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Simpson’s paradox is often presented as a compelling demonstration of why we need
statistics education in our schools. It is a reminder of how easy it is to fall into a web
of paradoxical conclusions when relying solely on intuition, unaided by rigorous statistical
methods.1 In recent years, ironically, the paradox assumed an added dimension when educa-
tors began using it to demonstrate the limits of statistical methods, and why causal, rather
than statistical considerations are necessary to avoid those paradoxical conclusions (Arah,
2008; Pearl, 2009, pp. 173–182; Wasserman, 2004).

In this note, my comments are divided into two parts. First, I will give a brief summary
of the history of Simpson’s paradox and how it has been treated in the statistical literature
in the past century. Next I will ask what is required to declare the paradox “resolved,” and
argue that modern understanding of causal inference has met those requirements.

1 The History

Simpson’s paradox refers to a phenomena whereby the association between a pair of variables
(X, Y ) reverses sign upon conditioning of a third variable, Z, regardless of the value taken
by Z. If we partition the data into subpopulations, each representing a specific value of the
third variable, the phenomena appears as a sign reversal between the associations measured
in the disaggregated subpopulations relative to the aggregated data, which describes the
population as a whole.

Edward H. Simpson first addressed this phenomenon in a technical paper in 1951, but
Karl Pearson et al. in 1899 and Udny Yule in 1903, had mentioned a similar effect earlier.
All three reported associations that disappear, rather than reversing signs upon aggregation.
Sign reversal was first noted by Cohen and Nagel (1934) and then by Blyth (1972) who
labeled the reversal “paradox,” presumably because the surprise that association reversal
evokes among the unwary appears paradoxical at first.

Chapter 6 of my book Causality (Pearl, 2009, p. 176) remarks that, surprisingly, only two
articles in the statistical literature attribute the peculiarity of Simpson’s reversal to causal

1Readers not familiar with the paradox can examine a numerical example in Appendix A.

1

Edited version forthcoming, The American Statistician, 2014. 

 

TECHNICAL REPORT 

R-414 

December 2013



interpretations. The first is Pearson et al. (1899), in which a short remark warns us that
correlation is not causation, and the second is Lindley and Novick (1981) who mentioned
the possibility of explaining the paradox in “the language of causation” but chose not to do
so “because the concept, although widely used, does not seem to be well defined” (p. 51).
My survey further documents that, other than these two exceptions, the entire statistical
literature from Pearson et al. (1899) to the 1990s was not prepared to accept the idea that
a statistical peculiarity, so clearly demonstrated in the data, could have causal roots.2

In particular, the word “causal” does not appear in Simpson’s paper, nor in the vast
literature that followed, including Blyth (1972), who coined the term “paradox,” and the
influential writings of Agresti (1983), Bishop et al. (1975), and Whittemore (1978).

What Simpson did notice though, was that depending on the story behind the data,
the more “sensible interpretation” (his words) is sometimes compatible with the aggregate
population, and sometimes with the disaggregated subpopulations. His example of the latter
involves a positive association between treatment and survival both among males and among
females which disappears in the combined population. Here, his “sensible interpretation”
is unambiguous: “The treatment can hardly be rejected as valueless to the race when it
is beneficial when applied to males and to females.” His example of the former involved
a deck of cards, in which two independent face types become associated when partitioned
according to a cleverly crafted rule (see Hernán et al., 2011). Here, claims Simpson, “it
is the combined table which provides what we would call the sensible answer.” This key
observation remained unnoticed until Lindley and Novick (1981) replicated it in a more
realistic example which gave rise to reversal. The idea that statistical data, however large,
is insufficient for determining what is “sensible,” and that it must be supplemented with
extra-statistical knowledge to make sense was considered heresy in the 1950s.

Lindley and Novick (1981) elevated Simpson’s paradox to new heights by showing that
there was no statistical criterion that would warn the investigator against drawing the wrong
conclusions or indicate which data represented the correct answer. First they showed that
reversal may lead to difficult choices in critical decision-making situations:

“The apparent answer is, that when we know that the gender of the patient is
male or when we know that it is female we do not use the treatment, but if the
gender is unknown we should use the treatment! Obviously that conclusion is
ridiculous.” (Novick, 1983, p. 45)

Second, they showed that, with the very same data, we should consult either the combined
table or the disaggregated tables, depending on the context. Clearly, when two different
contexts compel us to take two opposite actions based on the same data, our decision must
be driven not by statistical considerations, but by some additional information extracted
from the context.

Thirdly, they postulated a scientific characterization of the extra-statistical information
that researchers take from the context, and which causes them to form a consensus as to

2This contrasts the historical account of Hernán et al. (2011) according to which “Such discrepancy
[between marginal and conditional associations in the presence of confounding] had been already noted,
formally described and explained in causal terms half a century before the publication of Simpson’s article...”
Simpson and his predecessor did not have the vocabulary to articulate, let alone formally describe and explain
causal phenomena.
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which table gives the correct answer. That Lindley and Novick opted to characterize this
information in terms of “exchangeability” rather than causality is understandable;3 the state
of causal language in the 1980s was so primitive that they could not express even the simple
yet crucial fact that gender is not affected by the treatment.4 What is important though,
is that the example they used to demonstrate that the correct answer lies in the aggregated
data, had a totally different causal structure than the one where the correct answer lies in
the disaggregated data. Specifically, the third variable (Plant Height) was affected by the
treatment (Plant Color) as opposed to Gender which is a pre-treatment confounder. (See an
isomorphic model in Fig. 1(b), where Blood-pressure replacing Plant-Height.5)

More than 30 years have passed since the publication of Lindley and Novick’s paper,
and the face of causality has changed dramatically. Not only do we now know which causal
structures would support Simpson’s reversals, we also know which structure places the correct
answer with the aggregated data or with the disaggregated data. Moreover, the criterion for
predicting where the correct answer lies (and, accordingly, where human consensus resides)
turns out to be rather insensitive to temporal information, nor does it hinge critically on
whether or not the third variable is affected by the treatment. It involves a simple graphical
condition called “back-door” (Pearl, 1993) which traces paths in the causal diagram and
assures that all spurious paths from treatment to outcome are intercepted by the third
variable. This will be demonstrated in the next section, where we argue that, armed with
these criteria, we can safely proclaim Simpson’s paradox “resolved.”

2 A Paradox Resolved

Any claim to a resolution of a paradox, especially one that has resisted a century of at-
tempted resolution must meet certain criteria. First and foremost, the solution must explain
why people consider the phenomenon surprising or unbelievable. Second, the solution must
identify the class of scenarios in which the paradox may surface, and distinguish it from sce-
narios where it will surely not surface. Finally, in those scenarios where the paradox leads to
indecision, we must identify the correct answer, explain the features of the scenario that lead
to that choice, and prove mathematically that the answer chosen is indeed correct. The next
three subsections will describe how these three requirements are met in the case of Simpson’s
paradox and, naturally, will proceed to convince readers that the paradox deserves the title
“resolved.”

3Lindley later regretted that choice (Pearl, 2009, p. 384), and indeed, his treatment of exchangeability
was guided exclusively by causal considerations (Meek and Glymour, 1994).

4Statistics teachers would enjoy the challenge of explaining how the sentence “treatment does not change
gender” can be expressed mathematically. Lindley and Novick tried, unsuccessfully of course, to use condi-
tional probabilities.

5Interestingly, Simpson’s examples also had different causal structure; in the former, the third variable
(gender) was a common cause of the other two, whereas in the latter, the third variable (paint on card) was
a common effect of the other two (Hernán et al., 2011). Yet, although this difference changed Simpson’s
intuition of what is “more sensible,” it did not stimulate his curiousity as a fundamental difference, worthy
of scientific exploration.
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2.1 Simpson’s Surprise

In explaining the surprise, we must first distinguish between “Simpson’s reversal” and “Simp-
son’s paradox”; the former being an arithmetic phenomenon in the calculus of proportions,
the latter a psychological phenomenon that evokes surprise and disbelief. A full under-
standing of Simpson’s paradox should explain why an innocent arithmetic reversal of an
association, albeit uncommon, came to be regarded as “paradoxical,” and why it has cap-
tured the fascination of statisticians, mathematicians and philosophers for over a century
(though it was first labeled “paradox” by Blyth (1972)).

The arithmetics of proportions has its share of peculiarities, no doubt, but these tend
to become objects of curiosity once they have been demonstrated and explained away by
examples. For instance, naive students of probability may expect the average of a product
to equal the product of the averages but quickly learn to guard against such expectations,
given a few counterexamples. Likewise, students expect an association measured in a mixture
distribution to equal a weighted average of the individual associations. They are surprised,
therefore, when ratios of sums, (a+ b)/(c+ d), are found to be ordered differently than indi-
vidual ratios, a/c and b/d.6 Again, such arithmetic peculiarities are quickly accommodated
by seasoned students as reminders against simplistic reasoning.

In contrast, an arithmetic peculiarity becomes “paradoxical” when it clashes with deeply
held convictions that the pecularity is impossible, and this occurs when one takes seriously
the causal implications of Simpson’s reversal in decision-making contexts. Reversals are
indeed impossible whenever the third variable, say age or gender, stands for a pre-treatment
covariate because, so the reasoning goes, no drug can be harmful to both males and females
yet beneficial to the population as a whole. The universality of this intuition reflects a
deeply held and valid conviction that such a drug is physically impossible. Remarkably, such
impossibility can be derived mathematically in the calculus of causation in the form of a
“sure-thing” theorem (Pearl, 2009, p. 181):

“An action A that increases the probability of an event B in each subpopulation
(of C) must also increase the probability of B in the population as a whole,
provided that the action does not change the distribution of the subpopulations.”7

Thus, regardless of whether effect size is measured by the odds ratio or other comparisons,
regardless of whether Z is a confounder or not, and regardless of whether we have the correct
causal structure on hand, our intuition should be offended by any effect reversal that appears
to accompany the aggregation of data.

I am not aware of another condition that rules out effect reversal with comparable as-
sertiveness and generality, requiring only that Z not be affected by our action, a requirement
satisfied by all treatment-independent covariates Z. Thus, it is hard, if not impossible, to
explain the surprise part of Simpson’s reversal without postulating that human intuition is
governed by causal calculus together with a persistent tendency to attribute causal interpre-
tation to statistical associations.

6In Simpson’s paradox we witness the simultaneous orderings: (a1+ b1)/(c1+ d1) > (a2+ b2)/(c2+ d2),
(a1/c1) < (a2/c2), and (b1/d1) < (b2/d2).

7The no-change provision is probabilistic; it permits the action to change the classification of individual
units so long as the relative sizes of the subpopulations remain unaltered.
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2.2 Which scenarios invite reversals?

Attending to the second requirement, we need first to agree on a language that describes and
identifies the class of scenarios for which association reversal is possible. Since the notion
of “scenario” connotes a process by which data is generated, a suitable language for such
a process is a causal diagram, as it can simulate any data-generating process that operates
sequentially along its arrows. For example, the diagram in Fig. 1(a) can be regarded as
a blueprint for a process in which Z = Gender receives a random value (male or female)
depending on the gender distribution in the population. The treatment is then assigned a
value (treated or untreated) according to the conditional distribution P (treatment|male) or
P (treatment|female). Finally, once Gender and Treatment receive their values, the outcome
process (Recovery) is activated, and assigns a value to Y using the conditional distribution
P (Y = y|X = x, Z = z). All these local distributions can be estimated from the data. Thus,
the scientific content of a given scenario can be encoded in the form of a directed acyclic
graph (DAG), capable of simulating a set of data-generating processes compatible with the
given scenario.

2
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Figure 1: Graphs demonstrating the insufficiency of chronological information. In models (c)
and (d), Z may occur before or after the treatment, yet the correct answer remains invariant
to this timing: We should not condition on Z in model (c), and we should condition on Z
in model (d). In both models Z is not affected by the treatment.

The theory of graphical models (Pearl, 1988; Lauritzen, 1996) can tell us, for a given DAG,
whether Simpson’s reversal is realizable or logically impossible in the simulated scenario. By
a logical impossibility we mean that for every scenario that fits the DAG structure, there is
no way to assign processes to the arrows and generate data that exhibit association reversal
as described by Simpson.

For example, the theory immediately tells us that all structures depicted in Fig. 1 can
exhibit reversal, while in Fig. 2, reversal can occur in (a), (b), and (c), but not in (d), (e),
or (f). That Simpson’s paradox can occur in each of the structures in Fig. 1 follows from
the fact that the structures are observationally equivalent; each can emulate any distribu-
tion generated by the others. Therefore, if association reversal is realizable in one of the
structures, say (a), it must be realizable in all structures. The same consideration applies
to graphs (a), (b), and (c) of Fig. 2, but not to (d), (e), or (f) which are where the X, Y
association is collapsible over Z.
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Figure 2: Simpson reversal can be realized in models (a), (b), and (c) but not in (d), (e), or
(f).

2.3 Making the correct decision

We now come to the hardest test of having resolved the paradox: proving that we can make
the correct decision when reversal occurs. This can be accomplished either mathematically or
by simulation. Mathematically, we use an algebraic method called “do-calculus” (Pearl, 2009,
p. 85–89) which is capable of determining, for any given model structure, the causal effect of
one variable on another and which variables need to be measured to make this determination.8

Compliance with do-calculus should then constitute a proof that the decisions we made using
graphical criteria is correct. Since some readers of this article may not be familiar with the do-
calculus, simulation methods may be more convincing. Simulation “proofs” can be organized
as a “guessing game,” where a “challenger” who knows the model behind the data dares an
analyst to guess what the causal effect is (of X on Y ) and checks the answer against the
gold standard of a randomized trial, simulated on the model. Specifically, the “challenger”
chooses a scenario (or a “story” to be simulated), and a set of simulation parameters such
that the data generated would exhibit Simpson’s reversal. He then reveals the scenario (not
the parameters) to the analyst. The analyst constructs a DAG that captures the scenario and
guesses (using the structure of the DAG) whether the correct answer lies in the aggregated
or disaggregated data. Finally, the “challenger” simulates a randomized trial on a fictitious
population generated by the model, estimates the underlying causal effect, and checks the
result against the analyst’s guess.

For example, the back-door criterion instructs us to guess that in Fig. 1, in models (b)
and (c) the correct answer is provided by the aggregated data, while in structures (a) and
(d) the correct answer is provided by the disaggregated data. We simulate a randomized
experiment on the (fictitious) population to determine whether the resulting effect is positive

8When such determination cannot be made from the given graph, as is the case in Fig. 2(b), the do-calculus
alerts us to this fact.
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or negative, and compare it with the associations measured in the aggregated and disaggre-
gated population. Remarkably, our guesses should prove correct regardless of the parameters
used in the simulation model, as along as the structure of the simulator remains the same.9

This explains how people form a consensus about which data is “more sensible” (Simpson,
1951) prior to actually seeing the data.

This is a good place to explain how the back-door criterion works, and how it determines
where the correct answer resides. The principle is simple: The paths connecting X and
Y are of two kinds, causal and spurious. Causative associations are carried by the causal
paths, namely, those tracing arrows directed from X to Y . The other paths carry spurious
associations and need to be blocked by conditioning on an appropriate set of covariates. All
paths containing an arrow into X are spurious paths, and need to be intercepted by the
chosen set of covariates.

When dealing with a singleton covariate Z, as in the Simpson’s paradox, we need to
merely ensure that

1. Z is not a descendant of X, and

2. Z blocks every path that ends with an arrow into X.

(Extensions for descendants of X are given in (Pearl, 2009, p. 338; Pearl and Paz, 2013;
Shpitser et al., 2010).)

The operation of “blocking” requires a special handling of “collider” variables, which
behave oppositely to arrow-emitting variables. The latter block the path when conditioned
on, while the former block the path when they and all their descendants are not conditioned
on. This special handling of “ colliders,” reflects a general phenomenon known as Berkson’s
paradox (Berkson, 1946), whereby observations on a common consequence of two indepen-
dent causes render those causes dependent. For example, the outcomes of two independent
coins are rendered dependent by the testimony that at least one of them is a tail.

Armed with this criterion we can determine, for example, that in Fig. 1(a) and (d), if we
wish to correctly estimate the effect of X on Y , we need to condition on Z (thus blocking the
back-door path X ← Z → Y ). We can similarly determine that we should not condition on
Z in Fig. 1(b) and (c). The former because there are no back-door paths requiring blockage,
and the latter because the back-door path X ← ◦ → Z ← ◦ → Y is blocked when Z is not
conditioned on. The correct decisions follow from this determination; when conditioning on
Z is required, the Z-specific data carries the correct information. In Fig. 2(c), for example,
the aggregated information carries the correct information because the spurious (non-causal)
path X → Z ← Y is blocked when Z is not conditioned on. The same applies to Fig. 2(a)
and Fig. 1(c).

Finally, we should remark that, in certain models the correct answer may not lie in either
the disaggregated or the aggregated data. This occurs when Z is not sufficient to block an
active back-door path as in Fig. 2(b); in such cases a set of additional covariates may be
needed, which takes us beyond the scope of this note.

The model in Fig. 3 presents opportunities to simulate successive reversals, which could
serve as an effective (and fascinating) instruction tool for introductory statistics classes. Here

9By “structure” we mean the list of variables that need be consulted in computing each variable Vi in
the simulation.
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we see that to block the only unblocked back-door path X ← Z1 → Z3 → Y , we need to
condition on Z1. This means that, if the simulation machine is set to generate association
reversal, the correct answer will reside in the disaggregated, Z1-specific data. If we further
condition on a second variable, Z2, the back-door path X ← ◦ → Z2 ← Z3 → Y will
become unblocked, and a bias will be created, meaning that the correct answer lies with
the aggregated data. Upon further conditioning on Z3 the bias is removed and the correct
answer returns to the disaggregated, Z3-specific data.

Note that in each stage, we can set the numbers in the simulation machine so as to
generate association reversal between the pre-conditioning and post-conditioning data. Note
further that at any stage of the process we can check where the correct answer lies by
subjecting the population generated to a hypothetical randomized trial.

1

3

2
5

4

Z

Z

Z
Z

Z

YX

Figure 3: A multi-stage Simpson’s paradox machine. Cumulative conditioning in the or-
der (Z1, Z2, Z3, Z4, Z5) creates reversal at each stage, with the correct answers alternating
between disaggregated and aggregated data.

This sequential, back and forth reversals demonstrate the disturbing observation that
every statistical relationship between two variables may be reversed by including additional
factors in the analysis and that, lacking causal information of the context, one cannot be
sure what factor should be included in the analysis. For example, we might run a study and
find that students who smoke get higher grades, however, if we adjust for age, the opposite
is true in every age group, namely, smoking predicts lower grades. If we further adjust for
parent income, we find that smoking predicts higher grades again, in every age-income group,
and so on (Pearl, 2009, p. 425).

3 Conclusions

I hope that playing the multi-stage Simpson’s guessing game (Fig. 3) would convince readers
that we now understand most of the intricacies of Simpson’s paradox, and we can safely title
it “resolved.”

Acknowledgments

This research was supported in parts by grants from NSF #IIS1249822 and #IIS1302448,
and ONR #N00014-13-1-0153 and #N00014-10-1-0933. I appreciate the encouragement of

8



Ronald Christensen, conversations with Miguel Hernán, and editorial comments by Madelyn
Glymour.

Appendix A – (Based on Pearl (2009, Chapter 6))

Simpson’s paradox (Blyth, 1972; Simpson, 1951), refers to a phenomenon exemplified in
Fig. 4, whereby an event C seems to increase the probability of E in a given population p
and, at the same time, decrease the probability of E in every subpopulation of p. In other
words, if F and ¬F are two complementary properties describing two subpopulations, we
might well encounter the inequalities

P (E|C) > P (E|¬C), (1)

P (E|C, F ) < P (E|¬C, F ), (2)

P (E|C,¬F ) < P (E|¬C,¬F ). (3)

Although such order reversal might not surprise students of probability, it appears paradox-
ical when given causal interpretation. For example, if we associate C (connoting cause) with
taking a certain drug, E (connoting effect) with recovery, and F with being a female then –
under the causal interpretation of (1)–(3) – the drug seems to be harmful to both males and
females yet beneficial to the population as a whole. Intuition deems such a drug impossible,
and correctly so.

The tables in Fig. 4 represent Simpson’s reversal numerically. We see that, overall, the
recovery rate for patients receiving the drug (C) at 50% exceeds that of the control (¬C) at
40% and so the drug treatment is apparently to be preferred. However, when we inspect the
separate tables for males and females, the recovery rate for the untreated patients is 10%
higher than that for the treated ones, for males and females both.

Modern analysts explain away Simpson’s paradox by distinguishing seeing from doing

(Lindley, 2002). The key idea is that the conditioning operator in probability calculus stands
for the evidential conditional “given that we see,” and should not be used to compare “ef-
fects,” “impacts,” “harms,” or “benefits.” To quantify effects, we must use the do(·) operator
which represents the causal conditional “given that we do.” Accordingly, the inequality in
(1),

P (E|C) > P (E|¬C),

is not a statement about C raising the probability of E, or C being a factor contributing to
E, but rather a statement about C being an evidence for E, which may be due to factors
that cause both C and E. In our example, for instance, the drug appears beneficial overall
because the males, who recover (regardless of the drug) more often than the females, are
also more likely than the females to use the drug. Indeed, finding a drug-treated patient
of unknown gender, we would do well inferring that the patient is more likely to be a male
and hence more likely to recover, in perfect harmony with (1)–(3). In contrast, to represent
the statement that the drug increases the chances for recovery, the appropriate inequality
should read:

P (E|do(C)) > P (E|do(¬C)), (4)
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Combined E ¬E Recovery Rate
(a) drug (C) 20 20 40 50%

no-drug (¬C) 16 24 40 40%
36 44 80

Males E ¬E Recovery Rate
(b) drug (C) 18 12 30 60%

no-drug (¬C) 7 3 10 70%
25 15 40

Females E ¬E Recovery Rate
(c) drug (C) 2 8 10 20%

no-drug (¬C) 9 21 30 30%
11 29 40

Figure 4: Recovery rates under treatment (C) and control (¬C) for males, females, and
combined.

and the statement that drug C has harmful effect on both males and females should translate
into the inequalities:10

P (E|do(C), F ) < P (E|do(¬C), F ), (5)

P (E|do(C),¬F ) < P (E|do(¬C),¬F ). (6)

A simple proof in causal calculus (Pearl, 2009, pp. 180–182) demonstrates that (5) and
(6) are inconsistent with (4), as long as the drug has no effect on gender, i.e.,

P (F |do(C)) = P (F |do(¬C)) = P (F ). (7)

This inconsistency accounts for the paradoxical flavor of Simpson’s reversal, and carries
profound implications on how humans process and interpret data.

First, the fact the most people are (initially) surprised by reversals of the type shown in
Fig. 4 indicates that people are predisposed to attribute causal interpretations to statistical
data. Second, the fact that most people deem (4)–(6) to be impossible proves that people
judgment is governed by causal, rather than statistical logic. It also proves that people store
scientific and experiential knowledge (e.g., that drug does not change gender) in the form of
cause-effect relationships, rather than statistical relationships. Overall, Simpson’s paradox
provides us with a solid proof of what Daniel Kahneman calls “causes trump statistics”
(Kahneman, 2011, p. 166–174), and what I have described as “man is a causal processing
machine” (Pearl, 2009, p. 180).

10Note that none of (4)-(6) is entailed by the table of Fig. 4; the latter refelcts non-experimental data and,
hence, cannot be given any causal interpretation whatsoever, without further (causal) assumptions.
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