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Abstract 

IseCrack is a high performance implementation of rainbow tables on nVidia graphics 

cards (GPUs).  It explores the limits of current technology in password cracking, and 

demonstrates the vulnerability of non-salted passwords to high speed GPU-accelerated 

attacks, using commercial off the shelf hardware. 

Passwords are by far the most common authentication method for users, and many 

users utilize the same password in multiple places.  Many systems, including all current 

Microsoft operating systems, utilize non-salted passwords.  If these passwords are vulnerable 

to attack, a user's encrypted files and online accounts can be accessed. 

IseCrack demonstrates that very high speed attacks against non-salted hashes are 

feasible, and highlights the necessity for salted password stores.  IseCrack achieves a 100x 

speedup over existing implementations on inexpensive easily available hardware, and is 

designed to scale to large clusters. 
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Chapter 1: Overview of IseCrack 

In today’s world, passwords are used for authentication of users in almost all 

applications, including  local machine accounts, domain accounts, and web.  These 

passwords are stored with varying degrees of security, including plaintext (stored as the 

password),  simple hashes of the password (LanMan, NTLM, MD5), and salted passwords 

with multiple iterations (Unix implementations, good web applications).  While the hash 

provides a layer of security for the password if the hashes are compromised, modern high 

performance implementations of password cracking systems can defeat non-salted hashes 

quickly through pre-computation attacks (using large amounts of previously calculated data 

to rapidly crack the hash), and can attack salted implementations that were previously 

considered to be secure due to the amount of computation required to successfully attack 

them. 

General Purpose Graphics Processing Unit (GP-GPU) computation has also arrived 

on the computation scene within the past two years[11], allowing execution of code on the 

massively parallel stream processing hardware present in modern video cards, with 

performance previously considered to be firmly in supercomputer territory.  A top of the line 

video card is capable of roughly 1 TFLOP under ideal conditions[1], as compared to 20-30 

GFLOPs for a modern Core 2 Duo[2].  Modern GPUs are able to rapidly process integer 

operations as well as floating point operations, and are well suited to massively parallel 

problems. 

Password cracking and rainbow table implementations are problems that fit very well 

within the massively parallel problem domain, and are candidates for acceleration using 

GPUs.  As there are no existing public rainbow table implementations running on GPUs, and 
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the existing CPU-based rainbow table implementations use very slow reduction functions 

that do not function efficiently on a GPU (or, arguably, on a CPU), the entire rainbow table 

cracking system is re-implemented as a GPU-accelerated project to determine what 

performance is achievable, and what this means for user password security. 
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Chapter 2: Overview of Rainbow Tables 

 Rainbow tables are a pre-computation based approach to reversing hashes.  They 

require a large amount of pre-computation, but can store the results of this in a reasonable 

amount of space.  When searching for a hash, additional computation is required, but the 

computation required for searching is significantly less than the amount required for the pre-

computation, and significantly less than the amount required to brute force a password. 

 By generating long chains of passwords and hashes, tied together by the hash function 

and a reduction function (described in detail in the implementation section), rainbow tables 

store a compressed representation of a password search space.  By performing similar 

computations on a provided hash, they are able to dramatically reduce the amount of 

computation required to find the original password.  As with many algorithms, there are 

limitations with rainbow tables.  Unlike a brute force algorithm, they are not guaranteed to 

find a password within the search space, as the algorithm is probabilistic in the coverage of 

the password space, and a password will only be found if it is represented in the generated 

tables.  However, very high success probabilities can be achieved, and the search time is 

significantly less than with a brute force algorithm.  The details of rainbow table operation 

and the IseCrack implementation are covered in a later section. 

 The crack time/storage space tradeoff of rainbow tables is adjusted by changing the 

chain length.  Longer chains require less storage space, but require more computation (and 

more time) to crack passwords. 
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Chapter 3: Overview of password systems and attacks 

One way hash functions 

The vast majority of modern authentication systems use one-way hash functions to 

store passwords.  This allows a representation of the password to be stored without storing 

the actual plaintext password.  If an attacker compromises the password store, they are 

unable to view plaintext passwords, and instead see the hash (as well as any other 

information stored with the hash, such as a salt value). 

A one-way hash function is a function that takes an input of any length, and converts 

it into a fixed length output string.  The properties of this function are such that there is no 

currently known direct way to reverse a given hash output into one or all of its possible 

inputs.  As hash functions are often used in cryptography and for verifying file integrity 

during and after transfers, most hash functions have the additional property of being very 

fast.  The one-way properties of the function are good for secure password storage, but the 

high speed is not ideal for secure password storage, as an attacker can iterate through the 

password space at the same high speed.  

Salted password storage 

There are two primary methods of storing a hashed password: salted, and unsalted.  

Unsalted passwords are those produced when the password storage system takes the provided 

password, runs it through a defined hash function, and stores the output.  This is easy to 

implement, and is used on many websites, as well as all current versions of the Windows 

operating system.  The significant flaw with unsalted password storage is that a hash value 

will always correspond to a specific password (figure 1).   
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If a password results in a certain hash on one system, this same password to hash 

relationship will be true for all other users on the system with the same password, and for all 

users on other systems with the same password (and the same hash routine for password 

storage).  This property allows a pre-computation attack to be done, in which passwords 

corresponding to certain hash values are calculated ahead of time.  If an attacker gains access 

to the hash store, they are able to use pre-computed data to speed the computation involved 

in reversing the hashes back into the source passwords. 

 Salted password involve the use of additional random data when hashing the 

password (figure 2).  This random data is appended to the password before it is run through 

the hash algorithm and is then stored with the password.  As a result, if multiple users on the 

same or different systems have the same password, they will have different hashes.  The 

other beneficial component is that the salt effectively expands the password space.  While 

attacking an 8 character password is relatively easy, a 32-byte salt requires an attacker 

without knowledge of the salt to attack a 40-character password (well beyond current 

computational abilities). 

Unsalted password scheme 

System 1, user a, password abc: 0x1234 

System 1, user z, password abc: 0x1234 

System 2, user m, password abc: 0x1234 

Figure 1: Unsalted passwords 

Salted password scheme 

System 1, user a, password abc, salt 45hx: 0xC142 

System 1, user z, password abc, salt a5kz: 0x14FA 

System 2, user m, password abc, salt 1234: 0xC1D3 

 
Figure 2: Salted passwords 
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While attackers can still gain the password hash/salt information and attack the 

system if they compromise the hash store, a pre-computation attack is no longer effective.  

The attacker must attack each password separately with knowledge of the salt, a much slower 

process. 

Time/space tradeoffs in password cracking 

Password cracking requires resources.  In general, cracking passwords requires both 

time and space to attack hashes and determine the password that generated them.  Two 

approaches (brute force attacks and full pre-computation) exist at the ends of the time/space 

tradeoff spectrum, and rainbow tables exist in the middle, with their exact position being 

dependent on the parameters used to generate the tables. 

The standard password attack, brute forcing, requires no storage space (beyond 

wordlists if they are used), but requires significant amounts of time.  A brute force attack 

iterates through the password space, hashing each password, and looking for a match with the 

provided hash or hashes.  Brute forcing a password does not require any pre-computation, 

does not require significant storage space, and does not save the results of the computation 

performed beyond the passwords found (if any).  A brute force attack is the only feasible 

attack against a salted password system, but it rapidly runs into limitations of the size of 

password space that can be brute forced in a reasonable period of time. 

The other end of the spectrum is full pre-computation.  With this approach, all 

possible password and hash combinations are calculated ahead of time and stored in tables, 

sorted by hash order.  This allows very rapid searching, but requires extremely large amounts 

of storage for even a modest password space (figure 3). 
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Rainbow tables exist in the middle, between brute forcing and full pre-computation.  

A large amount of pre-computation is done to speed searching through the password space, 

but the results are stored in a highly compressed form.  By altering the chain length both the 

storage space requirements and the search speed can be modified.  A longer chain length will 

provide better compression, but will also take longer to search.  The total pre-computation 

time is not affected by the chain length. 

The same 8 character password set that takes 141PB to store in it’s entirety, stored in 

chains of length 1,000,000, only requires 151GB to represent – a much more reasonable 

amount of storage.  Storing in chains of length 100,000 will require 1.5TB, again a feasible 

amount of storage.  However, the table with length 1,000,000 will take significantly longer to 

search than the table of chain length 100,000 due to the candidate hash generation stage.  As 

the speed of hardware increases, longer chain lengths can be used to represent larger 

password spaces, while staying within the limits of the available storage technologies.  

Additionally, as faster hardware becomes available, the previously generated tables can be 

searched more rapidly, while at the same time creating new tables that fully utilize the 

performance available in the new computation hardware. 

 

Password space sizes, 16 byte hashes 

8 characters, 95 element charset: (95^8) * 24 ~= 141 PB 

6 characters, 95 element charset: (95^6) * 22 ~= 15 TB 

10 characters, 26 element charset: (26^10) * 26 ~= 3 PB 

Figure 3: Password space sizes 
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Chapter 4: Video Cards as General Purpose Processors 

In recent years, video cards have progressed beyond fixed function video display 

devices to allow a wide variety of code to be executed on them. The pixel shader pipeline 

allows a series of operations to be performed on each pixel in the output.  Originally, these 

operations allowed for new effects, such as bump mapping, and per-pixel lighting, shading, 

and coloring[9].  As the pixel shaders advanced, they slowly evolved into fully 

programmable pipelines, able to run arbitrary code, and video card makers realized that they 

were very few steps away from a parallel stream processor.  The new generations of both 

nVidia and ATI cards support this use, and both brands of cards are now usable as full stream 

coprocessors for certain workload types. 

nVidia and ATI have both released APIs within the past two years that allow general 

purpose code to be run on the GPUs.  While both are usable, nVidia's Compute Unified 

Device Architecture (CUDA) API is significantly more advanced, and is being actively 

developed and supported.  nVidia cards were also already present for use in several systems.  

For these reasons, nVidia cards were chosen for the initial implementation.  Extending the 

code to ATI graphics cards may be explored in the future. 

SIMD (Single Instruction Multiple Data) and SIMT (Single Instruction Multiple 

Thread) 

 
SIMD and SIMT refer to programming and execution models that have a single 

instruction stream operating on multiple elements of data at once.  While many SIMD 

implementations exist (SSE, Altivec, many game consoles), CUDA uses a variation known 

as SIMT.  This involves a single instruction stream running multiple threads.  The threads 

have their own local data and are scheduled independently of one another (although the 
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threads are executed with other threads in their block).  This allows a programmer to create a 

large number of threads (10,000 or more threads is not uncommon, and 100,000 threads is 

possible), and allows the hardware and thread scheduler to deal with the scheduling.  The 

advantage of this approach is that with a large number of threads ready to run, the scheduler 

can switch between ready threads to hide memory latencies, and can schedule threads to run 

on as many processors as the card has available.  The programmer, in general, can write the 

same code for low powered laptop video cards as well as high end desktop gaming or 

workstation powerhouses.  The primary disadvantage is that the programmer has no 

guarantee of any execution order, so the thread execution must be able to proceed in any 

order.  There are synchronization and communication primitives that can be used, but they 

can affect execution speed. 

nVidia CUDA View of hardware 

From the perspective of the CUDA programming API, a modern video card contains 

many blocks of stream processors.  Each block consists of a number of stream processor 

units.  The stream processor units are what actually execute the code.  They have their own 

registers and access to per-block shared memory.  The primary limitation is that there is a 

single instruction dispatch unit for each bank of stream processors.  If all the threads are 

running the same code, the stream processors are able to execute in parallel, and are quite 

fast.  However, if the code branches, execution has to serialize, processing each section in 

turn, which dramatically slows processing throughput.  Additionally, the stream processors 

are very simple processors, lacking lookahead, speculative execution, branch prediction, or 

any other "modern" features.  This allows the bulk of the transistors to be spent on execution 
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hardware as opposed to support hardware.  A resource dependency is resolved by stalling the 

pipeline until the dependency has been resolved. 

While many problems can be accelerated using GPUs, GPUs excel at completely 

parallel problems: performing the exact same operations on different blocks of data, with no 

inter-thread communication.  Rainbow tables and password cracking are perfect examples of 

this class of problem, and, as such, can be sped up dramatically through proper 

implementation on a GPU. 

GPU‐specific considerations 

This project is being implemented on GPUs with a goal of extracting maximum 

performance from the hardware.  As such, understanding the strengths and weaknesses of the 

GPUs is vital for extracting maximum performance.  Several of the important considerations 

for obtaining maximum performance are: 

♦ GPU performance drops dramatically if the code branches.  While in some cases 

branches are unavoidable, keeping them to a minimum is critical for extracting 

maximum performance.  IseCrack’s code minimizes the use of branches.  The only 

place branches are used is for the main loops, and to test if generated hashes are equal 

to the provided hash.  To help reduce the impact of branches, the code is structured 

such that branches only occur if absolutely needed.  When comparing hashes, if none 

of the initial words of the hashes match, none of the subsequent words are checked, 

and the code does not branch at all. 

♦ CPU and GPU code can overlap execution.  After the GPU kernel is launched, the 

CPU can continue to execute code.  It will execute independently until the next GPU 
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call, at which point the CPU will wait for the GPU to finish.  If the GPU finishes 

before the CPU is done, the GPU will idle until the CPU is done.  This allows for 

"free" preprocessing and postprocessing of GPU data if it is done properly and if the 

CPU section completes before the GPU code.  This is used in the table generation 

code (which makes up the bulk of the execution time for the project) in order to keep 

the GPU running constantly.  Effectively, the sorting and network transmission can be 

done “for free,” as the CPU is not being used to generate hashes. 

♦ GPUs do not make function calls efficiently, and cannot recurse.  To keep things as 

efficient as possible, the compute kernels are written without function calls as a single 

code block. 

♦ Certain functions are very fast on GPUs, and other functions are not.  Integer division 

and modulus are particularly slow, due to fewer execution units assigned to these 

functions and the complexity of the operations.  64-bit integer division and modulus 

are particularly slow and should be avoided if at all possible. 

♦ GPUs have a limited number of registers available to use.  In order to fully utilize the 

stream processing units in a block, a thread can use no more than 10 registers.  The 

more registers that are used, the fewer threads that can be run in parallel (physically – 

virtually, they are all being run in parallel).  Keeping register counts as low as 

possible is vital for performance.  However, register usage can be used to prevent 

memory access, and so code may be overall faster with an increased register count 

but significantly reduced memory access.  Balancing these tradeoffs is part of the 

performance tuning process. 
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♦ Global memory accesses are very slow (400-600 cycle latency).  These latencies can 

be hidden if there is sufficient compute code ready to run in other threads, or if the 

load is performed sufficiently in advance of the data use.  Writes to global memory do 

not block, but with the undefined thread execution ordering, using global memory for 

communication requires synchronizing and is best avoided. 

♦ Local shared memory is very fast (in the best case, as fast as registers), but small (16k 

per thread block) and requires specific memory access patterns to fully utilize the 

available bandwidth without serializing accesses and slowing execution down.  The 

shared memory is arranged in 16 banks, each 1 word (32 bits) wide.  All banks can be 

accessed in parallel, but only one element per bank can be accessed in a given cycle.  

Data that will be accessed regularly should be copied to shared memory for access if 

it is not being stored in registers.  Local memory also supports broadcast reads, where 

multiple threads reading the same address will receive the data in parallel. 
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Chapter 5: Previous Work & High Performance Password Cracking 

Systems 

Work has been done previously with both rainbow tables and with GPU accelerated 

password cracking.  However, the two have not previously been combined in a publicly 

available product.  There are several commercial and free products available that implement 

parts of this project.  A brief overview of the products and their strengths and weaknesses 

follows. 

Rainbow Crack[3]: Rainbow Crack is considered to be the reference implementation of 

rainbow tables.  It is a set of programs that allows for the creation, sorting, and searching of 

rainbow tables.  It also uses a very “correct” reduction function, generating high quality 

password distributions in the chains.  The primary flaw is that the reduction function is 

extremely slow, consisting of a large number of integer divides and modulus operations.  It is 

implemented for general purpose CPUs, and while there have been attempts to accelerate the 

table generation with GPUs [12], the limitations of the reduction function prevent a fast GPU 

implementation.  Additionally, to allow for the greatest effectiveness in GPU acceleration, 

the other functions must be accelerated as well. 

ElcomSoft Brute Forcers[4]: Elcomsoft is a Russian software company making a variety of 

GPU accelerated brute forcers.  They also have a $5000 product allowing for distributed 

password cracking.  However, they do not currently use rainbow tables. 

Free Rainbow Tables[5]: The Free Rainbow Tables project is a moderate sized distributed 

project that creates a variety of rainbow tables.  They offer an online cracking service, as well 

as a download of the tables for offline personal use.  While the tables generated are large, 
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they are still using the Rainbow Crack algorithms, and performance is due to the large 

number of CPUs processing as opposed to an efficient algorithm.  They are effective at 

smaller password sizes, but do not appear to be currently scaling to GPU acceleration. 

OphCrack[6]: OphCrack is a fast rainbow table based password brute forcer.  However, like 

the others, it is CPU-only.  The large pre-computed tables are available for sale, but these 

tables are still limited compared to what can easily be computed with a GPU accelerated 

system. 

BarsWF[7]: BarsWF is a set of high performance GPU accelerated password crackers.  They 

are quite fast, utilizing both heavy SSE4 optimizations for the CPU implementation as well 

as utilizing as many GPUs as are present in the system.  The primary restriction is that they 

only search for one hash at a time, and like all other brute forcers, do not make any use of the 

calculations after the password is found. 

 

 After researching the available software, it was clear that no one was going forward 

with implementing a fully GPU-driven rainbow table implementation.  ElcomSoft appears to 

be the most likely to release a rainbow table implementation for GPUs, but they are not 

transparent about their future intentions.  The Free Rainbow Table project is another potential 

source of GPU accelerated rainbow tables, but discussions with the site administrators 

indicates they do not have anyone with the needed skills to implement the solution, and are 

looking at other options for performance gains on modern CPUs.  The primary developer of 

BarsWF intends to create a distributed cracking system[8], but has no current plans to 

implement rainbow tables. 
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Based on these findings, it was clear that the way to test performance of GPU-

accelerated rainbow tables would be to write an entire implementation from scrach, 

optimized for GPUs, and test performance with it. 
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Chapter 6: IseCrack Rainbow Table Implementation 

Rainbow tables are a pre-computation based attack on hashes.  They are a time/space 

tradeoff, compressing the data size of the pre-computed tables to a feasible amount of 

storage.  They do require very significant amounts of up-front time to compute the tables, but 

after the tables have been created, they allow rapid cracking of any password represented 

within the tables.  Unfortunately, rainbow tables are probabilistic in nature, so a crack can not 

be guaranteed, only determined to a certain level of likelihood (often in the 99.9% or higher 

range).  To improve the cracking probability, multiple tables with different indexes are used.  

This allows for a higher crack probability within a given space.  Also, perfected tables 

increase the crack probability within a given storage space, but require significantly more up 

front computation time. 

To implement a rainbow table based attack on a certain hash, in addition to the hash 

function, a reduction function is needed.  The reduction function takes a hash and turns it 

back into a password of specified characteristics (length, character set).  The reduction 

function is critical to the operation of the tables, as a reduction function that generates bad 

results will prevent a usable table from being generated. 

There are a number of different operational sections that go into the rainbow table 

generation and search process.  The functionality of each section, and operational details, are 

described in the following sections. 
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Hash Function 

NTLM hashes are a MD4 hash of the UTF-16 representation of the password.  

IseCrack is currently restricted to supporting ASCII characters in the crack character set.  

While NTLM hashes support the full Unicode character set, the vast majority of users restrict 

themselves to easily typed passwords on their native keyboard and are not willing to enter 

Unicode characters for each login.  Additionally, the entire Unicode character space is far too 

large to attempt with current technology. 

 

 

 

 

To prepare a password for hashing, it is converted from an ASCII representation to a 

Unicode (UTF-16) representation (figure 4).  Additionally, it must be stored in little endian 

format (UTF-16LE), as this is the encoding used on x86 machines that run Windows.  To do 

this, bytes of 0x00 are inserted after each ASCII character in the string to be hashed.  This 

corresponds to the memory representation on a Windows machine.  The length of the string 

to be hashed is twice the password length. 

Once the password is represented in little endian Unicode, it is run through the MD4 

hash algorithm to obtain the NTLM hash.  MD4 is defined for any input length (including 

non-byte length inputs).  However, for the purposes of rainbow table implementation, the 

MD4 function will only receive byte-length inputs, and further will only receive inputs up to 

a certain length.  By removing unneeded code from the MD4 implementation, significant 

Password (ASCII): aBc (0x614263), 3 bytes 
Unicode (UTF-16): 0x006100420063, 6 bytes 
Little endian Unicode (UTF-16LE): 0x610042006300, 6 bytes 

Figure 4: Password encodings (ASCII, UTF-16, UTF-16LE) 
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speedups can be seen as long as the input is limited with certain constraints.  Modifications 

and limitations of the MD4 implementation used for IseCrack include: 

♦ Only one cycle is run.  MD4 is defined for any length input, and each cycle processes 

448 bits (56 bytes).  However, for IseCrack, only a single cycle is implemented.  This 

limits the input string length to a maximum of 55 bytes, or a 27 character password.  

This is well beyond what is currently feasible to calculate, and is not a limitation for 

the current project. 

♦ Each password length has its own kernel with the length hard coded.  This allows for 

reduced register count and elimination of length-related branches, both of which 

improve performance significantly by keeping the code path as parallel as possible. 

♦ Input bytes that are always going to be zero (input words beyond the end of the 

password length) are hard coded to zero, as they will never have data.  This allows for 

reduced register count and reduced register bank conflicts, which allow better 

performance.  In certain functions, the compiler is able to detect these static 

conditions and automatically optimize without hand-optimization. 

 

The end result is that, for each password length, there is an optimized MD4 function 

that generates correct output, for that specific input length, as quickly as possible.  The 

reduction in register count allows for somewhat increased parallelization on shorter password 

lengths, and increased performance. 
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Reduction Function 

The most important component of the rainbow table process is the reduction function.  

This function turns a hash back into a password.  If this function does not generate an even 

distribution of passwords when used in chain generation, the entire rainbow table will be 

worthless.  While a reduction function may perform well in a test environment with uniform 

input values, this does not guarantee proper performance in an actual rainbow chain.  Due to 

the complicated interactions between the hash function and the reduction function, a function 

that generates good test data may, in an actual chain, generate highly "clustered" passwords, 

where certain passwords are very frequently represented and others are not represented at all. 

Also of extreme importance, the reduction function must be fast on the hardware.  

Hash functions are designed to be fast, while a good reduction function is often slow.  The 

Rainbow Crack reduction function, used in almost all current rainbow table implementations, 

involves significant amounts of 64-bit integer division and 64-bit integer modulus, and is 

quite slow on general purpose CPUs.  It also does not translate well to a GPU-accelerated 

version, as 64-bit integer operations are some of the slowest operations on the card. 

The reduction function used by IseCrack (figure 5) has been developed in several 

iterations.  A password clustering problem, where certain passwords would be represented 

many thousand times and others would not be represented, was discovered late in 

development, when it was realized that many passwords that should be represented in the test 

tables were not.  After generating test code to observe the password distribution, the 

clustering was observed.  A new algorithm was written to generate more evenly distributed 

passwords.  As an additional feature, the new algorithm supports arbitrary character sets, 
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which is useful for generating tables of longer password lengths but a smaller character set 

(characters 0-9 to password length 12, only lowercase or only uppercase to password length 

10). 

 

Figure 5: IseCrack reduction function 

Each input byte from the hash has the table index and step added, to help prevent 

merging chains (described in the table generation section).  After this, the lower 27 bits are 

stripped off and broken into three 9-bit segments.  These are then used as indexes into a 512 

byte character set table.  A 1024 element table was implemented, but did not provide 

significant improvements in password distribution and was several percent slower.  This 

reduction function relies on the speed of bit-masking and bit-shifting for power-of-two 
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Bits 0-9 Bits 10-18 Bits 19-27
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modulus and division, and runs extremely quickly on the GPUs.  The provided code (figure 

6) is for length 8 passwords.  Shorter passwords use fewer steps.  As each register (b0, b1, 

b2, b3) is a full word (32 bits/4 bytes), two password characters are packed into each register.  

The higher position character is shifted by two bytes as it is inserted to place the characters 

appropriately. 

 

One limitation of the current reduction function is that it wraps the character set as many 

times as possible into a 512 element lookup table.  If the character set length is not a power 

of two, there will be an uneven distribution of characters.  However, the speed of the current 

reduction function with this restriction is enough faster to make this tradeoff beneficial to 

overall system performance.  Additionally, this reduction function will only work out to 12 

characters (4 input words at 3 characters per word).  However, as long as the same reduction 

z = (UINT4)(a+i+tableindex) % (512*512*512); 

   

b0 = (UINT4)charset[(z % 512)]; 

z /= 512; 

b0 |= (UINT4)charset[(z % 512)] << 16; 

z /= 512; 

b1 = (UINT4)charset[(z % 512)]; 

 

z = (UINT4)(b+i+tableindex) % (512*512*512); 

b1 |= (UINT4)charset[(z % 512)] << 16; 

z /= 512; 

b2 = (UINT4)charset[(z % 512)]; 

z /= 512; 

b2 |= (UINT4)charset[(z % 512)] << 16; 

   

z = (UINT4)(c+i+tableindex) % (512*512*512);   

b3 = (UINT4)charset[(z % 512)];  

z /= 512; 

b3 |= (UINT4)charset[(z % 512)] << 16; 

Figure 6: IseCrack reduction code 
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function is used in every step of the process, a different reduction function for longer 

passwords does not pose a significant problem to the operation of the system. 

Table Generation 

 The table generation phase is the most time consuming phase of the rainbow table 

process.  This phase can require GPU-years of computation time, depending on the password 

space being explored.  To generate a usable set of tables, roughly 4 passes through the 

password space must be completed.  For generating a set of optimal, perfect tables, closer to 

40 passes through password space is required, but the tradeoff is significantly faster 

searching.  The generate parameters can be adjusted based on the number of GPUs available 

and the desired performance. 

The table generation stage involves the creation of the rainbow tables (figure 7).  A 

rainbow table is simply a sorted collection of rainbow chains.  Each individual element of a 

rainbow table (shown in the “Table Entry” boxes) is a rainbow chain, and represents a series 

of passwords equal to the chain length.  To generate a rainbow chain, a random initial 

password is generated.  This password is then hashed through the desired hash function.  The 

hash is run through the reduction function to generate another password, which is hashed 

again.  This repeats for each step of the chain (in this implementation, 100,000-1,000,000 

times).  After the computation, the initial password and end hash are stored.  The initial 

password and end hash represent the entire computed contents of the chain, and this 

information is used later in the process to reduce the amount of computation required to find 

a password.  The chain generation is done a large number of times to generate the rainbow 

tables. 
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One consideration is that, depending on the character set size, there may be many 

chains that merge - different input values leading to the same end value (chains 1 & 2 in 

figure 7).  Chains may merge at any point in the chain.  However, if chains have merged, 

there is a reduction of password space represented by them.  The worst case, two chains 

merging after the first hash, means there are two functionally duplicate chains.  If there are 

large numbers of merging chains, this wastes disk space, and impacts searching time.  

"Perfecting" tables involves removing all but one of the merging chains.  This requires 

significantly more table generate time to cover a given password set, but produces 

dramatically more space and time efficient tables.  This can be done on a per-table basis, as 

the subsequent functions work equally well on perfected or non-perfected tables.  In figure 7, 

only chain 1 or chain 2 would appear in a perfected table.  

The important innovation in rainbow tables is the use of  a different reduction 

function for each stage of the chain.  This is often implemented by passing the chain step into 

the reduction function.  Note that in figure 7, ‘myPass’ appears twice, but as the hash is at 

different steps, it is turned into different passwords.  Chains only merge if the same hash 

appears at the same step. 

Tables also have an index value associated with them.  This is used as another input 

to the reduction function that alters the password generation.  Due to the probabilistic nature 

of table generation, an increasingly large table is more likely to have duplicate values.  

Getting very high crack probabilities with a single table requires much more disk space than 

using multiple smaller tables.  The index value, as described above in the reduction function, 

is used on a per-table basis to alter the reduction function and improve overall efficiency. 
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Figure 7: Rainbow table generation 
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 IseCrack handles table generation by distributing table parts to remote compute 

clients.  Data transmitted and received is described in figure 8. 

 

 

 

Generating the table parts involves several operations: 

♦ Generate a random array of passwords.  This is done on the host CPU using standard 

random functions while the previous set of hashes is being computed on the GPU. 

♦ Computing the end hashes for each element in the initial array of passwords.  This is 

the kernel run on the GPU. 

♦ Sorting the end hashes for easier merging.  This is done on the CPU, while the next 

set of hashes is being computed on the GPU.  Quicksort is the algorithm used, as this 

is an efficient algorithm and executes quickly without needing significant additional 

memory space. 

♦ Transmitting the sorted hashes/passwords over the network.  This is done by the CPU 

while the GPU is processing. 

On a fast network connection, the network overhead is not significant.  However, if 

compute nodes are on a slower connection (residential DSL or cable), the network transfer 

Table generation data packets 

[Hash type]\n 

[Character set]\n 

[Detailed character set info or blank]\n 

[Chain length]\n 

[Password length]\n 

[Number of chains to generate]\n 

[Table index]\n 

 

Client returns, for each chain, in sorted order: 

[16 bytes: hash][16 bytes: password, null padded] 

Figure 8: Distributed table generation packet 
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time may take as much time or longer than the GPU computation.  Overlapping the network 

transfer with the GPU computation allows significant performance improvements.  Also, 

while the sorting is a fairly fast process, it does take 5-10 seconds of CPU time for 1M 

elements.  In figure 9, tasks that execute on the CPU while the GPU is processing are shaded.  

However, if the network connection is slow enough to not allow the complete transfer of data 

before the GPU kernel finishes, the GPU will sit idle until the transfer is done.  As IseCrack 

is intended to run on a local high speed network, this is not a significant concern. 
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Figure 9: Rainbow table generation CPU/GPU overlap 
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Merging table parts and perfecting tables 

Once table parts are created, they must be merged into a single large table.  This 

process is done by reading all of the (sorted) table part files, and merging them together into 

a large sorted table.  If the table is being perfected, the duplicate hash values are removed at 

this point, leaving only a single instance of each end hash in the generated table.  The end 

result of the merge process is a large rainbow table, sorted by hash order. 

IseCrack loads all the table part files as memory mapped files.  This allows the kernel 

to handle the memory management of files.  Additionally, when generating a perfected and a 

non-perfected table at the same time, the kernel will allow the open memory mapped files to 

be shared between two tasks and dramatically reduce disk read and memory requirements.  

Due to the size of the data files, this code must be run on a 64-bit machine and operating 

system, as the virtual memory space can exceed 4GB by very large amounts. 

Once the files are loaded into memory, they are merged using a standard merge 

algorithm that picks the lowest value from the list of current positions.  One drawback to this 

is that the compute complexity is O(number of elements * number of input files).  Further 

optimizations could be made by first merging smaller numbers of chains into longer sorted 

chains, and then merging those together, as opposed to doing a flat merge of all input files. 

If the table is to be perfected, this is done while merging the files.  For a perfect table, 

the previously merged hash value is stored.  If additional instances of that hash are provided 

from the merge function, they are ignored until a new value is provided. 
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Generating candidate hashes 

The first step, once a hash is passed to the rainbow table search routine, is to generate 

a series of candidate hashes.  These hashes are specific to a password length, reduction 

function, and index.  They are the result of regenerating the chains for each possible hash 

position within the chain (figure 10).  

 

Figure 10: Rainbow table candidate hash generation 
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 In figure 10, the candidate hashes are generated for 0x1135 starting at each of the 

chain positions, with the appropriate reduction function.  Note that while candidate hashes 1 

and 3 do not appear in the rainbow table (figure 7), 0xDEAD does.  However, only one of the 

chains in the rainbow table ending in 0xDEAD has the hash in it.  This is known as a “false 

alarm,” and happens fairly often in large tables. 

 Candidate hash generation is the primary use of compute time in searching for a hash.  

As the chain must be regenerated for each of the possible hash positions, this generates a 

number of candidate hashes equal to the chain length.  However, it also requires a very large 

number of steps to do this.  The total number of steps required to calculate the candidate 

hashes is (0.5 * (chain length)^2).  This places an upper bound on chain length, as the 

candidate hash generation time goes up with the square of chain length.  However, as 

processing capability increases, longer chains can be used for new tables. 

 The candidate hash generation occurs on remote video cards.  The network 

communication protocol for this process is seen in figure 11. 

 

 

 

 

 

 

 

 

Candidate hash data packets 

[Hash type]\n 

[Character set]\n 

[Detailed character set info or blank]\n 

[Chain length]\n 

[Password length]\n 

[Table index]\n 

[16 bytes: hash]\n 

 

Client returns, for each hash, in sorted order: 

[16 bytes: hash] 

 
Figure 11: Distributed candidate hash data packet 
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 Once the candidate hashes have been generated, they are returned to the server.  

When the server has enough candidate hashes for a given table, it searches through the table 

to look for matching endpoints. 

Searching the tables 

 After the candidate hashes have been generated, the previously generated tables are 

searched for matching end points.  For all candidate hashes that match a chain endpoint, the 

initial password used to generate the chain is stored for the regeneration step.  The searching 

of the tables effectively reduces the search scope from the entire password character space to 

the number of chains that have matching endpoints.  In addition to valid matching chains, 

there are false alarms (matching endpoints that do not contain the password), and there is no 

guarantee that a given password/hash combination exists within a table.  In figure 7, chains 1 

& 2 would both be pulled for regeneration.  Chain 2 contains the password, but chain 1 is 

simply a false alarm.  It is also possible that if the table were perfected, chain 2 would no 

longer be present.  In this case, despite the end hash being found, the password is not 

represented in the table and will not be found.  Searching can only find passwords that are 

represented in the initial table. 

 Searching the tables is a very disk intensive task, and is performed on the central 

server.  There are several options for searching the tables.  The first, most commonly used 

option, is a binary search through the table.  This appears to be a very fast option on paper, 

but forces the disk system to do a very large number of random seeks.  Disks are relatively 

slow at this, and while the filesystem cache helps with subsequent searches on the same 
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table, this is a relatively slow method of searching a large table for large numbers of hashes.  

A binary search also requires somewhat complex logic at the end to handle the presence of 

multiple values of a hash in the file.  While it can be effective on a perfected table, it is of 

less use for a full table. 

 Another option is to read linearly through the entire table.  This makes far better use 

of the disk subsystem, as disks are significantly better at linear reads then they are at random 

seeks.  However, when searching for a single set of candidate hashes, the hit rate is very low, 

and this wastes much time, as a very large file will not fit in memory, and will have to be 

pulled from disk each time. 

 The option used by IseCrack is to search linearly through the tables for a very large 

number of candidate hashes at once.  The search code first loads as many candidate hashes as 

are available (up to a large limit, currently set at 1000) into memory.  The hashes within 

these files are all in sorted order.  Each candidate hash file is loaded, and an output file is 

opened to contain the chains to regenerate.  The candidate files are then merged together to 

create a large sorted structure in memory.  Each element contains the hash to search for, as 

well as the output file the chain information should be dumped to. 

 Once this large sorted structure is finished, the table file is opened, and read linearly.  

For each match, the chain information is appended to the appropriate output file.  The search 

algorithm properly handles both multiple instances of a single hash in the table file and 

multiple instances of the same hash in the input chains.  The end result is similar to a SQL 

JOIN statement, with each of the matching chains being present in each output file.  At the 

completion of the table search, all matching chains are stored in files for regeneration and 

hash searching. 
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Chain regeneration and hash searching 

 The final step of the rainbow table process is to take the matching chains found in the 

table search step and regenerate each of them while looking for the specified hash.  If the 

hash is found, the previous password is a valid reversal of the hash. 

 The chain regeneration can proceed in parallel, both for all hashes being searched for 

and for every chain within each set.  As such, it is distributed to video cards through a 

network daemon. 

 

 

 

 

 

 

 

 

  

The clients process the chains in parallel and return the result.  If the hash is found, 

the corresponding row in the database is updated, and no further searching occurs against the 

hash.  If the hash is not found, other tables and indexes are searched. 

 

Chain regeneration data packets 

[Hash type]\n 

[Character set]\n 

[Detailed character set info or blank]\n 

[Chain length]\n 

[Password length]\n 

[Table index]\n 

[16 bytes: hash to search for] 

[Number of chains to regenerate]\n 

For each chain to regenerate: 

[16 bytes: initial passwords, null padded] 

 

After searching, client returns: 

[1 byte: 0 if failure, 1 if success] 

If success: 

[16 bytes: Password found, null padded] 

Figure 12: Distributed chain regeneration data packet 
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Brute Forcer 

While the bulk of IseCrack is focused on rainbow table generation, the goal of the 

system is to be a rapid hash reversal system, able to quickly return passwords for provided 

hashes once the tables have been generated. 

Passwords in a very small password space (5 characters or less, numeric passwords of 

10 characters or less, lowercase only passwords of length 8 or less) are significantly slower to 

attack with rainbow tables than with a brute forcer.  A fast brute forcer can return these 

passwords in seconds to minutes without ever having to touch a rainbow table.  By running 

hashes through a brute forcer first, simple passwords are returned quickly.  This 

accomplishes several things.  First, as the goal of the system is to reverse hashes quickly, a 

simple password returned quickly accomplishes the task.  Second, by filtering out the easy 

passwords, the significantly more compute-intensive rainbow tables can be reserved for the 

more complex passwords.  By reducing the number of passwords that get passed to the 

rainbow tables, the rainbow tables can return complex passwords more rapidly.  Finally, it is 

impractical to create rainbow tables for password scopes that can be represented in under 100 

chains. 

To allow for the greatest effective searching speed, the brute forcer takes large 

numbers of hashes and searches them in parallel (generate hash, check against all submitted 

hashes, generate next hash, check against all submitted hashes).  While this slows the step 

rate through password space dramatically, it results in a very significant speedup in the total 

hash search rate (as it is searching many hashes in parallel).  Because this system is designed 

for handling large numbers of hashes, this is a very effective tradeoff. 
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The IseCrack brute forcer is capable of handling up to 1000 NTLM hashes at once (a 

limit created by the 16384 bytes of shared memory per block; 1000 hashes at 16 bytes per 

hash takes up most of the space, with the character set taking up another 128 bytes), and is 

currently able to handle lengths through 8 characters (with search time being dependent on 

the character set used).  The brute forcer is slower for a single hash than a brute forcer 

optimized for searching only single hash, but due to the number of hashes being searched in 

parallel, is significantly faster on a per-hash basis when multiple hashes are solved in a single 

pass. 

Under typical expected use, the brute forcer will be used to test the full character set 

for lengths 1-5, uppercase and lowercase through length 8 (only testing length 6-8 as 1-5 

have already been tested), and numeric through length 10.  This will allow for the use of 

fewer distinct rainbow tables, and overall faster system performance on large numbers of 

hashes. 

Utility functions and programs 

During development and testing, it is important to verify that all functions are 

working as expected and that the data returned is correct.  As the operation of the system is 

entirely dependent on hashes, reductions, and chains being correctly generated (for table 

generation, candidate hash generation, and final chain regeneration), it is vital to ensure that 

the tables and data are correct.  Additionally, video cards are known for having a higher bit 

error rate than other devices.  The actual rates are not available for public review, as they are 

under NDA, but it is important to verify that the cards are not generating errors in 

computation. 
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Additionally, the functions used for the verification code are independently written, 

using more standard ways of dealing with character arrays.  This allows an easy check that 

the GPU code, dealing with little endian words, is generating the intended result.  The verify 

code also uses the standard libssl MD4 hash function as opposed to the heavily optimized 

version used on the GPUs.  This prevents a hash algorithm error from returning incorrect 

results. 

The following utility programs have been written: 

♦ generate_chain takes a provided password, chain length, and table index.  It runs the 

specified number of steps, and outputs the final hash.  Optionally, it will print the 

entire chain, with password/hash values at each step.  This is useful to confirm chains 

are being properly generated, as well as to submit test cases that are verified as 

present in a table. 

♦ test_reduction is used to verify the reduction function.  It generates a number of 

chains, and at each step converts the password into a numerical index.  This index in a 

large array is incremented.  After a sufficient number of chains are generated, the 

password counts are output to observe the password distribution.  If the reduction 

function is causing clustering (certain passwords represented significantly more often 

than others) or large areas of no passwords, this allows these behaviors to be detected 

and fixed. 

♦ verify_table is given a table and the generate parameters for it (password length, 

chain length, index).  It reads all the chains in the table and recalculates them on the 

CPU to confirm they are correct.  Optionally, for large tables, verify_table can take a 

stride, only testing every N chains.  This allows a rapid search through a table for 
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massive generate errors without having to compute the entire table (as this is 

significantly slower on the CPU than on a GPU). 
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Chapter 7: System Architecture and Design 

 IseCrack is a password cracking system, as opposed to a simple rainbow tables 

implementation.  It also deals with password spaces that are, until recently, considered to be 

computationally infeasible to crack.  As such, it is dealing with huge amounts of data from a 

large number of GPU compute nodes.  These nodes should not require significant 

management once running – the server should be able to assign tasks to them as needed.  

Several of the design criteria and decisions considered: 

♦ Despite the high computation speed of GPUs, the system will still take many GPU-

years to fully compute the desired tables and will require many compute nodes 

feeding data into a central server or set of servers.  The central server design needs to 

be able to handle this flow of data. 

♦ While the system is generating data, end users should be able to submit password 

hashes and check them against the currently generated tables and brute force modules 

without needing to stop the table generation process. 

♦ Idle GPUs are a waste of time and resources.  The system architecture should be able 

to keep busy as many GPUs as are connected, either searching for hashes or 

generating new table data (unless all requested tables have been generated). 

♦ Compute nodes may come online or go offline at any point and should be assigned 

work as they become available.  There should be a way for a node to cleanly exit after 

completing it's current assigned work units.  Also, a compute unit losing a network 

connection or shutting down mid-work unit should not cause any data to be 

permanently lost (except table part data).  Any unfinished work units should be 

reclaimed and handed to a different compute node. 
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♦ With a full cluster providing data, the central server may be receiving 50-80Mbit of 

data from 50 or more clients.  The server is designed to handle this, as long as the 

disk subsystem can keep up (which should be easy for any modern disk system). 

♦ The data sizes within each table and overall will be very large - beyond the 4GB limit 

of a 32-bit memory space.  A 64-bit OS is required to host the server. 

♦ Because the final design goals were not provided, the system is being designed for 

maximum overall throughput with a large supply of password hashes.  The overall 

system crack rate is the primary design criteria, as opposed to the time to crack an 

individual hash. 

 

Of the tasks present, several can be pushed to any compute node easily, and several need 

to remain on the local machine or disk cluster. 

♦ Table generation, candidate hash generation, chain regeneration, and brute forcing 

can be executed on any node. 

♦ Table part merging and searching within a table for candidate hashes must be 

performed on the local system, as the data size is such that transferring it over the 

network is not feasible. 

The final design for the system involves the creation of a small distributed computing 

project.  Data is centrally stored on the server filesystem and managed through a MySQL 

database.  The tasks that must be run locally are run locally, and the tasks that can be 

distributed across the network are handed out, in work chunks, by several network daemons 

running on the server.  The network daemons interface to a MySQL backend, and allow the 

system administrator to change the priority and nature of workloads "on the fly" by changing 
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values in the database.  If system requires additional nodes to handling the searching, the 

compute clients do not need to be restarted, but instead will change their workload as the 

server changes the work units handed out. 

Compute nodes connect to the server, receive their work, perform the requested 

processing, and submit the results back to the server.  If the server does not receive data back 

(due to the compute node crashing or going offline), the work unit will be reclaimed and 

provided to another system.  The MySQL backend handles much of the data processing, and 

allows the network daemons to be dramatically simpler.  Including support for additional 

hashes, character sets, and brute force modules is also simplified, as the network daemons do 

not need to be recoded.  Adding the additional information into the database will allow the 

new information to be instantly passed out to clients.  If a client does not support the 

workunit assigned to it, the client will deny the workunit and wait for a different one. 

The system administrator can also specify priority of hashes to run through the system.  

While hashes of standard priority are handled in a FIFO queue, the administrator can specify 

that certain hashes are of a higher priority, and they will be processed before any other 

hashes waiting in the system. 

Finally, a web interface allows the management and monitoring of the system.  Hashes 

are added this way, and character set/hash types are added (though the compute clients must 

support the character set and hash type). 

A weakness of the network system is that, if access to the compute network were gained, 

a malicious user could submit false data and corrupt the system.  Possible defenses against 

this would be to randomly check submitted chains for correctness or submit work units to 

multiple nodes and compare results.  As the system is designed to be operated on a secured 
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network, these are not currently implemented.  Due to the bandwidth requirements for 

transfer of data, this system is unlikely to scale as-is to a standard distributed project, and so 

will not be accepting compute nodes from the internet at large.  A future expansion would 

involve authenticating compute clients and confirming that the data returned was valid.  An 

easy way to do this would be to check random chains from returned hashes, or to submit each 

work unit to multiple clients. 

The system is hosted on 64-bit Linux servers.  This allows dealing with very large files in 

a straightforward manner, as >4GB files can be accessed through memory mapping, and 

processes that need a large working memory space do not need to be PAE aware.  The 

filesystem for the primary data stores is SGI's XFS.  XFS supports the very large files and 

volumes needed (8 exabyte files, 16 exabyte volumes), has excellent performance on large 

files, and supports online defragmenting and resizing, which, if combined with a suitable 

RAID controller, would allow disk space to be purchased and added as needed, without 

requiring the host server to shut down. 



 42 

Chapter 8: Ethical Considerations 

Like many security-related projects, this project brings up ethical concerns.  The 

primary concern voiced is that providing a "better password cracking system" will allow 

cybercriminals easier access to a user's passwords, with the subsequent problems that a 

compromised password causes, including the possibilities of identity theft, information theft, 

spam, and even financial loss (if the cracked password allows access to a company’s 

sensitive information or an individual’s bank account).  A system that rapidly cracks 

passwords previously thought secure does certainly benefit those who are out to do harm 

with passwords, but that is not the only factor to be considered. 

There are a variety of legal and ethical uses for password cracking systems.  In 

addition to law enforcement, password cracking systems are commonly used by IT 

professionals in large and small organizations to test user-provided passwords and ensure 

they meet certain requirements.  If the system administration staff is easily able to crack a 

password, any attacker would easily be able to do the same.  Many organizations regularly 

test passwords with the currently available cracking software and require users to change 

easily compromised passwords. 

The more important consideration is that none of the technologies used in this project 

exist alone, or are isolated to security researchers.  This same knowledge and technology is 

available to both the defending side and the attacking side.  The only difference is that the 

attacking side is frequently far more secretive about their tools and resources.  As cybercrime 

is now a well-organized, profitable enterprise[10], tools and resources that improve the 

ability of criminals to gain access to machines for various purposes are worth money.  While 

security researchers find many vulnerabilities, in some cases, the first indication a 
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vulnerability exists is a 0-day exploit in the wild, compromising systems and creating botnets 

while spreading to new hosts.  There are auction sites for 0-day exploits[13], established 

pricing structures for botnet attacks (spam and denial of service are the most common)[14], 

and well established chains for trafficking of identities and information. 

There are individuals in the cybercriminal realm who have devoted time and 

resources to password cracking.  The application of video cards to rainbow tables is a clear 

match for those familiar with both, and while the skills needed to implement a solution are 

beyond what many involved in cybercrime have, it only takes one or two skilled individuals 

to write the code that can then be utilized by others (as is currently the case for much of the 

trojan and botnet code).  Alternately, an individual or group of individuals could build their 

own cracking cluster, and sell "cracks" - taking hashes and reversing them.  The total 

resources needed are well within the reach of any moderately funded cybercrime 

organization, as well as within the reach of a decently funded individual.  This ignores the 

fairly likely possibility of obtaining all the hardware needed with stolen and fraudulent credit 

card numbers. 

Given all this, it is reasonable to assume that there are individuals in the cybercrime 

world actively pursuing fast password cracking with GPUs.  A GPU cluster could be easily 

applied to a wide variety of cracking, including wireless networks.  The presence of such a 

system would be difficult to discover, as it would likely remain hidden, with just the output 

being released to others, and most likely for pay. 

Building a proof of concept system with the technology is, then, simply bringing 

awareness to existing technologies that can be combined and used.  Additionally, defending 

against rainbow tables is very easy, but requires the system programmers be aware of the 
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threat and the capabilities of current hardware in attacking hash-based password systems.  

IseCrack, then, serves as a public demonstration of the power of GPU based password 

cracking systems, and a warning that non-salted passwords are not secure in the lengths most 

commonly used. 
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Chapter 9: Performance 

 The goal of a rainbow tables implementation on graphics cards is high performance 

password cracking.  If GPUs are not able to significantly accelerate password cracking, there 

is no point to using them. 

 Fortunately, they do provide very significant speedups against CPU-based rainbow 

table implementations.  As the current reference implementation of rainbow tables is 

Rainbow Crack, this is used as a benchmark for comparison. 

Rainbow Crack, on a Core 2 based Xeon at 2.33ghz, completes 2.1M links per second 

per core, for a total system generation rate of 8.4M links per second on the quad core Xeon. 

There exist GPU accelerated versions of the rainbow crack generator, but they are all 

either unable to be downloaded (invalid links), or are Windows-only and do not support 

NTLM.  However, it appears they are able to run much better generate rates of 70-80M links 

per second.  This is an improvement, but speeding the generate does not solve the problem of 

chain storage and crack speed with longer chain lengths.  All these products appear to 

generate chains of length 10,000 (the standard Rainbow Crack length), and they are 

implementing the slow Rainbow Crack reduction function. 

rgraves@isecrack-server:~/rainbowcrack-1.2-src/src$ cat /proc/cpuinfo | 

grep CPU | tail –n 1 

model name      : Intel(R) Xeon(R) CPU           E5345  @ 2.33GHz 

 

rgraves@isecrack-server:~/rainbowcrack-1.2-src/src$ ./rtgen ntlm all 8 8 

0 -bench 

ntlm hash speed: 3623188 / s 

ntlm step speed: 2173913 / s 

Figure 13: RainbowCrack performance 
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Free Rainbow Tables is currently generating chains at around 8000 chains per second, 

which translates to (8000 * 10000) = 80M links per second.  However, some of their 

computing resources are used for searching and cracking as well. 

IseCrack is substantially faster than any of these, both due to algorithmic 

improvements and to the GPUs.  To verify the algorithmic improvements and compare 

performance directly, a CPU version was created. 

Figure 14: IseCrack CPU performance 

 IseCrack’s algorithm, run on a CPU, completes 9M links per second per core, for a 

total system generation rate of 36M links per second. 

On a single nVidia 8800GTX OC (128 stream processors, shader rate of 1.46ghz), 

IseCrack is able to generate chains at a stepping rate of 410M links per second. 

  A GTX260 (192 stream processor edition) was able to generate at over 450M links 

per second.  Estimated performance on a 9800GX2 (two 9800 cards, bound together into a 

single package) is around 900M links per second.  These rates are valid for all the chain 

stepping code, including table generation, candidate hash generation, and chain regeneration.  

Chain regeneration is slightly slower due to having to check for hash matches, but this does 

Starting kernel: NTLM/all Length 7, Index 0, 100 chains of length 
100000 
Kernel Time for 100 chains: 1110.000 ms 
Step rate: 9.01 M/s 
Writing results to network. 
Writing 100 chains to network completed. 

Starting kernel: NTLM/all Length 7, Index 2, 100000 chains of length 
100000 
Kernel Time for 100000 chains: 24503.080 ms 
Step rate: 408.11 M/s 
Writing results to network. 
Writing 100000 chains to network completed. 

Figure 15: IseCrack GPU performance 



 47 

not affect overall system performance, as the chain regeneration step involves the least work 

of any of the GPU accelerated steps. 

For brute forcers, ElcomSoft’s NTLM brute forcer claims to run at 365M passwords 

per second[4].  BarsWF NTLM cracker runs at 500M passwords per second on a 9800GTX, 

which is a significantly faster card than the 8800GTX used for testing. 

The brute forcer module in IseCrack is not optimized for single password speed.  

Instead, it is optimized for total throughput.  When running with 1000 hashes to check, 

depending on password length, it achieves a total hash check rate of 20-25B hashes per 

second.  Its single hash performance is adequate, at around 400M steps per second, but 

adding additional hashes to check rapidly raises performance well beyond what any other 

brute forcers are currently achieving. 
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Chapter 10: Results & Conclusions  

 As a password cracking system, IseCrack is successful at generating performance not 

previously seen in password cracking systems.  Existing rainbow implementations have not 

fully embraced GPU acceleration, which limits their ability to represent large password 

spaces in reasonable disk space.  IseCrack is, to my knowledge, the first fully GPU 

accelerated rainbow table implementation. 

 The limits of current rainbow tables are being used as test cases for IseCrack.  Neither 

Free Rainbow Tables nor OphCrack support NTLM hashes with a full character set beyond 6 

characters.  IseCrack has used that for testing and verification as a trivial case.  Extending the 

full character set out to 8 characters is relatively simple, and 9 characters are feasible with 

sufficient GPU power available.  Substantially longer password attacks can easily be made 

on smaller character sets within very feasible amounts of time. 

 IseCrack clearly demonstrates that applying GPUs to rainbow tables allows a very 

significant speedup (200x or more) against existing solutions, and it allows for the attack of 

passwords that had previously been considered secure. 

 In light of the performance numbers seen, it would not be advisable to use anything 

under a 12 character password with all character classes (upper, lower, numeric, symbol) 

represented, and for passwords using fewer character classes, longer passwords are 

important.  It also highlights the importance of salting passwords, as a salted password is not 

nearly as vulnerable to a rainbow table as an unsalted password. 
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Chapter 11: Future Work 

 IseCrack has significant potential for future expansion.  The current implementation, 

while functional, is a proof of concept running on a small number of video cards.  The 

system, to meet the intended goals, needs significantly more computational power.  This 

requires a central server with significantly more storage, and the processing and memory 

capacity to handle the flow of data. 

 This also requires significantly greater numbers of video cards.  One possible option 

for this is a cluster of GPUs, either nVidia Tesla servers or separate systems.  Alternately, 

time could be obtained on an existing GPU cluster.  Another option is to turn the project into 

a distributed computing project, allowing contributing users to crack hashes with the system 

in exchange for GPU compute time.  This is a preferred option if it can be done, as the power 

is functionally free for the project, and a significantly larger number of GPUs can be obtained 

for computation. 

 Additional work will involve supporting more hash algorithms.  Other commonly 

used algorithms that need additional work are LM (LanMan hashes, DES based), MD5, 

SHA1, and new algorithms being produced.  IseCrack is a solid framework to extend to these 

hash types. 
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