
StarCraft:	Remastered
Emulating	a	buffer	overflow	for	fun	and	profit

A	note	before	we	begin

Blizzard	Entertainment	in	no	way	endorses	or	condones	

reverse	engineering	of	our	properties.	

The	exercises	herein	were	conducted	to	understand	the	

methods	used	to	create	unlicensed	behaviors.	

• Anti-Cheat	Engineer,	Blizzard	Entertainment

• Previously	worked	at	Hex-Rays	and	Microsoft

• Technical	writer:

• Practical	Reverse	Engineering,	Antivirus	Hackers	

Handbook

• Batchography

• Passionate	about	reverse	engineering	and	low-level	

programming	on	MS-Windows

• Interested	in	debuggers,	emulators,	API	hooking,	

dynamic	binary	instrumentation	and	virtualization	

technologies

• Contact

• Email:	ebachaalany at	blizzard.com

• Twitter:	@0xeb

About	Me:	Elias	Bachaalany

My	colleagues

• Guillaume	Breuil,	Yi	Deng,	Chris	Genova,	Mark	

Chandler,	James	Touton,	Pete	Stilwell,	Zak	Bennett	and	

Grant	Davies

Tools

• SCMDraft2	map	editor		- Henrik	Arlinghaus

• trgk (Trigger	King)	- https://github.com/phu54321/

• MPQ	tools	– Ladislav Zezula

• BWAPI	- Adam	Heinermann

• IDA	Pro	- Hex-Rays

• Diaphora – Joxean Koret

• EUDEnabler and	the	EUDDB	- Farty1Billion	-

http://farty1billion.dyndns.org/EUDDB/

South	Korean	map	makers	and	tools	community

• Kongze1004	– Random	Tower	Defense	map	author

• Sksljh2091	– Mario	Exodus	map	author

• Jacksell12,	Deation,	Sato

Community	Sites

• TeamLiquid,	StarEdit Network,	Naver.com

Comrades	on	the	adventure

Sorry	if	I	missed	anyone!

• StarCraft	is	a	science	fiction	RTS	(real-time	strategy)

• Released	for	PC	and	Mac	on	March	31,	1998

• StarCraft:	Brood	War	- Expansion	pack	released	on	

November	30,	1998

• Significant	patches	to	this	talk:

• 1.16.1	- 01/21/2009	– Last	patch	for	8	years

• 1.18.0	- 04/18/2017	– First	modern	patch

• 1.20.0	– 08/14/2017	– StarCraft:	Remastered

• 1.21.0	– 12/07/2017	– EUD	reintroduced	via	

emulation

Backstory	/1

• StarCraft	had	various	buffer	overflow	bugs,	but	one	

was	related	to	a	particular	trigger	condition	and	

action:

• The	Extended	Unit	Death	trigger

Ø Or	simply:	EUD

• Blizzard	did	not	update	StarCraft	between	2009	

and	early	2017

• The	community	re-enabled	the	bug	with	

custom	launchers	and	tools

• Patch	1.17	was	slated	for	release	but	was	held	back	

because	it	would	break	mods,	tools,	and	launchers:

• wMode

• wLauncher,	ChaosLauncher

• BWAPI	– Plugin	to	write	AI	bots	that	play	

StarCraft

Backstory	/2

• StarCraft	maps	based	on	EUD	triggers	thrived	

among	the	South	Korean	map	makers	community

• The	EUD	triggers:

• Are	encoded	in	the	map	file

• Allowed	arbitrary	memory	read	and	write:

• The	majority	of	the	public	EUD	maps	in	

circulation	have	hardcoded	addresses	

compatible	with	StarCraft	1.16.1 on	

Windows

Ø I	am	not	aware	of	any	EUD	maps	for	the	

MacOS version	of	the	game

• The	EUD	exploit	allowed	modders to	author	maps	

that	modify	the	game	radically:

• Random	Tower	Defense

• Mario	Exodus	Map

• Etc.

Backstory	/3

Random	Tower	Defense	– EUD	map

Bouncing	Ball	EUD	map	(SC	1.16.1)

Bouncing	Ball	EUD	map	(SC:R	w/	emulation)

a RED BO) VOTED: BRR |
nh. HMURLD VOTE

AEA HLZE 224 [EUD] Mario EXODUS V0.4 (StarCraft Use map)

• The	Mario	Exodus	map	

author	created	a	level	

editor!

• The	map	was	developed	

using	trgk’s epScript

language	and	compiler

• They	are	just	MPQ	archives

• The	MPQ	format	has	been	extensively	reverse	

engineered	and	documented	by	the	community

• They	contain	various	files:

• They	contain	custom	WAV	audio	used	by	the	

map

• staredit/scenario.chkß The	actual	map	chunk	

file

• This	file	contains	the	triggers	chunk

• It	contains	strings	table	chunk

• It	contains	a	chunk	describing	buildings	

and	units

• Etc.

StarCraft	map	file	format

Map	file	in	MPQ	Editor

• Ladik’s MPQ	editor	can	be	used	to	

view	or	modify	the	contents	of	an	

MPQ	map	file
http://zezula.net/en/mpq/download.html

Note	the	chunk	file:	“staredit/scenario.chk”

• Made	of	one	or	more	chunks: • Chunk	header	is	followed	by	the	chunk	body

• The	game	parses	each	chunk	based	on	its	ID:

Scenario	chunk	file	/1

• Some	chunks	might	have	their	own	sub-headers

• The	strings	chunk	is	such	an	example:

Scenario	chunk	file	/2

• The	strings	chunk	can	be	used	to	hide	data	not	used	by	the	game	directly
• When	CK_HDR.ckSize >	(sizeof(the	complete	TStrTbl header)	+	∑strlen(of	all	strings	in	the	table))

• The	modders hide	additional	triggers	in	the	cave	area	of	the	string	chunk

Scenario	chunk	file	/3

• This	screenshot	shows	the	last	string	in	the	strings	table

• That’s	not	the	chunk’s	end	though,	it	is	just	the	string	table’s	end

• The	remaining	bytes	are	additional	triggers	inserted	by	the	EUD	trigger	compiler

Scenario	chunk	file	/4

• https://github.com/phu54321/

• They	are	a	set	of	conditions	and	actions	that	get	

evaluated	during	the	game	loop

• There	are	trigger	conditions	that	tell	you	when:

• A	certain	time	period	has	elapsed	(timers)

• Player	resources	reached	a	certain	amount

• A	map	location	has	been	reached

• Etc.

• When	all	the	trigger	conditions	are	fulfilled,	then	

you	can	do	actions	such	as:

• Play	WAV	file

• Display	a	message

• Create,	kill,	move	a	unit,	etc.

• Change	unit	owner	and	health	points

• Give	player	resources

• Etc.

What	are	triggers?	/1

• Triggers	are	stored	inside	the	map	chunk	

file

• The	triggers	chunk	is	simply	an	array	of	

_trigger structs

• Each	trigger	has	an	array	of	the	

CONDITION and	ACTION structures

• The	dwPlayer and	wType fields	

are	user	controlled

Ø They	are	used	to	read/write	

out-of-bounds	inside	an	

array

• The	bOpCode field	dictates	the	

trigger	condition	and	action	type

What	are	triggers?	/2

• The	bOpCode field	is	used	to	select	which	condition	or	action	to	execute:

What	are	triggers?	/3

• Each	trigger	condition	is	evaluated,	then	the	actions	are	performed	if	all	conditions	succeed:

What	are	triggers?	/4

What	are	triggers?	/5

• Classic	(visual)	trigger	editor	

(SCMDraft 2.0	– by	Henrik	

Arlinghaus)

• Note	the	large	values:

• UnitID

• Death	table	index

• Etc.

What	are	triggers?	/6

• Text	trigger	editor

• A	private	build	of	SCMDraft

shows	the	EUD	overflow	

addresses

What	are	triggers?	/7

• The	buffer	overflow	bug	in	question	is	found	in	the	“Extended	Unit	Death”	trigger	

code:

• The	death_count()	trigger	condition

• à Read	anywhere	primitive

• The	set/add/sub_death_count()	trigger	action

• àWrite	anywhere	primitive

• Triggers	are	read	as-is	from	the	chunk	file	and	stored	in	a	doubly-linked	list:

The	buffer	overflow	/1

• A	death	condition	with	out-of-bounds	unit	type	(wType)	or	player	number	(dwPlayer)	causes	the	read	anywhere	

primitive

The	buffer	overflow	/2

• A	set	death	action	causes	a	write	anywhere and	provide	

the	following	primitives:

• [mem]	+=	lQuantity

• [mem]	-=	lQuantity

• [mem]	=	lQuantity

The	buffer	overflow	/3

• An	example	of	EUD	triggers	found	inside	an	EUD	map:

The	buffer	overflow	/4

• Given	a	StarCraft	map	that	contains	malformed	

input	that	triggers	a	read/write	anywhere:

• Is	there	is	a	way	to	emulate	the	buffer	overflow	

in	a	newer	game	version	where:

• The	buffer	overflow	bug	is	fixed

• Some	addresses	no	longer	exist	in	the	

new	game	version

• Some	addresses	refer	to	new/different	

data	structure	format

?

• Can	the	emulator	work	on	different	

architectures	and	operating	systems?

EUD	map	emulation	– Problem	statement

1. Identify

• Identify	/	trace	all	the	addresses	used	by	an	

EUD	map

• Build	a	table	of	the	addresses	and	identify	

what	they	represent	in	the	game	source	

code

2. Intercept

• Intercept	all	out-of-bounds	access

• Redirect	access	using	a	translation	table

• Old	address	à New	address

3. Emulate

1. Missing	memory	addresses	should	be	

handled	by	code

2. Dangerous	memory	changes	should	be	

filtered	/	changed	accordingly	(pointers,	

function	callbacks,	etc.)

Three	steps	solution

1. Identify

• Unfortunately,	we	did	not	have	private	or	

public	symbols	for	StarCraft	1.16.1.	I	had	to	

start	reversing	the	game	executable	from	

scratch

• How	can	I	tell	what	addresses	the	maps	are	

accessing?

• What	is	the	goal/intent	behind	a	memory	

access?

2. Intercept

1. No	problems	here.	Luckily,	we	can	funnel	all	

the	out-of-bounds	read/writes	to	the	

emulation	layer

3. Emulate

1. Handle	basic	memory	access	emulation

2. Emulate	addresses	that	are	no	longer	present

3. Emulate	incompatible	structure	types

Implementation	challenges

1. Reverse	engineering	efforts	were	impeded	by	the	

lack	of	debugging	symbols:

• Reverse	engineered	the	game	client	from	

scratch

• Used	the	closest	source	code	snapshot	for	

1.16.1

• Found	the	right	compiler	(VS	2003)	and	the	

approximate	optimization	switches

Ø Now	I	have	debugging	symbols	for	a	

binary	that	is	very	close	to	the	public	

build

2. I	used	binary	diffing	plugins	for	IDA	Pro

1. PatchDiff2	- Tenable	Network	Security,	Inc

2. Diaphora - http://diaphora.re/

Identify	– Reversing	the	game	/1

• Binary	diffing	was	limited:

• Mismatched	functions	between	the	diffed	

binaries

• Global	variables	were	not	identified

• Optimized	code	and	inlined functions	made	

diffing	harder

• Resorted	to	manual	reverse	engineering	to	bridge	

the	limitations	from	BinDiffing

• Used	scripting	to	automate	the	reversing	task

• Lots	of	IDAPython scripting	was	involved

Identify	– Reversing	the	game	/2

Source	code	vs	Disassembly	view

Source	code	vs	Hex-Rays	pseudo-code

Automating	data	structure	recovery

• StarCraft	Remastered	collects	game	telemetry	(including	map	

information,	etc.)

• As	of	October	2017,	we	had	around	~603,773	total	unique	maps	played

• Of	which	17,916	were	EUD	maps	(i.e.	contained	out	of	bounds	

indices)

• After	I	managed	to	reverse	engineer	enough	of	the	game,	I	wrote	a	tool	

to	process	all	the	maps,	identify	EUD	maps	and	dump	the	out-of-bounds	

EUD	addresses

Identify	– Statically	identify	all	addresses	/1

Identify	– Statically	identify	all	addresses	/2

• After	aggregating	the	unique	EUD	

addresses	across	all	of	the	17k	EUD	

maps,	I	ended	up	with	around	~800	

variables	used	by	popular	EUD	maps

• I	wrote	an	IDAPython script	to	emit	a	

table	for	all	the	unique	addresses,	

their	names	and	sizes

Identify	– Statically	identify	all	addresses	/3

• Static	address	discovery	was	not	enough:

• Some	EUD	maps	were	dereferencing	

pointers	and	reaching	into	the	heap

• Some	structures	are	complicated	and	

linked	to	other	structures	(linked	lists,	

TCtrl*,	TDialog*,	etc.)

• Need	more	tools:

• I	realized	the	need	for	a	dynamic	EUD	

address	tracer

• I	also	needed	a	way	to	single	step	/	debug	

triggers

• I	developed	an	EUDTracer,	a	DLL	that	hooks	the	

game	and	instruments	all	the	relevant	trigger	

handling	code

Identify	– Statically	identify	all	addresses	/4

• The	instrumented	game	binary	calls	into	the	tracer	DLL	upon	each	read/write

Identify	– Dynamic	tracer	/1

• The	Python	table	containing	EUD	

addresses	is	passed	to	a	source	code	

generator	to	emit	C	code	and	tables

• The	tracer	uses	that	table	to	account	for	

memory	access

Identify	– Dynamic	tracer	/2

• When	the	game	loads	an	EUD	map,	the	tracer	

DLL	intercepts	all	out-of-bounds	access

• Any	unknown	address	triggers	a	breakpoint	for	

further	analysis	and	identification

• After	I	identify	an	unknown	address,	I	add	it	to	

the	Python	table	which	is	used	to	update	the	

tracer’s	EUD	items	table

Identify	– Dynamic	tracer	/3

• The	tracer’s	main	role	is	to	guarantee	that	all	

the	addresses	referred	to	from	the	EUD	map	

are	accounted	for

Identify	– Dynamic	tracer	/4

• Having	a	way	to	record	all	accessed	EUD	addresses	

was	not	enough	to	understand	the	intent	behind	

the	access

• I	had	no	real	way	to	debug	an	EUD	map:

• I	needed	a	way	to	nicely	represent	an	EUD	

address

• I	needed	to	single	step	after	each	trigger

• I	needed	a	way	to	convert	a	series	of	

read/write	primitives	to	pseudo-code

Identify	– More	debugging	tools

• If	I	wanted	to	trace	triggers,	I	needed	to	have	a	way	to	convert	an	address	

to	a	nice	variable	representation

• So	what	is	the	symbolic	representation	of:	

• 0x5187E8	+	(0xC	*	3)	+	4?

Ø gCards[3].pBtns

Identify	– EUD	address	to	symbolic	name	/1

• With	the	help	of	the	Hex-Rays	decompiler	and	other	

metadata,	I	wrote	the	function	“R”	to	resolve	an	

address	into	a	nice	symbolic	name

Identify	– EUD	address	to	symbolic	name	/2

Ø If	the	array’s	indices	are	

based	on	enums,	then	“R”	

will	properly	show	the	

enum name	instead	of	a	

numeric	index

• SCMDraft trigger	editor	textually	represents	the	trigger	script:

Identify	– Static	pseudocode	generator	/1

• I	wrote	a	converter	from	the	triggers	text	to	C	pseudo-code
(convert	triggers	to	an	AST	and	then	emit	as		C	pseudo-code)

Identify	– Static	pseudocode	generator	/2

• Trigger	text	converted	to	C	pseudo-code	(trig2cpp()):

Identify	– Static	pseudocode	generator	/3

• With	IDA’s	conditional	breakpoints	and	the	Appcall feature,	

I	wrote	a	dynamic	pseudocode	generator:

• It	helps	debug	the	map	trigger	logic	during	runtime

• It	helps	in	the	discovery	and	understanding	of	

dynamic	triggers	(generated	by	the	EUD	compiler	

from	trgk)

• Conditional	breakpoints	are	set	at	strategic	entrypoints	

(pre,	in	and	post	trigger	execution)

Identify	– Dynamic	pseudocode	generator	/1

• Conditional	breakpoints	dynamically	build	the	AST	on	access

Identify	– Dynamic	pseudocode	generator	/2

• The	debug	script	has	a	‘Single	step’	switch	to	break	after	each	trigger

• Pseudocode	is	emitted	on	the	fly

Demo		– Dynamic	pseudocode	generator	/1

• The	“Single	step”	switch	can	be	configured	to	print	the	pseudocode	on	the	fly	as	the	map	triggers	executes	

without	suspending	the	game

Demo		– Dynamic	pseudocode	generator	/2

In	the	first	step	(identify):

1. We	built	all	the	required	static	and	dynamic	tracers

2. We	created	the	EUD	table	with	all	known	addresses

and	their	symbolic	names

3. We	have	enough	tools	to	identify	any	address	and	

trace	where	it	came	from

Now	we	need	to	intercept	the	out-of-bounds	access	in	

the	new	code	base

Intercept	/1

Read	primitives	interception Write	primitives	interception

Intercept	/2

• From	the	emulator’s	perspective,	all	EUD	map	logic	boils	down	to	two	actions:

1. Read	anywhere												à value	=	read_vmem(eud_addr)

2. Write	anywhere											à write_vmem(eud_addr,	value)

Intercept	/3

In	basic	scenarios,	the	emulation	is	very	simple:

1. Compute	the	full	virtual	address	(EUD	

address)	from	the	dwPlayer and	wType

indices

2. From	the	EUD	address,	find	the	equivalent	

new	address	(backing	data)	in	the	current	

game	version

3. Compute	the	offset	and	read	or	write	from/to	

the	new	address

Emulate

• Let’s	extend	the	previous	Python	

table	and	attach	the	source	file	

name	were	each	variable	is	

located

• The	table	defines:	virtual	

address,	item	size,	source	file	

name,	emulation	flags,	and	

backing	variable	name

Emulate	– Variables	mapping	/1

Running	the	EUD	table	generation	script	patches	the	source	code	and	exports	all	referenced	variables:

Emulate	– Variables	mapping	/2

Exported	variables	example:

Emulate	– Variables	mapping	/3

No	need	to	make	static	variables	global:

• The	generator	has	an	option	that	lets	you	pick	a	name	for	the	exported	variable

Emulate	– Variables	mapping	/4

• The	“eud_table.cpp”	is	autogenerated	from	

the	Python	table.	It	refers	to	all	the	

exported	variables	from	various	source	

code	files

• It	is	used	to	populate	the	emulator’s	virtual	

memory	layout

• Items	also	have	associated	flags	that	

instruct	the	emulator	which	EUD	adapter	

handles	which	address

• Note:	the	“g_nothing”	variables	are	

alignment	bytes	in	SC	1.16.1.	The	map	

makers	use	that	space	for	storing	variables

• A	“nullptr”	backing	data	almost	always	

indicates	that	the	variable	is	to	be	handled	

purely	by	an	adapter	code

Emulate	– The	EUD	table	/1

• The	“eud_extern.h”	is	autogenerated	from	the	

Python	table

• It	exposes	all	the	known	EUD	variables

• Very	handy	for	accessing	static	variables	from	

anywhere	in	the	code	when	needed

Emulate	– The	EUD	table	/2

EUD	Table

{addr1,	size1,	backing_data1,	handler_flags1}

{addr2,	size2,	backing_data2,	handler_flags2}

{addr3,	size3,	backing_data3,	handler_flags3}

…

EUD	Emulator

Shadow	table

Virtual	Memory

EUD	address	

Û

Handlers	mapping	

table

EUD	Adapters

Data	structure	#1	

adapter

Data	structure	#n	

adapter	…

Due	to	the	nature	of	the	overflow,	the	following	restrictions	apply:

• An	EUD	address	is	always	4	bytes	aligned

• An	EUD	value	is	a	32bits	integer

StarCraft	Remastered

Virtual	SC	1.16.1	memory

Real	game	memory

Emulator	architecture	/1

Shadow	table

• It	contains	the	needed	memory	contents	

from	the	SC	1.16.1	binary

Virtual	memory

• It	uses	the	address-to-handlers	lookup	table

• It	maps	an	EUD	address	range	to	an	EUD	

table	entry	à EUD	handler/adapter

• The	table	entry	for	an	EUD	item	describes:

• The	backing	data	(the	new	variable	

address,	if	present)

• The	flags	which	tell	the	emulator	which	

EUD	adapter	(handler)	to	use	for	

emulation

Emulator	architecture	/2

A	specialized	EUD	adapter	is	needed	when:

• Handling	non-standard	data	types	

• When	dealing	with	EUD	addresses	that	no	longer	map	

to	anything	in	the	new	game	client

The	following	5	virtual	methods	are	exposed

• read_vmem() à Return	a	32bits	value

• write_vmem() àWrite	a	32bits	value

• backup() à Item	specific	backup	code

• restore() à Item	specific	restore	code

• deferred_write() à Invoked	after	all	the	triggers	

have	executed.	Gives	a	chance

to	batch	process	writes	

Emulator	architecture	/3

The	basic	EUD	adapter	(eud_vmemitem_t class)	handles	basic	data	types:

1. The	emulator	computes	the	full	EUD	address

2. Finds	the	new	variable’s	base	address	and	converts	the	EUD	address	to	an	offset

3. The	appropriate	adapter	is	then	called	with	the	desired	offset	to	read/write	from/to

This	simple	translation	approach	works	nicely	for	basic	types

EUD	adapters	– Basic	/1

The	basic	(pass-thru)	adapter	is	good	for	most	cases:

• Byte,	Word,	Dword

• The	emulator	can	cross	boundaries	between	two	items

• Basic	types	arrays	are	also	supported

UWORD	a[2] UWORD	b[4]

Reading	a	value	from	the	end	involves	reading	from	two	

different adapters	(handlers)

EUD	adapters	– Basic	/2

• We	covered	two	primitives:	

1. *mem	asg_op =	const

• asg_opà +=	,	=	,	-=	

2. if	(*mem	cmp_op const)	{	actions	…	}

• cmp_opà ==,	>=,	<=

• How	do	we	get	the	following	primitive?

• *mem1	asg_op *mem2

Using	binary	search!

Wait	a	minute,	we	need	one	more	primitive!

• Trigger	condition:

1. Probes	the	value	of	src_var

• Trigger	action:

1. Increments	the	value	of	dst_var

2. Decrement	the	value	of	src_var

3. src_var’s value	eventually	reaches	

zero

4. Backup	changes	into	var_copy

The	same	primitive	is	repeated	to	copy	

var_copy back	to	dst_var

The	*a	=	*b	primitive	

This	primitive	is	expensive	and	generates	

lots	of	triggers

• Pointers	are	32bits	in	SC	1.16.1

• Obviously,	we	cannot	just	use	the	pass-

thru	basic	emulation

• Pointers	have	to	be	translated	from	

EUD	virtual	addresses	to	real	

addresses

• The	primitive	“*ptr1	=	*ptr2”	invoked	from	

the	EUD	triggers	will	spoil	the	pointer	

value	until	the	binary	search	is	over

• What	to	do	with	incomplete	pointer	

values?

EUD	adapters	– Pointers	/1	

• Changes	to	a	physical	pointer	value	should	not	take	effect	unless	the	

virtual	pointer	value	passes	a	“pointer	validity	check	function”	

à Does	the	virtual	pointer	have	a	proper	real	pointer	equivalent?

• Rely	on	the	shadow	pointer	value	when	working	with	incomplete	

virtual	pointer	values	for	future	reads	/	writes:

Real	memory EUD	virtual	memory

void	*game_ptr;

uint32_t	game_ptr_shadow;

bool	game_ptr_dirty;

uint32_t	game_ptr;

EUD	adapters	– Pointers	/2	

• The	eud_cobject_ptr_adapter_t is	constructed	with	backing	data	pointing	to	a	

reference	to	a	real	pointer	that	we	want	to	expose	to	the	EUD	emulator

EUD	adapters	– Pointers	/3	

• What	about	EUD	logic	that	does	function	pointer	arithmetic?

EUD	adapters	– Function	pointers	/1

• Pointer	arithmetic	make	sense	only	in	the	EUD	virtual	memory	addressing	space

• For	the	real	pointer	addressing	we	have	to	translate	to	proper	pointers	and	account	for	

function	prototype	compatibility

• Basic	implementation	idea:

1. vaddr +=	voffs

2. paddr =	find_real_fptr(vaddr,	function_prototype_id)

3. if	(paddr !=	nullptr)	à struct.pFn =	paddr;

• In	the	emulator,	such	cases	are	handled	with	the	eud_struct_with_ptr_adapter_t

Virtual	function	pointers	and	their	prototypes	table

EUD	adapters	– Function	pointers	/2

• Various	data	structures	have	changed	between	SC	1.16.1	and	SC:R

• Pass-thru	adapters	are	not	helpful	in	this	case

• A	specialized	adapter	is	needed	to	convert	between	both	structures:

• Read	operation: translates	from	physical	structure	to	virtual	

structure

• Write	operation: translates	from	virtual	structure	to	physical	

structure

EUD	adapters	– Incompatible	structures	/1

EUD	adapters	– Incompatible	structures	/2

• In	SC	1.16.1

• Triggers	were	stored	in	a	Storm linked	

list	data	structure

• Storm is	a	library	that	provides	

containers	and	platform	independent	

functionality

• In	SC:R

• Triggers	are	stored	as	blz::list<_trigger>

• ‘blz’	is	the	equivalent	of	STL’s	std

namespace

• Other	structures	in	the	old	game	also	use	

Storm lists	while	the	new	game	uses		

different	containers

EUD	adapters	– Linked	lists

Because	triggers	are	hard	to	program,	the	South	

Korean	hacker	(nicknamed	Trigger	King	/	trgk)	wrote	

a	trigger	compiler:

1. You	write	proper	logic	in	a	

JavaScript/Python	like	language	called	

epScript

2. The	epScript gets	compiled	into	a	bunch	of	

triggers	and	is	then	injected	into	the	

appropriate	map	chunks

3. Map	containing	triggers	compiled	with	

epScript can	be	identified	using	the	

bootstrap	code	that	links	regular	triggers	

into	the	dynamic	triggers	(inside	the	strings	

table)

EUD	adapters	– Triggers	/1

• epScript is	a	very	powerful	language:

• The	Mario	Exodus	EUD	map	was	written	

in	that	language

• Its	compiler	hides	additional	triggers	in	the	

cave	area	of	the	strings	chunk:

Ø Making	it	hard	to	reverse-engineer	

compiled	triggers

Ø One	needs	to	write	a	triggers	

decompiler	to	recover	the	logic

• Compiled	triggers	are	self-modifying	and	

very	optimized:

Ø Loops,	function	calls	and	other	

control	flow	related	functionality	

are	implement	using	self-modifying	

triggers	that	change	the	trigger	

node	links	(next	and	prev links)

EUD	adapters	– Triggers	/2

• EUD	maps	locate	the	pointer	to	the	string	table	(gpMapStr)	

and	adds	a	constant	offset	pointing	to	the	additional	

dynamic	triggers	inside	the	string	table	(see	slide	17)

• EUD	maps	then	patch	the	m_prevlink and	m_next links	as	

needed	to	introduce	as	many	triggers	as	needed

• Inserting	new	triggers	dynamically	was	never	

supported	in	StarCraft.	Only	the	EUD	emulator	allows	

such	activity.

• Compiled/dynamic	triggers	are	the	basis	of	complex	and	

elaborate	EUD	maps

• Therefore,	supporting	dynamic	triggers	was	the	first	

thing	added	to	the	EUD	emulator

EUD	adapters	– Triggers	/3

• From	the	emulator’s	perspective,	there	are	two	kinds	of	triggers:	

• Initial	triggers	originating	from	the	triggers	chunk	

• Dynamic	triggers	linked	to	the	triggers	list	by	patching	their	node	links

• When	StarCraft	needs	to	execute	triggers	after	each	game	loop:

• The	emulator	knows	how	to	serve	both	static	triggers	and	dynamic	EUD	triggers

• The	emulator	does	not	replicate	the	backing	data	(the	trigger	node	data)	whenever	

possible

EUD	adapters	– Triggers	/4

SC:R	à blz::list<_trigger>	: _trigger0 _trigger1 … _triggerN

SC1.16:	stormlist<_trigger>	: _trigger0 _trigger1 … _triggerN

shadow:	prev|next shadow:	prev|next

String	table:

(Dynamic	triggers	inserted	at	

the	end	of	the	strings	table)

Strings	chunk	data

Actual	string	table	(TStrTbl) Extra	chunk	data:	dynamic	triggers

shadow:	prev|next

The	Storm	node	EUD	adapter	hosts	the	node	links	as	shadow	variables

EUD	adapters	– Triggers	/5

• The	Storm	list	adapter	

implements	an	STL	compatible	

iterator

• From	the	iterator’s	perspective,	

any	node	pointers	outside	the	

list	has	their	node	links	and	data	

in	the	virtual	memory

EUD	adapters	– Triggers	/6

• Partial	buffers	adapters	are	used	whenever	the	virtual	item	size	is	greater	than	the	physical	item	size:

SC	1.16.1	item	(virtual):

SC:R	item	(physical):

data

smaller	data unmapped

• The	adapter	serves	the	mapped	data	when	the	access	offset	is	within	the	mapped	range

• It	will	serve	zeros	w/o	failing	when	the	unmapped	area	is	accessed

EUD	adapters	– Partial	buffers

1. Certain	adapters	resort	to	using	deferred	writes	as	

means	to	speed-up	the	emulation

2. The	EUD	map	writes	in	chunks	of	4	bytes	at	a	time

Ø We	don’t	want	to	re-construct	real	game	data	

while	the	EUD	map	is	still	writing	the	changes

3. Instead,	a	write	handler	simply	passes-thru	the	writes	

to	a	temporary	buffer	and	marks	the	adapter	as	dirty

• (Reads	from	dirty	offsets	are	served	from	the	

temporary	buffer	for	consistency)

4. After	all	triggers	are	executed	in	that	game	loop,	the	

emulator	invokes	all	the	dirty	adapters’	deferred	write	

callbacks

5. Inside	the	deferred	write	callback,	the	temporary	buffer	

is	then	used	to	reconstruct	the	real	structures	used	by	

the	game.	The	adapter	dirty	flag	is	then	cleared.

EUD	adapters	– Deferred	writes	/1

1. The	status	text	adapter	lets	the	

EUD	maps	write	to	a	temporary	

buffer

2. Afterwards,	the	adapter	re-

constructs	the	proper	status	text	

structures	that	are	compatible	with	

the	new	game	(SC:R)	code

EUD	adapters	– Deferred	writes	/2

Deferred	write	example	adapter:

• Various	game	data	variables	are	integer	arrays

• Sometimes,	the	elements	in	the	array	must	have	

bounded	values

• Naturally,	the	pass-thru	(basic)	adapter	is	not	

suitable	(because	no	validation	takes	place)

• The	bounded	array	adapter	also	leverage	a	

shadow	array	table	for	all	the	elements	that	have	

incomplete	/	invalid	values

• Only	after	the	written	values	are	valid	(within	the	

specified	bounds)	then	changes	are	reflected	into	

the	backing	data

EUD	adapters	– Bounded	array	elements	/1

• The	Unit	Flingy array’s	values	have	an	upper	bound	of	209

EUD	adapters	– Bounded	array	elements	/2

Throughout	the	creation	of	the	EUD	emulator,	various	

adapters	were	devised	whenever	a	new	problem	is	

encountered:

• eud_adapter_cards

• Supports	total	customization	of	units	

command	cards

• eud_adapter_csprites and	eud_adapter_cunit

• Allows	controlled	modifications	into	the	

CSprite and	CUnit structures

• eud_adapter_group

• Allows	bitmap	shuffling	inside	certain	game	

animation	frames

• eud_adapter_keytable

• Allows	EUD	maps	to	intercept	key	presses	(‘a’,	

‘s’,	‘w’,	‘d’,	key	up	and	key	down	for	example)

EUD	adapters	– Full	adapters	list	/1

• eud_adapter_mpq

• Allows	support	for	protected	maps.

• Refer	to	MPQ	frozen	maps:

https://github.com/phu54321/euddraft/tree/

master/freeze

• eud_adapter_msgtbl

• Read	access	into	the	in-game	chat	messages	

(“Chatting	War”	EUD	maps)

• eud_adapter_partial_buffer

• Various	non-emulated	or	no	longer	existent	

variables	are	handled	with	this	adapter

• eud_adapter_playerdata

• Lets	EUD	maps	read	player	information	

(name,	race,	color,	etc.)

EUD	adapters	– Full	adapters	list	/2

• eud_adapter_pointers

• All	pointer	related	adaption	code

• Supports	partial	pointers	(backed	by	shadow	

values)

• eud_adapter_stattxt

• Unit	status	text	and	hotkeys	manipulation

• eud_adapter_stormlist

• Allows	high-level	emulation	of	Storm	lists

• eud_adapter_structwithptr

• Used	to	emulate	structures	that	contain	a	mix	of	

basic	types	(pass-thru)	and	pointers	(incomplete	

pointers	+	virtual	<->	physical	conversion)

• eud_adapter_triggers

• Supports	dynamic	triggers	emulation

EUD	adapters	– Full	adapters	list	/3

Questions?

