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Abstract

Trust Analysis, i.e. determining that a system will not
execute some class of computations, typically assumes
that all computation is captured by an instruction trace.
We show that powerful computation on x86 processors
is possible without executing any CPU instructions. We
demonstrate a Turing-complete execution environment
driven solely by the IA32 architecture’s interrupt han-
dling and memory translation tables, in which the pro-
cessor is trapped in a series of page faults and double
faults, without ever successfully dispatching any instruc-
tions. The “hard-wired” logic of handling these faults is
used to perform arithmetic and logic primitives, as well
as memory reads and writes. This mechanism can also
perform branches and loops if the memory is set up and
mapped just right. We discuss the lessons of this execu-
tion model for future trustworthy architectures.

1 Introduction

Computing architectures are typically described in terms
of their instruction set architecture (ISA). Formal se-
curity models of processors generally focus on the se-
mantics of CPU instructions in an ISA (e.g., Morrisett’s
RockSalt [13]). Thus it is easy to see a sequence of ma-
chine instructions as the only vehicle of computation in
a processor; it is easy to expect successful dispatching
of instructions to be a necessary condition for having a
non-trivial computation. After all, if no instructions have
been successfully executed, what work could a processor
have possibly done?

However, modern microprocessors have many other
mechanisms that are able to perform a surprising amount
of computation. We demonstrate that the page-fault han-
dling mechanism in the Intel’s IA32 architecture—in
combination with a few other legacy features—is able
to perform Turing-complete computation without any
CPU instructions completing. We believe that this is

not unique to either the x86 Memory Management Unit
(MMU) or to the Intel architecture, but that similarly
complex architectures have similarly interesting behav-
ior outside their “main” instruction set.

Although our proof-of-concept represents neither a
vulnerability in IA32, nor an exploit for x86 processors,
but we believe it continues the line of research that orig-
inated in exploit development—namely, exposing unex-
pected (and unexpectedly powerful) programming mod-
els within the targeted environments, where program-
ming happens via maliciously crafted data rather than
with native binary code. We show that CPUs carry within
them a “weird machine” programming model which does
not rely on any actual CPU instructions.

We believe that understanding such unexpected “weird
machine” execution models is necessary in order to work
toward establishing the trustworthiness of a system. In-
deed, trust in a system can be characterized as assurance
that certain kinds of potential computations are not actu-
ally possible. Analyses of trust typically assumes implic-
itly that the universe of potential computation consists
only of things expressible as execution or access traces.
By showing the existence of computations outside this
universe, weird machines violate these assumptions and
serve as proofs of non-trustworthiness.

Lessons and impact. We initially undertook this study
to better understand x86 trapping, which is the founda-
tion of core OS security mechanisms. Indeed, both ver-
ification of software and the formal study of enforcible
policies rely on certain assumptions regarding the under-
lying memory model; it’s the trapping of memory ac-
cesses that actually enforces such assumptions. How-
ever, x86 memory trapping is driven by many inputs, has
substantial amounts of state that is affected by those in-
puts, and also writes memory—thus leading to the pres-
ence of non-trivial memory-modifying automata in x86
memory trapping. What better way to understand the
system than try to program automata to extract maximum



possible computing power from it?

Our “programs” exists as a set of cross-referencing
and cross-mapped memory tables; all entries of these ta-
bles are well-formed, and use no undocumented proces-
sor features. The existence of these programs poses a
number of questions:

1. What makes these tables as a whole well-formed or
benign?

2. If machine owners want to exclude the kinds of
computation we describe, how should they go about
it?

3. Are there formal security models that implicitly
or explicitly assume that the memory manage-
ment hardware cannot be driven through a Turing-
complete computation on its input tables?

4. Should future MMU deliberately limit computa-
tional power by design?

5. Since trap descriptor tables may enable complex
programming models, should they be treated the
same way as covert channels?

6. How can adversaries use the existence of this weird
machine to cause actual damage?

We believe that the designers of a trustworthy platform
should start considering these questions so they could
choose to incorporate the answers as a part of their se-
curity model.

We hope that the obvious obfuscation and computa-
tion hiding potential of our construct will lead to both
interesting obfuscation techniques and inform the design
of new security features.

2 Related work: exploits and hidden pro-
cessor state

2.1 [Inspirations from exploit program-
ming

Red pills. In the process of developing our prototype,
we encountered many bugs in emulation and tracing
tools (such as QEMU); in a sense, our Turing machine
is made out of “red pills” capable of detecting the type
of environment it is running in. Not a single such emula-
tion and tracing tool reflected the entirety of hardware’s
actual behavior on which we rely. We believe the reason
for this limitation is that emulation-based analysis tools
are primarily debugged against popular OS implementa-
tions rather than hardware specifications. Although “red
pills” are plentiful and can be automatically produced
(see, e.g., [16]), the ability to host arbitrary computations
in the “red pill” space is a fresh cautionary tale.

Weird machines. Leading hacker researchers long
held the idea that exploitation was a a form of program-
ming by composing the target platform’s features and
bugs to carry out unexpected or arbitrary computation
(e.g., [21, 10, 5]). The bugs, triggered in ways to min-
imize and control their effects, yielded instruction-like
primitives such as reading or writing a word at a speci-
fied location. Just as an assembly program combines na-
tive instructions, exploit payloads were constructed out
of computational primitives exposed by both features and
bugs.

Bratus et al. [3, 4] coined the term weird machines to
refer to such programming models that are the underly-
ing computational reality of exploits, to capture the rich
folklore of hacker research that dealt with these modes of
programming. Just as programming in native assembly
relies not only on the instruction set but also on program-
ming idioms, a weird machine is a programming model
built out of the collection of primitives exposed by the
target as an “instruction set”, and its usage idioms.

Classic low-level examples of such idioms and primi-
tives that add up to a rich programming model include:

e Format string exploitation (in which the internals
of printf() served as the automaton and the crafted
format string as a program driving that automaton
to corrupt runtime memory in controlled fashion),

e Heap metadata exploits [2, 11, 10] (in which heap
management code was the simple automaton pro-
grammed to perform memory writes by overflowing
a heap block’s freelist pointers),

o Crafted stack frames that serve as a program to the
automaton composed of a collection of “gadgets” of
Return-Oriented Programming [24, 22, 6] (which,
in its early forms [20, 14], were simply parts of the
automaton implementing the program’s own control
flow). All of these examples operate on the level of
code compiled into native instructions and loaded
into a process’ runtime space.

3

Recent web exploitation techniques expose “weird
machines” higher up in the software stack — in web
browsers where exploit execution depends entirely on
features of the web browser rendering engine (DOM,
CCS, HTMLS, etc.) and browser components or the
server web programming environments, never triggering
any native binary-level bugs in the browser binary. These
execution models leverage the fact that rendering vari-
ous elements of the Document Object Model (DOM) tree
has rich and observable side-effects on the browser state,
while the browser also contains automation logic that can
be repeatedly triggered (see, e.g., Heiderich’s [9, 8]).

Lower down in the software stack, ABI metadata pro-
vide more examples of Turing-complete programming



with crafted inputs that aren’t, strictly speaking, mal-
formed. For example, ELF relocation entries in com-
bination with the dynamic symbol tables can be used
as a program executing on the ELF runtime linker-
loader [19]." DWARF exception handling data used by
the GCC toolchain for encoding stack unwinding and
saved register information can be used to drive an ar-
bitrary computation on the exception-handling standard
library code [15]. In both cases, the metadata plays the
role of instructions that drive the “weird machine” au-
tomaton present in the target (in the code that processes
the respective kinds of metadata to create or modify pro-
cess memory and/or stack).

The variety of examples of weird machines we have
discussed show that there are rich — and sometimes
Turing-complete — programming models present in all
layers of the software stack.

Ubiquity of weird execution environments. From the
“weird machine” point of view, every input is a program,
so long as it causes state changes in the system that con-
sumes it. This view of input is, of course, standard in
computation theory: a Turing Machine in of itself merely
holds potential computing power until it presented with
some input to drive it. Finite automata and pushdown
automata that recognize their respective input languages
can be thought of as driven from state to state by the input
symbols they consume, and so on.

It is not as common, however, in software engineer-
ing to view inputs as programs: network packets are not
seen as inputs that are executed by the network stack,
document formats on their respective processing appli-
cations, ABI metadata on the loaders and runtime link-
ers, RPC messages on their interpreters, encrypted mes-
sages on the cryptographic transport libraries, and so
on. It appears that idea of treating inputs as languages
to be recognized by automata-based parsers generated
from the specification grammars is limited to the narrow
fields connected with programming languages research
(e.g., [28, 12]). Sassaman et al. [23] outlines the impli-
cations of this ad-hoc approach to input processing for
software security, and identifies it as a major contribut-
ing factor to input-related vulnerabilities.

The majority of “weird machines” described have
been in software environments, such as application pro-
cess runtime or the operating system kernel. In the next
section, we discuss examples of programming automata
inside x86 hardware components that served as inspira-
tion for our weird machine construction.

This work generalized the LOCREATE proof-of-concept [25],
which used the automaton underlying PE relocation to encode an “un-
packer” (a binary code rewriter) solely in crafted relocation entries.

2.2 A case study of programming MMU
state

It is not surprising that memory hierarchy architectures
of modern processors maintain additional state to opti-
mize virtual memory address translation. It is remark-
able, however, that this state can be reliably controlled
by causing specific sequences of memory accesses on
crafted page-tables. Since this state affects memory ac-
cess trapping, these traps can be thought of as having
additional semantic features available to the systems pro-
grammer.

On x86, these features have been used as either a pow-
erful security primitive [17], a debugger aid [27], or a
rootkit memory hiding trick [26]. In this section, we ex-
plain these different uses; readers familiar with these re-
sults are encouraged to skip to Section 3. Note that we
do not rely on any of the following mechanism for our
construction, rather they served as an inspiration to the
computational power of the Intel MMU.

An x86 “split TLB” primer The X86 memory archi-
tecture uses separate caching paths for fetching data and
instructions, each with its own state preserved across a
history of memory accesses. The page table entry (PTE)
of a successful data memory reference is lifted into the
data translation lookaside buffer (dTLB) whereas suc-
cessful instruction fetches resulting from control flow
transfers such as jump or call instructions get cached
in a separate instruction translation lookaside buffer
(iTLB). Once a TLB entry is created for a virtual mem-
ory page in the appropriate TLB, it will be used for ad-
dress translation whether or not the underlying PTE is
changed; the PTE record will only be consulted again af-
ter the TLB entry is evicted or flushed. Thus the PTE
entry for a page may be different from either or both of
the TLB entries for that page currently in use; it turns out
that this condition can be controlled and the associated
logic used as a programming primitive, as the following
examples show.

PaX PAGEEXEC. The PAGEEXEC [17] mechanism
of the PaX project is a prime example of using the se-
mantics of TLB state as a security primitive. Prior to the
broad introduction of the NX bit on x86 platforms, PaX
emulated non-executable pages by using x86 segmenta-
tion where available or PAGEEXEC where segmentation
was not an option. With its demonstrated efficacy against
executable-stack exploits, this property gained recogni-
tion and guided the deployment of OS security features
such as OpenBSD’s W @& X and Microsoft’s DEP.

The PaX team performed a careful analysis of TLB
and trapping logic, and demonstrated that it indeed pro-
vided the necessary semantics. We refer the reader to the



PAGEXEC documentation [18] for the full formal de-
scription of the automaton involved; we briefly describe
how it works below.

In the absence of a dedicated non-executable data sup-
port, the 'non-executable’ property of a page can be em-
ulated, so long as all potential instruction fetches from
that page are trapped and examined by the trap handler
(if the EIP register value at the point of the trap is in-
side the page’s virtual address range, it’s a fetch). How-
ever, since invoking a trap handler incurs a heavy perfor-
mance penalty, the trapping cannot be allowed to occur
for each and every access to the page. Luckily, this is
where page fault logic and memory address translation
semantics compose into an efficient solution.

By setting the Supervisor/User (S/U) bit in the PTE
of a designated non-executable page, we can cause the
processor to trap any access to that page, i.e., whenever
a virtual address within that page goes through the page
translation look-up process. The trap causes the Page
Fault handler to be invoked (as no TLB has a correspond-
ing entry yet). If the resulting trapped page access is
due to an instruction fetch, then the page fault handler
terminates the process; otherwise, it’s a data access and
must be allowed through. The page fault handler then re-
sets the S/U bit for a single data byte access to succeed,
and performs that access — causing the PTE for the page
to be recorded in the dTLB. Right after this access, the
handler resets the PTE entry’s S/U bit back to uncondi-
tionally causing the fault. Subsequent dTLB-cached ac-
cesses will succeed incurring no penalty until the dTLB
entry is evicted, whereas all other accesses, including all
instruction-fetch accesses, will fault. Upon dTLB entry
eviction, the overloaded page fault handler will be called
and will restore the dTLB entry “de-synchronized” from
the iTLB and the PTE entries.

Thus the “de-synchronized” PTE and dTLB entries to-
gether with the Page Fault logic can be used to introduce
extra page trapping semantics — in this case, the one that
the NX bit later provided natively.

OllyBone. OllyBone [27] used a similar mechanism as
the basis of a malware-analysis debugger module to trap
“packed” malware right after the unpacker has extracted
(“unpacked”) the actual malicious code. As its author
observed while analyzing malware, a desired trapping
primitive would be catching the first instruction executed
that did not exist in the packed file — that is, an instruction
previously written by the unpacker. This would be pos-
sible if these newly created instructions could somehow
be tagged, and the MMU could be configured to trap on
the tag.

While this sounds like a complex proposition for ex-
perimental hardware, OllyBone solved this problem by
using the TLB property described above to act as that tag.

This created a practical approximation to trapping on the
condition “instruction fetch from a page previously writ-
ten to by the program,” a convenient means to recover
code obfuscated by complicated packers.

ShadowWalker. The “Shadow Walker” technique
leveraged the split TLBs for the purpose of concealing
pages of executable code in virtual memory from a pro-
cess such as an anti-virus that would analyze the code
(accessing it as binary data). The gist of the technique
was to de-synchronize the physical page frame number
(PFN) in iTLB and dTLB in such a way that the CPU’s
memory reads within the hidden range of virtual ad-
dresses would be translated to a different physical page
than instructions fetched from the same virtual address
range. Thus an anti-virus or a kernel debugger would in
fact be “analyzing” the contents of an innocuous page,
while jump-ing or call-ing into that page would exe-
cute entirely different code.

In all of these examples, the interaction of the mem-
ory trapping mechanisms with the caching layer of mem-
ory translation has introduced additional and power-
ful semantics, enabling programming tricks that would
seem impossible from a naive view of either mecha-
nism. Many such composition effects are common folk-
lore in hacker research; we posit that they deserve a for-
mal study, starting with descriptions of the programming
models they enable. This, in part, is what motivates our
work described in the next section.

3 Implementing Interrupt-Based Compu-
tation

3.1 Overview

Memory translation and interrupt handling on the IA32
architecture are controlled through a combination of ar-
chitectural registers and tables in memory. Furthermore,
when a page fault occurs because of an invalid page-table
entry, information about the fault is written to a location
in the same memory. By configuring the address of the
page fault handler to be yet another invalid address, the
processor will keep endlessly dispatching page-faults as
it tries to fetch the first instruction of the page-fault han-
dler. If the tables controlling this behavior are crafted
just the right way, the side effects of the interrupt han-
dling form a Turing-complete one-instruction computer.

This suggests that we could consider view the internal
logic of page fault and memory translation as the finite
automaton of a Turing machine and the memory as hold-
ing its "tape’”, by potentially creating a kind of a closed
loop of memory accesses.Figure 1
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Figure 1: Closing the computation loop.

3.2 X86 Interrupt Handling Refresher

The interrupt handling mechanism of the x86 is closely
related to the now-disused protected-mode? memory seg-
mentation system[1]. This system is driven primarily
through two tables in memory, the Global Descriptor
Table (GDT) and the Interrupt Descriptor Table (IDT).
The GDT contains segment descriptors, i.e. intervals of
memory addresses each labeled with a descriptive type.
The CPU addresses memory through an index into the
GDT, called a segment selector and an offset into the re-
sulting interval. Usually, the segment selector for a par-
ticular access is stored in an implicit register, such as how
instruction fetches use the selector from the Code Seg-
ment (CS) register. In modern processors, this feature
has been de-optimized and is largely unused, and will
not be used in our construction , so we will disregard it.

More interestingly, the GDT can also point to Task
State Segments (TSS) which are regions of memory that
can contain a copy of most of the processor’s registers
in addition to additional control information, such as the
location of the kernel stack to be used for handling inter-
rupts (see Figure 2). The CPU has hardware features that
allow saving the entire CPU state to a TSS and restor-
ing it from there. Therefore, the TSS mechanism allows
the system programmer to switch between contexts with
a single instruction or interrupt without any further man-
ual task switching logic. .

2The techniques presented here are constrained to 32-bit mode.
While many systems now run in long mode (64 bit), the 64-capable
chips still support all 32 bit features and can be returned to 32-bit mode.
Furthermore, we believe that similar computational power also lies in
64-bit mode interrupt handling.

3In practice, this is unused due to the performance overhead com-
pared to handwritten task switching logic. Furthermore, additional glue
code is needed to properly save and restore additional architectural state
added after Protected Mode, such as floating point registers

The Task Register (TR) contains the selector for
the ’current’ task state segment. Whenever the CPU
switches to a different task, before loading its state from
the new task’s TSS, it will save its state to the TSS stored
in TR.

The other important table for protected mode is the
Interrupt Descriptor Table, residing at a virtual address
stored in a special register. Each IDT entry corresponds
to a class of interrupts and contains instructions how to
handle these interrupts. One the one hand, the processor
can be instructed to leave most state untouched, move
to a privileged code segment and kernel stack and jump
to an interrupt handler at a given address. On the other
hand, certain interrupts might be symptomatic of ker-
nel bugs that have seriously corrupted the CPU state, in
which case the IDT can tell the processor to perform a
task switch to a specified task. The task switching mech-
anism reloads more state than the normal FAR-jump in-
terrupt gate, so it can recover more state corruption.

For some interrupts, the processor pushes an error
code to the interrupt handlers stack. If an error occurs
while transferring to the interrupt handler, the CPU raises
a double fault interrupt. If yet another interrupt occurs
while handling the double fault, the CPU resets itself and
the system reboots.

3.3 Constructing the Weird Machine

We can use the primitives listed above to assemble
a “One Instruction Computer” with a move-branch-if-
zero-or-decrement instruction, short movdbz.

Each movdbz instruction consists of a source, a desti-
nation, a branch target (B) and next instruction(A). The
source and destination point to a finite set of memory
cells holding 10-bit unsigned integers* branch and next
fields point to other instructions, which live in a differ-
ent (conceptual) address space. Our compiler represents
both variables and instructions as labels.

Execution of a movdbz consists of fetching the value
stored in the source cell and decrementing it. If the
decrement succeeds, the value is stored in the destina-
tion cell and execution continues at A (the ’next instruc-
tion’ field). If the decrement results in an underflow, 0 is
stored in the destination field and execution continues at
address B.

It has been proven that a strict subset of this in-
struction set, subtract-and-branch-if-negative (SBN) is
Turing-complete in [7]. The SBN machine has a set
of three-operand instructions (destination, source and
branch target) and memory cells holding non-negative

4The values actually map to DWORD-aligned 32-bit pointers,
which have to be valid and mapped stack pointers. The current pro-
totype maps only a single page for the kernel stack, whereas this could
easily be extended if more values need to be held



integers like our architecture, but as opposed to decre-
menting by a constant, every instruction subtracts the
contents of the source from the destination operand
and stores the result in the destination. If we can
synthesize SBN from our movdbz; Assume we have an
instruction L: sbn X,Y, A, B //if(X - Y >
0) {X-=Y;goto A;} else {X-=Y;goto A;}
the following instructions are equivalent, where il
through i3 are temporary instruction labels, tmp is an
otherwise unused storage cell and INT_MAX is a storage
cell initialized to 2'°. Note that the last 3 instructions
are only needed to simulate the unsigned underflow
discussed in the book, which is not strictly necessary for
the proof of turing-completeness.

L: movdbz tmp, Y, il, A

il: movdbz X,X, L, overflow
overflow: movdbz X, INT_ MAX, L, L
i2: movdbz tmp, Y, i3, B

i3: movdbz X,X, i2, overflow

Our compiler compiles each movdbz instruction entry
into an IDT, a set of page tables and a TSS per instruc-
tion. Each memory cell is assigned a page of physical
memory, with the value stored in the DWORD starting
at offset 8 in that page. Furthermore, we have imple-
mented a demonstration kernel that will initialize all the
control registers to point to these tables without possible
interference from the plethora of hardware a real kernel
would initialize. The compiler also allows creating inter-
rupt tasks pointing to valid pieces of code, so execution
can be seamlessly transferred between movdbz code and
regular X86 instructions, which our demo uses to fill the
frame buffer with the results of the movdbz computation.
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Each movdbz instruction is executed by either a page-
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Figure 3: Elements of the movdbz instruction

our weird machine is the interrupt being raised. The CPU
will walk the IDT and GDT to find the TSS selector of
the instruction to be executed. This TSS selector will
point to a TSS that is mapped across a page boundary, so
the Task State Segment is split into two halves, as seen
in Figure 2. Splitting the TSS across two pages allows
two seperate areas of physical memory to be overwritten
by one physical write, as described in Section 3.4.1. The
page tables map the region in the upper page of this TSS
to the physical page corresponding to the source memory
address of the movdbz to be executed. The source cell’s
value (stored at offset 8 within that page) will be loaded
as the interrupt handlers stack pointer from this page.

The lower part of the TSS is mapped to a page spe-
cific to this movdbz which contain the page tables for that
instruction and the instruction pointer for the page-fault
handler. One one hand, if we want to end our computa-
tion and return to normal CPU instruction, we can point
this to valid code, effectively ending the chain of nested
pagefaults. On the other hand, if we want to continue
computing, we can point this to an invalid address so we
will keep repeating faults.

The new page tables loaded as part of this TSS will
remap the upper half of that TSS to point to the desti-
nation memory cell as opposed to the source cell. Af-
ter loading the new page tables, the CPU will push an
(ignored) error code to the stack pointer, thereby decre-
menting it by 4. As our stack pointers, i.e. memory cell
values, are guaranteed by the compiler to fall within the
lowest page, which we map, the push will succeed unless
the variable was 0.

In that case, a double fault will be raised. Our com-
piler crafts the IDT and page tables so that the IDT entry
for the double fault will point at the TSS belonging to the
instruction referred to by the branch target in the current
instruction. The upper half of the branch target’s TSS
will again be mapped to that movdbz’s source. There-
fore, the CPU will save the current state, including the



zero it could not decrement further to the current TSS,
setting the destination variable to 0 in the process and
will resume ’execution’ at the branch target movdbz.

However, if the push succeeded, the CPU will attempt
to execute the (not mapped) interrupt handler and raise
another page fault. The processor will save the decre-
ment stack pointer to the memory cell as part of saving
state, load the new TSS from the page fault IDT en-
try, which the compiler maps to the 'next instruction’
movdbz. Hence, execution has been moved to the next
instruction, the source memory cell of which has been
loaded into the stack pointer.

3.4 Implementation Constraints
3.4.1 Busy bit

The interrupt task mechanism tries to specifically pre-
vent looping interrupts, because the interrupt TSS con-
tain back-links to the interrupted task. Furthermore, if a
buggy system would accidentally enter infinitely looping
interrupts, that situation would be hard to recover from
or diagnose.

The loop-prevention mechanism hinges on the busy bit
in the TSS descriptor in the GDT, which the CPU sets
when entering a task and clears when leaving it. How-
ever, this simple automaton is not powerful enough to
detect all loops, because its only state - the busy bit - re-
sides in the same memory that the task switching mech-
anism operates on.

We notice that in addition to just reading and writ-
ing the stack pointer (which the interrupt handling logic
will perform arithmetic on), the processor also loads
and stores a number of general purpose registers with-
out modification.

By placing a valid GDT descriptor into the lower half
of the TSS when it is loaded and overlaying that page
onto the GDT when saving state, we can overwrite the
GDT entry with arbitrary values just after the busy bit
has been set. In our case, we map EAX and ECX over
the GDT entry and overwrite it with the exact same de-
scriptor, but with the busy bit cleared. An even more ob-
fuscated control flow could be implemented by writing a
different GDT descriptor.

Furthermore the processor will reset if it encounters
a triple-fault, i.e. another fault while handling a double
fault. Therefore, the movdbz following a branch (after
an underflow) must not cause another underflow. Typ-
ically, we work around this restriction by inserting an-
other movdbz which writes a large positive value from
a dummy memory cell to the memory cell that caused
the underflow, simulating an unsigned underflow rolling
over to a larger positive number.

3.5 Graph coloring

Another restriction on the task switching mechanism is
that the process will only switch to a task other than the
current task specified in the TR register. A trivial solution
to this problem would be to use a different TR value for
every movdbz instruction.

Unfortunately, because of the trick used to clear the
busy bit described in Section 3.4.1, we can only use 16
different TR values that correspond to the 16 GDT slots
just before a page boundary. We therefore have to map
multiple movdbz Task State Segments to the same virtual
address, so we need to restrict program flow such that no
two movdbz at the same address follow each other.

When considering the movdbz instruction graph
(where every node corresponds to an instruction and if
x.A = yorxB =y, (z,y) € G), the assignment
of TSS slots is equivalent to 16 coloring the graph. If
the particular instruction graph is not 16 colored, it can
be easily extended by inserting semantically irrelevant
instructions(decrementing an otherwise unused variable
and storing it in another unused variable, then branching
to the original branch target), i.e. subdividing edges on
the instruction graph, until the graph is 16-colorable’

3.6 Evaluation

We released the source code for our movdbzcompiler
on GitHub.® Together with the compiler, we released
a minimal kernel template that boots the processor, ini-
tializes the relevant registers to point at the compilers
output and causes a page fault, beginning the interrupt
based computation. Finally, we also include a demon-
stration implementation of the Game Of Life that demon-
strates the ability to integrate real X86 code and inter-
rupt based computation. The page-fault weird machine
is used to compute each iteration of the automaton, using
31 movdbz instructions per cell. After each iteration, the
CPU is restored to a valid state and normal X86 assem-
bly instructions are used to output the cellular automa-
tons configuration to the framebuffer. In principle, the
size of the game of life is only limited by the available
physical memory (which becomes a problem much ear-
lier than execution time becomes an issue), however as
described below the current compiler does not optimize
for memory usage, effectively limiting programs to a few
thousand instructions.

The current proof-of-concept compiler has some lim-
itations that prevent practical exploitative use; All cre-

5This procedure terminates, because once every instruction i is pre-
ceded by one dummy instruction and succeeded by two dummy instruc-
tions, we can color % green, the predecessor blue and the successors red
and yellow, coloring the graph trivially at the expense of quadrupling
program size

Shttps://github.com/jbangert/trapcc



ated tables are encoded as C source code that places
the appropriate values in memory using kernel-specific
macros. While this approach is flexible, the emitted ini-
tialization code is quite large - the Game of Life demo
is only demonstrated in small sizes because the initial-
ization code hits limits in our bootloader and the C com-
piler. Furthermore, no effort was undertaken to minimize
the memory usage of the weird machine - the two pages
used for each TSS could for example be re-used for page
tables and a single physical page can hold both the lower
and the upper part of two distinct TSS’s (effectively hold-
ing one instruction and one variable). If the pages are
used in that fashion, the approximately 1 million physi-
cal memory pages on the 32-bit Intel architecture could
each hold one instruction and one variable, not account-
ing for initialization code or memory mapped devices.
The current approach is also limited in its interaction
with pre-existing kernel code; if the page-fault weird ma-
chine were to be used e.g. to hide a rootkit or to oth-
erwise manipulate kernel structures, the current imple-
mentation can only change control flow and write 4 bytes
on every page. Through compiler modifications (moving
the page boundary within a TSS) a slightly larger frac-
tion of memory could be used for arithmetic. Further-
more, the reloading and storing of TSS already moves
values between memory locations as a side effect which
could also be used to corrupt kernel structures. Ulti-
mately though, the compiler would have to be extended
by another primitive to allow arbitrary memory reads and

writes’.

4 Conclusion

Although address translation and memory access trap-
ping subsystems of a modern processor are central to en-
forcing any and all practical security models, these sys-
tems per se are rarely studied in computational terms, as
a unit and in composition with other features. However,
since trustworthiness of computing systems is typically
predicated on assurance regarding the types of computa-
tion these systems can and cannot be driven to perform,
we believe that such a study of traps is long overdue.

Our result, taking inspiration from hacker research,
demonstrates that unorthodox uses of MMU features in
modern processes can result in powerful computations
driven entirely by their in-memory descriptor tables —
without dispatching any native instructions. We hope
that our exposition of this “weird” sub-architecture will
encourage follow-on research in enumerating and char-
acterizing other unexpected computational environments
in processors and chipsets.

7e.g. by loading a TSS from the middle of a page to read a value into
the SP register and then faulting back to the Page-Fault computation
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