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Abstract

Trust Analysis, i.e. determining that a system will not

execute some class of computations, typically assumes

that all computation is captured by an instruction trace.

We show that powerful computation on x86 processors

is possible without executing any CPU instructions. We

demonstrate a Turing-complete execution environment

driven solely by the IA32 architecture’s interrupt han-

dling and memory translation tables, in which the pro-

cessor is trapped in a series of page faults and double

faults, without ever successfully dispatching any instruc-

tions. The “hard-wired” logic of handling these faults is

used to perform arithmetic and logic primitives, as well

as memory reads and writes. This mechanism can also

perform branches and loops if the memory is set up and

mapped just right. We discuss the lessons of this execu-

tion model for future trustworthy architectures.

1 Introduction

Computing architectures are typically described in terms

of their instruction set architecture (ISA). Formal se-

curity models of processors generally focus on the se-

mantics of CPU instructions in an ISA (e.g., Morrisett’s

RockSalt [13]). Thus it is easy to see a sequence of ma-

chine instructions as the only vehicle of computation in

a processor; it is easy to expect successful dispatching

of instructions to be a necessary condition for having a

non-trivial computation. After all, if no instructions have

been successfully executed, what work could a processor

have possibly done?

However, modern microprocessors have many other

mechanisms that are able to perform a surprising amount

of computation. We demonstrate that the page-fault han-

dling mechanism in the Intel’s IA32 architecture—in

combination with a few other legacy features—is able

to perform Turing-complete computation without any

CPU instructions completing. We believe that this is

not unique to either the x86 Memory Management Unit

(MMU) or to the Intel architecture, but that similarly

complex architectures have similarly interesting behav-

ior outside their “main” instruction set.

Although our proof-of-concept represents neither a

vulnerability in IA32, nor an exploit for x86 processors,

but we believe it continues the line of research that orig-

inated in exploit development—namely, exposing unex-

pected (and unexpectedly powerful) programming mod-

els within the targeted environments, where program-

ming happens via maliciously crafted data rather than

with native binary code. We show that CPUs carry within

them a “weird machine” programming model which does

not rely on any actual CPU instructions.

We believe that understanding such unexpected “weird

machine” execution models is necessary in order to work

toward establishing the trustworthiness of a system. In-

deed, trust in a system can be characterized as assurance

that certain kinds of potential computations are not actu-

ally possible. Analyses of trust typically assumes implic-

itly that the universe of potential computation consists

only of things expressible as execution or access traces.

By showing the existence of computations outside this

universe, weird machines violate these assumptions and

serve as proofs of non-trustworthiness.

Lessons and impact. We initially undertook this study

to better understand x86 trapping, which is the founda-

tion of core OS security mechanisms. Indeed, both ver-

ification of software and the formal study of enforcible

policies rely on certain assumptions regarding the under-

lying memory model; it’s the trapping of memory ac-

cesses that actually enforces such assumptions. How-

ever, x86 memory trapping is driven by many inputs, has

substantial amounts of state that is affected by those in-

puts, and also writes memory—thus leading to the pres-

ence of non-trivial memory-modifying automata in x86

memory trapping. What better way to understand the

system than try to program automata to extract maximum
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possible computing power from it?

Our “programs” exists as a set of cross-referencing

and cross-mapped memory tables; all entries of these ta-

bles are well-formed, and use no undocumented proces-

sor features. The existence of these programs poses a

number of questions:

1. What makes these tables as a whole well-formed or

benign?

2. If machine owners want to exclude the kinds of

computation we describe, how should they go about

it?

3. Are there formal security models that implicitly

or explicitly assume that the memory manage-

ment hardware cannot be driven through a Turing-

complete computation on its input tables?

4. Should future MMU deliberately limit computa-

tional power by design?

5. Since trap descriptor tables may enable complex

programming models, should they be treated the

same way as covert channels?

6. How can adversaries use the existence of this weird

machine to cause actual damage?

We believe that the designers of a trustworthy platform

should start considering these questions so they could

choose to incorporate the answers as a part of their se-

curity model.

We hope that the obvious obfuscation and computa-

tion hiding potential of our construct will lead to both

interesting obfuscation techniques and inform the design

of new security features.

2 Related work: exploits and hidden pro-

cessor state

2.1 Inspirations from exploit program-

ming

Red pills. In the process of developing our prototype,

we encountered many bugs in emulation and tracing

tools (such as QEMU); in a sense, our Turing machine

is made out of “red pills” capable of detecting the type

of environment it is running in. Not a single such emula-

tion and tracing tool reflected the entirety of hardware’s

actual behavior on which we rely. We believe the reason

for this limitation is that emulation-based analysis tools

are primarily debugged against popular OS implementa-

tions rather than hardware specifications. Although “red

pills” are plentiful and can be automatically produced

(see, e.g., [16]), the ability to host arbitrary computations

in the “red pill” space is a fresh cautionary tale.

Weird machines. Leading hacker researchers long

held the idea that exploitation was a a form of program-

ming by composing the target platform’s features and

bugs to carry out unexpected or arbitrary computation

(e.g., [21, 10, 5]). The bugs, triggered in ways to min-

imize and control their effects, yielded instruction-like

primitives such as reading or writing a word at a speci-

fied location. Just as an assembly program combines na-

tive instructions, exploit payloads were constructed out

of computational primitives exposed by both features and

bugs.

Bratus et al. [3, 4] coined the term weird machines to

refer to such programming models that are the underly-

ing computational reality of exploits, to capture the rich

folklore of hacker research that dealt with these modes of

programming. Just as programming in native assembly

relies not only on the instruction set but also on program-

ming idioms, a weird machine is a programming model

built out of the collection of primitives exposed by the

target as an “instruction set”, and its usage idioms.

Classic low-level examples of such idioms and primi-

tives that add up to a rich programming model include:

• Format string exploitation (in which the internals

of printf() served as the automaton and the crafted

format string as a program driving that automaton

to corrupt runtime memory in controlled fashion),

• Heap metadata exploits [2, 11, 10] (in which heap

management code was the simple automaton pro-

grammed to perform memory writes by overflowing

a heap block’s freelist pointers),

• Crafted stack frames that serve as a program to the

automaton composed of a collection of “gadgets” of

Return-Oriented Programming [24, 22, 6] (which,

in its early forms [20, 14], were simply parts of the

automaton implementing the program’s own control

flow). All of these examples operate on the level of

code compiled into native instructions and loaded

into a process’ runtime space.

Recent web exploitation techniques expose “weird

machines” higher up in the software stack – in web

browsers where exploit execution depends entirely on

features of the web browser rendering engine (DOM,

CCS, HTML5, etc.) and browser components or the

server web programming environments, never triggering

any native binary-level bugs in the browser binary. These

execution models leverage the fact that rendering vari-

ous elements of the Document Object Model (DOM) tree

has rich and observable side-effects on the browser state,

while the browser also contains automation logic that can

be repeatedly triggered (see, e.g., Heiderich’s [9, 8]).

Lower down in the software stack, ABI metadata pro-

vide more examples of Turing-complete programming
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with crafted inputs that aren’t, strictly speaking, mal-

formed. For example, ELF relocation entries in com-

bination with the dynamic symbol tables can be used

as a program executing on the ELF runtime linker-

loader [19].1 DWARF exception handling data used by

the GCC toolchain for encoding stack unwinding and

saved register information can be used to drive an ar-

bitrary computation on the exception-handling standard

library code [15]. In both cases, the metadata plays the

role of instructions that drive the “weird machine” au-

tomaton present in the target (in the code that processes

the respective kinds of metadata to create or modify pro-

cess memory and/or stack).

The variety of examples of weird machines we have

discussed show that there are rich – and sometimes

Turing-complete – programming models present in all

layers of the software stack.

Ubiquity of weird execution environments. From the

“weird machine” point of view, every input is a program,

so long as it causes state changes in the system that con-

sumes it. This view of input is, of course, standard in

computation theory: a Turing Machine in of itself merely

holds potential computing power until it presented with

some input to drive it. Finite automata and pushdown

automata that recognize their respective input languages

can be thought of as driven from state to state by the input

symbols they consume, and so on.

It is not as common, however, in software engineer-

ing to view inputs as programs: network packets are not

seen as inputs that are executed by the network stack,

document formats on their respective processing appli-

cations, ABI metadata on the loaders and runtime link-

ers, RPC messages on their interpreters, encrypted mes-

sages on the cryptographic transport libraries, and so

on. It appears that idea of treating inputs as languages

to be recognized by automata-based parsers generated

from the specification grammars is limited to the narrow

fields connected with programming languages research

(e.g., [28, 12]). Sassaman et al. [23] outlines the impli-

cations of this ad-hoc approach to input processing for

software security, and identifies it as a major contribut-

ing factor to input-related vulnerabilities.

The majority of “weird machines” described have

been in software environments, such as application pro-

cess runtime or the operating system kernel. In the next

section, we discuss examples of programming automata

inside x86 hardware components that served as inspira-

tion for our weird machine construction.

1This work generalized the LOCREATE proof-of-concept [25],

which used the automaton underlying PE relocation to encode an “un-

packer” (a binary code rewriter) solely in crafted relocation entries.

2.2 A case study of programming MMU

state

It is not surprising that memory hierarchy architectures

of modern processors maintain additional state to opti-

mize virtual memory address translation. It is remark-

able, however, that this state can be reliably controlled

by causing specific sequences of memory accesses on

crafted page-tables. Since this state affects memory ac-

cess trapping, these traps can be thought of as having

additional semantic features available to the systems pro-

grammer.

On x86, these features have been used as either a pow-

erful security primitive [17], a debugger aid [27], or a

rootkit memory hiding trick [26]. In this section, we ex-

plain these different uses; readers familiar with these re-

sults are encouraged to skip to Section 3. Note that we

do not rely on any of the following mechanism for our

construction, rather they served as an inspiration to the

computational power of the Intel MMU.

An x86 “split TLB” primer The X86 memory archi-

tecture uses separate caching paths for fetching data and

instructions, each with its own state preserved across a

history of memory accesses. The page table entry (PTE)

of a successful data memory reference is lifted into the

data translation lookaside buffer (dTLB) whereas suc-

cessful instruction fetches resulting from control flow

transfers such as jump or call instructions get cached

in a separate instruction translation lookaside buffer

(iTLB). Once a TLB entry is created for a virtual mem-

ory page in the appropriate TLB, it will be used for ad-

dress translation whether or not the underlying PTE is

changed; the PTE record will only be consulted again af-

ter the TLB entry is evicted or flushed. Thus the PTE

entry for a page may be different from either or both of

the TLB entries for that page currently in use; it turns out

that this condition can be controlled and the associated

logic used as a programming primitive, as the following

examples show.

PaX PAGEEXEC. The PAGEEXEC [17] mechanism

of the PaX project is a prime example of using the se-

mantics of TLB state as a security primitive. Prior to the

broad introduction of the NX bit on x86 platforms, PaX

emulated non-executable pages by using x86 segmenta-

tion where available or PAGEEXEC where segmentation

was not an option. With its demonstrated efficacy against

executable-stack exploits, this property gained recogni-

tion and guided the deployment of OS security features

such as OpenBSD’s W ⊕X and Microsoft’s DEP.

The PaX team performed a careful analysis of TLB

and trapping logic, and demonstrated that it indeed pro-

vided the necessary semantics. We refer the reader to the
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PAGEXEC documentation [18] for the full formal de-

scription of the automaton involved; we briefly describe

how it works below.

In the absence of a dedicated non-executable data sup-

port, the ’non-executable’ property of a page can be em-

ulated, so long as all potential instruction fetches from

that page are trapped and examined by the trap handler

(if the EIP register value at the point of the trap is in-

side the page’s virtual address range, it’s a fetch). How-

ever, since invoking a trap handler incurs a heavy perfor-

mance penalty, the trapping cannot be allowed to occur

for each and every access to the page. Luckily, this is

where page fault logic and memory address translation

semantics compose into an efficient solution.

By setting the Supervisor/User (S/U) bit in the PTE

of a designated non-executable page, we can cause the

processor to trap any access to that page, i.e., whenever

a virtual address within that page goes through the page

translation look-up process. The trap causes the Page

Fault handler to be invoked (as no TLB has a correspond-

ing entry yet). If the resulting trapped page access is

due to an instruction fetch, then the page fault handler

terminates the process; otherwise, it’s a data access and

must be allowed through. The page fault handler then re-

sets the S/U bit for a single data byte access to succeed,

and performs that access – causing the PTE for the page

to be recorded in the dTLB. Right after this access, the

handler resets the PTE entry’s S/U bit back to uncondi-

tionally causing the fault. Subsequent dTLB-cached ac-

cesses will succeed incurring no penalty until the dTLB

entry is evicted, whereas all other accesses, including all

instruction-fetch accesses, will fault. Upon dTLB entry

eviction, the overloaded page fault handler will be called

and will restore the dTLB entry “de-synchronized” from

the iTLB and the PTE entries.

Thus the “de-synchronized” PTE and dTLB entries to-

gether with the Page Fault logic can be used to introduce

extra page trapping semantics – in this case, the one that

the NX bit later provided natively.

OllyBone. OllyBone [27] used a similar mechanism as

the basis of a malware-analysis debugger module to trap

“packed” malware right after the unpacker has extracted

(“unpacked”) the actual malicious code. As its author

observed while analyzing malware, a desired trapping

primitive would be catching the first instruction executed

that did not exist in the packed file – that is, an instruction

previously written by the unpacker. This would be pos-

sible if these newly created instructions could somehow

be tagged, and the MMU could be configured to trap on

the tag.

While this sounds like a complex proposition for ex-

perimental hardware, OllyBone solved this problem by

using the TLB property described above to act as that tag.

This created a practical approximation to trapping on the

condition “instruction fetch from a page previously writ-

ten to by the program,” a convenient means to recover

code obfuscated by complicated packers.

ShadowWalker. The “Shadow Walker” technique

leveraged the split TLBs for the purpose of concealing

pages of executable code in virtual memory from a pro-

cess such as an anti-virus that would analyze the code

(accessing it as binary data). The gist of the technique

was to de-synchronize the physical page frame number

(PFN) in iTLB and dTLB in such a way that the CPU’s

memory reads within the hidden range of virtual ad-

dresses would be translated to a different physical page

than instructions fetched from the same virtual address

range. Thus an anti-virus or a kernel debugger would in

fact be “analyzing” the contents of an innocuous page,

while jump-ing or call-ing into that page would exe-

cute entirely different code.

In all of these examples, the interaction of the mem-

ory trapping mechanisms with the caching layer of mem-

ory translation has introduced additional and power-

ful semantics, enabling programming tricks that would

seem impossible from a naive view of either mecha-

nism. Many such composition effects are common folk-

lore in hacker research; we posit that they deserve a for-

mal study, starting with descriptions of the programming

models they enable. This, in part, is what motivates our

work described in the next section.

3 Implementing Interrupt-Based Compu-

tation

3.1 Overview

Memory translation and interrupt handling on the IA32

architecture are controlled through a combination of ar-

chitectural registers and tables in memory. Furthermore,

when a page fault occurs because of an invalid page-table

entry, information about the fault is written to a location

in the same memory. By configuring the address of the

page fault handler to be yet another invalid address, the

processor will keep endlessly dispatching page-faults as

it tries to fetch the first instruction of the page-fault han-

dler. If the tables controlling this behavior are crafted

just the right way, the side effects of the interrupt han-

dling form a Turing-complete one-instruction computer.

This suggests that we could consider view the internal

logic of page fault and memory translation as the finite

automaton of a Turing machine and the memory as hold-

ing its ’tape’”, by potentially creating a kind of a closed

loop of memory accesses.Figure 1
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Figure 1: Closing the computation loop.

3.2 X86 Interrupt Handling Refresher

The interrupt handling mechanism of the x86 is closely

related to the now-disused protected-mode2 memory seg-

mentation system[1]. This system is driven primarily

through two tables in memory, the Global Descriptor

Table (GDT) and the Interrupt Descriptor Table (IDT).

The GDT contains segment descriptors, i.e. intervals of

memory addresses each labeled with a descriptive type.

The CPU addresses memory through an index into the

GDT, called a segment selector and an offset into the re-

sulting interval. Usually, the segment selector for a par-

ticular access is stored in an implicit register, such as how

instruction fetches use the selector from the Code Seg-

ment (CS) register. In modern processors, this feature

has been de-optimized and is largely unused, and will

not be used in our construction , so we will disregard it.

More interestingly, the GDT can also point to Task

State Segments (TSS) which are regions of memory that

can contain a copy of most of the processor’s registers

in addition to additional control information, such as the

location of the kernel stack to be used for handling inter-

rupts (see Figure 2). The CPU has hardware features that

allow saving the entire CPU state to a TSS and restor-

ing it from there. Therefore, the TSS mechanism allows

the system programmer to switch between contexts with

a single instruction or interrupt without any further man-

ual task switching logic. 3.

2The techniques presented here are constrained to 32-bit mode.

While many systems now run in long mode (64 bit), the 64-capable

chips still support all 32 bit features and can be returned to 32-bit mode.

Furthermore, we believe that similar computational power also lies in

64-bit mode interrupt handling.
3In practice, this is unused due to the performance overhead com-

pared to handwritten task switching logic. Furthermore, additional glue

code is needed to properly save and restore additional architectural state

added after Protected Mode, such as floating point registers

The Task Register (TR) contains the selector for

the ’current’ task state segment. Whenever the CPU

switches to a different task, before loading its state from

the new task’s TSS, it will save its state to the TSS stored

in TR.

The other important table for protected mode is the

Interrupt Descriptor Table, residing at a virtual address

stored in a special register. Each IDT entry corresponds

to a class of interrupts and contains instructions how to

handle these interrupts. One the one hand, the processor

can be instructed to leave most state untouched, move

to a privileged code segment and kernel stack and jump

to an interrupt handler at a given address. On the other

hand, certain interrupts might be symptomatic of ker-

nel bugs that have seriously corrupted the CPU state, in

which case the IDT can tell the processor to perform a

task switch to a specified task. The task switching mech-

anism reloads more state than the normal FAR-jump in-

terrupt gate, so it can recover more state corruption.

For some interrupts, the processor pushes an error

code to the interrupt handlers stack. If an error occurs

while transferring to the interrupt handler, the CPU raises

a double fault interrupt. If yet another interrupt occurs

while handling the double fault, the CPU resets itself and

the system reboots.

3.3 Constructing the Weird Machine

We can use the primitives listed above to assemble

a “One Instruction Computer” with a move-branch-if-

zero-or-decrement instruction, short movdbz.

Each movdbz instruction consists of a source, a desti-

nation, a branch target (B) and next instruction(A). The

source and destination point to a finite set of memory

cells holding 10-bit unsigned integers4 branch and next

fields point to other instructions, which live in a differ-

ent (conceptual) address space. Our compiler represents

both variables and instructions as labels.

Execution of a movdbz consists of fetching the value

stored in the source cell and decrementing it. If the

decrement succeeds, the value is stored in the destina-

tion cell and execution continues at A (the ’next instruc-

tion’ field). If the decrement results in an underflow, 0 is

stored in the destination field and execution continues at

address B.

It has been proven that a strict subset of this in-

struction set, subtract-and-branch-if-negative (SBN) is

Turing-complete in [7]. The SBN machine has a set

of three-operand instructions (destination, source and

branch target) and memory cells holding non-negative

4The values actually map to DWORD-aligned 32-bit pointers,

which have to be valid and mapped stack pointers. The current pro-

totype maps only a single page for the kernel stack, whereas this could

easily be extended if more values need to be held
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integers like our architecture, but as opposed to decre-

menting by a constant, every instruction subtracts the

contents of the source from the destination operand

and stores the result in the destination. If we can

synthesize SBN from our movdbz; Assume we have an

instruction L: sbn X,Y, A, B //if(X − Y ≥

0) {X-=Y;goto A;} else {X-=Y;goto A;}

the following instructions are equivalent, where i1

through i3 are temporary instruction labels, tmp is an

otherwise unused storage cell and INT MAX is a storage

cell initialized to 210. Note that the last 3 instructions

are only needed to simulate the unsigned underflow

discussed in the book, which is not strictly necessary for

the proof of turing-completeness.

L : movdbz tmp , Y, i1 , A

i 1 : movdbz X, X, L , o v e r f l o w

o v e r f l o w : movdbz X, INT MAX , L , L

i 2 : movdbz tmp , Y, i3 , B

i 3 : movdbz X, X, i2 , o v e r f l o w

Our compiler compiles each movdbz instruction entry

into an IDT, a set of page tables and a TSS per instruc-

tion. Each memory cell is assigned a page of physical

memory, with the value stored in the DWORD starting

at offset 8 in that page. Furthermore, we have imple-

mented a demonstration kernel that will initialize all the

control registers to point to these tables without possible

interference from the plethora of hardware a real kernel

would initialize. The compiler also allows creating inter-

rupt tasks pointing to valid pieces of code, so execution

can be seamlessly transferred between movdbz code and

regular X86 instructions, which our demo uses to fill the

frame buffer with the results of the movdbz computation.

Figure 2: The flow of an interrupt, bits affecting handling

highlighted. The TSS is split by a page boundary at the

red line.

Each movdbz instruction is executed by either a page-

fault or a double-fault. The conceptual ’rising clock’ of

Figure 3: Elements of the movdbz instruction

our weird machine is the interrupt being raised. The CPU

will walk the IDT and GDT to find the TSS selector of

the instruction to be executed. This TSS selector will

point to a TSS that is mapped across a page boundary, so

the Task State Segment is split into two halves, as seen

in Figure 2. Splitting the TSS across two pages allows

two seperate areas of physical memory to be overwritten

by one physical write, as described in Section 3.4.1. The

page tables map the region in the upper page of this TSS

to the physical page corresponding to the source memory

address of the movdbz to be executed. The source cell’s

value (stored at offset 8 within that page) will be loaded

as the interrupt handlers stack pointer from this page.

The lower part of the TSS is mapped to a page spe-

cific to this movdbz which contain the page tables for that

instruction and the instruction pointer for the page-fault

handler. One one hand, if we want to end our computa-

tion and return to normal CPU instruction, we can point

this to valid code, effectively ending the chain of nested

pagefaults. On the other hand, if we want to continue

computing, we can point this to an invalid address so we

will keep repeating faults.

The new page tables loaded as part of this TSS will

remap the upper half of that TSS to point to the desti-

nation memory cell as opposed to the source cell. Af-

ter loading the new page tables, the CPU will push an

(ignored) error code to the stack pointer, thereby decre-

menting it by 4. As our stack pointers, i.e. memory cell

values, are guaranteed by the compiler to fall within the

lowest page, which we map, the push will succeed unless

the variable was 0.

In that case, a double fault will be raised. Our com-

piler crafts the IDT and page tables so that the IDT entry

for the double fault will point at the TSS belonging to the

instruction referred to by the branch target in the current

instruction. The upper half of the branch target’s TSS

will again be mapped to that movdbz’s source. There-

fore, the CPU will save the current state, including the
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zero it could not decrement further to the current TSS,

setting the destination variable to 0 in the process and

will resume ’execution’ at the branch target movdbz.

However, if the push succeeded, the CPU will attempt

to execute the (not mapped) interrupt handler and raise

another page fault. The processor will save the decre-

ment stack pointer to the memory cell as part of saving

state, load the new TSS from the page fault IDT en-

try, which the compiler maps to the ’next instruction’

movdbz. Hence, execution has been moved to the next

instruction, the source memory cell of which has been

loaded into the stack pointer.

3.4 Implementation Constraints

3.4.1 Busy bit

The interrupt task mechanism tries to specifically pre-

vent looping interrupts, because the interrupt TSS con-

tain back-links to the interrupted task. Furthermore, if a

buggy system would accidentally enter infinitely looping

interrupts, that situation would be hard to recover from

or diagnose.

The loop-prevention mechanism hinges on the busy bit

in the TSS descriptor in the GDT, which the CPU sets

when entering a task and clears when leaving it. How-

ever, this simple automaton is not powerful enough to

detect all loops, because its only state - the busy bit - re-

sides in the same memory that the task switching mech-

anism operates on.

We notice that in addition to just reading and writ-

ing the stack pointer (which the interrupt handling logic

will perform arithmetic on), the processor also loads

and stores a number of general purpose registers with-

out modification.

By placing a valid GDT descriptor into the lower half

of the TSS when it is loaded and overlaying that page

onto the GDT when saving state, we can overwrite the

GDT entry with arbitrary values just after the busy bit

has been set. In our case, we map EAX and ECX over

the GDT entry and overwrite it with the exact same de-

scriptor, but with the busy bit cleared. An even more ob-

fuscated control flow could be implemented by writing a

different GDT descriptor.

Furthermore the processor will reset if it encounters

a triple-fault, i.e. another fault while handling a double

fault. Therefore, the movdbz following a branch (after

an underflow) must not cause another underflow. Typ-

ically, we work around this restriction by inserting an-

other movdbz which writes a large positive value from

a dummy memory cell to the memory cell that caused

the underflow, simulating an unsigned underflow rolling

over to a larger positive number.

3.5 Graph coloring

Another restriction on the task switching mechanism is

that the process will only switch to a task other than the

current task specified in the TR register. A trivial solution

to this problem would be to use a different TR value for

every movdbz instruction.

Unfortunately, because of the trick used to clear the

busy bit described in Section 3.4.1, we can only use 16

different TR values that correspond to the 16 GDT slots

just before a page boundary. We therefore have to map

multiple movdbz Task State Segments to the same virtual

address, so we need to restrict program flow such that no

two movdbz at the same address follow each other.

When considering the movdbz instruction graph

(where every node corresponds to an instruction and if

x.A = y or x.B = y, (x, y) ∈ G), the assignment

of TSS slots is equivalent to 16 coloring the graph. If

the particular instruction graph is not 16 colored, it can

be easily extended by inserting semantically irrelevant

instructions(decrementing an otherwise unused variable

and storing it in another unused variable, then branching

to the original branch target), i.e. subdividing edges on

the instruction graph, until the graph is 16-colorable5

3.6 Evaluation

We released the source code for our movdbzcompiler

on GitHub.6 Together with the compiler, we released

a minimal kernel template that boots the processor, ini-

tializes the relevant registers to point at the compilers

output and causes a page fault, beginning the interrupt

based computation. Finally, we also include a demon-

stration implementation of the Game Of Life that demon-

strates the ability to integrate real X86 code and inter-

rupt based computation. The page-fault weird machine

is used to compute each iteration of the automaton, using

31 movdbz instructions per cell. After each iteration, the

CPU is restored to a valid state and normal X86 assem-

bly instructions are used to output the cellular automa-

tons configuration to the framebuffer. In principle, the

size of the game of life is only limited by the available

physical memory (which becomes a problem much ear-

lier than execution time becomes an issue), however as

described below the current compiler does not optimize

for memory usage, effectively limiting programs to a few

thousand instructions.

The current proof-of-concept compiler has some lim-

itations that prevent practical exploitative use; All cre-

5This procedure terminates, because once every instruction i is pre-

ceded by one dummy instruction and succeeded by two dummy instruc-

tions, we can color i green, the predecessor blue and the successors red

and yellow, coloring the graph trivially at the expense of quadrupling

program size
6https://github.com/jbangert/trapcc
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ated tables are encoded as C source code that places

the appropriate values in memory using kernel-specific

macros. While this approach is flexible, the emitted ini-

tialization code is quite large - the Game of Life demo

is only demonstrated in small sizes because the initial-

ization code hits limits in our bootloader and the C com-

piler. Furthermore, no effort was undertaken to minimize

the memory usage of the weird machine - the two pages

used for each TSS could for example be re-used for page

tables and a single physical page can hold both the lower

and the upper part of two distinct TSS’s (effectively hold-

ing one instruction and one variable). If the pages are

used in that fashion, the approximately 1 million physi-

cal memory pages on the 32-bit Intel architecture could

each hold one instruction and one variable, not account-

ing for initialization code or memory mapped devices.

The current approach is also limited in its interaction

with pre-existing kernel code; if the page-fault weird ma-

chine were to be used e.g. to hide a rootkit or to oth-

erwise manipulate kernel structures, the current imple-

mentation can only change control flow and write 4 bytes

on every page. Through compiler modifications (moving

the page boundary within a TSS) a slightly larger frac-

tion of memory could be used for arithmetic. Further-

more, the reloading and storing of TSS already moves

values between memory locations as a side effect which

could also be used to corrupt kernel structures. Ulti-

mately though, the compiler would have to be extended

by another primitive to allow arbitrary memory reads and

writes7.

4 Conclusion

Although address translation and memory access trap-

ping subsystems of a modern processor are central to en-

forcing any and all practical security models, these sys-

tems per se are rarely studied in computational terms, as

a unit and in composition with other features. However,

since trustworthiness of computing systems is typically

predicated on assurance regarding the types of computa-

tion these systems can and cannot be driven to perform,

we believe that such a study of traps is long overdue.

Our result, taking inspiration from hacker research,

demonstrates that unorthodox uses of MMU features in

modern processes can result in powerful computations

driven entirely by their in-memory descriptor tables –

without dispatching any native instructions. We hope

that our exposition of this “weird” sub-architecture will

encourage follow-on research in enumerating and char-

acterizing other unexpected computational environments

in processors and chipsets.

7e.g. by loading a TSS from the middle of a page to read a value into

the SP register and then faulting back to the Page-Fault computation
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