that there are A particles

saved in this way we can rearrange Equation 4.7 to get,

∑

i:pi/α<1

pi = (M − A)α. (4.8)

In order so that
∑N

i=1 qi = 1, the remainingM−A particles that are not discarded

are therefore given weight α.

A consequence of ordering the particles is that the maximum Kolmogorov

Smirnov distance between the distribution {pi} and {qi} is bounded by α. The

Kolmogorov Smirnov distance is defined as

KSD = max

{

max
i

∣
∣
∣
∣
∣

i∑

j=1

(pj − qj)

∣
∣
∣
∣
∣

}

,

where the first maximisation is over realisations of q1, . . . , qN . This is a metric

describing the maximum distance between the cumulative density of the original

distribution, {pi}, and the resampled one, {qi}.
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The expression
∑N

i=1 min(1, pi
α
) = M can be solved for α via a quick-select

method on the probabilities pi. A pivot is found (via a median of medians ap-

proach for example) and the particles are sorted into two bins, left and right, with

those in left having probability less than the pivot, and those in right having prob-

ability greater than the pivot. A candidate solution for α is found by assuming

that min(1, pi/α) = 1 for all pi in right, leading to a simple rearrangement of

Equation 4.7 to find α. Given this value of α we can evaluate
∑N

i=1 min(1, pi
α
). If

it equals M then we have found the correct value of α, but if it is not we can use

whether it is less than or greater than M to steer whether the next pivot is to be

found in left or right. In this way the Stratified Optimal Resampling step have a

time complexity of O(N) (N being the number of particles).

This algorithm allows us to give a fixed bound on the time and space require-

ments of inferring the runlength distribution. We can set N to a value based on

the resources that are available and the specific time constraints of the applica-

tion.

4.4 Switching Thompson Sampling

In order to perform Thompson Sampling we wish to sample from P (θt|Dt−1),

which is the probability of the arm model given the data so far. θt is a tuple of

all the parameters defining the distribution of the arms. In our case this is the

means (µ1, . . . , µK). In a switching system the arms model θt is only dependent

on the data since the last switching occurred, but we do not know when this

happened. If we did we could just do the same Bayesian update as with the

standard Bernoulli case to arrive at the distribution of our model. Since we do

not know the runlength rt we can introduce it as a latent variable and marginalise

it out. Taking Dt−1 as the history of rewards and arm pulls seen so far, we can

write this as

P (θt|Dt−1) =
∑

rt

P (θt|Dt−1, rt)
︸ ︷︷ ︸

posterior of

model given data

probability

of runlength

︷ ︸︸ ︷

P (rt|Dt−1) . (4.9)
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Now to sample from P (θt|Dt−1) we just need to sample from the P (rt|Dt−1) (the

runlength distribution) and then given that runlength, sample from P (θt|Dt−1, rt)

to arrive at our arm model θt. The Bayesian online change-point detection algo-

rithm [19, 1] explained in section 4.3 provides a mechanism to infer P (rt|Dt−1).

Sampling from P (θt|Dt−1, rt) is done in the same way as conventional Thompson

Sampling.

The message-passing algorithm for Bayesian online change-point detection

requires knowledge of the likelihood, P (xt|µi, Dt−1, rt), of a reward from an arm

given the past history up until the last change-point. Between change-points

we assume Bernoulli arms in our model, and can model our belief for the arm

mean between change-points as a Beta distribution. We can integrate over this

distribution to get a closed form estimate of P (xt|µi, Dt−1, rt).

4.5 Proposed inference models

We have shown we can perform Thompson Sampling in a switching system by

splitting the procedure into a stage that samples the runlength since a switch

occurred and a stage that samples from the arm model given this runlength.

We introduce two models of switching in a multi-armed bandit problem, Global

Switching and Per-Arm Switching. The Global Switching and Per-Arm Switch-

ing models are appealing due to their simplicity. Only one runlength distribution

needs to be inferred for Global Switching, which does not depend on the number

of arms the bandit has. The Per-Arm model can store runlengths for each arm

independently, and the space requirements grow linearly with respect to the num-

ber of arms. They are presented below. Models with more complicated inter-arm

dependencies can quickly become intractable.

4.5.1 Global switching

In global switching there is a single change point process across all of the arms

since when one arm switches distribution so do all other arms. This means that

the data from every arm pull contributes to the posterior of the single runlength

distribution. Effectively to sample from the posterior of the full bandit model,

we first need to sample from the runlength distribution, this gives us an estimate

of the runlength, which tells us how much data from the past our arms can use.
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Once the global runlength is sampled, we then proceed by sampling individually

from the posterior distributions of the arms, given only the data since the last

changepoint (determined by the runlength). The arm with the corresponding

maximum sample is then pulled. We only need to store the posterior probabilities

of the given runlengths and the hyperparameters for the arm posteriors associated

with those runlengths. We will call the runlength distribution the Change Point

model, and the set of hyperparameters associated with each runlength for a given

action the Arm model. The global switching model for a two arm bandit problem

is represented graphically in Figure 4.4 where a single runlength distribution is

shared between two arm models.

Figure 4.4: Global Change-Point Thompson Sampling: Here only one runlength
distribution needs to be inferred across all the arms. When choosing an arm a
sample is first drawn from this single distribution. This selects the arm distribu-
tions for which the regular Thompson Sampling algorithm is applied.

The Change Point model is an approximation of the runlength distribution

storing a probability for at most N runlengths as defined in Section 4.3.2. Let

wt
i be the probability of having a runlength of i at time t. We consider a bandit

where the arm rewards are assumed to come from a Bernoulli distribution so the

hyperparameters stored are the 2 parameters for the Beta distribution. Let αt
i,j

and βt
i,j be the hyperparameters for a runlength of i at time t for arm j. At any

point in time t there is a set of runlengths Rt ⊂ N, |Rt| ≤ N , where for every

r ∈ Rt there exists quantities w
t
r, α

t
r,j and βt

r,j. When |Rt| = N then a resampling

step is performed in order to reduce the number of runlengths stored. For ease

of notation let {w}t be the set of runlength probabilities at time t and let {α}tj
and {β}tj be the sets of hyperparameters for arm j at time t. Similarly let {α}t
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and {β}t be the set of all hyperparameters at time t. The algorithm is presented

in pseudocode in Algorithm 4.2 and Figure 4.5 shows the updating life cycle of

particles diagrammatically.

Figure 4.5: Global Change-Point Thompson Sampling: Here we show the evolu-
tion of the hyperparameters as we update the algorithm over time. Each column
of hyperparameters being thought of as a particle. When the number of particles
reaches its maximum the algorithm performs a resampling step.

We will refer to this algorithm as Global Change-Point Thompson Sampling

(Global-CTS).

4.5.2 Per-arm switching

The difference in implementation with respect to global switching is that now

there is a runlength distribution for each arm. That is, for each arm j we have

a different set of runlength probabilities wt
i,j ∈ {w}tj. In the per-arm switching

model at a timestep t we update the Change Point model associated with the

arm that was pulled at t much like via the update equations sketched in 4.6.
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Figure 4.6: Per-Arm Change-Point Thompson Sampling: Unlike Global-CTS
(see Figure 4.4), where there was as single runlength distribution, PA-CTS has a
separate runlength distribution for every arm that needs to be inferred.

The Change Point models associated with arms not pulled at t are updated

differently since the runlength for these arms is independent of the reward we

received for the arm we actually pulled. The reward likelihood term disappears

in the update equations for the runlength distribution of unpulled arms. This is

shown in Equation 4.12. Since we normalise the distribution at each step we can

ignore the factor P (xt−1). This is shown as follows,

P (rt, xt−1, Dt−2) = P (xt−1)P (rt, xt−1, Dt−2) (4.10)

∝
∑

rt−1

P (rt, rt−1, Dt−2) (4.11)

∝
∑

rt−1

P (rt|rt−1, Dt−2)P (rt−1, Dt−2). (4.12)

We will refer to this algorithm as Per-Arm Change-Point Thompson Sampling

(PA-CTS).
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Algorithm 4.2 Global Change-Point Thompson Sampling

Global-CTS(N, γ, α0 = 1, β0 = 1)
Let t = 0 {Initialise time}
Let wt

0 = 1, and add to {w}t {Initialise runlength distribution}
For all arms j, let αt

0,j = α0 {Initialise hyperparameters}
For all arms j, let βt

0,j = β0
while Interacting do

Let at = SelectAction({w}t, {α}t, {β}t)
Let xt = PullArm(at)
Let {w}t+1 = UpdateChangeModel({w}t, {α}tat , {β}tat , at, xt, γ)
Let {α}t, {β}t = UpdateArmModels({α}t, {β}t, at, xt)
if
∣
∣{w}t+1

∣
∣ = N then

ParticleResample({w}t+1, {α}t+1, {β}t+1)
end if

t = t+ 1
end while

end

UpdateChangeModel({w}t, {α}tat , {β}tat , at, xt, γ)
if xt = 1 then

Let likelihoodi =
αt
i,at

αt
i,at

+βt
i,at

, for all i s.t. wt
i ∈ {w}t

else

Let likelihoodi =
βt
i,at

αt
i,at

+βt
i,at

, for all i s.t. wt
i ∈ {w}t

end if

Let wt+1
i+1 = (1− γ) ∗ likelihoodi ∗wt

i , for all i s.t. w
t
i ∈ {w}t

Let wt+1
0 =

∑

i γ ∗ likelihoodi ∗wt
i

Normalise {w}t+1

return{w}t+1

end

UpdateArmModels ({α}t, {β}t, at, xt)
if xt=1 then

Let αt+1
i+1,at

= αt
i,at

+ 1, for all i s.t. αt
i,at

∈ {α}tat
else

Let βt+1
i+1,at

= βt
i,at

+ 1, for all i s.t. βt
i,at

∈ {β}tat
end if

Let αt+1
0,j = α0 , for all arms j {Set Prior for runlength 0}

Let βt+1
0,j = β0 , for all arms j

return{α}t+1, {β}t+1

end

ParticleResample({w}t+1, {α}t+1, {β}t+1)
Find set to discard d ∈ D using Stratified Optimal Resampling on {w}t+1

Discard all wt+1
d , αt+1

d , βt+1
d

end

SelectAction({w}t, {α}t, {β}t)
Pick i with probability wt

i

Let samplej ∼ Beta(αt
i,j , β

t
i,j) for all arms j.

returnmaxj samplej
end
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4.6 Learning the switching rate

Both Wilson et al. [76] and Turner et al. [71] have proposed methods for learning

the hazard function from the data. The method of Wilson et al. can learn a

hazard function that is piecewise constant via a hierarchical generative model.

Turner et al. can learn any parametric hazard rate via gradient descent, but from

initial investigations appeared to not perform particularly well if the hazard rate

is adapted at every time step. Although the more general hierarchical model

could be investigated for our purposes a constant switching rate was assumed

which was learned using the approach of Wilson et al. The hierarchical model

could be used in the same general framework but is out of the scope of this thesis.

For the simplest case where we consider a single constant switch rate, Wilson

et al. model whether a change point occurred as a Bernoulli variable. Using a

Beta prior with hyper-parameters as the number of times the system has switched,

at, and has not switched, bt, we can infer the switch rate. We now compute

the joint distribution P (rt, at|xt−1, Dt−2) as opposed to the original distribution

P (rt|xt−1, Dt−2). The message passing proceeds in a very similar fashion as before,

except now the number of particles also grows quadratically rather than linearly.

In the global switching model the algorithm now keeps track of sets of particles

wt
r,at , α

t
r,i,at and βt

r,i,at associated with a runlength r, learning rate hyperparameter

a, arm i and time t. The updates are as follows.

w0
0,0 = 1

wt+1
r+1,a =

t− a+ 1

t+ 2

αt
r,i,a

αt
r,i,a + βt

r,i,a

wt
r,aif reward = 1

wt+1
r+1,a =

t− a+ 1

t+ 2

βt
r,i,a

αt
r,i,a + βt

r,i,a

wt
r,aif reward = 0

wt+1
0,a+1 =

a+ 1

t+ 2

αt
r,i,a

αt
r,i,a + βt

r,i,a

wt
r,aif reward = 1

wt+1
0,a+1 =

a+ 1

t+ 2

βt
r,i,a

αt
r,i,a + βt

r,i,a

wt
r,aif reward = 0

Wilson et al. also propose a resampling technique for the hierarchical case. How-

ever we again use the resampling algorithm of Liu and Fearnhead to manage the

space requirements of the algorithm.
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Figure 4.7: Message passing for inferring both a runlength and a constant switch
rate. The dotted and solid lines representing messages when a switch does and
does not occur respectively. It can be seen how the number of particles grows
quadratically

In the Global Switching model there is only 1 runlength distribution, and so

only 1 switching rate to learn. This leads naturally to an algorithm Parameter-

free Global Change-Point Thompson Sampling (PF Global-CTS). With Per-Arms

there are many possibilities: there could be a single switching rate for each of

the independent arms, or each arm could have a separate switching rate. For

flexibility as well as simplicity we assume each arm has a separate switching

rate and call this algorithm Parameter-free Per-Arm Change-Point Thompson

Sampling (PF PA-CTS). It is noted that it may well be possible to improve

learning rates for the case of a shared switching rate, but this has not been

further investigated.

4.7 Tracking changes in the best arm

The algorithms presented so far attempt to track changes in all arms, irrespective

of whether they are pulled. For an arm not pulled, the data is not updated, but rt

is, which leads to a high variance. As a motivating principle in the development

of Adapt-EvE, Hartland et al. argued that it is only important to track whether



CHAPTER 4. NON-STATIONARY BANDITS 106

the perceived best arm has changed. We can modify the algorithms to track the

perceived best arm.

This is simplest in the Per-Arm Switching model. Since each arm is treated

independently, we only update the runlength and hyperparameters of particles

associated with the arm which was pulled. For the Global Switching model, this

does not work, because the arms share a runlength model, which is updated at

each pull. We need hyperparameters for unpulled arms at runlength 0. We use

hyperparameter values associated with a pulled arm in the recent past, by putting

those discarded during resampling in a queue. When the algorithm comes to set

the prior parameters associated with runlength zero (in theUpdateArmModels

section of Algorithm 4.2) αt+1
0,at and βt+1

0,at are set as before to α0 and β0 respectively.

However for all arms not pulled, j, values for αt+1
0,j and βt+1

0,j are pulled from the

queue.

We can apply the same method from Wilson to infer the switching rate for

these architectures as well. The algorithms with the modification described in

this section will be denoted by having a “2” appended to the algorithm name

(For example Global-CTS2 as opposed to Global-CTS).

4.8 Summary of algorithms

The general framework of using online Bayesian changepoint detection with Thomp-

son Sampling was applied to two models of the environment (Global and Per-Arm

), two assumptions about the switching rate (constant but known and constant

but unknown), a heuristic modification was also investigated for tracking changes

in only the best arm. This leads to a set of eight instances of the general algo-

rithm. These instances are summarised in Table 4.1.
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Table 4.1: A summary of the instances of Changepoint Thompson Sampling
procedure that were evaluated.

Known constant
switch rate

Unknown constant
switch rate

Global switching model
(all arm reward

distributions change
together)

Global-CTS
Global-CTS2

PF Global-CTS
PF Global-CTS2

Per-arm switching model
(arm reward

distributions change
independently)

PA-CTS
PA-CTS2

PF PA-CTS
PF PA-CTS2

4.9 Practicalities in estimating P (xt−1|rt−1, Dt−2)

The Bayesian change detection message passing scheme is described in equation

4.6. It comprises several factors including the switching rate and the reward

likelihood. The reward likelihood, P (xt−1|rt−1, Dt−2) is the probability of getting

a reward xt−1 when the runlength is rt−1 from the past history of observations

Dt−2. When an arm at time t−1 is considered to be a Bernoulli random variable

with parameter p, as in our specific model, then P (xt−1 = 1|rt−1, Dt−2) = p

and P (xt−1 = 0|rt−1, Dt−2) = 1 − p. We store a belief distribution over the

value of p for each runlength as the hyperparameters of a Beta distribution. In

order to apply the message passing an estimate for p is required from the Beta

distributions.

The Bayesian way to form an estimate for P (xt−1|rt−1, Dt−2) is to integrate

over a model with respect to our beliefs. Our beliefs in this case are represented

by a Beta distribution with parameters α and β. When we integrate over this

distribution we find that the estimate is the mean of the Beta distribution, p =
α

α+β
. There is a potential practical problem with this approach when the payoff

probabilities are close to 1/2 (assuming we set the prior distributions using the

principle of indifference ,where α, β = 1). To see this, let us consider an example

of inferring the runlength distribution for a stationary process of rewards from a

single arm. The arm rewards then come from a single distribution, with parameter

p. In this scenario we would like the inference to give a high probability to larger

runlengths. This will partly depend on the fixed switching rate that is assumed,
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but for a given switching rate we would like most of the probability mass for

the runlength distribution to be associated with runlengths that are as large as

possible. Let us say the true parameter p = 1/2 then consider what happens to

the runlength distribution as it evolves in time due to the inference algorithm.

The reward likelihood associated with a runlength of zero in this scenario is

P (xt−1|rt−1 = 0, Dt−2) = 1/2. For any non-zero runlength the expectation of the

reward likelihood is E [P (xt−1|rt−1 6= 0, Dt−2)] = 1/2 also. However, this is only

in expectation, and there will be variance associated with it. The consequence of

this is that shorter runlengths maybe “preferred” by the inference algorithm to

longer runlengths. However, when the true parameter p is far from the mean of

the prior Beta distribution (associated with a runlength of zero) the larger the

runlength the closer the mean is to p (and with less variance in the estimate). In

this case the inference will behave as we would like and the runlength distribution

will favour higher runlengths ( the meaning of higher being dependent on the

switching rate).

There are some alternatives to the Bayesian approach described above for how

we may choose this estimate. These include,

• Estimate p with the mode of the Beta distribution.

• Estimate p with a sample from the Beta distribution.

We will consider these alternatives to see if they have the same potential problem.

Estimate p with the mode of the Beta distribution

We might choose to estimate p by the maximum likelihood estimate, namely

the mode of the Beta distribution. This approach has a problem however. If

the observed rewards are such that xt−1 6= xt−2 then the reward likelihood,

P (xt−1, rt−1 = 1, Dt−2), associated with a runlength of 1, is equal to zero. This

is also true for any runlength, r where the last r rewards are different to the

current observed reward. Since the message passing when incrementing a run-

length is multiplicative this can have the effect of making much of the runlength

distribution zero, and hinder learning.

Estimate p with a sample from the Beta distribution

We can sample from the Beta distribution associated with an arm for a given

runlength in order to get an estimate for p. This is much in the same way as we
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get an estimate for the mean of an arm in Thompson Sampling. By sampling

from the Beta distribution, the estimate for p will have high variance for small

runlengths regardless of what the true value of p is. This may potentially mitigate

the perceived problem with estimating the reward likelihood using the mean.

However, conversely when the true value of p is far from the mean of the prior,

the introduction of variance to the estimate of the reward likelihood for lower

runlengths might be less efficient than using the mean as an estimate.

Sample or Mean estimate?

To investigate which method is to be preferred some experiments were conducted.

Firstly both methods were used in inferring the runlength for a one-armed bandit

with a switching Bernoulli reward distribution. The sample method and the

mean method were compared in two scenarios. The first scenario is where the

arm switched between Bernoulli distributions with parameters far from 1/2. In

this experiment we expect the Mean estimate approach to perform better. The

results of this experiment can be seen in 4.9. The experiment shows that the

mean method is much more confident in the true runlengths than the sample

method. The experiment was repeated but for a switching environment where

switching occurred between Bernoulli distributions with parameters closer to 1/2.

The results are shown in Figure 4.8. We can see that in this case that the

sample method appears to be more confident in the true runlengths. However

the differences are less stark than the first experiment where it is observed that

the sample method is more confident that no changes at all have occurred in

comparison to the mean method, when in fact changes have occurred. From this

we propose that using the mean method (where we use the mean to estimate the

reward likelihood) is more appropriate.
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Figure 4.8: Two versions of the Bayesian change point algorithm were run in a switch-
ing environment. Let Xt denote the observed Bernoulli random variable at time t and
Xt:τ denotes the set of variables observed between t and τ . Xt were drawn indepen-
dently, withX1:500 andX1000:1500 drawn from the same Bernoulli distribution (p = 0.45)
and X500:1000 and X1500:2000 drawn from another (p = 0.55). The top two plots show
the evolution of runlength distributions over time for the two methods. We can clearly
see both identifying switches. The next plot shows the difference in distribution of the
two methods and mark where p changes. Section A,B and C are magnified portions of
this plot. These were plotted to highlight the difference of the two methods. We can see
that when the Bernoulli parameters switch in a range close to a half, the method that
uses the Sampled estimate for the likelihood term in the message passing algorithm is
more confident in a runlength close to the true value than the mean estimate of the
same term.
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Figure 4.9: The same experiment as in Figure 4.8 were performed. The Bernoulli
parameter was this time switched between p = 0.75 and p = 0.85. The gap between
the two parameters remaining the same, but critically the values being further away
from p = 0.5. Since we are choosing a uniform prior (Beta(1, 1)) for our belief in the
p parameter then the mean estimate coincidences with this value for a runlength of 0.
We expect if the true parameter is nearer to this value, learning is harder when using
the mean estimate. Conversely when the true value is far away for this critical point it
will perform better. We can see for the difference plot shows the mean method is more
confident about the true runlengths (blue line in section A, B and C). This leads to the
conclusion that when not in a regime near the critical value the mean estimate should
be preferred.
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4.10 Experiments: global switching model

We first compare the algorithms in an environment with a constant global switch-

ing rate. Global-CTS and PF Global-CTS were designed for this environment and

so a-priori we would expect them to perform the best.

The first set of experiments were a single run of the algorithms working in an

instance of this environment type with 2 arms. The payoff probabilities of the

Bernoulli bandit were changed with a probability of γ = 0.001, the switch rate

of the environment. The agents were run for a time horizon of t = 10000. The

switch rate parameter for algorithms such as Global-CTS and PA-CTS were set

to this value.

Figures 4.10 and 4.11 plot example heatmaps of the runlength distributions

of some of the algorithms. At a particular time, the graphs show the runlength

distribution. In the case of the PA-CTS and PF PA-CTS there are 2 plots for

each algorithm, corresponding to the runlength distribution for each arm. The

pay off of the 2 arms has been superimposed over the top of the plots so that it

can be seen how the runlength distribution matches up with the changes in the

environment.

From the heatmap figures we can see the change point prediction works when

applied to a bandit problem. As expected the change point distribution looks to

be more accurate for the Global-CTS and PF Global-CTS algorithms which use

the Global Switching model, this is because each data point can contribute to

the posterior runlength distribution. The PA-CTS also performs reasonably well

even though the amount of data that has influence on each posterior is reduced.

For PF PA-CTS, learning the separate switching rates appears to significantly

decrease the certainty for a particular runlength.

An experiment comparing the algorithms in this setting was performed. Each

run was over a period of 106 time steps and the experiment was repeated 100

times. The results are displayed in Table 4.2. All parameters were set as for the

PASCAL challenge test run. The environment constant switching rate was 10−4,

the same as the switch rate parameter for the algorithms.

Global-CTS performs the best in the environment, which is not surprising

since the environment fits the algorithms model. PF Global-CTS performs well

in this too, which suggests that learning the hazard rate for this model may be

feasible.
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Figure 4.10: Runlength Distribution for Global-CTS and PF Global-CTS in
Global Switching Environment. The mean payoffs of the arms are super-imposed
over the distribution.

0 2000 4000 6000 8000 10000
0

2000

4000

R
u
n
le

n
g
th

0.0

0.5

1.0
M

e
a
n

P
a
y
o
ffPA-CTS Runlength Distribution - Arm 1

0 2000 4000 6000 8000 10000
0

2000

4000

R
u
n
le

n
g
th

0.2
0.4
0.6
0.8
1.0

M
e
a
n

P
a
y
o
ffPA-CTS Runlength Distribution - Arm 2

0 2000 4000 6000 8000 10000
0

2000

4000

R
u
n
le

n
g
th

0.0

0.5

1.0

M
e
a
n

P
a
y
o
ffParameter-free PA-CTS Runlength Distribution - Arm 1

0 2000 4000 6000 8000 10000

Time

0

2000

4000

R
u
n
le

n
g
th

0.2
0.4
0.6
0.8
1.0

M
e
a
n

P
a
y
o
ffParameter-free PA-CTS Runlength Distribution - Arm 2

Figure 4.11: Runlength Distribution for PA-CTS and PF PA-CTS in Global
Switching Environment. The mean payoffs of the arms are super-imposed over
the distribution.
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Table 4.2: Results against Global Switching Environment (given as number of
mistakes×10−3± Std. Error)

Name Regret Name Regret

Global-CTS 5.9± 0.07 Global-CTS2 30.5± 1.07
PA-CTS 12.1± 0.10 PA-CTS2 49.6± 1.70
PF Global-CTS 6.7± 0.08 PF PA-CTS 29.4± 0.95
PF Global-CTS2 10.3± 0.20 PF PA-CTS2 25.6± 0.86
UCB 178.3± 8.20 DiscountedUCB 15.5± 0.27
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4.11 Experiments: Per-arm switching model

The next environment was a switching system where the switching for each arm

was independent of every other arm. PA-CTS and PF PA-CTS were designed

with this situation in mind and again a-priori may be expected to perform better.

An experiment comparing the algorithms was performed with 106 iterations and

then repeated 100 times. The results are shown in Table 4.3. As expected the PA-

CTS algorithm performs best in this environment. PF PA-CTS, the algorithm

corresponding to PA-CTS that learns the hazard rate suffers much more regret,

which would appear to indicate for the particular model the parameters are not

being learned quickly enough. The algorithms designed for a Global Switching

environment also perform reasonably in this sort of environment.

Table 4.3: Results against Per-Arm Switching Environment (given as number of
mistakes×10−3± Std. Error)

Name Regret Name Regret

Global-CTS 13.8± 0.20 Global-CTS2 37.9± 1.02
PA-CTS 13.0± 0.11 PA-CTS2 67.1± 1.23
PF Global-CTS 13.8± 0.17 PF PA-CTS 30.8± 0.79
PF Global-CTS2 15.8± 0.28 PF PA-CTS2 38.1± 0.83
UCB 175.1± 7.47 DiscountedUCB 16.8± 0.28

The two algorithms that matched the models for the global and per-arm

switching models were Global-CTS and PA-CTS respectively, plots showing the

evolution of the probability that each strategy pulled the optimal arm are shown

in Figure 4.12.
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Figure 4.12: The probability that Global-CTS and PA-CTS pulled the optimal
arm in single runs of the global and per-arm switching experiments.

4.12 Experiment: Bernoulli-armed bandit with

random normal walk

Our model was shown to achieve good performance in environments known to

be Bernoulli and switching. This was largely expected since this is the sort

of environment for which they were designed. To investigate how our model

responded to a more foreign setting, where the actual and assumed dynamics did

not match, another simulated environment was investigated. In this environment
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at time, t, each arm, i, was Bernoulli with probability of success θi(t). At each

time step the success rate of the arm was allowed to drift as a truncated normal

walk. That is the probability of success for an arm θi(t) ∈ [0, 1] conditional on

θi(t− 1) ∈ [0, 1] is,

P (θi(t)|θi(t− 1)) =
exp

(
−(θi(t−1)−θi(t))

2

σ2

)

∫ 1

0
exp

(
−(θi(t−1)−x)2

σ2

)

dx
. (4.13)

Table 4.4 shows a comparison of the algorithms. The experiment was run 100

times, where each run had a period of 106. The variance of the random walk was

set to σ2 = 0.03.

Table 4.4: Results against Bernoulli Bandit with Truncated Normal Walk (given
as number of mistakes×10−3± Std. Error)

Name Regret Name Regret

Global-CTS 97.9± 0.10 Global-CTS2 134.1± 0.23
PA-CTS 107.1± 0.16 PA-CTS2 148.9± 0.35
PF Global-CTS 116.6± 0.13 PF PA-CTS 117.0± 0.11
PF Global-CTS2 100.9± 0.10 PF PA-CTS2 94.8± 0.13
UCB 194.5± 3.78 DiscountedUCB 162.4± 0.47

In this sort of environment it appears that our algorithms perform better than

the benchmark algorithms with PF PA-CTS2 achieving the smallest regret.

4.13 Experiments: PASCAL EvE challenge

The PASCAL Exploration vs. Exploitation Challenge 2006 was a competition

in a multi-armed bandit problem [28]. The challenge revolved around website

content optimisation, whereby the options available corresponded to different

content to present to a user on a website. The challenge is a good general test

for the algorithms presented in this paper as to perform well it was required for

the bandit algorithms to be able to work in non-stationary environments. The

challenge had 6 separate environments in which the algorithms needed to perform;

1. Frequent Swap (FS) - The best option in this environment would frequently

swap.
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2. Long Gaussians (LG) - The best option changed over long periods of time.

3. Weekly Variation (WV)- The response rates of options varied sinusoidally

over 2 timescales, with the longer timescale dominating.

4. Daily Variation (DV) -The response rates of options varied sinusoidally over

2 timescales, with the shorter timescale dominating.

5. Weekly Close Variation (WCV) - Similar to Weekly Variation except the

response rates are grouped closely together.

6. Constant (C) - The idealised stationary environment.

These environments are artificially generated, where the dynamics of the ex-

pected payoffs resemble either periodic Gaussian, Sinusoidal or constant signals.

Figure 4.13 displays a selection of these environments to better visualise the way

in which each environment changes. The bandit problem was a Bernoulli bandit

problem, the payoff was either 0 or 1. The parameter determining the probability

of success of the Bernoulli arm was the quantity that was varied in each of the

six environments.

Hartland et al. won this competition with the Adapt-EvE algorithm [26]. The

Adapt-EvE algorithm’s most prominent feature is its use of the Page-Hinkley

change-point detection mechanism. This is used to determine when to reset an

underlying bandit algorithm UCB-Tuned, a variant of the UCB strategy. The

details of the algorithm are discussed in Section 2.7.2.

Since the CTS algorithms also use a change-point mechanism it is interesting

to compare their performance of them to Adapt-EvE. The challenge also provides

an environment for which the algorithm was not directly designed and so will

hopefully indicate some robustness in it’s strategy. We were unable to implement

a version of Adapt-EvE that replicated the performance reported by Hartland

et al., so here we are simply replicating the results published.

Table 4.5 shows a comparison of the Change-Point Thompson Sampling algo-

rithms (Global-CTS, PA-CTS, PF Global-CTS, PF PA-CTS) against Adapt-EvE

Meta-Bandit and Meta-p-Bandit [26]. The comparison also features the algorithm

“DiscountedUCB”, which was submitted by Thomas Jaksch to the same compe-

tition and performed comparably to Adapt-EvE. The code for this algorithm was

available and so has been included for comparison in all other environments. For
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Figure 4.13: The PASCAL EvE Challenge 2006 test environments. The mean
payoff is plotted as a function of time for the environments specified with 5 arms.

each environment in the PASCAL challenge we mark the lowest regret achieved

by an algorithm in Table 4.5 in bold.

Here we can see that Global-CTS2 does the best out of our models, followed

closely by both PA-CTS and PA-CTS2. The strategies do not quite perform as

well as the results reported for Adapt-EvE but achieve remarkably low regret

despite the PASCAL challenge being far from the exact model we had in mind

when designing the algorithms. The PASCAL challenge environments have a

periodic nature and drift rather than switch. The heuristic that Global-CTS2

uses, where Beta distributions from existing runlengths are used to set the priors

for arms not pulled, may benefit from this periodicity.
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Table 4.5: Results against PASCAL EvE Challenge 2006 (given as number of
mistakes×10−3)

Global-CTS Global-CTS2 Adapt-EvE Meta ρ
WCV 8.9± 0.4 6.9± 0.4 5.5± 0.9
FS 27.9± 2.4 12.5± 1.3 10.6± 1.3
C 0.6± 0.1 1.0± 0.2 3.2± 0.3
DV 17.1± 0.3 6.6± 0.3 6.1± 0.7
LG 4.4± 0.4 3.4± 0.5 4.3± 1.4
WV 8.2± 0.3 5.3± 0.5 5.1± 0.9
Total 67.2 35.8 34.7

PA-CTS PA-CTS2 Adapt-EvE Meta
WCV 4.2± 0.8 6.2± 0.4 5.4± 0.8
FS 13.7± 1.6 15.1± 1.7 14.0± 1.9
C 3.2± 0.4 2.0± 0.3 2.5± 0.5
DV 4.5± 1.5 4.9± 0.5 6.2± 0.7
LG 9.4± 2.9 3.7± 0.7 4.8± 1.6
WV 4.7± 1.7 5.4± 0.5 4.8± 0.8
Total 39.6 37.4 37.7

PF Global-CTS PF Global-CTS2 DiscountedUCB
WCV 8.9± 0.4 9.0± 0.3 5.3± 0.5
FS 28.2± 2.7 14.8± 1.2 10.1± 1.1
C 0.3± 0.2 0.8± 0.2 5.5± 0.5
DV 17.6± 0.3 16.0± 0.3 7.9± 0.9
LG 4.4± 0.4 4.0± 0.3 2.9± 0.4
WV 8.5± 0.3 8.4± 0.3 4.0± 0.4
Total 67.9 53.1 35.7

PF PA-CTS PF PA-CTS2 Random
WCV 12.8± 0.7 10.4± 0.4 25.7± 0.3
FS 23.1± 1.2 23.0± 1.9 49.1± 0.5
C 15.8± 0.4 1.9± 0.2 20.0± 0.1
DV 15.1± 1.0 24.2± 0.3 57.2± 0.3
LG 14.4± 2.1 8.2± 0.5 112.1± 9.1
WV 12.1± 1.1 11.7± 0.4 57.2± 0.3
Total 93.2 79.3 321.3
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In the previous chapter we noted that, surprisingly, Thompson Sampling based

on a Normal prior outperformed the Beta prior version for experiments using

a Bernoulli bandit. To investigate if this observation carried across to a non-

stationary environments we ran the same experiments PASCAL again, but this

time with versions of Changepoint Thompson Sampling assuming rewards which

were Normally distributed with known variance (set to 0.25). The findings are

displayed in Table 4.6. Again the lowest regret for each of the six environments

is marked in bold.

We find that in many instances the Normal prior is detrimental to the per-

formance of the general strategy. However the normal variant of PA-CTS shows

an increase in performance, so much so that it also outperforms the results re-

ported for Adapt-EvE and DiscountedUCB. We suspect this may have to do with

the rate at which a change becomes more probable. A change in the Global-CTS

strategies has a larger impact on the entire strategy than with the Per-Arm model

where a change is local to a given arm and so the estimates of other arms are

unaffected.

Figure 4.14 shows the probability of pulling the best arm for the Normal PA-

CTS strategy as a function of time for a single run of each environment in the

PASCAL challenge. This can be compared to Figure 4.15 which shows the same

for the DiscountedUCB strategy.
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Table 4.6: Results against PASCAL EvE Challenge 2006 for Normal variants of
CTS.

Normal Global-CTS Global-CTS
WCV 10.5± 0.4 9.0± 0.4
FS 29.7± 2.0 27.5± 2.2
C 0.6± 0.1 0.6± 0.1
DV 21.0± 0.3 18.8± 0.3
LG 6.0± 0.4 4.9± 0.4
WV 10.6± 0.4 9.1± 0.5
Total 78.3 69.8

Global-CTS2 Normal Global-CTS2 DiscountedUCB
WCV 6.9± 0.4 7.6± 0.4 5.3± 0.5
FS 12.0± 1.2 14.0± 1.4 10.0± 1.1
C 1.0± 0.1 0.9± 0.1 5.5± 0.4
DV 7.1± 0.4 8.3± 0.3 7.7± 0.8
LG 3.9± 0.6 4.2± 0.5 3.0± 0.4
WV 5.5± 0.5 6.0± 0.4 4.1± 0.5
Total 36.4 41.1 35.6

PA-CTS Normal PA-CTS
WCV 3.8± 0.6 3.9± 0.5
FS 12.6± 1.9 11.3± 1.3
C 3.1± 0.3 4.0± 0.3
DV 3.5± 0.7 3.6± 0.5
LG 8.9± 3.2 6.9± 1.8
WV 4.0± 0.9 3.7± 0.7
Total 35.9 33.4
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Figure 4.14: The probability of pulling the best arm for the Normal PA-CTS
strategy over the course of a single run of the PASCAL challenge.
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Figure 4.15: The probability of pulling the best arm for the DiscountedUCB
strategy over the course of a single run of the PASCAL challenge.
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4.14 Experiments: Yahoo! front page click log

dataset

Yahoo! have produced a bandit algorithm dataset [77]. The dataset provides in-

formation about the top story presented to a user on the front page of Yahoo!.

Each entry in the dataset gives information about a single article presented, the

time it was presented, contextual information about the user and whether the

user “clicked-through” to the article or not. The dataset was designed for the

contextual bandit problem. Given context of a user the goal is to select an article

to present to the user so as to maximise the expected rate at which users click

on the article to read more (click-through). The articles also change during the

dataset, and so bandit algorithms designed specifically for this environment also

need the ability to modify the number of arms they can select from.

For the purposes of our experiments we do not concern ourselves with the

contextual case, nor do we try to incorporate new articles as they arrive. Instead

we ignore the context, and we only pick from a set number of articles. This

reduces the problem to a conventional multi-armed bandit problem. To maximise

the amount of data used, for each run we randomly selected the set of articles

(in our case 5 articles) from a list of 100 permutations of possible articles which

overlapped in time the most. The click-through rates were estimated from the

data by taking the mean of an article’s click-through rate every 1000 time ticks.

The simulation then proceeded as described by Li et al. [46]. The results are

presented in Table 4.7. The regret for each run was normalised by the number of

arm pulls, since this was different in each run of the simulation. Parameters were

set as for the PASCAL challenge dataset. This may explain the poor results of

DiscountedUCB. It is likely the case it’s performance could be greatly improved

by tuning it’s parameters. The CTS family of algorithms proved much more

robust in this respect and coped in many different environments with the same

parameter settings.
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Table 4.7: Results against Yahoo! Front Page Click Log Dataset(±Std. Error)

Name Regret Name Regret

Global-CTS 0.489± 0.035 Global-CTS2 0.443± 0.031
PA-CTS 0.522± 0.028 PA-CTS2 0.505± 0.028
PF Global-CTS 0.490± 0.029 PF PA-CTS 0.590± 0.018
PF Global-CTS2 0.530± 0.026 PF PA-CTS2 0.563± 0.018
UCB 0.526± 0.040 DiscountedUCB 0.568± 0.022

4.15 Experiments: Foreign exchange rate data

We constructed a final test environment from Foreign Exchange Rate data[18].

Ask prices for 4 currency exchange rates (GBP-USD, USD-JPY, NZD-CHF,

EUR-CAD) at a resolution of 2 minutes spanning 7 years were used. This

amounted to approximately 106 datapoints per exchange rate pair. The bandit

problem using this data was setup as follows. Each exchange rate was thought

of as a 2-armed bandit. It was imagined that the agent could make fictitious

trades, and could either decide to buy a long call option (if they believe the rate

will increase) and a short call option (if they believe the rate will go down). To

turn this into a Bernoulli bandit problem, we ignore the scale of the change and

provide a reward of 1 if the bandit predicted correctly the rate going up/down

and 0 otherwise. When the rate remains the same, the agent receives a reward of

0 irrespective of their decision. For the purpose of the experiment we imagine the

option length is 100 time ticks, so that the agent has to decide if the exchange

rate will increase or decrease in 100 time ticks. Although this bandit scenario is

not true to life, we believe that the underlying data should exhibit some of the

characteristics of a switching system for which the algorithms were designed [59].

We can not estimate a “true” average payoff at each timestep, and so can not

measure the regret of these algorithms, instead we report the error. The results

are shown in Table 4.8.
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Table 4.8: Results against Foreign Exchange Bandit Environment (number of
mistakes ×10−3±Std. Error)

Name Error Name Error

Global-CTS 351.9± 14.1 Global-CTS2 358.0± 13.95
PA-CTS 370.4± 13.7 PA-CTS2 380.9± 12.5
PF Global-CTS 348.2± 13.7 PF PA-CTS 353.5± 13.8
PF Global-CTS2 353.2± 13.4 PF PA-CTS2 352.0± 13.9
UCB 613.9± 17.7 DiscountedUCB 606.3± 16.0

4.16 Comparing Global-CTS to Exp3

The switching model of the non-stationary environment has some resemblance to

the adversarial bandit setting that has been studied by Auer et al. [8]. They con-

sider a regret that compares the performance of a strategy against some arbitrary

sequence of events. They introduce a hardness measure to rank the difficulty of

the task (see Equation 2.46 in Section 2.7.3). The harder the task it is to com-

pete against a given arbitrary sequence, the higher the hardness measure is. The

hardness measure for the adversarial multi-armed bandit problem roughly corre-

sponds to the number of switches in the switching multi-armed bandit problem.

Obviously they are not exactly the same since the switching system is still a

well behaved stochastic process, and so the expected regret is an expectation

over both the randomness present in the environment and the agent’s strategy.

Whereas, the expected regret for the adversarial is an expectation purely over the

randomness present internally in the agent. There is no randomness present in

the environment in the adversarial setting. A family of strategies were proposed

by Auer et al. all prefixed by the name Exp3. In this section we briefly discuss the

similarities between CTS and Exp3. Particularly we will consider Exp3 as defined

in Algorithm 2.14 and Global-CTS for the case where its parameter N = 2.

4.16.1 Global-CTS with N = 2

We will consider the algorithm Global-CTS when the number of particles, N , is

limited to 2 (therefore the only sensible value of M is 1). Here, by particle, we

mean the set of hyperparameters defining the belief of the mean payoff of each

arm for a single given runlength as well as the probability of that runlength. The

algorithm is initialised with only a single particle (with a runlength of zero). The
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algorithm then samples an estimate mean for each arm and pulls the arm with

the highest estimate mean, as has been previously described. The environment

supplies the algorithm with a reward. The algorithm then updates the belief in

the arms mean payoff. This results in two particles, one whose hyperparameters

have been updated by the new observation (and whose runlength has increased

by one), and the other, a new particle, representing a runlength of zero with

hyperparameters initialised to the prior values (for example α, β = 1). However

N = 2 which means that the algorithm will now resample using SOR to reduce the

number of particles from two to one. WhenN = 2 the SOR algorithm discards the

new particle, representing a runlength of zero, with probability 1−γ, and discards

the “old” particle with probability γ. This is because the unique solution α in

Equation 4.7 is equal to one. Both particles are then candidates for resampling

with their associated probabilities. The algorithm then samples a new estimate

for each arm using the hyperparameters from the one remaining particle. This

cycle then repeats as time proceeds. A flow diagram representing this operation

is shown in Figure 4.16. The algorithm is further summarised in Algorithm 4.3.

Algorithm 4.3 Global Changepoint Thompson Sampling (N = 2)

1: Let αold,k, αnew,k = 1,
2: βold,k, βnew,k = 1 for k ∈ {1, . . . , K}.
3:

4:

5: for t = 1, . . . , T do
6: With probability γ,
7: Sample θi ∼ Beta(αnew,i, βnew,i), for i ∈ {1, . . . , K}.
8: Let αold,i = αnew,i

9: βold,i = βnew,i, for i ∈ {1, . . . , K}.
10: Otherwise,
11: Sample θi ∼ Beta(αold,i, βold,i), for i ∈ {1, . . . , K}..
12: Pull arm at = argmaxi θi
13: Let αold,at = αold,at + 1(xat(t) = 1)
14: βold,at = βold,at + 1(xat(t) = 0)
15: Let αold,j = αold,j

16: βold,j = βold,j for j ∈ {1, . . . , K} \ {at}.
17: end for
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Figure 4.16: A flow diagram showing the stages of sampling, updating and re-
sampling for Global-CTS when N = 2.

4.16.2 Comparison to Exp3

Remembering the definition of Exp3 defined in Algorithm 2.14, the agent chooses

an arm i with probability pi(t) defined as,

pi(t) = (1− γ)
wi(t)

∑K
j=1 wj(t)

+
γ

K
, (4.14)

where wi(t) is a weight defined by the algorithm. The {pi(t) : 1 < i < K} form

a distribution from which we can sample in order to pick an arm to pull. An al-

ternative to sampling directly from {pi(t) : 1 < i < K} is to form three auxiliary

distributions, πmix = Bernoulli(γ), πold(i) =
wi(t)∑K

j=1 wj(t)
and πnew(i) =

1
K
. To sam-

ple equivalently we first draw from πmix, if 0 is drawn then sample from πold and
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otherwise sample from πnew. In the same way when N = 2 Global-CTS can be de-

scribe as a sampling procedure from three auxiliary distributions. The first, πmix

is equivalent to Exp3. The second, πnew is also equivalent (when αnew,i, βnew,i = 1

as in algorithm 4.3), since the procedures pick each arm equiprobably. The third

term πold is not equivalent as it is defined by a Thompson Sampling procedure

from Beta distributions, Beta(αold,i, βold,i) rather than a distribution defined by

the terms wi(t)∑K
j=1 wj(t)

. There are some striking similarities however, despite them

not being equivalent. In Exp3 the weights, wi(t), are updated by an exponential

factor, ∝ ext/pi(t). The larger the probability of pulling the arm, the smaller the

change to the distribution defined by wi(t)∑K
j=1 wj(t)

. For Thompson Sampling the

updates to the Beta distributions on an observations are also exponential, and

share the property that the update factor is inversely dependent on the increase

in probability that the arm is pulled on subsequent decisions.

To empirically demonstrate the perceived similarities in the two algorithms

we compared both algorithms in an adversarial bandit setting. The bandit had

5 arms and was given a hardness of 5 (corresponding to the “best” a posteriori

strategy being allowed to change its pure strategy 5 times). The results of the

experiment are presented in Figure 4.17 which shows the adversarial regret of the

two algorithms as a function of time. The graph shows the similar trends of the

algorithms during the decision-making process.
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Figure 4.17: This figure shows a comparison between Global-CTS and Exp3.
The hardness of the bandit problem was 5. The bandit problem had 5 arms. The
parameter γ for both algorithms was set to same value.
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4.17 Related work

4.17.1 Kalman Bayesian Learning Automaton

Granmo and Berg developed what the call the Kalman Bayesian Learning Au-

tomaton [25]. This is in effect Thompson Sampling where the posterior mean

reward distribution is modelled to be a drifting environment. The rewards at a

given time are assumed to be distributed Gaussian, and at each time step the

mean of the Gaussians from which the rewards are drawn drift via a Gaussian

random walk. To be more precise at time t the bandit of interest has K arms.

The rewards of arm k are drawn from a Gaussian with mean µk,t and variance

σ2
k,obs. As time evolves from t to t+ 1 the mean reward of the arm changes such

that µk,t+1 = µk,t + εt where εt ∼ N (0, σ2
k,drift). The initial means mk,0, the

reward variances σ2
k,obs and the variances, σ2

k,drift, of the Gaussian random walk

thus define the dynamics of the environment. Both the reward variance and the

variance of the random walk are assumed to be known. The Kalman filter is a

Bayesian inference technique that leads to the optimal estimate of mean rewards

in such environments [39]. The algorithm places a prior belief distribution on the

mean of an arm at time 0 (µk,0). At each step as time progresses from t to t+ 1

the Kalman filter infers a new belief distribution for µk,t+1. There are two stages

to the inference in a Kalman filter. These are,

1. Inferring the belief P (µk,t+1|µk,t) via the existing belief P (µk,t) and the

dynamics of the system.

2. Updating the belief distribution over µk,t+1 using new observations xt+1 (i.e.

P (µk,t+1|xt+1)).

When the noise and dynamics are both Gaussian if the prior distribution is mod-

elled as a Gaussian both steps can be combined into one update resulting in a

new Gaussian belief distribution. This is due to the Gaussian distribution being

its own conjugate prior. Let P (µk,t) = N (mk,t, s
2
k,t) be the belief in the mean of

arm k at time t. After receiving a reward xt the belief in the mean at time t+1,
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P (µk,t+1), is N (mk,t+1, s
2
k,t+1) where,

mk,t+1 =
(s2k,t + σ2

k,drift)xt + σ2
k,obsmk,t

s2k,t + σ2
k,obs + σ2

k,drift

(4.15)

s2k,t+1 =
(s2k,t + σ2

k,drift)σ
2
k,obs

s2k,t + σ2
k,obs + σ2

k,drift

(4.16)

(4.17)

4.17.2 Context dependent Thompson Sampling

The Kalman filter model proposed by Granmo et al. was for a fundamentally dif-

ferent type of environment than Changepoint Thompson Sampling. Simultane-

ously to our own work Lloyd et al. also considered applying Thompson Sampling

to a model that was switching [47]. The motivation of their work stems from

psychology. They wished to develop a simple mathematical model that mim-

icked some of the behaviours observed in animal decision making. Some traits

that were deemed to be captured inadequately by previous models arise in the

serial reversal-learning paradigm. The serial reversal-learning phenomena can be

explained by way of the following example. Imagine a rat is placed in a simple

T shaped maze. The rat is made to make a series of decisions in a number of

rounds. In each round the experimenter places a reward in the form of food in

either the left or the right arm of the T maze. If the experimenter initially only

places the food in the left arm the rat will after several rounds learn to go directly

to the left arm. However after some time the experimenter might switch where

the food is being placed to the right arm. On the event of the change the rat

will initially head to the left arm, until it eventually learns to switch to the right

arm. Eventually after many cycles of the experimenter switching where the food

is placed the rat will learn this switching behaviour and switch the arm they

choose to head to more quickly based on the recent observations of where food

was placed. The rat can get to the point where even a single round where the

food is switched is enough to make the rat change its strategy.

They term contiguous periods, in which the observed rewards of actions follow

the same statistical law, as contexts. In their model the contexts are not directly

observable. Often in the bandit problem literature involving contexts the context

is thought of as the extra observable information available to an agent other than

the reward signal, which can be used to establish in which state the environment
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is , and so allow the agent to associate different behaviours with different states.

In this setting context instead refers to the hidden state for which the current

distribution of rewards is dependent on. The context can thus only be inferred via

the rewards observed by the agent. There are assumed to be an unknown number

of contexts, the environment then switches between them, sometimes switching

to a previously unseen context and other times returning to a past observed

context. The generative model for this type of model is assumed to follow a

Chinese Restaurant Process (CRP) [58]. The name is motivated by thinking of

the process as trying to seat diners in a Chinese restaurant, an analogy credited

to Pitman and Dubins by Aldous [4]. Let ct be from some set of contexts C. For
each context there is a stationary distribution of rewards associated with each

arm with mean. Let µk(ct) denote the mean reward of arm k in context ct (the

context at time t). Then dynamics of the environment is then defined by the

evolution of the contexts. The dynamics of the contexts are defined as follows,

ct =

{

ct−1 with probability 1− π

c ∼ CRP(c1:t−1;α) π,
(4.18)

where c1:t−1 is the contexts observed up until time t − 1 and α is the parameter

of the Chinese Restaurant Process from which the new context is drawn. The

dynamics are slightly different than a standard CRP since with probability 1−π

the previous context is chosen. This allows the model to have contiguous periods

where the context remains the same.

They propose a Thompson Sampling procedure for the above environment.

The procedure maintains a distribution maintaining the probability of which con-

text the process is currently in, and for each context the distributions associated

with what the arms mean rewards are. To form a decision the context distribu-

tion is sampled in order to form an estimate of which context the environment

is currently in. Then a sample from the arm distributions associated with the

estimate context are drawn, one for each arm to estimate the mean reward. The

arm with highest associated estimate is then pulled. Their model differs from our

work in that they assume an switching environment where the switching occurs

between contexts. A context may be revisited many times. In our model we as-

sume that on a change that past observations are independent from future ones,

and so only attempt to track when these changes occur. The added requirements

to form a correspondence between a previous regime and the current one adds
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extra complexity to the model. In some applications the changing will be of this

repeating nature. In this case the model of Lloyd et al. could indeed be an im-

provement over our own. However although the model may in some cases gain

added efficiency due to its ability to incorporate more past data than our own

model (causing estimates of expected rewards to be sharper), in other cases the

opposite may be true. There is a danger that the model may associate a new

regime or context with a previous one when in fact they are different. In this

case the decision making would be biased and over-confident potentially making

the wrong decisions. It is unclear and an open question to find under what con-

ditions remembering past contexts is advantageous and when our own model, of

forgetting the past, is a more sensible strategy.

Let n(c, t) be the number of times context c has occurred up to time t and

let N(c1:t) denote the number of unique contexts that have occurred until time t.

The Chinese Restaurant Process that selects a context is defined as,

CRP(c1:t−1;α) =

{

c ∈ c1:t−1 with probability n(c,t−1)−α
t−1

c 6∈ c1:t−1 with probability αN(c1:t−1)
t−1

,
(4.19)

where 0 < α < 1. Here we can see that the probability of a new unseen context

(c 6∈ c1:t−1) shrinks as time continues. This is in contrast to our model where

when a switch occurs the probability of an unseen context is certain. It may be

possible to trade off between the merits of both our own environment model and

this one by generalising both. We can do this by way of an added parameter to

the environment model, 0 ≤ λ ≤ 1. The environment model would then become,

ct =







ct−1 with probability 1− π

c ∼ CRP(c1:t−1;α) π(1− λ)

c 6∈ c1:t−1 πλ.

(4.20)

Such a model has not been explored further and has been left as potential future

work.

4.17.3 Bayesian Bandits with Resets

Other Thompson Sampling models which has since been proposed for the same

switching environments for which we developed our algorithms are by Viappiani

[73]. The work considers the independently considers the global switching model,
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which Viappiani calls “Bayesian Bandits with Resets”. They consider two models,

one a particle filter approach and the other they term Geometric-Beta (reset-

aware) Thompson Sampling.

Particle Filter Thompson Sampling

Whereas our solution performs an exact inference step, followed by an approx-

imating resampling step, the particle filter model of Viappiani calculates the

posterior via simulation. In the particle filter model each arm has a number of

particles associated with it. Each particle q for a given arm represents a possible

mean for that arm. Initially these are drawn from the prior Beta distribution

(normally the parameters are such that this is a uniform distribution). At each

round several steps are performed. Firstly, for each arm, each particle is reset

(meaning redrawn from the prior distribution) with the probability preset, the rate

at which arms reset or switch. The algorithm then samples a particle for each

arm, pulling the arm with largest sampled particle. A reward is then observed

for the pulled arm. The likelihood of each particle can be found, being q if the

reward is 1 and 1− q if the reward is 0. These likelihoods for each particle of the

pulled arm are used as weights in an importance sampling step. Particles that

were more likely based on the last observation are more likely to be resampled.

The estimation of the posterior is likely to be much higher variance than our own

model, since the approximation in our approach only comes from the resampling

the runlength distribution in a optimal way (we retain the Beta hyperparame-

ters for kept runlengths). The particle filter method is implicitly approximating

both the Beta distributions and the runlength distribution with no guarantee of

optimality in either case. To perform well it is likely to require large numbers of

particles, increasing time and space requirements.

Geometric-Beta Thompson Sampling

The second algorithm that Viappiani presents is called Geometric-Beta Thomp-

son Sampling. Conceptually the full history of pulls and rewards are kept. A

geometrically distributed random variable is drawn for each arm parametrised

by the probability of error, this samples an estimate of when a reset or switch

occurred for each arm. For each arm only the rewards since the estimated last

reset are used to form the hyperparameters for the Beta distribution, which in

turn is modelling the belief in a mean of the arm. A sample is taken from the
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Beta distribution to be the estimate of the mean of the arm for the current

round. As with Thompson Sampling the arm with highest mean estimate is then

pulled. The first observation of this method is that it completely ignores the data

in deciding when a switch has occurred. This certainly reduces the amount of

computation required but it is also clearly a disadvantage in choosing the correct

runlength of data. For instance in an extreme case, imagine an arm had produced

only rewards of 1 from pulls 1 to 100 and then for the next 10 pulls produces

rewards of 0. Geometric-Beta Thompson Sampling would ignore this evidence of

a reset or switch whereas Changepoint Thompson Sampling would incorporate

the evidence and more likely based its estimate only on recent data.

4.18 Conclusion

In this chapter we argue that in order to make multi-armed bandit strategies

more applicable to many real world applications then we must design them to

perform well in a changing non-stationary environment. We suggest that there

are two main types of change that can occur, drifting and switching. We offer

or cite some examples of where we expect to see switching behaviour such as in

financial applications and game playing. We argue that a switching environment

is a useful model from which to design bandit-like algorithms that are adaptable

in more realistic settings.

The main contribution of this chapter is a class of algorithm we term col-

lectively as Changepoint Thompson Sampling. These are a set of Thompson

Sampling algorithms for the switching multi-armed bandit problem. We empir-

ically demonstrate the effectiveness of the strategies in a wide range of bandit

problems. Some of the problems exhibit the switching for which our strategies

are designed, while others exhibit behaviour more akin to drifting. The algo-

rithms perform well in comparison to other benchmarks, and have reasonable

computational cost.



Chapter 5

Thompson Sampling for the Best

Arm Identification Problem

In order to make good decisions an agent must have or acquire information about

each possible choice. We have seen how the stochastic multi-armed bandit prob-

lem is one useful model for decision making in an uncertain environment. The goal

in the problem is to minimise the cumulative regret of the agent. The cumulative

regret being the expected difference in reward accumulated by the actual strategy

of the agent and the strategy that plays only the arm with the largest expected

payoff. In the multi-armed bandit problem the information must be acquired in

real-time while the agent is making decisions. The agent must balance the need

to get the largest instantaneous reward they can, by choosing the arm they think

is best (exploiting), and gathering information about the true expected payoff of

uncertain arms in order to improve the chances of making better future decisions

(exploring). Since the regret is cumulative the outcome of every decision directly

contributes to the regret the agent feels. In this way there is a cost associated

with each possible action related to its expected reward. For many situations it

is sensible to have this type of cost associated with the outcome of each decision,

for instance in Thompson’s example of clinical trials, we care about the outcome

of each patient in the trial, not just about the improvement of future treatments

after the trial has concluded. However, there are other situations where this is

not true. There may be no cost directly related to the outcome of a single de-

cision. In these situations, the agent can set aside a period of exploration in

which it can try different choices and gain information about their benefits. Due

to the limited time of the exploration and the stochastic nature of a decisions

137
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consequences, the agent can not fully determine facts related to their problem.

The agent must then budget their opportunity of exploration and focus their re-

sources to learn the most salient information in relation to their eventual decision

under these constraints. The best arm identification problem provides a simple

model in which to study this dilemma. The problem can be used to model for

example network optimisation problems [27], product testing within marketing,

and in connection with AB testing [37].

For example, we can imagine a company wishing to release a new product

to the market. The more demand for the product the more money they are

likely to make. So before releasing the product they decided to do some market

research to gauge the market demand. They have several prototype versions

of the product and want to know which will invoke the largest demand from

customers. Due to constraints on the large scale manufacture of products it only

makes sense for one of the prototypes to be mass produced and made available

on the consumer market. The company decide to make batches of prototypes

on a small scale to provide to a sample of the consumer population in order to

ascertain which product is preferred. The company may have a fixed budget for

their market research, and thus have a fixed number of prototypes they can build

before they have to decide on the final product. With the decision of how many

of each prototype to make there is no direct cost, in the sense of loss in future

profit, for making a sample of a sub-optimal prototype. As long as the company

increases their chances of identifying the best of their prototypes before going to

market there is no loss associated with the decision to build it. If we imagine

that the company decides to build prototypes sequentially, building a single item

and testing it before deciding which kind of prototype to make an item of next,

then the problem can be modelled as the Best Arm Identification Problem.

In the best arm identification problem there are a set of possible arms K.

Each arm k ∈ K when pulled at time t provide a reward xk(t). The expected

reward for arm k is µk. An agent A is given T trials in which to pull these arms

before making a final decision Ψ(T ) ∈ K on which arm has the highest expected

payoff. There is therefore an exploration phase for T trials followed by a final

decision.

Many algorithms for this problem have been studied, including: uniform allo-

cation [13], UCB style algorithms adapted for best arm identification [5], racing

style algorithms [5] and, most recently, gap based algorithms [21, 27].
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The contributions of this chapter are two types of algorithms using Thompson

Sampling, and a proposal of a metric by which to describe the behaviour of a best-

arm identification algorithm. Specifically our contributions are,

• Order-Statistic Thompson Sampling - A class of algorithm that naturally

extends Thompson Sampling to be suitable for the Best Arm identification

problem.

• Maximum Boundary of Pairs - An parameterless algorithm that makes use

of Thompson Sampling.

• Measure of Aggression - A proposed measure to categorise the behaviour of

the Order-Statistic Thompson Sampling strategy.

5.0.1 Problem formulation

Here we present the specific formulation of the problem discussed in this section,

along with relevant notation.

A Bernoulli multi-armed bandit consists of a finite number of arms,K, indexed

by k ∈ K = {1, . . . , K}. Each arm k, when pulled, receives reward xk(t) drawn

from a Bernoulli distribution with mean µk. During an exploratory phase, at each

time step t an agent must pull an arm jt. The agent then receives the associated

reward xjt(t). The decision jt is made based on past rewards. The sequence

of decisions jt is known as the allocation strategy. The exploratory phase ends

at time T , whence the agent must make a final decision Ψ(T ), where the agent

decides which arm has the highest mean. The allocation strategy is thus chosen

to best improve the decision Ψ(T ). There are some different settings for the

problem. In some cases the time horizon of the exploration phase is known. This

information can aid a strategy in using their exploration budget more effectively.

In other cases the strategy does not know the time horizon a head of time, but will

continue in the exploratory phase until they are told to stop. For the algorithms

we propose we do not assume that the length of the exploration phase, T , is

known in advance.

Let σ(i) denote the index of the arm with ith largest mean, such that µσ(1) ≥
µσ(2) ≥ · · · ≥ µσ(K). Let the gap ∆k = µσ(1) − µk denote the distance between

the largest expected reward and that of arm k. Let X̂i,T be the empirical mean

of arm i at time T .
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A performance measure of interest to this problem is the simple regret. The

simple regret at time T is the one step regret of choosing arm Ψ(T ). Formally

rT = µσ(1) − µΨ(T ) = ∆Ψ(T ) (5.1)

Another related measure which we will use in this section is the probability

of error, Pe,

Pe = E
[
µσ(1) 6= µΨ(T )

]
. (5.2)

Note that if a strategy attains low probability of error it also attains low simple

regret.

Audibert et al. [5] introduced two measures of hardness, H1 and H2, that

they showed characterised the difficulty of a given problem. The definitions are

as follows,

H1 =
K∑

k=1

1

∆2
k

, (5.3)

and,

H2 = max
k∈{1,...,K}

k

∆2
i

. (5.4)

.

5.1 Motivation

In order to better motivate the work presented in this chapter we will briefly

discuss some potential applications for the best arm identification problem.

5.1.1 Automatic algorithm configuration in optimisation

Many tasks can be framed as an optimisation problem, from large logistical plan-

ning (i.e. travelling salesman problem) to drug discovery. In fact many machine

learning problems can be reduced to an optimisation problem. For instance by

using the principle of maximum margin, as a guide to achieving good generalisa-

tion, a support vector machine reduces the classification problem to a quadratic

programming problem. For particularly hard optimisation problems the com-

putational complexity of the task leads to in practice finding approximate solu-

tions. Popular optimisation algorithms for hard problems include evolutionary

algorithms and branch-and-bound strategies. These algorithms have parameters
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which to perform well require tuning. Some algorithms internally have a stochas-

tic component, such as evolutionary algorithms. However, even if the algorithm

is deterministic the instance of the problem and data which it receives can change

and can be thought to be drawn stochastically from some underlying distribution.

In these settings we wish to tune the parameters for an algorithm (or perhaps

choose between a group of different algorithms) in order to pick the best method

for the particular task, but the performance under each setting is unknown and

stochastic. We can think of the different algorithms (or the different parameter

settings) as arms in a best arm identification problem and automatically config-

ure an optimisation procedure to choice the best settings. Such problems have

been considered by Birattari et al. [10].

5.1.2 Wireless channel allocation and frequency selection

Wireless networks are often made up of many non-centrally controlled nodes

which must communicate amongst each other over a shared frequency spectrum.

For instance the mobile phone network is made up of a series of cells that con-

stitute a mobile operators network. Mobile phones then connect to these cells in

order to make a call, or to send other data through the network. Communication

is enabled using a range of frequency bands of the electromagnetic spectrum. If

more than one device uses the same band then there will be interference and

the quality of the signal will degrade possibly significantly. Each mobile phone

wants to interfere as little as possible with other surrounding phones to ensure

a better quality of service for the user. Since the network is ad-hoc in the sense

that mobile phones change which cell they communicate with or connect and

disconnect from the network regularly, a decentralised method of choosing which

frequency range to communicate over is advantageous. This is called dynamic fre-

quency selection. The choice of which cell a phone should connect also depends

on stochastic factors such as signal strength and load. Adapting the cell with

which a mobile phone communicates with is called dynamic channel allocation.

In both problems the phone wishes to choose between a number of choices (be it

frequency ranges, or cells) in which the observable state of each option is noisy.

The phone can not wait a long time before making the decision as this would lead

to poor service, but has a short fixed amount of time in which to find the best

option. This too can be viewed as a best arm identification problem as suggested

by Audibert et al. [5].



CHAPTER 5. BEST ARM IDENTIFICATION 142

5.2 Ordered-Statistic Thompson Sampling

In this section we extend Thompson Sampling algorithms to the best-arm iden-

tification problem. The Thompson Sampling method requires only that one can

sample from a posterior that is defined via the distribution of the rewards. A

strength of the algorithm is that for many reward distributions this is cheap to

compute. We hope to extend these benefits to the best-arm problem. However

Bubeck, Munos, and Stoltz [13] observed that the best arm identification problem

is fundamentally different to the multi-armed bandit problem. This means any

algorithm that achieves the lower bound for the multi-armed bandit problem can

not be optimal for the best arm identification problem.

We will explore models inspired by Thompson Sampling for the best arm

identification problem. We propose one such model, Ordered-Statistic Thompson

Sampling (OSTS). This algorithm class is described in Section 5.2.1 and can be

viewed as a simple generalisation of Thompson Sampling. We provide a bound

on the simple regret for this class of algorithm. The algorithm class presented

requires a ranking distribution over the ordinals 1 to K, however we propose one

such distribution whose long term behaviour should mimic Successive Rejects

and so can be seen as parameter-free and without the requiring knowledge of the

time horizon T . We investigate other ranking distributions that in expectation

allocate more resources to higher ranked arms, and so can be seen as a more

aggressive strategy.

5.2.1 Ordered-Statistic Thompson Sampling

Algorithm Description

In Thompson Sampling an arm is pulled with the probability that it is the best

arm. This is done in a 1 sample Monte-Carlo fashion, where a sample is drawn

from the posterior of each arm, and the maximum sample is used. In the best

arm identification problem this leads to over exploiting, the arm with best mean

is pulled too often and we do not pull the other arms sufficiently often in the

exploratory phase in order to sufficiently reduce the probability of making the

wrong guess in the final decision. This suggests that we do not want to pull just

the arm we perceive to be best, but other arms as well. In order to achieve this

Ordered-Statistic Thompson Sampling augments the basic Thompson Sampling

algorithm with a distribution over the rank of the arms and via sampling uses
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this distribution to determine what rank sample should be used.

Let the distribution over the rank of arms be denoted as ν(K). For a finite set

of arms this would be a discrete distribution over the support {1, . . . , K}. In the

case of a Bernoulli armed bandits the uncertainty of the true means is modelled

by Beta distributions. At each time step t in the exploratory phase Ordered-

Statistic Thompson Sampling (OSTS) first samples from the distribution over

the rank of arms, ot ∼ ν(K), this selects the ordered statistic, or rank to use.

A sample, θk,t, from the Beta distribution of each arm is drawn. The arms are

ordered with respect to their samples. Let σt(i) denote a function mapping a rank

to an arm such that the ith largest sample corresponds to arm k when σt(i) = k.

The ordering of the samples is then such that θσt(1),t ≥ θσt(2),t ≥ · · · ≥ θσt(K). We

call i the rank of the sample. The algorithm selects arm σt(ot) to be pulled. The

algorithm is summarised in Algorithm 5.1.

We can see that Ordered-Statistic Thompson Sampling is exactly Thompson

Sampling when ν(k = 1) = 1 and ν(k = i) = 0 for i = 2, . . . , K and so this

generalises Thompson Sampling. The algorithm is simple to implement and does

not require knowledge of the length of the exploratory phase.

The performance of the algorithm will depend on the choice of ν(K). For

instance ν(K) could be uniform across the integers from 1 to K. In expectation

such a choice would behave much like a uniform allocation strategy that pulled

each arm equally often. This is likely to waste too much of the allocation resource

on arms that are extremely unlikely to be the best. Like Thompson Sampling,

OSTS is a probability matching algorithm, given a rank it pulls an arm with

the probability that it is that rank. The framing of the algorithm makes it

natural then to think of an agent showing confidence by aggressively following

in their belief when they try to pull the best arm, and acting more cautiously

when they try to pull arms they perceive to be inferior. Choices of ν(K) that

more aggressively allocate resources to high performing arms are likely to perform

better. For instance a discrete distribution that decreases linearly between 1 and

K would be more “aggressive” than uniform. Conversely ν(K), and therefore

the agent, can not be too aggressive since we know that the standard Thompson

Sampling algorithm for the multi-armed bandit is sub-optimal in that it does not

reduce the simple regret exponentially.

In this thesis we consider three choices of ν(K). The first distribution is a

Zipf distribution. For a certain parametrisation of the Zipf distribution we show
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Figure 5.1: A picture summarising the Ordered-Statistic Thompson Sampling
procedure. There is a rank distribution (bar chart on left), and a posterior distri-
bution for each arm (shown on right). To choose an arm, the rank distribution is
sampled. This specifies a rank, in this picture rank 2 has been sampled. The arm
posterior distributions are sampled to produce mean estimates. The estimates
are then ranked in order and the arm which is of the rank we sampled is pulled
(marked with an red arrow)

for large T that the performance of OSTS should be asymptotically similar to

that of Successive Rejects, a parameter-free algorithm proposed by Audibert,

Bubeck, and Munos [5] that requires knowledge of the time horizon. The second

distribution is a Poisson distribution, this was chosen to be more aggressive than

the Zipf-like distribution. The third and final choice forms a distribution based on

estimates of the gaps between arms in an attempt to adapt the level of aggression

dependent on the problem.

Measure of Aggression

We feel that a useful way to compare different versions of OSTS is in terms

of aggressiveness. We think that many other best arm algorithms can also be

attributed a level of aggression. A more aggressive algorithm pursues the arms

estimated as the better arms over the lesser ones; a less aggressive algorithm

pulls the arms more uniformly. To formalise this notion we introduce a measure

of aggression. This is joint work with my supervisor Jonathan Shapiro and is
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Algorithm 5.1 Ordered-Statistic Thompson Sampling + Empirically Best Arm

Let α1,k = 1,
β1,k = 1 for k ∈ {1, . . . , K}.

Exploratory Phase:
for t = 1, . . . , T − 1 do
Sample θt,i ∼ Beta(αt,i, βt,i), for i ∈ {1, . . . , K}.
Sample ot ∼ ν(K)
Pull arm at = otth largest θt,i
Let αt+1,at = αt,at + 1(xat(t) = 1)

βt+1,at = βt,at + 1(xat(t) = 0)
Let αt+1,j = αt,j

βt+1,j = βt,j for j ∈ {1, . . . , K} \ {at}.
end for

Final Decision:
Let Ψ(T ) be argmaxi X̂i,T

being prepared for publication. The measure we propose is given by,

A(ν(K)) =
K − 1

E [k]− 1
− 1, (5.5)

where E [k] is the expected rank drawn from ν(K). We will treat 1
0
as infinite.

Here we can see that Thompson Sampling, designed for the multi-armed bandit

problem, has unbounded aggression. The more focus that is put on pulling lower

suboptimal arms, the lower the aggression will be. The minimum value this

measure can take is 0 which occurs when we try to pull only the worst arm. We

will restrict our measure to be only on distributions which are non-decreasing

with rank. Much as the measures of hardness introduced by Audibert et al. [5]

tell us something about the difficulty of a given problem, the aim of the measure

of aggression introduced is to tell us about the behaviour of a given strategy. We

later give some empirical evidence to suggest that there is a relation between this

measure and performance, in that two variants of OSTS with the same aggression

achieve similar levels of performance.
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OSTS-Zipf

The first distribution ν(K) we consider is that of the truncated Zipf distribution,

a distribution that follows a power law. The Zipf distribution is,

PZipf(j;N, s) =
1

js
∑N

i=1
1
is

, (5.6)

where 1 ≤ j ≤ K. We can then choose ν(k = i) = PZipf(i;K, s) for the parameter

s. This will then favour higher ranked arms, as s increases the algorithm behaves

more aggressively. For instance choosing the parameters N = K and s = 1,

this becomes PZipf(j;K, 1) = 1
jHK

, where HK is the Kth harmonic number. This

makes the measure of aggression for OSTS-Zipf(1.0) as follows,

A(Zipf(j;K, 1)) =
K
((
∑K

n=1 1/n
)

− 1
)

K −∑K
n=1 1/n

. (5.7)

This aggression grows logarithmically with K.

If we make a slight modification to this distribution then we can produce an

interesting connection with an existing algorithm in the literature. The modifi-

cation made is so that the probability of selecting the perceived best arm is the

same as selecting the perceived second best arm. The particular way we choose

to do this is by defining the modified Zipf distribution as follows

PModZipf(j;K) =
1

(b1/jc+ j)(HK − 1/2)
. (5.8)

We thus investigate when ν(k = i) = PModZipf(i;K). We will refer to the

modified form just discussed as OSTS-Zipf, and when we refer to the unmodified

form we will distinguish it by providing the value of parameter s used as OSTS-

Zipf(s). The modified version of the Zipf distribution is interesting to look at

because of how it compares to the algorithm Successive Rejects introduced by

Audibert et al. [5].

Successive Rejects is split in to phases. In the first phase all arms are consid-

ered and pulled an equal number of times depending on the length of the phase.

At the end of a phase the arm with the smallest empirical mean is dropped. The

next phase continues to pull all remaining arms equally for the duration of that
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phase, before the next arm is dropped. The strategy continues with the final

phase having only two remaining arms. To choose the length of the phases the

time horizon T needs to be known. The order at which the arms are dropped

gives an ordering of the arms. We can think of this ordering as the perceived

ranking of the arms for Successive Rejects. The arm dropped in the first phase

is considered to have a rank of K, the arm dropped in the next phase is consider

to have a rank of K − 1 and so on. Successive Rejects pulls what it thinks is the

best and second best arm n2 times. nk, for k = 2, . . . , K, is defined to be,

nk = d T −K

(HK − 1/2) k
e, (5.9)

where here HK is the Kth harmonic number (HK =
∑K

n=1 1/n), and n1 = n2.

For k > 1 Successive Rejects pulls the arm it considers the kth best arm nk times.

This means the kth ranked (k ∈ {2, . . . , K}) arm is played d T−K
(HK− 1

2
)k
e times and

the 1st ranked arm played d T−K
(HK− 1

2
)(2)

e. The total number of pulls of all the arms

is n2 +
∑K

i=2 ni ≤ T .

We wish to compare Successive Rejects to OSTS-Zipf. In expectation the

arms associated with the kth ranked sample in OSTS-Zipf are pulled

T

(b1/kc+ k)(HK − 1/2)
(5.10)

times. If we treat the phase in which an arm is dropped as the rank of an arm in

Successive Rejects, then we can consider the ratio between the number of times

we pull the kth ranked arm in Successive Rejects and the expected number of

times pull an arm associated with rank k in OSTS-Zipf. This is given by the

ratio of equations 5.9 and 5.10, T−K
T

. When T >> K the ratio tends to 1 and

so the expected aggression of each algorithm is approximately the same. We can

think of OSTS-Zipf as a randomised version of Successive Rejects. For small

time horizons this is likely to bring a slight drop in performance, but does have

the benefit of no longer requiring the time horizon to be known compared to

Successive Rejects.

OSTS-Poisson

Audibert et al. observe that Successive Rejects may continue to pull an arm for

some considerable time after it becomes clear that it will be rejected at the end
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of the current phase. This suggests that for some problems it is not “aggressive”

enough towards allocating most budget to the perceived better arms. Given

this and the similarities to our proposed algorithm OSTS-Zipf, we wished to

investigate a distribution that could be seen to be more aggressive by assigning

larger probabilities to higher ranks of arms. Since the Poisson distribution decays

faster than the Zipf distribution then OSTS-Poisson will likely spend less time

pulling worse arms than OSTS-Zipf. The distribution is as follows,

ν(k = i;K,λ) =
λi−1

(i− 1)!
∑K

j=1
λj−1

(j−1)!

. (5.11)

This leads to a measure of aggression for OSTS-Poisson(1.0) of,

A(ν(k = i;K, 1.0)) =
eΓ(K + 1) ((K + 1)Γ(K, 1)− Γ(K + 1, 1))

eΓ(K + 1)Γ(K, 1)
(5.12)

+
Γ(K) (eΓ(K + 1, 1)− 1)

eΓ(K + 1)Γ(K, 1)
. (5.13)

The growth in aggression as a function of K is much larger for OSTS-Poisson(1.0)

than for OSTS-Zipf(1.0) (and OSTS-Zipf). The aggression of OSTS-Poisson(1.0)

is linear in K whereas the aggression of OSTS-Zipf is logarithmic in K. We

can see how the aggression depends on K for some different versions of OSTS in

Figure 5.2.
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Figure 5.2: A plot of aggression for OSTS algorithms as a function of K, the
number of arms
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OSTS-Gap

A potential shortcoming of both OSTS-Poisson and OSTS-Zipf is that the dis-

tribution ν(i) (and therefore the number of times each arm is pulled) does not

depend on the size of the gaps between arms ∆k for k = 2, . . . , K. Each arm

is sampled based on its rank and so any arm of a given rank will be pulled in

expectation the same number of times regardless of how far apart the arms are.

However, the larger the gap between arms, the less time a given arm is associated

with an incorrect ordered statistic.

In order to rectify this shortcoming, we devise an algorithm that does depend

on the size of the gaps. Because we do not know the gaps, we use a Bayesian

estimator to estimate them empirically.

Consider trying to minimise the probability of error, rather than minimising

the simple regret. Let E>µσ(1)
be the event that we believe any sub-optimal

arm has a higher mean than the true optimal, then we can upper bound this

probability with a union bound as follows,

P (E>µσ(1)
) ≤ P (x > µσ(1)) +

∑

i∈{2,...,K}
P (x < µσ(i))

≤
∑

i∈{1,...,K}
e−2(µi−x)2ti , (5.14)

for any x∈[0, 1]. The second inequality follows from Hoeffding’s inequality, and

ti representing the number of times arm i is pulled.

Ideally, we would choose x and the ti to make the bound as tight as possible.

However, minimising the above bound is challenging. We want a closed form

expression for ν(K) to make the procedure simple to compute, but we could not

find an exact expression so we use an approximation. First, notice that unless

µσ(1) = µσ(2), the minimum value for x will lie between µσ(1) and µσ(2). We set it

to be halfway between the two, x = (µσ(1) + µσ(2))/2, which is the correct value

when K = 2. Assuming this value of x, it is optimal to pull the best and second

best arm the same amount of times, therefore tσ(1) = tσ(2). To set the values of

the other tis, we postulate that each arm should contribute to the above bound

(Equation (5.14)) equally. That is,

e−2(µσ(1)−x)2tσ(1) = e−2(µσ(2)−x)2tσ(2) = · · · = e−2(µσ(K)−x)2tσ(K) . (5.15)
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Given this assumption and our assumed value of x, we can write ti the number

of times we wish to pull arm i in terms of tσ(1).

Letting ∆n,m = µn − µm, the expression for tσ(i) is found as follows,

e−2(µσ(i)−x)2tσ(i) = e−2(µσ(1)−x)2tσ(1) ,

(µσ(i) − x)2tσ(i) = (µσ(1) − x)2tσ(1),

(∆2
σ(1),σ(i) +∆2

σ(2),σ(i) + 2∆σ(1),σ(i)∆σ(2),σ(i))tσ(i) = ∆2
σ(1),σ(2)tσ(1),

finally rearranging to get,

tσ(i) =
∆2

σ(1),σ(2)tσ(1)

∆2
σ(1),σ(i) +∆2

σ(2),σ(i) + 2∆σ(1),σ(i)∆σ(2),σ(i)

,

for i ∈ {3, . . . , K}. We do not know the values of µσ(i) and so we do not know

the values of the ∆ terms. We estimate these by using the empirical expectation

values E
[

∆2
σ(1),σ(2)

]

, E
[

∆2
σ(1),σ(i)

]

, E
[

∆2
σ(2),σ(i)

]

and E
[
∆σ(1),σ(i)∆σ(2),σ(i)

]
using

the posteriors of arms σ(1), σ(2), and σ(i). The two arms with the highest

empirical means being considered arm σ(1) and σ(2). After calculating ti in

terms of tσ(1) for all posteriors (excluding the two with the highest empirical

mean) the distribution ν(K) can be formed as follows,

ν(k = i) =
tσ(i)

∑

j∈{1,...,k} tσ(j)
. (5.16)

This proposed distribution is likely to be very aggressive compared to Successive

Rejects when the gap between the top two arms is much higher than the gap

between the best arm and all other arms. However, this distribution will also

be less aggressive than Successive Rejects when the gaps are very close to one

another, tending to a much more uniform allocation of arms, this is due to the

assumption that the best and second best arm should be pulled the same amount

of times. If all sub-optimal arms have the same mean then ν(K) will tend to the

uniform distribution. This appears to be reasonable behaviour to tend to. To see

this we can consider a problem where all sub-optimal arms do indeed have the

same mean. Then H2 = K∆−2, where ∆ is the gap of all the arms. If we assume

a strategy that did just pick arms uniformly such that each arm was pulled the
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same number of times the probability could be bounded as follows,

Pe ≤
K∑

k=2

P
(

X̂σ(1),T/K ≤ X̂σ(k),T/K

)

(5.17)

≤ (K − 1)e
−T∆2

K (5.18)

≤ (K − 1)e
−T
H2 . (5.19)

The above follows by applying a union bound, and then Hoeffding’s inequality.

This is in line with the lower bound produced by Audibert et al. [5] and so in

some sense is optimal for this case. It does not however necessarily follow that

OSTS-Gap itself will be optimal for this case as this would depend on factors

such as how quickly the rank distribution tended to a uniform distribution. This

is just to show that the approximation we make to derive the rank distribution

is justified in this case.

Since the algorithm adapts the ranking distribution ν(K) the aggression of

the algorithm is not just a function of the number of arms, but the gaps between

them. The aggression will change during the running of the algorithm as the gaps

become more certain.

Analysis of OSTS

We show that if ν(K) is a distribution with non-zero support everywhere, then

the expected simple regret diminishes exponentially.
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The simple regret can be bounded as follows,

E
[
µσ(1) − xT

]
= E




∑

i∈{2,...,K}
∆σ(i)P(i = argmaxj∈{1,...,K} µ̂σ(j),T )





≤ E




∑

i∈{2,...,K}
∆σ(i)P(µ̂σ(i),T > µ̂σ(1),T )





≤ E




∑

i∈{2,...,K}
∆σ(i)

(
P(µ̂σ(i),T > xσ(i)) + P(µ̂σ(1),T < xσ(i))

)





≤ E




∑

i∈{2,...,K}
∆σ(i)

(

e−2(µσ(i)−xσ(i))
2Tσ(i) + e−2(µσ(1)−xσ(i))

2Tσ(1)

)





≤
∑

i∈{2,...,K}
∆σ(i)

(

E

[

e−2(µσ(i)−xσ(i))
2Tσ(i)

]

+E
[

e−2(µσ(1)−xσ(i))
2Tσ(1)

])

,

where Ti is the number of times arm i has been pulled and xi is some chosen

constant where µi < xi < µσ(1). The second line is a union bound, line three

overcounts and the fourth applies Hoeffding’s inequality.

In order to show that this yields a regret which is exponentially decreasing

with T , it suffices to show that each arm is pulled a number of times proportional

to T , i.e. Ti = Ω(T ) for all arms i. This follows from the fact that the sampling

from the rank distribution ν(K) at time t is independent of the sampling at other

times. Therefore, the probability of pulling any arm does not go to zero no matter

the length of T .

First we give the general argument. We assume that the rank distribution is

monotonic, so that 0 < ν(K) ≤ ν(k − 1) ≤ · · · ≤ ν(1) < 1. We also assume that

all the νs are independent of T . Then, if the sampled rank of an arm at time t is

r, the probability of pulling that arm is ν(r). The probability of not pulling that

arm is 1− ν(r). Since ν(r) ≥ ν(K) for any rank r, the probability of not pulling

an arm at any round is less than or equal to 1− ν(K). This is true independent

of the arm and the round, so the probability of not pulling an arm N times is less

than (1− ν(K))N . In order to not pull an arm Θ(T ) times in T rounds, N would

have to be Θ(T ), and this upper bound to the probability would go exponentially

to zero.

To make this more precise, we will bound the probability that Ti = o(T ).
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Theorem 5.2.1. ∃T0, ε0 > 0 s.t. ∀T > T0 and for 0 < ε < ε0

P (Ti/T < ε) < e−αT/2

with α = | log [1− ν(K)]|.

Proof. Let Y t
i be 1 if arm i is pulled at time t and 0 otherwise. The number

of times the ith arm is pulled, Ti =
∑T

t=1 Y
t
i . In order to make no assumptions

about the dependencies between Y s at different times, let Dt
i denote everything

on which Y t
i depends. Then,

P (Ti = τ) =
∑

∑
Y t
i =τ

T∏

t=1

P (Y t
i |Dt

i), (5.20)

where the sum is over all configurations which have Y t
i = 1 exactly τ times. Since,

for all t, P (Y t
i = 1|Dt

i) ≤ ν(1) and P (Y t
i = 0|Dt

i) ≤ 1− ν(K), it follows that

P (Ti = τ) ≤
∑

∑
Y t
i =τ

ν(1)τ (1− ν(K))T−τ , (5.21)

=

(
T

τ

)

ν(1)τ (1− ν(K))T−τ . (5.22)

The simplified bound,

(
n

e
)n ≤ n! ≤ ne(

n

e
)n (5.23)

along with the assumption that Ti/T → 0 in the limit T → ∞, can be used to

produce

P (Ti = τ) ≤ (eT )τ+1τ−τ exp

(

−τ 2

T

)

ν(1)τ (1− ν(K))T−τ . (5.24)

If τ = o(
√
T ), then this decreases to zero faster than any exponential decay

with exponent less than | ln (1− ν(K))|, e.g. o(exp [1
2
ln (1− ν(K))]). If τ grows

more quickly than
√
T (but still more slowly than T ), then it could decay faster

still.

Thus, with a probability exponentially close to 1, each arm will be pulled a

number of times which grows as fast as T , that is Ti = Ω(T ) for all i ∈ {1, . . . , K}.
This shows that if ν(K) is fixed with non-zero support everywhere the simple

regret will diminish exponentially. We do not attempt to establish tight bounds,
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just show the exponential reduction in simple regret.

A tight bound would be similar to the bound given for Successive Rejects.

Audibert et al. give their bound for Successive Rejects in terms of the probability

of error as,

Pe ≤
K(K − 1)

2
exp

(

− T −K

(HK − 1/2)H2

)

. (5.25)

Since HK ≈ logK the time horizon only needs to be o (logKH2) before we can

say with some confidence that the best arm will be identified. This is within a

logarithmic factor of the hardness of the problem.

Optimistic Thompson Sampling

It was found empirically that the time horizon of the exploratory phase can be

quite large before OSTS-Zipf behaves in a similar manner to Successive Rejects

(see Section 5.2.2). The amount of times an arm other than the kth ranked is

pulled when our sample from ν(K) dictates to pull the kth ranked is of order

O(log(T )), and so for small horizons the arm allocation will be closer to uniform

than Successive Rejects. May et al. proposed Optimistic Thompson Sampling,

with the insight that no advantage was gained by sampling from the left tail

of the posterior distributions [53]. The proof of bounds for Thompson Sampling

by Agrawal et al. [3] can be modified for the Optimistic Thompson Sampling

algorithm. A reduction in additive constant terms (with respect to T ) in the

bound is shown in Section 3.2 and would be expected if the algorithm had an

advantage. The number of times the incorrect arm is pulled when we attempt

to pull the kth ranked arm is still O(log(T )), however the leading constant may

be significantly reduced. The hypothesis being that for shorter time horizons

if we use Optimistic Thompson Sampling, we should marginally improve the

performance.

The algorithm for Optimistic Thompson Sampling will not suffice for effi-

ciently sampling the kth ranked arm, as it assumes we are looking for the maxi-

mum sample. In OSTS we are looking for the sample with the k rank. A proposed

modification is to order the sampling distributions based on their current means.

For all means ranked lower than the kth rank, draw a sample from the right hand

side of the distribution. For all means ranked higher than the kth, draw a sample

from the left hand side, and for the kth ranked mean draw the mean itself. We

can think of this as the sampling procedure of OUTS (discussed in Section 3.2.3)
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applied to the subset of arms with low means and applied to a pessimistic ver-

sion of OUTS applied to the subset of arms with high means. The strategy is

described by Algorithm 5.2.

Algorithm 5.2 Optimistic Ordered-Statistic Thompson Sampling + Empirically
Best Arm
Let α1,k = 1,

β1,k = 1 for k ∈ {1, . . . , K}.

Exploratory Phase:
for t = 1, . . . , T − 1 do
Sample ot ∼ ν(K)
Let mt,i =

αt,i

αt,i+βt,i
.

Let Mt = otth largestmt,i.
Sample θsamp

t,i ∼ Beta(αt,i, βt,i).

Let θt,i =







max
(

θsamp
t,i ,

αt,i

αt,i+βt,i

)

mt,i < Mt

mt,i mt,i = Mt

min
(

θsamp
t,i ,

αt,i

αt,i+βt,i

)

mt,i > Mt.

, for i ∈ {1, . . . , K}.

Pull arm at = otth largest θt,i
Let αt+1,at = αt,at + 1(xat(t) = 1)

βt+1,at = βt,at + 1(xat(t) = 0)
Let αt+1,j = αt,j

βt+1,j = βt,j for j ∈ {1, . . . , K} \ {at}.
end for

Final Decision:
Let Ψ(T ) be argmaxi X̂i,T

5.2.2 Experiments

The experiments are identical to those by Audibert, Bubeck, and Munos [5] and

similarly we report performance in terms of probability of error. Table 5.1 lists

the experiments performed. In the experiments we compare our algorithms to

Thompson Sampling [34], Successive Rejects [5] and BayesGap [27], for complete-

ness descriptions are provided in Section 2.8. Thompson Sampling provably can

not asymptotically achieve exponentially diminishing probability of error in the

best arm identification problem since it achieves the lower bound of regret in the

multi-armed bandit problem. Successive Rejects has been proved to achieve ex-

ponentially diminishing probability of error as has BayesGap. In all experiments
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Table 5.1: Parameters of best arm identification experiments. These are the same
as those proposed by Audibert et al. [5]

ExperimentK Arm Means

1 20 µσ(1) = 0.5, µσ(2):σ(20) = 0.4

2 20 µσ(1) = 0.5, µσ(2):σ(6) = 0.42,

µσ(7):σ(20)= 0.38

3 4 µσ(1) = 0.5,

µσ(i) = 0.5− (0.37)i, i ∈ {2, 3, 4}

4 6 µσ(1) = 0.5, µσ(2) = 0.42,

µσ(3):σ(4) = 0.4, µσ(5):σ(6) = 0.35

5 15 µσ(1) = 0.5,

µσ(i) = 0.5− 0.025i, i ∈ {2, . . . , 15}

6 20 µσ(1) = 0.5, µσ(2) = 0.48,

µσ(7):σ(20)= 0.37

7 30 µσ(1) = 0.5, µσ(2):σ(6) = 0.45,

µσ(7):σ(20)= 0.43, µσ(21):σ(30) = 0.38

the parameter γbgap for Bayes Gap was set to γbgap = 0.0001. This was found to

give good performance for the algorithm during testing.

Performance

The algorithms were run on all experiments described. For each experiment

50 permutations of the arms were created randomly. For each permutation the

algorithm was run 1000 times to estimate the error rate, the error rates were

then averaged over the 50 permutations. Figure 5.5 shows the results for OSTS

(Poisson, Zipf and Gap) as compared with the other algorithms. Figure 5.3

shows the performance of OSTS-Zipf(s) and OSTS-Poisson as the aggression of

the algorithm is increased. We can see for a given experiment that aggression

predicts performance better than the particular type of distribution used, with

distributions with the same aggression having roughly the same performance. Un-

fortunately however the problem determines the appropriate level of aggression.

Experiments 6 and 7 showed larger aggression leading to lower error. Experiment
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Figure 5.3: Comparing two distribution types (Zipf,Poisson) with varying levels
of aggression. We can see that they follow similar levels of performance for the
same aggression.

5, like experiment 3, showed lower error with lower aggression.

Comparing distribution of allocation

To understand how the algorithms were distributing their allocation of pulls the

pull counts for each arm were recorded for a single instance of an experiment.

Figure 5.4 shows the distribution of arm pulls for several of the algorithms on

experiment 4. It can be seen how Thompson Sampling “exploits” the best arm

far more than any other algorithms. The figure also shows a close resemblance

between the number of times Successive Rejects pulls a particular arm, and how

many times OSTS-Zipf pulls the same arm. As expected OSTS-Poisson is more

exploitative than OSTS-Zipf, but still far less than Thompson Sampling. OSTS-

Gap also appears to exploit more than OSTS-Zipf does. Empirically we found

OSTS-Zipf behaved like Successive Rejects for large time horizons, however for a

small time horizon OSTS-Zipf appear to perform less well, the allocation being

less aggressive than Successive Rejects.
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Figure 5.4: Comparison of allocation distributions on experiment 4
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Figure 5.5: Coloured bars show percentage of errors, and white bars show ag-
gression, and is only plotted for OSTS-Zipf and OSTS-Poisson algorithms. We
can see that in general more aggressive strategies empirically perform better.
However, Experiment 5 shows standard Thompson Sampling beginning to per-
form worse than less aggressive strategies. Empirically the optimistic version of
OSTS-Poisson performs the best all round out of the Thompson Sampling based
strategies tried, performing better than Successive Rejects, and close in perfor-
mance to the parametrised algorithm Bayes Gap. Optimism appears only to give
extremely marginal improvements to the general algorithm in this case.



CHAPTER 5. BEST ARM IDENTIFICATION 160

Optimism in OSTS

A small experiment was performed to investigate if there was much advantage

to using optimism in Ordered-Statistic Thompson Sampling. Experiment 4 was

chosen and OSTS-Zipf(s) was compared with an optimistic version for varying

levels of aggression. Experiment was repeated 50, 000 times for each aggression

level. Figure 5.6 shows the mean probability of error and the standard error for

this experiment. The difference appears to be marginal, only showing a slight

improvement for some of the aggression levels tried.

Further empirical comparison of OSTS-Zipf and Successive Reject

We have discussed in Section 5.2.1 the similarities between OSTS-Zipf and Suc-

cessive Reject. For large T the allocation of each algorithm should be approx-

imately the same, which has been shown empirically in Section 5.2.2. Another

experiment was performed to investigate how quickly it takes for their per-

formance to match. We ran the experiments 100 times for time horizons of

1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, 5000, 5500, 6000, 6500, 7000, 7500. Fig-

ure 5.7 shows two plots of the probability of error for the algorithms as a function

of the time horizon for experiment 1. Two versions of the Zipf strategies were

plotted, the version where the top two ranked arms are pulled equally in ex-

pectation (referred to as OSTS-Zipf) and an unmodified version with parameter

one ( OSTS-Zipf(1.0) ). Thompson Sampling is also plotted to a provide a com-

parison. It can be seen that as the time horizon increases the different between

OSTS-Zipf and Successive Rejects diminishes. OSTS-Zipf(1.0), a more aggressive

algorithm to OSTS-Zipf, performs slightly better than OSTS-Zipf and eventually

outperforms Successive Rejects for a large enough time horizon. We see that

for experiment 1 Thompson Sampling has a similar performance to Successive

Rejects initially and empirically then starts to outperform it. However we know

that as the time horizon gets very big it must start to degrade in performance

in comparison to Successive Rejects. This plot also shows that for Optimistic

OSTS-Zipf is almost indistinguishable from standard OSTS-Zipf. It appears that

the effects of optimism are more noticeable for more aggressive strategies and

become ever more marginal as the aggressiveness is reduced.
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Figure 5.6: A comparison of OSTS-Zipf(s) with an optimistic version. We can see
that the optimistic version appears to marginally outperform the non-optimistic
version. However the performance difference is small and we only attain a statis-
tically significant difference for some aggression levels.
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Figure 5.7: Two plots of performance on experiment 1 for varying time hori-
zons. The OSTS-Zipf/OSTS-Zipf(1.0) algorithms initially perform worse than
Successive Reject, but interestingly also Thompson Sampling. This implies that
a bias to being very aggressive initially might be beneficial. The performance of
OSTS-Zipf gets closer to Successive Reject as the time horizon gets larger.
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5.2.3 Increasing aggression in early rounds

We observe that for small time horizons a very aggressive algorithm, such as

Thompson Sampling, performs better than its less aggressive counterparts. How-

ever we know that Thompson Sampling in the long term is sub-optimal. An

aggressive strategy like Thompson Sampling performing well initially indicates

that the standard OSTS procedure could be improved by introducing a bias to-

wards aggressiveness, especially in the early stages. As the agent becomes more

sure of the arms means the aggression should then revert to what is specified

by ν(K), becoming less aggressive. To test this theory we also investigated a

modification to the OSTS algorithm we term Aggressive OSTS. In Aggressive

OSTS the expected value of the arms mean is also stored for each arm (mi for

i ∈ {1, . . . , K}). The expected values also have a rank. Let σm(i) be the arm

with rank i when ranked by the expected value. As before with OSTS, at each

round, a rank ot is drawn from ν(K) and a sample θi drawn for each arm. If

ot > 1 then we ascend through the arms, σm(j), for j = 2 to ot. Let Em(j) be

the event that (mσm(j−1) +mσm(j))/2 < θσm(j) If Em(j) occurs then we take this

as indication that we have not sufficiently distinguished between the arms σm(j)

and σm(j − 1). In this event we then just perform Thompson Sampling using

just the arms σm(k) for k ≥ j − 1. If event Em(j) does not occur for all j ≤ ot

then this is interpreted as higher arms being well estimated, the algorithm then

reverts to performing OSTS. When the arms are poorly estimated event Em(j)

will occur more frequently for j < ot and so the algorithm will be given a bias to

behave more aggressively. As the arms being better estimated then Em(j) occurs

less and less frequently and so the algorithm reverts to behaving like OSTS. The

hypothesis is that this added bias will be beneficial to the performance of the

algorithm. We investigated this by using Aggressive OSTS-Zipf on experiment

1 and 6 for varying time horizons and comparing it to OSTS-Zipf, Successive

Rejects and Thompson Sampling. Figure 5.8 shows these experiments. The im-

provements by adding this bias are clear. Aggressive OSTS-Zipf closely maps the

performance of Successive Rejects for short time horizons without the need to

know the horizon ahead of time.

The same set of experiments as shown in Figure 5.5 were performed using

the biased aggressive versions of OSTS. The results of these experiments can be

shown in Figure 5.9.
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Figure 5.8: Plots of performance for Experiment 1 and 6. The results clearly show
the improvement of Aggressive OSTS-Zipf as compared to OSTS-Zipf especially
for small time horizons.
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Figure 5.9: Comparison of benchmark algorithms to some Aggressive OSTS al-
gorithms. We can see an improvement to OSTS when it is biased to be more
aggressive over the basic OSTS algorithm (some results shown in Figure 5.5).
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5.2.4 OSTS summary

With OSTS we have proposed a class of best arm identification algorithm. Some

of the advantages of OSTS are,

• It is not necessary to know the time horizon prior to making decisions.

• It is computationally efficient to compute a decision. The time complexity

scales linearly with the number of arms K.

• Like Thompson Sampling, OSTS can be used for problems with different

reward distributions. Any reward distribution with a conjugate prior can

be handled without loss of computational efficiency. More complicated pos-

terior distributions can be approximated using MCMC for example. Like

Thompson Sampling it also means that arms need not be independent.

We introduced a concept of aggression as a property summarising the be-

haviour of an algorithm. We find that empirically more aggressive algorithms

appear to perform better. Comparisons of OSTS-Poisson and OSTS-Zipf suggest

that the specifics of a distribution are far less important than its aggressiveness in

determining performance. In environments for which we expect OSTS-Gap to be

aggressive it consistently outperforms other parameter-free algorithms like Suc-

cessive Reject. More aggressive variants such as OSTS-Poisson are comparable

to the parametrized gap based method.

It is still left to be shown which fixed distribution ν(K) is the most suitable

choice in balancing exploration. For this fixed ν(K) we could expect to get a much

stronger theoretical bound on its performance, which we would expect to be, like

Successive Reject, within a logarithmic factor of the optimal sample complexity.

It is expected that one avenue to pursue this bound would require much stronger

control on the tail distribution for the regret of Thompson Sampling, in order

to have control on the minimum number of times each arm had been pulled.

However we empirically show that a more aggressive adaptation of OSTS-Zipf

has behaviour comparable or better to Successive Rejects. OSTS-Gap adapts the

sampling distribution and can be seen as a parameterless version of the algorithm.

The algorithm is not very aggressive when all suboptimal arms have the same

mean, and so further work might try to improve the adaptive distribution so that

it is more aggressive in this case.
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We also show that optimism can be adapted to this setting, however in the

experiments we have tried the gain, if any, was marginal. This is counter to the

behaviour exhibited in Thompson Sampling where optimism (and also the form of

optimism shown in OUTS) shows a statistically significant gain in performance.

An interesting avenue of investigation would be to see how the algorithm

behaves in theM -best identification problem, where an agent must select not only

the best arm but the top M arms. This problem has recently been investigated

by Wang et al. [74]. Although not investigated in this thesis it is conjectured that

little to no adaptation of the general algorithm would be necessary, only perhaps

that the distribution ν(K) be carefully chosen.

5.3 Towards an anytime Successive Rejects

In the previous section we have seen OSTS-Zipf performs similarly to Successive

Rejects for time horizons that are much larger than the hardness, H2, of the

problem. We have also shown that other choices of ν(K) outperform Successive

Rejects for a variety of test problems while being suitable for an “anytime” best

arm identification problem. By an anytime best identification problem we mean

that the time horizon is not known in advance. Instead a recommendation can

be asked at any time. Audibert et al. [5] conclude the paper in which they

introduce Successive Rejects by asking what an anytime version of the algorithm

may look like. OSTS from the previous section shows that we can achieve an

anytime algorithm that empirically outperforms Successive Rejects for a suitable

ν(K). However, it is difficult to provide an analysis as to what this ν(K) might

look like in general. The reason is that it is non-trivial to have tight control

on the tail probabilities for the number of times an arm is pulled. Proposition

1 of Kaufmann et al. [34] makes steps towards such control, but unfortunately

does not appear to be strong enough. As a step towards an anytime version of

Successive Rejects we propose an alternative sampling algorithm, Anytime SR.

Like OSTS we still use the idea of ranking of the arms. The ranking is now instead

based on the number of times an arm has been pulled. This corresponds to how

we viewed Successive Rejects as having ranked the arms. We also de-randomise

the algorithm by removing the sampling from the rank distribution.
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5.3.1 Algorithm description

Instead the procedure is as follows. We sample optimistically from the posterior

distributions describing the means of the arms , finding the arm, bt, that cor-

responds to the largest sampled estimate (like Optimistic Thompson Sampling).

Next we rank the arms based on number of times pulled such that rank 1 cor-

responds to the arm pulled most, and K corresponds to the arm pulled least.

For rank k = K, . . . , 2 (starting from the least pulled arm) we see if kth ranked

arm has been pulled less than 2/K times that of the arm bt has been pulled.

If we find an arm for which this is true, we pull it. Otherwise we pull the arm

bt. This procedure effectively performs Optimistic Thompson Sampling until the

sub-optimal arms are pulled too infrequently compared to the candidate best

arm. The rationale behind using the counts as a ranking mechanism is that the

closer the mean of an arm is to the true best mean, the more likely we are to pull

it in Optimistic Thompson Sampling. The details of this procedure are shown in

Algorithm 5.3.

5.3.2 Experiments

Performance

We perform the experiments described in section 5.1, comparing Anytime SR to

Successive Rejects. The results of these experiments are shown in Figure 5.10.

We can see the extremely close resemblance of the two algorithms in terms of

performance.

Distribution of pulls

Empirically we can demonstrate why we might expect the distribution of number

of pulls to be much more predictable than OSTS. This will allow for easier control

over the number of times each arm is pulled. To see this we look at a 4 arm best

arm identification problem. The arm means are 0.5, 0.475, 0.45, and 0.425, with

a time horizon of 1000. The experiment was run 3000 times and the distribution

of counts over the runs was recorded. Figure 5.11 shows the results comparing

OSTS-Zipf, Anytime SR and Successive Rejects. It shows the distribution for each

arm separately. It can be seen that Anytime SR shows a very close resemblance

to Successive Reject. The distribution for OSTS-Zipf is much less sharp for this

time horizon showing why the analyse may be much harder.
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Algorithm 5.3 Anytime Successive Rejects

Let nt(j) be the number of times arm j is pulled at time t.
Let α1,k = 1,

β1,k = 1 for k ∈ {1, . . . , K}.

Exploratory Phase:

for t = 1, . . . , T do
Sample θi ∼ Beta(αt,i, βt,i), for i ∈ {1, . . . , K}..
Find arm bt = argmaxi max

(

θi,
αt,i

αt,i+βt,i

)

Order arms by pulls s.t. c1 is the arm pulled most, and cK pulled least.
Find largest j s.t. nt(bt) >

jnt(cj)

2

at =

{
cj if j exists,
bt otherwise,

Pull arm at.
Let αt+1,at = αt,at + 1(xat(t) = 1)

βt+1,at = βt,at + 1(xat(t) = 0)
Let αt+1,j = αt,j

βt+1,j = βt,j for j ∈ {1, . . . , K} \ {at}.
end for

Final Decision:

Let Ψ(T ) be argmaxi X̂i,T

5.3.3 Analysis

We give a weak upper bound on the probability of error of Anytime SR.

Lemma 5.3.1. The probability of error, Pe, of Anytime SR is upper-bounded as

follows,

Pe ≤ (K − 1)e
− 2t

K2H2 (5.26)

for t > K(K − 1)/2 + 1.

Proof. By a union bound and application of a Hoeffding bound we have,

Pe ≤
K∑

k=2

e−∆2
knk , (5.27)

where nk is the number of times arm k is pulled. This is derived in much the
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Figure 5.10: Comparing Anytime SR to Successive Rejects.

same way as with the bound for Successive Reject by Audibert et al. [5].

By definition of the algorithm the most pulled arm can only beK/2 times that

of the lowest pulled arm. Let t be the time horizon and let nmin be the smallest

number of times any arm can be pulled. For t > K(K−1)/2 the least pulled arm
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Figure 5.11: Comparing distribution of pulls for OSTS-Zipf, Anytime SR, and
Successive Rejects.

is smallest when all other arms have been pulled an equal number of times. This

means that nmin+
K(K−1)nmin

2
= t. Rearranging we get that nmin = 2t

K(K−1)+2
. We
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note that nmin ≥ 2t
K2 . Putting nmin into Equation 5.27 we get,

Pe ≤ (K − 1)e−
2∆2

k
t

K2 . (5.28)

Then by the definition of H2 we have,

Pe ≤ (K − 1)e
− 2t

H2K
2 . (5.29)

This proof is a weak result, but serves to formalise that the algorithm has a

probability error that reduces exponentially with time.

The next lemma tells us the probability of a sample of the kth arm being

larger than a sample of the best arm given the number of times each is pulled.

Lemma 5.3.2. Let nk be the minimum of the number of times the kth best arm

and the best arm are pulled. Let θk be a sample from the posterior of this arm.

Then,

P (θk > θ1) ≤ 3e−
2∆2

k
nk

9 . (5.30)

Proof. For µσ(k) < xσ(k) < yσ(k) it follows that,

P
(
θσ(k) > θσ(1)

)
≤ P

(
µ̂σ(k) > xσ(k)

)
+ P

(
θσ(k) > yσ(k), µ̂σ(k) < xσ(k)

)
+ P

(
µ̂σ(1) < yσ(k)

)
.

(5.31)

The first term denotes the probability that the estimated mean of a suboptimal

arm is poorly estimated and can be bounded using a Chernoff-Hoeffding bound

as follows,

P
(
µ̂σ(k) > xσ(k)

)
≤ P

(
µ̂σ(k) > µσ(k) + (xσ(k) − µσ(k))

)
, (5.32)

= P
(
nσ(k)µ̂σ(k) > nσ(k)µσ(k) + (xσ(k) − µσ(k))nσ(k)

)
, (5.33)

≤ e−2(xσ(k)−µσ(k))
2nσ(k) . (5.34)

The second term is the probability that the sample estimate of the suboptimal

arm is large when the estimated mean is well estimated. The proof is given by

lemma 3 in the Thompson Sampling proof of Agrawal and Goyal [3] which gives
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the following bound,

P
(
θσ(k) > yσ(k), µ̂σ(k) < xσ(k)

)
≤ e−nσ(k)d(xσ(k),yσ(k)), (5.35)

where d(xk, yk) = xk log
xk

yk
+(1−xk)

1−xk

1−yk
. Using Pinsker’s inequality we get that,

P
(
θσ(k) > yσ(k), µ̂σ(k) < xσ(k)

)
≤ e−2(xσ(k)−yσ(k))

2nσ(k) . (5.36)

The third term is the probability that the optimal arm is poorly estimated, which

again follows from a Chernoff-Hoeffding bound as follows,

P
(
µ̂σ(1) < yσ(k)

)
≤ e−2(yσ(k)−µσ(1))

2nσ(k) . (5.37)

By setting xσ(k) = µσ(k) + (µσ(1) − µσ(k))/3 and yσ(k) = µσ(k) + 2(µσ(1) − µσ(k))/3

we arrive at the bound given in the lemma.

We can see from lemma 5.30 that once an arm whose gap is ∆σ(K), or greater,

has been pulled O( K
∆2

σ(K)

) times then we have a small probability of that arm

having the largest sample. It will therefore not be pulled when Anytime SR

behaves analogously to Optimistic Thompson Sampling. It instead will only be

pulled a number of times based on its “rank” (which is based on the number of

times it has been pulled).

5.3.4 Anytime SR summary

This section proposes an anytime algorithm called Anytime SR which attempts

to have similar behaviour to Successive Rejects but without the requirement to

know the time horizon. This is motivated by two things, firstly OSTS-Zipf is

an anytime algorithm that eventually behaves similarly (for large time horizon

that may be much larger than the hardness of the problem). Secondly Audibert

et al. raise the question of an anytime version of Successive Rejects in the paper in

which it is introduced [5]. Empirically it has been demonstrated to have extremely

similar behaviour and so is a strong candidate algorithm to answering Audibert’s

question. It is hoped that it can be shown that this algorithm has an upper-bound

on its probability of error which is the same within a constant factor to that of

Successive Rejects.
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5.4 Maximum Boundary of Pairs

In this section we propose a parameterless Bayesian algorithm for the best arm

identification problem. We call this method Maximum Boundary of Pairs (MBoP).

At each round the method uses Thompson Sampling to select a candidate best

arm. However, rather than pull this arm, we form a particular upper bound on

the probability of error that assumes the candidate as the best arm. The method

then applies the principle of optimism in the face of uncertainty to pick an arm

that could reduce the given upper bound the most. We compare our proposal

to a number of algorithms in the literature to empirically evaluate the methods

performance.

Algorithm Description

Maximum Boundary of Pairs is a Bayesian method that employs ideas such as

Thompson Sampling and the principle of optimism in the face of uncertainty.

For each arm the algorithm stores a posterior distribution modelling the belief

of what the mean payoff for the arm is. In this section, the bandit is assume to

have Bernoulli distributed rewards. We therefore use Beta distributions to model

these beliefs.

At each round the algorithm first draws a sample from each posterior. Each

sample is used as an estimate for the mean payoff of an arm. The arm associated

with the highest sample is selected as the candidate best arm. This is the Thomp-

son Sampling procedure. However, in MBoP this arm is not necessarily pulled.

Let ct be the candidate chosen by Thompson Sampling for a round t. If ct is

truly the best arm we will improve our final decision if we reduce the probability

of mistaking any of the other arms as being better than ct. This can be done

by either improving the confidence we have in our estimate of the “best arm” so

that we are more sure the arms mean is high relative to the others. Alternatively

we could remove the uncertainty of the arm most likely to be mistaken with it

(this is only mistaken in the sense of assuming ct is the best arm).

For each of the non-candidate arms we find a point bi,t that minimizes the

expression FBeta
αt,ct ,βt,ct

(bi,t) + 1 − FBeta
αt,i,βt,i

(bi,t). The expression upper bounds the

probability of each arm i being mistaken as better than the candidate ct. Letting

bmax,t be the largest bi,t we then compute FBeta
αt,i,βt,i+1(bmax,t)− FBeta

αt,i,βt,i+1(bmax,t) for

each non-candidate arm. The procedure then finds the arm nt with the largest
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such quantity. Each non-candidate arm is considered sub-optimal and so we wish

to reduce our belief that they could have a true mean higher than the “optimal”

candidate arm. A reward of 0 will reduce this belief and reward of 1 will increase

it. We then optimistically assume that we receive a reward of 0 which will reduce

our belief as desired. FBeta
αt,i,βt,i+1(bmax,t) − FBeta

αt,i,βt,i+1(bmax,t) can be viewed as an

estimate of how much this belief will be reduced. The number of pulls of nt is

compared with the number of pulls of ct, and the arm pulled least so far is then

pulled.

The algorithm is shown in Algorithm 5.4. A visualisation of the selection

procedure for a single round is shown in Figure 5.12.

Figure 5.12: A visualisation of the MBoP strategy. The uncertainty in each arm
is modelled by a Beta posterior. Thompson Sampling is used to first find the
“best” arm. The decision boundary between the “best” arm and all other arms
is found. The “best” arm and one other arm have the largest boundary value.
The arm pulled least between these two is chosen as the next arm to pull.

We can view this procedure as optimistically reducing an upper bound on the
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error, assuming the candidate arm ct is in fact the best arm.

Pe = P




∨

i∈{2,...,K}
µσ(i) > µσ(1)



 (5.38)

≤
∑

i∈{2,...,K}
P
(
µσ(i) > x

)
+ P

(
x > µσ(1)

)
(5.39)

= FBeta
αct ,βct

(x) +
∑

i∈{1,...,K}\ct

(
1− FBeta

αi,βi
(x)
)
, (5.40)

where x = maxi bi,t. This bound is optimistically reduced, since the two arms

than can reduce this bound the most are ct or nt, whichever has been pulled the

least.

Algorithm 5.4 Maximum Boundary of Pairs + Empirically Best Arm

Let α1,k = 1,
β1,k = 1 for k ∈ {1, . . . , K}.

Exploratory Phase:
for t = 1, . . . , T − 1 do
Sample θt,i ∼ Beta(αt,i, βt,i), for i ∈ {1, . . . , K}.
Let ct = argmaxi θt,i
Find bi,t = minb F

Beta
αt,ct ,βt,ct

(b) + 1− FBeta
αt,i,βt,i

(b), for i ∈ {1, . . . , K} \ {ct}.
Let bmax,t = maxi bi,t
Let nt = argmaxi F

Beta
αt,i,βt,i+1(bmax,t)− FBeta

αt,i,βt,i+1(bmax,t).
Pull at = argmini∈{ct,nt} αt,i + βt,i.
Let αt+1,at = αt,at + 1(xat(t) = 1)

βt+1,at = βt,at + 1(xat(t) = 0)
Let αt+1,j = αt,j

βt+1,j = βt,j for j ∈ {1, . . . , K} \ {at}.
end for

Final Decision:
Let Ψ(T ) be argmaxi X̂i,T

Computing bi,t

For Bernoulli arms, when the posterior beliefs are modelled as Beta distributions,

the value of the mean is bounded in the interval (0, 1). bi,t is the point that

minimizes FBeta
αt,ct ,βt,ct

(b) + 1 − FBeta
αt,i,βt,i

(b). This point can be found by a binary
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search within an appropriate interval in (0, 1). It can therefore be computed

reasonably efficiently.

For arms with Normally distributed rewards bi,t can be found in closed-form,

and so using this form of the algorithm is extremely computationally efficient.

Let µ1,σ
2
1 and µ2,σ

2
2 be the hyperparameters for the belief distributions of the

two arms associated with bi,t. bi,t is one of the, at most two, solutions to the

equation,

1
√

2πσ2
1

exp

(

−(x− µ1)
2

2σ2
1

)

=
1

√

2πσ2
2

exp

(

−(x− µ2)
2

2σ2
2

)

. (5.41)

The psuedocode for the normal approximated variant of the algorithm is given

in 5.5.

Analysis

Lemma 5.4.1. Let {Ni,t} be the frequencies of pulls for all the arms until time

t. If N1,t ≥ N2,t ≥ · · · ≥ NK,t, so that N1,t is the most any arm has been pulled

then N1,t −N2,t ≤ 1

Proof. The proof follows by induction over t. For t = 1 and t = 2 the proposition

is clearly true since at t = 1 all Ni,1 = 0, and at t = 2 only one arm has been

pulled. This shows the base case.

Given at t the proposition is true, we only need to consider two cases.

Case 1: N1,t 6= N2,t,

By definition of the algorithm the arm pulled can next can not be most pulled arm.

Assuming the proposition in this case N1,t−N2,t = 1, so either N1,t+1−N2,t+1 = 1

or N1,t+1 −N2,t+1 = 0.

Case 2: N1,t = N2,t,

In this case, the most pulled arm can only increase by one, and so the propo-

sition much hold.

Lemma 5.4.2. For fixed K the true best arm is pulled Ω(T ) times in the Thomp-

son Sampling strategy.

Proof. Let N∗ be the number of times the best arm is pulled. The expected

number of times a sub-optimal arm, k is pulled, E [Nk] = O(lnT ), that is E [Nk] ≤
Ck lnT for some constant C dependent on the arm gaps, ∆k. This means that

E [N∗] ≥ T −D lnT for some constant D in terms of all ∆k and K. For T >> D
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Algorithm 5.5 Normal Maximum Boundary of Pairs + Empirically Best Arm
for Bernoulli bandits

Let s2 = 0.25 be a known variance of the rewards
Let d1,k = 0,

µ1,k = 0.0,
σ2
1,k = 1 for k ∈ {1, . . . , K}.

Exploratory Phase:
for t = 1, . . . , T − 1 do
Sample θt,i ∼ N (µt,i, σt,i), for i ∈ {1, . . . , K}.
Let ct = argmaxi θt,i
Find bi,t = minb F

Normal
µt,ct ,σt,ct

(b) + 1− FNormal
µt,i,σt,i

(b), for i ∈ {1, . . . , K} \ {ct}.
Let bmax,t = maxi bi,t

Let mt,i =
µt,is

2

s2+σ2
t,i

Let v2t,i =
σ2
t,is

2

σ2
t,i+s2

Let nt = arg!maxi F
Normal
mt,i,v2t,i

(bmax,t)− FNormal
µt,i,σt,i

(bmax,t).
Pull at = arg!mini∈{ct,nt} dt,i.

Let µt+1,at =
µt,ats

2+xatσ
2
t,at

s2+σ2
t,at

σ2
t+1,at =

σ2
t,at

s2

σ2
t,at

+s2

dt+1,at = dt,at + 1
Let µt+1,j = µt,j

σ2
t+1,j = σ2

t,j

dt+1,j = dt,j for j ∈ {1, . . . , K} \ {at}.
end for

Final Decision:
Let Ψ(T ) be argmaxi X̂i,T

this is effectively T . Since T is the largest possible value of pulls then it follows

that N∗ = Ω(T )

Lemma 5.4.3. For fixed K the true best arm is pulled Ω(T ) times in the MBoP

strategy.

Proof. We know that the Thompson Sampling strategy pulls the optimal arm

Ω(T ) times. The MBoP strategy is the same as the Thompson Sampling strategy

whenever the candidate arm ct has been pulled less than the other arm, nt, in the

chosen pair. Every time nt is chosen it increases the probability that a sample

from that arm lies close to its true mean, this then does not effect the order of

the number of times that ct will be the optimal arm. Since all other arms can
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not be pulled for too long without the optimal arm being pulled less times then

the optimal arm must also be pulled Ω(T ) times.

5.4.1 Experiments

The experiments are identical to those by Audibert, Bubeck, and Munos [5] and

similarly we report performance in terms of probability of error. This is the same

as the experiments done for Ordered-Statistic Thompson Sampling. The experi-

ments performed can be found in Table 5.1 in Section 5.2.2. In the experiments

we compare our algorithms to Thompson Sampling [34], Successive Rejects [5]

and BayesGap [27], for completeness descriptions are provided in algorithms 3.1,

2.17 and 2.15 respectively. Thompson Sampling provably can not asymptotically

achieve exponentially diminishing probability of error in the best arm identifica-

tion problem since it achieves the lower bound of regret in the multi-armed bandit

problem. Successive Rejects has been proved to achieve exponentially diminish-

ing probability of error as has BayesGap. In all experiments the parameter γbgap

for Bayes Gap was set to γbgap = 0.0001.

Performance

The algorithms were run on all experiments described. For each experiment

50 permutations of the arms were created randomly. For each permutation the

algorithm was run 1000 times to estimate the error rate, the error rates were then

averaged over the 50 permutations. The results of these experiments are shown in

Figure 5.13. We can see that in most of the experiments MBoP outperforms both

Successive Rejects and BayesGap. The Normal MBoP variant does not perform

as well, but still in most cases improves upon Successive Rejects.

5.4.2 MBoP summary

We have proposed a parameterless best arm identification algorithm. The algo-

rithm is Bayesian and uses Thompson Sampling to help guide exploration. It

combines this with the principle of optimism in the face of uncertainty, in the

sense that for a particular upper bound of the probability of error, it chooses the

action that potentially reduces the error the most. Empirical results show that

this algorithm performs well in comparison to other algorithms. The choice of
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Figure 5.13: The bars show percentage of errors. For many of the experiments
MBoP results in the lowest error. The normal version of MBoP also performs
well on the test set, although with a slight increase in probability of error against
the version using a Beta model. However, this cost to performance may be traded
off against the decreased computational complexity. The performance for MBoP
appears to be better or the same as the other algorithms. The exception being
experiment 5.
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error bound considered at each round could be improved. It would be of interest

how a similar strategy using improved bounds would behave.

5.5 Conclusion

This chapter has explored using Thompson Sampling in the context of a best

arm identification problem. The algorithm itself is known to be sub-optimal for

this problem. This is because the strategy begins to exploit the arm it believes

to be best too much rather than exploring. This leads to a polynomial reduction

in probability of error, rather than exponential. In previous chapters we have

discussed the benefits of Thompson Sampling and would like to leverage these

benefits in the best arm identification problem.

Firstly we proposed Ordered-Statistic Thompson Sampling (OSTS). This is

the most natural generalisation of Thompson Sampling suitable to the best arm

identification problem. The algorithm is can be used when the time horizon is

not known in advance. It is also efficient to compute. We provide a weak upper

bound on the simple regret and show that it diminishes exponentially with the

time horizon. Empirically we show that it is competitive with other algorithms

in the literature. We go one to propose another algorithm, Anytime SR, which

uses similar ideas. However, much of the randomisation present in OSTS has

been removed. The goal of Anytime SR is to behave like Successive Rejects but

without the need to know the time horizon. We again provide a weak bound on

its probability of error and empirically show its strikingly close performance to

Successive Rejects.

We also propose an alternative Thompson Sampling inspired algorithm called

MBoP. This algorithm can also be seen to use the principle of optimism in the

face of uncertainty. It is also an anytime algorithm. We find that it has strong

empirically performance.



Chapter 6

Conclusion

Decision making is an important trait of any autonomous system. Learning to

make decisions through experience provides a means to find ways to do this that

are robust to noise, and are adaptable to any environment. We have highlighted

the multi-armed bandit problem and the best arm identification problem (and

related variants) as useful simple models in studying how to learn to make such

decisions.

We have observed that Thompson Sampling is an effective means to tackle

the multi-armed bandit algorithm. It is optimal for the Bernoulli armed bandit

problem in the sense that it achieves the lower bound on expected cumulative

regret. It is in many instances cheap to compute. Using conjugate priors, MCMC

or variational techniques the ideas behind Thompson Sampling can model large

numbers of decision-making problems, such as contextual bandit problems. It is

robust to delays in rewards and can be made to account for dependency between

arms. We extend the proof of Agrawal and Goyal to the optimistic variant of the

algorithm and provide a modified form of optimism that also achieves the lower

bound for cumulative regret. Surprisingly we also find that a Normal Thompson

Sampling algorithm (one based on the Normal distribution as the conjugate prior)

empirically outperforms the standard Thompson Sampling algorithm based on a

Beta prior.

For the reasons mentioned above it is fruitful to propose Thompson Sampling

inspired models for problems that go beyond the stochastic multi-armed bandit

problem. Firstly we argue for the use of a switching multi-armed bandit problem

as a more realistic and practical model in which to consider decision making.

181
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We contribute a class of algorithms to tackle the switching multi-armed ban-

dit algorithm that we call Changepoint Thompson Sampling. We empirically

show the strategies are appropriate not only for the environment in which they

are designed but also for a large number of environments that change in other

ways. We find that in general the Per-Arm CTS strategy performs well in most

situations with the Normal variant of this strategy performing the best in the

PASCAL challenge. We also note some similarities between a parameterisation

of our model and the Exp3 algorithm. The CTS model assumes a constant switch

rate, that can be inferred from the data, but at a cost to the strategy due to the

added uncertainty.

Secondly we consider adapting the Thompson Sampling algorithm to the best

arm identification problem. We contribute two classes of strategy. The first,

Ordered-Statistic Thompson Sampling, generalises Thompson Sampling, aug-

menting it with a rank distribution. We show that it is competitive with other

best arm identification algorithms. In the investigation of this algorithm class we

propose a measure of aggression. The measure is used to quantify the extent to

which the algorithm attempts to pull higher ranking arms. In this terminology

we find that the aggression is the most important factor determining the perfor-

mance of OSTS and not the specific distribution chosen as the rank distribution.

Unfortunately the level of aggression that is suitable appears to be depend on

the problem, which is not to say that there is not an aggression level that gives

the best worst-case expected probability of error of all problems. We establish a

weak bound on the probability of error for this algorithm.

We improve upon our algorithm, OSTS, by biasing its behaviour towards

aggression. The class of algorithm we call Aggressive OSTS. Again we empirically

demonstrate the improvements of this approach.

We see that the long term behaviour of OSTS can be made to asymptotically

approach that of Successive Rejects, another algorithm in the literature. However,

a strong bound on the probability of error has not been found, and so it is still

unclear whether the sample complexity can be made similar to Successive Rejects.

We investigate the use of optimism in the setting of the best arm identifi-

cation problem. Optimism empirically results in lower cumulative regret in the

multi-armed bandit problem. However, we see find that the improvement to the

probability of error is marginal, if there is in fact any.

The second strategy we contribute is called MBoP. Whereas OSTS was a
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natural generalisation of Thompson Sampling, MBoP instead uses Thompson

Sampling as a subcomponent of the strategy. We find that MBoP has extremely

promising empirical results, and requires no parameter tuning. We have also not

established a strong lower bound on the probability of error for this algorithm,

instead justifying the algorithm empirically.

We have shown in this thesis that the ideas of Thompson Sampling can also be

beneficial to manage exploration in decision problems other than the stochastic

multi-armed bandit problem. This is evidenced by the three algorithm classes

mentioned above. We believe that the technique can be further adapted to other

variants of similar problems.

6.1 Future work

We now consider further avenues for research that become apparent from the

work presented in this thesis.

6.1.1 Thompson Sampling

Further empirical results for the observation that Normal Thompson Sampling

outperforms Beta Thompson Sampling in the Bernoulli bandit problem would be

natural to investigate. The theoretical question to ask is what is it about the

problem and the assumptions made in the strategies that makes this so, since

intuitively the Normal variant is assuming the “wrong” model.

6.1.2 Changepoint Thompson Sampling

We would like to provide theoretical analysis for our class of strategy. One ap-

proach would be bound a form of regret proposed by Garivier and Moulines [22].

Such an approach is likely to need different techniques than those used by Agrawal

and Goyal in bounding Thompson Sampling in the stationary case. Such a bound

may provide further insight into how the algorithm operates and might hint as

ways in which the algorithm could be improved. However asymptotic bounds of

this form of regret are only non-trivial when the number of switches that occur

scale sub-linearly with time. Such an environment, although more amenable to

analysis, is not perceived to the likely scenario in many practical situations. Inves-

tigation into alternative performance measures would be another useful direction

to look.
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Further comparison to Exp3 is also deemed to be beneficial. Two questions

immediately come to mind. Is there a parametrisation of Changepoint Thompson

Sampling for which we can bound some form of regret in the adversarial case,

such as the weak regret? Also, if not, how could we adapt CTS so that it more

appropriate for the adversarial case?

6.1.3 Ordered-Statistic Thompson Sampling

The most pressing question for Ordered-Statistic Thompson Sampling is what is

a tight upper bound on its probability of error? This would have to be in terms

of the rank distribution ν(K). The next question would be, is there a choice of

ν(K) that can provable make the policy optimal in the sense that is defined by

Audibert et al. [5]. Further analysis of the Anytime SR algorithm proposed may

provide a stepping stone towards these results.

Another direction is to see how the strategy behaves in the M-best arm iden-

tification problem as investigated by Wang et al. [74].

It would also be interesting to see how this strategy might be generalised for

a continuous armed bandit, where the concept of rank is more ill-defined.

6.1.4 MBoP

The MBoP algorithm would also benefit from further theoretical analysis includ-

ing a tight bound on its probability of error.
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[13] Sébastien Bubeck, Rémi Munos, and Gilles Stoltz. “Pure Exploration in

Multi-armed Bandits Problems”. In: ALT. Ed. by Ricard Gavaldà,
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Identifications in Multi-Armed Bandits”. In: Proceedings of the 30th

International Conference on Machine Learning (ICML-13). Ed. by

Sanjoy Dasgupta and David Mcallester. Vol. 28. JMLR Workshop and

Conference Proceedings, 2013, pp. 258–265.

[75] Richard Weber. “On the Gittins Index for Multiarmed Bandits”. In: The

Annals of Applied Probability 2.4 (Nov. 1992), pp. 1024–1033.

[76] Robert C. Wilson, Matthew R. Nassar, and Joshua I. Gold. “Bayesian

online learning of the hazard rate in change-point problems”. In: Neural

Comput. 22.9 (2010), pp. 2452–2476. issn: 0899-7667.



BIBLIOGRAPHY 193

[77] Yahoo! Yahoo! Webscope dataset ydata-frontpage-todaymodule-clicks-v1 0.

http://labs.yahoo.com/Academic_Relations. [Online; accessed

05-Oct-2012]. 2011.


	Glossary
	Abstract
	Declaration
	Copyright
	Publications
	Acknowledgements
	Introduction
	Research questions
	Contributions
	Thesis structure

	Background
	Bayesian modelling
	Choice of prior
	Generating random variates
	Uniform variates
	Normal variates
	Beta variates

	Concentration of measure
	Markov's Inequality
	Chernoff-Hoeffding Inequality

	Reinforcement learning
	Stationary stochastic multi-armed bandits
	Lower bound of regret for the stochastic multi-armed bandit
	Empirical studies for stochastic multi-armed bandits
	Gittins index
	Semi-uniform methods
	Softmax
	Optimism under uncertainty
	POKER

	Non-stationary stochastic multi-armed bandits
	Types of non-stationary environment
	Non-stationary policies
	Connection to adversarial multi-armed bandits

	Best arm identification
	Are multi-arm bandit algorithms good for best arm identification?
	Quantifying problem difficulty
	Race algorithms
	Gap algorithms
	Upper confidence bound algorithms
	Successive Rejects

	Summary

	Thompson Sampling
	Thompson Sampling
	Perceived advantages
	Existing theoretical analysis

	Optimism in Thompson Sampling
	Optimistic Thompson Sampling
	Proof sketch
	Optimism for the underdog


	Non-Stationary Bandits
	Introduction
	Model of dynamic environment

	Motivation: examples of switching
	Game playing
	Financial scenarios
	Networks

	Bayesian online change-point detection
	Computational complexity
	Stratified optimal resampling

	Switching Thompson Sampling
	Proposed inference models
	Global switching
	Per-arm switching

	Learning the switching rate
	Tracking changes in the best arm
	Summary of algorithms
	Practicalities in estimating P( xt-1 | rt-1, Dt-2 )
	Experiments: global switching model
	Experiments: Per-arm switching model
	Experiment: Bernoulli-armed bandit with random normal walk
	Experiments: PASCAL EvE challenge
	Experiments: Yahoo! front page click log dataset
	Experiments: Foreign exchange rate data
	Comparing globalcts to Exp3
	globalcts with N=2
	Comparison to Exp3

	Related work
	Kalman Bayesian Learning Automaton
	Context dependent Thompson Sampling
	Bayesian Bandits with Resets

	Conclusion

	Best Arm Identification
	Problem formulation
	Motivation
	Automatic algorithm configuration in optimisation
	Wireless channel allocation and frequency selection

	Ordered-Statistic Thompson Sampling
	Ordered-Statistic Thompson Sampling
	Experiments
	Increasing aggression in early rounds
	osts summary

	Towards an anytime Successive Rejects
	Algorithm description
	Experiments
	Analysis
	anytimesr summary

	Maximum Boundary of Pairs
	Experiments
	mbop summary

	Conclusion

	Conclusion
	Future work
	Thompson Sampling
	Changepoint Thompson Sampling
	Ordered-Statistic Thompson Sampling
	MBoP


	Bibliography

