
High Performance SQL with
PostgreSQL 8.4

Lists and Recursion and Trees, Oh My!
OSCON 2009

Copyright © 2009
David Fetter david.fetter@pgexperts.com

All Rights Reserved x sTGR ESL

i

INITECH

T.P.S. REPORT
COVER SHEET

Prepared By:

Device/Program Type

Product Code: Customer _

Vendor

Due Date DataLogss:

Test Date: Target Run Dates”

Program Run Time Reference Guide:

Progra Language: _ Number of Error Messages

Comments

CONFIDENTIAL

Cn es

s
k

o
e

L
e
"

+t
B
t
:

J

Se ol

Sa

=
a

sa

Better, Faster TPS Reports

 New!

Reach Outside the Current Row

Better, Faster TPS Reports

¢ Windowing Function
— Operates on a window

— Returns a value for each row

— Calculates value from the rows in the window

Better, Faster TPS Reports

¢ You can USe...

— New window functions

— Existing aggregate functions

— User-defined window functions

— User-defined aggregate functions

Better, Faster TPS Reports
[Aggregates] SELECT key, SUM(val) FROM tbl GROUP BY key;

Better, Faster TPS Reports
[Windowing Functions] SELECT key, SUM(val) OVER (PARTITION BY key) FROM tbl:

ROW_ NUMBER (Before)
SELECT

el.empno,

el.depname,

el.salary,

count(*) AS row number

FROM

empsalary el

JOIN

empsalary e2

ON (el.empno < e2.empno)

GROUP BY el.empno, el.depname, el.salary

ORDER BY el.empno DESC;

ROW_ NUMBER (Before)
OOPS!

empno | depname | salary | row number
------- +—-—---—------+4-------—-+-—------ ---

8 develop 6000 1

6 sales 5500 2

11 develop 5200 4.

10 | develop 5200 4.
1 sales 5000 5

3 | sales 4800 7

4 sales 4800 7

9 develop 4500 8

7 develop 4200 9

2 personnel 3900 10

5 personnel 3500 11
(ll rows)

ROW_NUMBER (After)

SELECT

empno,

depname,

Salary,

row number() OVER /(

ORDER BY salary DESC NULLS LAST

)
FROM

empsalary

ORDER BY salary DESC;

ROW_NUMBER (After)

Yippee!
empno | depname | salary | row number

------- +——------—-—--4+-—------+------------

8 develop 6000 1

6 sales 5500 2

10 develop 5200 3

11 develop 5200 4

1 sales 5000 5

3 sales 4800 6

4 sales 4800 7

9 develop 4500 8

7 develop 4200 9

2 personnel 3900 10

5 personnel 3500 11
(ll rows)

Built-in Windowing Functions

*row_number() — ° lag()

¢ rank() ¢ lead()

¢ dense_rank() ¢ first_value()

¢ percent_rank() = * last_value()

-cume_dist() ¢ nth_value()

¢ ntileQ

Generate Points

WITH RECURSIVE x(i)
AS (

VALUES (0)
UNION ALL

SELECT i+ 1

FROM X&

WHERE i < 101

)r

Generate Points

Z(Ix, ly, Cx, Cy, X, Y, I)
AS (

SELECT Ix, Ly,

X::float, Y::float,

X::float, Y::float,

0

FROM

Generate Points

(SELECT -2.2 + 0.031 * i, i
FROM x) AS xgen(x,1xX)

CROSS JOIN

(SELECT -1.5 + 0.031 * i, i
FROM x) AS ygen(y,1y)

Generate Points

UNION ALL

Generate Points

SELECT

Ix, ly, Cx, Cy,
XxX * X —- Y * Y + Cx AS X,

Y* X * 2 + Cy,

I +l

FROM Z

WHERE X * X + Y * Y < 16.0
AND I < 27

)r

Choose Some

Zt (Ix, Ly, I) AS (

SELECT Ix, Ily, MAX(I) AS I

FROM Z

GROUP BY Ily, Ix

ORDER BY Iy, Ix

Display [hem

SELECT array to string/(

array agg(

SUBSTRING (

py yptcco +t+t++B3SSSGCCCHHHF |,

GREATEST(I,1)

yr |

FROM Zt
GROUP BY Iy

ORDER BY Iy;

Cn es

s
k

o
e

L
e
"

+t
B
t
:

J

Se ol

Sa

=
a

sa

Travelling Salesman Problem

Given a number of cities and the costs of travelling

from any city to any other city, what is the least-

cost round-trip route that visits each city exactly

once and then returns to the starting city?

BRUTE-FORCE DYNAMIC

SOLUTION: PROGRAMMING SELUNG ON EBAY:

| | ALGORITHMS: O(1)

O(n!)

: STILL WORKING
ON YOUR, ROUTE?

a

TSP Schema

CREATE TABLE pairs (

from city TEXT NOT NULL,

to city TEXT NOT NULL,
distance INTEGER NOT NULL,

PRIMARY KEY(from city, to city),
CHECK (from city < to city)

TSP Data

INSERT INTO pairs

VALUES

('Bari','Bologna',672),

('Bari',' Bolzano’ ,939),

('Bari','Firenze',723),

('Bari', Genova’ ,944),

('Bari', Milan',881),

('Bari’', Napoli’ ,257),

('Bari','Palermo',708),

('Bari',' Reggio Calabria’ ,464),

TSP Program:
Symmetric Setup

WITH RECURSIVE both _ ways (

from _city,

to city,

distance

) /* Working Table */
AS (

SELECT

from city,

to city,

distance

FROM

pairs

UNION ALL

SELECT

to city AS "from city",

from city AS "to city",

distance

FROM

pairs

)r

TSP Program:
Symmetric Setup

WITH RECURSIVE both ways (

from city,

to city,

distance

)
AS (/* Distances One Way */

SELECT

from city,

to city,

distance

FROM

pairs
UNION ALL

SELECT
to city AS "from city",

from city AS "to city",
distance

FROM
pairs

)y

TSP Program:
Symmetric Setup

WITH RECURSIVE both ways (

from city,

to city,

distance

)
AS (

SELECT
from city,

to city,

distance

FROM
pairs

UNION ALL /* Distances Other Way */

SELECT

to_city AS "from _ city’,

from city AS "to city",

distance

FROM

pairs

TSP Program:
Path Initialization Step

paths (

from city,

to city,

distance,

path

)
AS (

SELECT

from city,

to city,

distance,

ARRAY[from city] AS "path"

FROM

both ways bl

WHERE

b1l.from_city = 'Roma'

UNION ALL

TSP Program:
Path Recursion Step

SELECT

b2.from_ city,

b2.to city,

p.distance + b2.distance,

p.path || b2.from city
FROM

both ways b2

JOIN

paths p

ON (

p.to city = b2.from city

AND

b2.from city <> ALL (p.path[

2:array upper(p.path,1)

1) /* Prevent re-tracing */
AND

array upper(p.path,1l) < 6

TSP Program:
Timely Termination Step

AND

array upper(p.path,1) < 6 /* Timely Termination */

)

TSP Program:
Filter and Display

SELECT

path || to city AS "path",
distance

FROM

paths

WHERE

to city

AND

ARRAY['Milan','Firenze','Napoli'] <@ path

ORDER BY distance, path

LIMIT 1;

‘Roma '

TSP Program:
Filter and Display

davidfetter@tsp=# \i travelling salesman.sql
path | distance

oo ee +o

{Roma,Firenze,Milan,Napoli,Roma} | 1553

(1 row)

Time: 11679.503 ms

Who Posts Most?

VVho
CREATE TABLE forum _ users (

user name TEXT NOT NULL,

CHECK(user name = trim(user name)),

user id SERIAL UNIQUE

);

CREATE UNIQUE INDEX forum _ user user name unique

ON forum users(lower(user name));

INSERT INTO forum users (user name)

VALUES

('Tom Lane'), ('Robert Haas'), ('Alvaro Herrera'), ('Dave Page'),

('Heikki Linnakangas'), ('Magnus Hagander'), ('Gregory Stark'),

('Josh Berkus'), ('David Fetter'), ('Benjamin Reed');

Posts

CREATE TABLE message /(
message id INTEGER PRIMARY KEY,

parent id INTEGER

REFERENCES message(message id),

message text TEXT NOT NULL,

forum user id INTEGER

NOT NULL REFERENCES forum _users(user 1d)

Add some posts

INSERT INTO message

WITH RECURSIVE m(
message id,

parent id,

message text,

forum user 1d)

AS (

VALUES(1, NULL::integer, md5(random()::text),1)

Add some posts

UNLON AlLtk

Add some posts
SELECT

message idtl,

CASE

WHEN random() >= .5 THEN NULL

ELSE FLOOR(Yandom() *message_id)+1
END: :integer,

md5(random()::text),

floor(random() * 10)::integer +1

FROM m

WHERE message id < 1001

SELECT * FROM m:

WELL?!?

Patience :)

Find the frist psOt
WITH RECURSIVE tl AS (

SELECT

/* First message in the thread is the thread ID */

message id AS thread id,

message id,

parent id,

Forum _ user id,

ARRAY[message id] AS path

FROM message

WHERE parent id IS NULL

Find the Next Ones

UNLON AlLtk

Find the Next Ones

SELECT

tl.thread id,
m.message id,
m.parent id,
m.forum user id,

tl.path || m.message id

FROM message m

JOIN tl ON

(tl.message 1d = m.parent 1d)

)y

Count Posters

in Each I hread
t2 AS (

SELECT

thread id,

forum _ user id,

count(*) AS reply count

FROM tl

GROUP BY thread id, forum user id

ORDER BY thread id, count(*)

)r

rind the lop Posters

t3 AS (

SELECT thread id,
max(reply count) AS reply count

FROM t2

GROUP BY thread id

)

Show Them :)

SELECT t2.thread id, f.user name, t3.reply count

FROM t2

JOIN t3 USING (thread id, reply count)

JOIN forum_users f£ ON (f.user id = t2.forum_user id)

WHERE reply count > 3

ORDER BY reply count DESC;

thread id | user name | reply count
eee a

1 Tom Lane 9

1 Gregory Stark 9

8 2 Magnus Hagander 5

108 Dave Page 4

9 Josh Berkus 4

Top Posters :)

OBT VV

With CTE and Windowing, SQL is Turing Complete.

Cyclic Tag System

The productions are encoded in the table "p" as follows:

"iter" is the production number;

"rnum" is the index of the bit;

"tag" is the bit value.

This example uses the productions:

110 O1 0000

The initial state is encoded in the non-recursive union arm,

in this case just '‘'1'

The (r.iter @n) subexpression encodes the number of

productions, which can be greater than the size of table "p",

because empty productions are not included in the table.

Cyclic Tag System
Parameters:

the content of "p"

the content of the non-recursive branch

the 3 in (r.iter @ 3)

"po" encodes the production rules; the non-recursive branch is

the initial state, and the 3 is the number of rules

The result at each level is a bitstring encoded as 1 bit per

row, with rnum as the index of the bit number.

At each iteration, bit 0 is removed, the remaining bits

shifted up one, and if and only if bit 0 was al, the content

of the current production rule is appended at the end of the

string.

Proot:

Construct a Cyclic Tag System with

CTES and Windowing.

Proot:

WITH RECURSIVE

p(iter,rnum,tag) AS /(

VALUES (0,0,1),(0,1,1),(9,2,09),
(1,0,0),(1,1,1),
(2,0,0),(2,1,0),(2,2,0),(2,3,9)

)r

Proot:
r(iter,rnum,tag) AS (

VALUES (0,0,1)

UNION ALL

SELECT r.itertl,

CASE

WHEN r.rnum=0 THEN p.rnum + max(r.rnum) OVER ()

ELSE r.rnum-l

END,

CASE

WHEN r.rnum=0 THEN p.tag

ELSE r.tag

END

FROM

r

LEFT JOIN p

ON (r.rnum=0 and r.tag=l1 and p.iter=(r.iter % 3))

WHERE

r.rnum>0

OR p.iter IS NOT NULL

Proot:

SELECT iter, rnum, tag

FROM xr

ORDER BY iter, rnum;

Thanks
Andrew (Rhodium Toad) Gierth

Comme

nts 2

Strai
t) ack

ets 2

Thank You!
Copyright © 2009
David Fetter david.fetter@pgexperts.com
All Rights Reserved

