
message contains only one controi bit, called the acknowl-

edge bit. The operational rules for both terminals are:

1. I f the previous reception was error-free, the ac-

knowledge bit of the next transmission is one; if

the reception was in error the bit is zero.

2. I f the acknowledge bit of the previous reception was

zero, or the previous reception was in error, retrans-

mit the old message; otherwise fetch a new message

for t;ransmission.

The question of when to accept an error-free reception is

left open. This question, in fact, has no consistent resolu-

tion. Consider the message exchanges depicted in Figures

3a and 3b. Specifically, should the message received at line

7 be accepted by A? A is presented with exactly the same

information in 3a and 3b ! A is forced to guess which situa-

tion is the one that has occurred. The penalty for a wrong

guess is either dropping a message or accepting a duplicate

of a message.

I f A consistently assumes tha t 3a represents the situa-

tion, A will pick up message duplicates in the (rare) ease

when two errors occur in sequence as in 3b. Such errors,

while rare, do occur, and their rareness will make it

extremely difficult to catch the flaw in the system. This

inadequate scheme will work almost all of the time.

6. C o n c l u s i o n

A field-proven scheme for achieving reliable full-duplex

transmission over noisy half-duplex telephone lines has

been presented. The sensitivity of the algorithm and the

difficulty of the problem have been illustrated by contrast-

ing the algorithm with another, slightly different algo-

rithm. This modified algorithm fails in rare cases and gives

rise to operation which is faulty enough to degrade its

usefulness, and not faulty enough to permit it to be easily

debugged.

An interesting problem is posed by these two algo-

rithms. The adequate scheme used two bits of control in-

formation (verify and alternation bits) per message while

the inadequate scheme used only one bit (the acknowledge

bit). In Section 3, three states were described for the re-

ceived message, and the control bits of the next transmis-

sion encoded into the two control bits the total informa-

tion concerning which of the three states held on reception.

This leads to the conjecture that at least two control bits

are required for any adequate scheme of this sort, and

that only one control bit will never do. The reliable duplex

transmission problem would, of course, have to be bet ter

formahzed before it could be claimed tha t such a conjec-

ture were "proven."

A

v

On the Design of Display

Processors

T. I{. MYER

Bolt Berane]c and Newman Inc, Cambridge, Mass.

A N D

I. E. S~J~H~I~LAND *

Harvard University, Cambridge, Mass.

The flexibility and power needed in the data channel for a

computer display are considered. To work efficiently, such a

channel must have a sufficient number of instructions that it is

best understood as a small processor rather than a powerful

channel. As it was found that successive improvements to the

display processor design lle on a circular path, by making

improvements one can return to the original simple design

plus one new general purpose computer for each trip around.

The degree of physical separation between display and

parent computer is a key factor in display processor design.

KEY WORDS AND PHRASES: display processor design, display system,
computer graphics, graphic terminal, displays, graphics, display genera-
tor, display channel, dFsplay programming, graphical interaction, remote
displays

CR CATEGORIES: 2.44, 6.22, 6.29, 6.35

I. I n t r o d u c t i o n

In mid-1967 we specified a research display system.

This paper describes some of the problems we encountered

and some conclusions we have drawn. The display will be

all adjunct to an SDS-940 time-shared computer system.

The chief purpose for the display and the parent computer

is programming research.

When we first approached the task, we assumed we had

merely to select one of the several available commercial

displays. This proved possible with the analog equipment

tha t constitutes a display generator; we found several dis-

play generators tha t combined good accuracy, resolution,

and speed. However, the control par t of the display,

which we have come to call the display processor, was

another story. We were not completely happy with the

command repertoire of any of the commercial systems we

saw; we were not sure just how to couple the display to our

computer, and above all, we had serious doubts about

what a display processor shou!d be.

This work was sponsored by the Advanced Research Projezts
Agency under ARPA Order No. 627, Amendment No. 2, and con-
ducted under Contract No. AF19(628)-5%5, Air Force Cambridge
Research Laboratories, Otlliee of Aerospace Research, United
States Air Force, Bedford, Massachusetts 01730.
* And Bolt Beranek and Newman Ine, Cambridge, Mass.

410 C o m m u n i c a t i o n s of the ACM Volume 11 / Number 6 / June, 1968

Finally we decided to design the processor ourselves, be-

cause only in this way, we thought, could we obtain a

truly complete display processor. ~V e approached the task

by starting with a simple scheme and adding commands

and features that we felt would enhance the power of the

machine. Gradually the processor became more complex.

We were not disturbed by this because computer graphics,

after all, are complex. Finally the display processor came

to resemble a full-fledged computer with some special

graphics features. And then a strange thing happened. We

felt compelled to add to the processor a second, subsidiary

processor, which, itself, begau to grow in complexity. I t

was then that we discovered a disturbing truth. Designing

a display processor can become a never-ending cyclical

process. In fact, we found the process so frustrating that

we have come to call it the "wheel of reincarnation." We

spent a long time trapped on that wheel before we finally

broke free. In the remainder of this paper we describe our

experiences. We have written it in the hope that it may

speed others on toward "Nirvana."

2. T h e W h e e l o f R e i n c a r n a t i o n

The simplest displays merely plot points from coordinate

information. The TX-0 display at M I T (circa 1957) or the

PDP-1 with DEC Type 30 (circa 1960) are of this type.

Such a display has no processor; it is tied to the central

registers of the parent computer. To display a point, its

coordinates are first loaded into the central registers of the

computer. For example, with a DEC Type 30 and a PDP-1

the accumulator is loaded with x and the input-output

register with y. A display command is then executed which

results in a point flashed on the screen.

One problem with this scheme is that the processor is

tied up in generating display. If an at tempt is made to

compute concmTently with display, the display may

develop an objectionable flicker. The situation seems even

worse when one considers that refreshing a static display is

a repetitive operation that need not occupy an entire

processor full time.

For just a little more money one can buy a data channel

for the display. The data channel has a display address

register and a word counter. The channel takes successive

data words from a display file in core until the word count

goes zero, at which point the central processor restarts the

channel at the beginning of the display file. Now the

processor is freed for other work and the display can

operate as fast as its analog circuits permit.

Point-by-point display is, of course, expensive of time

and memory, even with a data channel. Any modern dis-

play should be able to draw lines and plot characters

automatically. For such a display delta x and y information

and characters will appear in the display file, as well as

position values. In addition, there must be codes to set

intensity and to tell whether beam movement is to gener-

ate a line or a point. These codes are regarded as new kinds

of data for the display.

Now someone points out that a special code to stop the

channel--a channel hal t--could be used to end the display

file. The word counter could be eliminated, thus saving

money. At this time one realizes something one had begun

to suspect ea r l i e i~ tha t a display is inherently unlike

other input /output devices. A magnetic tape unit, for

example, nmst be able to transmit arbitrary combinations

of bits onto tape. The display, on the other hand, may

interpret some combinations of bits in its data as special

commands, since its only function is to post a picture on

the screen.

For just a little more money one can add some other

commands to the display data channel. One is a jump

command. This allows the channel to display a file repeti-

t ively-- to refresh the display without intervention from

the central processor. I t also provides more flexibility in

handling display data, since the channel can now handle

noncontiguous display files.

In many engineering applications the pictures which

will be displayed have repeated subpictures such as circuit

symbols or small parts. So, for just a little more money,

one adds a subroutine feature to the display's data channel.

Repetitive circuit symbols can now be drawn by successive

calls to appropriate channel subroutines.

The subroutine feature requires two new commands and

means adding a new register to the display channel. A

subroutine jump command saves the return address in a

special register. In early implementations of the subroutine

feature a store-exit command, usually the first command in

the subroutine, deposits the saved address as a jump com-

mand at the end of the subroutine. This scheme not only

allows for subpictures, but also permit nested subpictures

to an indefinite depth.

Now this marks a kind of cardinal point in the wheel of

reincarnation. The DEC 340-347 reached this point in

design and was still thought to be a display channel. At

this level of increasing complexity, however, one should

realize and admit that the display data channel is not a

mere data channel at all; it is a processor. From here on out

one's thinking about the display changes radically.

First of all, one admits that the display's x and y

registers :form an accumulator and that the display address

register is a program counter. What one has is a special

purpose computer with a limited and somewhat unusual

command repertorire:

Load Immediate and Flash (point)

Add Immediate and Flash (line)

Halt

Jump

Subroutine Jump

Store Subroutine Exit

Taking a broader view, one also realizes that one has a

multiprocessor system, with the central processor (the

parent computer) and the display processor sharing the

same memory. From this viewpoint the Store Subroutine

Exit command is a problem since it can change the shared

Volume 11 / Number 6 / June, 1968 Communicat ions of the ACM 411

memory and lead to painful debugging. Another problem is

that the subroutine mechmfism, useful as it is, does not

make it particularly easy to trace one's path back through

a multilevel subroutine structure after a light-pen hit.

To solve both these problems, one indulges in a bit more

incremental funding and adds a pushdown stack system to

the display processor. A subroutine jump stores the return

address in the stack and increments the stack pointer. A

subroutine return causes a jump to the location stored at

the top of the stack and decrements the pointer. All return

addresses are stored in one part of memory and one's only

concern is to keep the stack from overflowing. Moreover,

the contents of the stack give the main processor im-

mediate access in one compact part of memory to the dis-

play processor's path through a subroutine hierarchy. As

far as we know, the DEC-338 was the first commercial dis-

play to include a pushdown stack, and as this is written,

the only domestic one ~ with stack hardware3

While all this was going on, one has been adding push-

buttons and keyboards to the display, and has included

appropriate registers and flags in the display processor to

deal with these, to indicate light-pen hits, to scope edge

violations, and the like. All of this information is available

to the main processor, but the display processor, which is a

rather passive device as we have described it so far, has no

way of reacting to but ton pushes, edge violations, etc. So,

for just a little more money, one adds some conditional

branch commands that let the display processor test for

but ton pushes, light-pen hits, and so forth. Conditional

branch instructions give the display processor the power

to do more than merely post complex pictures on the

screen. Now it can interact with the user without recourse

to the main processor. In fact, with some cleverness, one

can write very involved interactive programs for a dis-

play processor with conditional branch instructions.

Even with conditionals, the display processor still has a

few flaws. For one thing, one would like to make a sub-

routine transparent to all conditions that may have

existed in the calling routine. Transparency is possible for

beam position, since subroutines using relative vectors

can always return the beam to its initial location, but it is

not yet possible for display parameters, such as intensity,

character size, and the like, nor for subroutines that use

absolute beam positions. So, for a little more money, one

makes the stack system a little more elaborate by adding

instructions to push the current x and y beam position and

the display parameters into the stack, and pop them back.

Now the issue of transparency brings to mind the idea of

passing parameters to a subroutine. Parameter passing

might be quite useful in display subroutines, and since one

can load and store in the pushdown stack, one already has

the basic machinery for passing parameters. All that is

The British NCR-ELLIOT 4100 is another example.
Graphic II at Bell Telephone Laboratories uses a software ap-

proach.

needed is some way of getting free access to the stack, and

all this takes is a means for changing the contents of the

stack pointer. So, for very little more money, one adds a

command to add to or subtract from the stack pointer.

Thinking about parameters, of course, makes one realize

one has been considering local parameters, and it would be

nice to have global parameters as well. Tha t is, it would be

nice if all parts of a display program could be affected by

changing one key word. The convenient way to do this

would be to have addressable load and store commands.

So, since it won't cost nmch, why not?

The processor has acquired the

repertoire:

Load Immediate and (point)

Flash

Add Immediate and (line)

Flash

Halt

Jump

Push-Jump

Conditional Skip

Push Parameters

Push X, Y Position

Pop

Add Immediate to

Stack Pointer

Load

Store

following command

(subroutine)

(possibly more than

one of these)

(into stack)

(into stack)

(restore top i tem

from stack)

(addressable:

C (address) -~ X, Y)

(addressable:

X, Y --~ C (address))

Many of these commands would be included in a general

purpose processor. In fact, to make the display processor

generM, for just a little more money, one can add:

Execute (addressable)

Complement (for subtraction,

and logic)

Shift

Mask (logical AND, OR,

etc.)

And these probably won't add much to the price.

With all these commands, it occurs to one that the dis-

play processor could do things like track the light-pen,

create "rubber band lines," and handle many other inter-

active functions that heretofore have been relegated to the

main processor. To do these things conveniently, the dis-

play processor should have its own interrupt system, and,

considering what one has spent so far, tha t should not cost

much to add.

Now where are we? We have built up the display channel

until it is itself a general purpose processor ~dth a display.

The display is tied directly to its processor; to generate

picture the display processor's central registers are used.

In short, we have come exactly once around the wheel of

reincarnation.

4 1 2 C o m m u n i c a t i o n s o f t h e ACM V o l u m e 11 / N u m b e r 6 / J u n e , 1968

However, we have made some very significant progress

during the trip. We have given the processor Load Im-

mediate and Add Immedia te commands for displaying

points and lines. These operations now take one, rather

than three, memory cycles. We have added a pushdown

stack system, a mechanism uniquely suited to display sub-

routining and tracing light-pen hits. In short, we have

specially adapted the processor to the task of running a dis-

play.

Should we continue around the wheel? We might argue

that much of the display proeessor's power is idle most of

the t ime and that it is wasteful to tie up a general purpose

processor merely to refresh a static display. Therefore (for

just a little more money) we might consider adding a

channel to the display processor. ~ ' e might then consider

adding some special commands to the channel to let it

follow more complex data structures. I f we did so we could

move into a second turn around the wheel.

Throughout this discussion we have been assuming that

the display processor will operate directly f rom the memory

of the parent computer. The reader should note that we

might just as well have started with a display having its

own local memory. In either case the wheel of reincarna-

tion works in much the same way. The display processor

starts simple and grows until it has become a full computer.

Then it gives birth to a second processor which in turn

begins to grow.

Looking at some commercial displays, one can find

examples at various points around the wheel. As we have

said, the D E C Type 30 represents a start ing point, while

the D E C 340-347 represents about a half-turn. The I D I

10000 series, I . I . I . 1050, Tasker 9000 and the CDC-250

also represent positions less than once around. The I D I I O M

represents a full revolution and a quarter, while the D E C

338 represents a revolution and a half. We have found

no examples exactly once around the wheel, but we submit

this as an interesting design problem: a small general

purpose computer with an integrated display system and a

single program counter.

3. G e n e r a l C o n c l u s i o n s

I t was not until we had traveled around the wheel

several times tha t we realized what was happening. Once

we did, we tried to view the whole problem from a broader

perspective. We found that some questions had fairly

clear answers, but others remained in doubt. The remainder

of this paper outlines our conclusions and sets forth the

questions we could not answer.

The problem breaks down into two general questions:

How closely should the display system be tied to the parent

computer? How much computing power should be included

in the display processor?

The first question seems simpler to answer than the

second. I f the display must be located far from the main

computer, then the problems of data transmission dictate

that it have at least a local memory. Likewise, there are

arguments for detaching the display f rom a parent com-

puter tha t is running a t ime-shared system. I f the display

is too closely coupled to the main machine, competition

over memory access and demands from the display for

interactive service may degrade the display's or the sys-

tem's performance. Moreover, if the display processor

can change information in memory, there is the danger

that it may destroy the time-sharing software.

~, hile a remote display with its own memory seems a

good choice for some situations, we feel it has unjustifiable

disadvantages unless communication bandwidths force it.

We feel a bet ter approach is to locate the display close

enough to the main computer so that both can access the

same core directly. This approach allows display files to

be used in the core where they are prepared; there is no

need to ship display data, at a cost of two memory cycles

per word, to a remote memory. In interactive situations,

this approach makes it easy for the main computer to find

out what went on between the display processor, the user,

and the display file. Most importantly, particularly in a

research system, this approach gives the user the ability to

experiment with approaches in which the picture data is

merged with other data in his program system. Conse-

quently one of our conclusions has been tha t the display

processor should be closely coupled with the parent com-

purer, tha t it should take its data from the main com-

puter 's core, and that the user should have complete, bit-

by-bit control over tha t data. We recognize that this poses

problems in a time-shared system, but we feel the advan-

tages to be gained make it worthwhile to solve them.

If, for geographic or other reasons, one has decided on a

tenuous connection between display and main computer,

the question of how much power to give the display proc-

essor can be answered in terms of how one wishes to use

the display. I f one plans to display relatively static

pictures and can tolerate fairly long delays on interactive

services, such as light-pen hits, and but ton pushes, then

there is little point to including general computing power

in the display processor. On the other hand, to save

memory space, one would probably want to include jump

and subroutine commands.

If, by contrast, one wishes to produce more dynamic dis-

plays and handle highly interactive situations, then one

must at least include general computing power remotely

with the display. The question is then whether to integrate

the general purpose capability in the display processor it-

self or to include a separate display channel in the remote

device, i.e. whether to go around the wheel of reincarna-

tion exactly once or more than once. M a n y interactive

situations, such as light-pen handling, require that the

main display loop be halted, at least while the initial

servicing is performed. One could handle these by inter-

rupting the display processor itself. Other functions, such

as responding to push buttons, adding to the display file,

and interpreting commands from the main computer, can

be performed without halting the display. This fact argues

Volume 11 / Number 6 / June, 1968 Communications of the ACM 413

for a display channel combined with a small general

purpose computer.

As we have said, we know of no remote display in which

the computer and display channel are integrated into one

machine, i.e. exactly one turn around the wheel. However,

this approach seems to offer some advantages. Having one

processor would be cheaper and would eliminate problems

arising from the need for communication between two

separate processors. By careful interrupt programming the

execution time of the slower graphic commands could be

utilized for other processing.

Most existing remote displays are based on the second

approach, i.e. more than one turn around the wheel. The

DEC 338 incorporates a powerful channel with jump, sub-

routine, and conditional commands in addition to a com-

plete local computer. The Bell Telephone Laboratories

Graphic II display 3 represents a different variation of the

same approach. Its premise is that in a remote display sys-

tem, consisting of computer plus display channel, the

computer will be idle most of the time and might just as

well perform the functions that would otherwise be wired

into the channel. The Graphic II channel has a command

that interrupts the computer (a PDP-9). The address

field of this command indicates what function to perform.

Subroutining, conditionals, etc., are done for the display

through programs executed by the main computer.

The Graphic II scheme allows great flexibility in build-

ing display data structures since the PDP-9 can be pro-

grammed to follow Mmost any structure. However, this

flexibility is achieved at a sacrifice in speed. It takes

considerably longer to perform jumps, subroutine jumps,

etc., by program than by hardware. This time burden

could be quite serious, since a single picture may contain

many subroutine calls, and all must be repeated each time

the picture is refreshed. However, the designer of Graphic

II points out that the time burden can be largely elimi-

nated by programs that allow the PDP-9 to follow struc-

ture while the display is simultaneously executing graphic

commands embedded in the structure.

If it is possible to locate the display processor near to the

main computer, we feel, as we have pointed out, that they

should share the same memory. In this case, the question

of how much display processor to buy becomes rather

complicated. No longer is a minimum general purpose

capability required. One can choose a design anywhere

from a primitive channel to a dedicated general purpose

processor plus channel. One way of deciding how much

display processor to buy is to look at the jobs the display

processor might reasonably be expected to do. There are

four.

(1) The display processor must generate pictures from

some form of internal representation, which may include

multiple calls on display subroutines.

(2) The display processor might generate pictures or

picture elements by computation rather than from a static

3 Ninke, William. Bell Telephone Laboratories, telephone con-
versation, 11 August 1967.

4 1 4 C o m m u n i c a t i o n s o f t h e ACM

representation in memory. Such pictures as the light-pen

tracking cross, point rasters, random points, and arrays of

objects are more compactly specified by generation proce-

dures than by listing their elements.

(3) The display processor might provide immediate feed-

back to the user or handle simple interactive functions

such as editing, and light-pen tracking.

(4) The display processor might compile displayable

picture representations from higher level data in the user's

program system. This would include handling the routine

computations required for rotation, scaling, curve genera-

tion, and the like, when these are not handled by the dis-

play hardware.

As for Job 1, the display processor must certainly follow

data structures in core. In our view, a desirable goal is to

eliminate the secondary display file that must usually be

generated from some higher level structure. The more

complex the structures the display processor can follow

directly, the more closely, we feel, that goal will be ap-

proached. However, in the interest of speed, the display

processor must follow structures by executing display com-

mands embedded within the data. I t would not be useful,

in our view, to give the display processor general comput-

ing power merely so that it could interpret such structures.

As for Jobs 2 and 3, we feel it does not much matter

where the computing power comes from, provided it can

be had immediately on demand. One can either provide

high level interrupt routines in the main system at risk of

degrading the system's performance, or spend the extra

money to include the necessary computing power, and

possibly an interrupt system in the display processor.

Job 4 does not seem to belong to the display processor

at all. As far as generating pictures from data is con-

cerned, we feel the display processor should be a special-

ized device, capable only of generating pictures from

read-only representations in core. A data structure, useful

for high level manipulation, represents objects abstractly,

and includes, as parameters, the numerical information

necessary to generate any particular view. The display

processor should be able to follow such structures directly

but not generate secondary display files from the informa-

tion contained in them. Generation of secondary display

files is properly the job of the central computer.

The view suggested by Daniel Bobrow that the display

processor need not, indeed should not, contain mere general

purpose computing power, largely determined the design

of our display processor. The design reflects that view

most directly in its lack of an addressable store command

and in the limitations imposed on access to the stack. For

example, information put into the stack can only be

returned to the register from whence it came. General

computing power, whatever its purpose, should come from

the central resources of the system. If these resources

should prove inadequate, then it is the system, not the

display, that needs more computing power. This decision

let us finally escape from the wheel of reincarnation.

RECEIVED AUGUST, 1967; REVISED NOVEMBER, 1967

Volume 11 / Number 6 / June, 1968

