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Hacker-driven exploitation research has developed into a discipline of its own,

concerned with practical exploration of how unexpected computational properties

arise in actual multi-layered, multi-component computing systems, and of what

these systems could and could not compute as a result. The staple of this research

is describing unexpected (and unexpectedly powerful) computational models

inside targeted systems, which turn a part of the target into a so-called “weird

machine” programmable by the attacker via crafted inputs (a.k.a. “exploits”).

Exploits came to be understood and written as programs for these “weird

machines” and served as constructive proofs that a computation considered

impossible could actually be performed by the targeted environment.

This research defined and fulfilled the need of such practical exploration in real

systems that we must trust. Hacker research has also dominated this area, while

academic analysis of the relevant computational phenomena lagged behind.

We show that at its current sophistication and complexity, exploitation research as

a discipline has come full circle to the fundamental questions of computability and

language theory. Moreover, application of language-theoretic and computation-

theoretic methods in it has already borne impressive results, helping to discover

and redefine computational models and weaknesses previously overlooked. We
believe it is time to bring the hacker craft of finding and programming “weird
machines” inside targets and the theorists’ understanding of computational
models together for the next step in designing secure, trustworthy computing

systems.
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Itis hard to say exactly when their story began; chances are that at the beginning
they were thought of as just handy tricks to assist more important techniques
rather than the essence of exploitation.

The classic “Smashing the Stack for Fun and Profit” by Aleph One [11] manages to
explain the conversion of an implicit input data flow into altered program control
flow in two short paragraphs:

So a buffer overflow allows us to change the return address of a function.
In this way we can change the flow of execution of the program. ...

strepy() will then copy [the shellcode] onto buffer without doing any
bounds checking, and will overflow the return address, overwriting it
with the address where our code is now located. Once we reach the end of
main and it tried to return it jumps to our code, and execs a shell.

For readers who concentrated on the details of constructing the shellcode (and
encountered a hands-on exposition of syscalls and ABI for the first time), it was
easy to miss the fact that both the implicit data flow and the subsequent transfer
of control were performed by the program’s own code, borrowed by the exploit for its
own purposes. Yet it was this borrowed code, the copying loop of strepy() and the
function’s post-amble, that added up to the “remote execution” call as good as any
API, into which the shellcode was fed.

This borrowing turned out to be crucial, far more important than the details of
shellcode’s binary instructions, as Solar Designer showed next year (1997): more
of the target’s code could be borrowed. In fact, enough code could be borrowed that
there was no longer any need to bring any of your own executable code to drop a
shell—the target process’s runtime already conveniently included such code, in
libc. One just needed to arrange the overwriting stack data the way that borrowed
code expected it, faking a stack frame and giving control to the snippet inside libc’s
exec().

This was a handy technique for bypassing non-executable stack protections, and

it was pigeonholed by many as such. But its real meaning was much deeper: the
entire process’s runtime address space contents were ripe for borrowing, as long as
one spoke the language of implicit data flows (owing to the target’s input handling
oflogic flaws or features) that those borrowed pieces understood.

The borrowings did not need to be a one-off: they could be chained. Quoting all of
non-code contents of Tim Newsham’s 2000 post that probably holds the record for
fewest words per idea value:

Here’s an overflow exploit [for the Ipset bug in sol7 x86] that works on a
non-exec stack on x86 boxes. It demonstrates how it is possible to thread
together several libc calls. I have not seen any other exploits for x86 that
have done this. [10]

It was soon generalized to any code snippets present in the target, unconstrained
by the code’s originally intended function or granularity. Borrowed pieces of code
could be strung together, the hijacked control flow linking them powered by their
own effects with the right crafted data arranged for each piece. Gerardo (gera)
Richarte, presenting this technique, wrote less than half a year later: “Here I pre-
sent a way to code any program, or almost any program, in a way such that it can be



fetched into a buffer overflow in a platform where the stack (and any other place in
memory, but libc) is executable” [12].

So exploitation started to look like programming—with crafted input data for
overflows or other memory corruptions—in really weird assembly-like instruc-
tions (“weird instructions”) borrowed from the target. Nergal’s “Advanced return-
into-lib(c) Exploits” [9] described the chaining of faked overflow-delivered stack
frames in detail, each borrowed post-amble with its RET instruction bringing the
control flow back to the next faked frame, and out into the target’s code or libraries,
in careful stitches. Also, the granularity of features so stitched can be mixed-and-
matched: should the load addresses of the desired snippets be obscured (e.g., with
the help of PaX hardening), then why not craft the call to the dynamic linker itself
to resolve and even load the symbols, as is its job, let it do its thing, and then go back
to snippet-stitching?

It does feel weird to so program with crafted data, but then actual assembled
binary code is nothing but data to the CPUs in its fetch-decode-execute cycle,
snippets of silicon circuits responsible for performing predictable actions when fed
certain formatted inputs, then fetching more inputs. The exploit merely makes a
“processor” out of the borrowed target code snippets, which implement the “weird
instructions” just as digital logic implements conventional ones.

Altogether, they make up a “weird machine” inside the target on which the crafted-
input program executes.

“Weird instructions” can be subtle, multi-step, and spread through the target’s
execution timeline. The original combination of strepy() and a RET was a fair
example, but just about any interface or library data interpretation code may offer a
graceful specimen.

For example, Doug Lea’s original memory allocator implementation keeps the freed
blocks in a doubly linked list, realized as pointers in chunk headers interspersed
with the chunks themselves. A bug in code writing to a heap-allocated buffer may
result in a write past the end of the buffer’s malloc-ed chunk, overwriting the next
chunk’s header with our crafted data. When the overwritten chunk is free-ed, the
allocator’s bookkeeping code will then traverse and patch the doubly linked list
whose pointers we now control. This gives us a “weird MOV instruction” that takes
four overwritten chunk header bytes and writes them where another four bytes are
pointing!

This is beautiful, and we can program with it, if only we can cause the overwrite of
afreed block and then cause the free() to happen. Such “weird instruction” tech-
niques derived from a combination of an application-specific dynamically allo-
cated buffer overwrite that corrupts the chunk headers and the normal malloc-ed
chunk maintenance code are explained in detail in “Vudo malloc tricks” and “Once
upon a free()” [7, 1].

Another famous example of a “weird instruction” is provided by the (in)famous
printf-family format string vulnerabilities (in which the attacker could control the
format string fed to aprintf()). From the computational point of view, any imple-
mentation of printf() must contain a parser for the format string, combined with
an automaton that retrieves the argument variable’s values from the stack and con-
verts them to the appropriate string representations as specified by the %-expres-
sion. It was not commonly understood, however, that the %n specifier in the format
string caused that automaton to write the length of the output string printed so
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far to the stack-fetched address—and therefore the attacker who controlled the
format string and the quantity of output could write that length-of-output to some
completely unanticipated address! (Even though printf was not passed a proper
pointer to such a variable, it would grab whatever was on the stack at the offset that
argument would be at, and use that as a pointer.)

What unites the printf’s handling of the format string argument and an imple-
mentation of malloc? The “weird instruction” primitives they supply to exploits.
This strange confluence is explained in “Advanced Doug Lea’s malloc Exploits” [5],
which follows the evolution of the format string-based “4-bytes-write-anything-
anywhere” primitive in “Advances in Format String Exploitation” [14] to the
malloc-based “almost arbitrary 4 bytes mirrored overwrite,” for which the authors
adopted a special “weird assembly” mnemonic, aa4bmo.

Such primitives enable the writing of complex programes, as explained by Gerardo
Richarte’s “About Exploits Writing” [13]; Haroon Meer’s “The(Nearly) Complete
History of Memory Corruption” [8] gives a (nearly) complete timeline of memory
corruption bugs used in exploitation.

Remarkably, weird machines can be elicited from quite complex algorithms such
as the heap allocator, as Sotirov showed with his “heap feng shui” techniques

[16]. The algorithm can be manipulated to place a chunk with a potential memory
corruption next to another chunk with the object where corruption is desired.
The resulting implicit data flow from the bug to the targeted object would seem
“ephemeral” or improbable to the programmer, but can in fact be arranged by a
careful sequence of allocation-causing inputs, which help instantiate the “latent”
weird machine.

The recent presentation by Thomas Dullien (aka Halvar Flake) [3], subtitled “Pro-
gramming the “Weird Machine, Revisited,” links the craft of exploitation at its best
with the theoretical models of computation. He confirms the essence of exploit
development as “setting up, instantiating, and programming the weird machine.”

The language-theoretic approach we discuss later provides a deeper understand-
ing of where to look for “weird instructions” and “weird machines”—but first we’ll
concentrate on what they are and what they tell about the nature of the target.

Computer security’s core subjects of study—trust and trustworthiness in comput-
ing systems—involve practical questions such as “What execution paths can pro-
grams be trusted to not take under any circumstances, no matter what the inputs?”
and “Which properties of inputs can a particular security system verify, and which
are beyond its limits?” These ultimately lead to the principal questions of computer
science since the times of Church and Turing: “What can a given machine com-
pute?” and “What is computable?”

The old anecdote of the Good Times email virus hoax provides a continually
repeated parable of all security knowledge. In the days of ASCII text-only email,
the cognoscentilaughed when their newbie friends and relatives forwarded around
the hoax warning of the woes to befall whoever reads the fateful message. We knew
that an ASCII text could not possibly hijack an email client, let alone the rest of

the computer. In a few years, however, the laugh was on us, courtesy of Microsoft’s
push for “e-commerce-friendly” HTMLized email with all sorts of MIME-enabled
goodies, including “active” executable code. Suddenly, seriously giving “security”



advice to not “open” or “click” emails from “untrusted sources” was a lesser evil, all
the sarcastic quotes in this paragraph notwithstanding. So long as our ideas met
the computational reality we were dead right, and then those of us who missed the
shift were embarrassingly wrong.

Successful exploitation is always evidence of someone’s incorrect assumptions
about the computational nature of the system—in hindsight, which is 20-20. The
challenge of practical security research is to reliably predict, expose, and demon-
strate such fallacies for common, everyday computing systems—that is, to develop
amethodology for answering or at least exploring the above fundamental questions
for these systems. This is what the so-called “attack papers” do.

There is a growing disconnect between the academic and the practitioner sides of
computer security research. On the practitioner side, so-called “attack papers”—
which academics tend to misunderstand as merely documenting attacks on pro-
grams and environments—are the bread and butter of practical security (hacker)
education, due to their insights into the targets’ actual computational properties
and architectures. On the academic side, however, the term “attack paper” has
become something of a pejorative, implying a significant intellectual flaw, an
incomplete or even marginal contribution.

However, a review of the often-quoted articles from Phrack, Uninformed.org, and
similar sources reveals a pattern common to successful papers. These articles
describe what amounts to an execution model and mechanism that is explicitly or
implicitly present in the attacked environment—unbeknownst to most of its users
or administrators. This mechanism may arise as an unforeseen consequence of’
the environment’s design, or due to interactions with other programs and environ-
ments, or be inherent in its implementation.

Whatever the reasons, the point of the description is that the environment is
capable of executing unforeseen computations (say, giving full shell control to the
attacker, merely corrupting some data, or simply crashing) that can be reliably
caused by attacker actions—essentially, programmed by the attacker in either

the literal or a broader sense (creating the right state in the target, for example, by
making it create enough threads or allocate and fill enough memory for a probabi-
listic exploitation step to succeed).

The attack then comes as a constructive proof that such unforeseen computations
are indeed possible, and therefore as evidence that the target actually includes the
described execution model (our use of “proof” and “evidence” aims to be rigorous).
The proofis accomplished by presenting a computationally stronger automaton
or machine than expected. Exploit programming has been a productive empirical
study of these accidental or unanticipated machines and models and of the ways
they emerge from bugs, composition, and cross-layer interactions.

Following [2], we distinguish between formal proofs and the forms of mathemati-
cal reasoning de-facto communicated, discussed, and checked as proofs by the
community of practicing mathematicians. The authors observe that along string
of formal deductions is nearly useless for establishing believability in a theorem,
no matter how important, until it can be condensed, communicated, and verified
by the mathematical community. The authors of [2] extended this community
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approach to validation of software—which, ironically, the hacker research commu-
nity approaches rather closely in its modus operandi, as we will explain.

In other words, a hacker research article first describes a collection of the target’s
artifacts (including features, errors, and bugs) that make the target “programma-
ble” for the attacker. These features serve as an equivalent of elementary instruc-
tions, such as assembly instructions, and together make up a “weird machine”
somehow embedded in the target environment. The article then demonstrates the
attack as a program for that machine—and we use the word “machine” here in the
sense of a computational model, as in “Turing machine,” and similar to “automa-
ton” in “finite automaton.”

Accordingly, the most appreciated part of the article is usually the demonstration
of how the target’s features and bugs can be combined into usable and convenient
programming primitives, as discussed above. The attack itself comes almost as a
natural afterthought to this mechanism description.

It may come as a great surprise to academic security researchers that the practice
of exploitation has provided an empirical exploration methodology—with strong
formal implications.

For decades, hacker research on exploitation was seen by academia as at best a use-
ful sideshow of vulnerability specimens and ad hoc attack “hacks,” but lacking in
general models and of limited value to designers of defenses. The process of finding
and exploiting vulnerabilities was seen as purely opportunistic; consequently,
exploiting was not seen as a source of general insights about software or computing
theory.

However, as we mentioned above, a more attentive examination of exploit structure
and construction shows that they are results akin to mathematical proofs and are
used within the community in a similar pattern. Just like proofs, they are checked
by peers and studied for technical “tricks” that made them possible; unlike most
mathematical proofs, they are runnable, and are in a sense dual to correctness
proofs for software such as the seL4 project.

This proof’s syntactic expression is typically a sequence of crafted inputs—col-
loquially known as the “exploit,” the same term used for the program/script that
delivers these inputs—that reliably cause the target to perform a computation it

is deemed incapable of (or does so with no less than a given probability). In some
cases—arguably, the most interesting, and certainly enjoying a special place of
respect among hackers—these crafted inputs are complemented with physical
manipulations of the targeted computing environment, such as irradiating or
otherwise “glitching” IC chips, or even controlling the values of the system’s analog
inputs.

The semantics of the exploit is that of a program for the target’s computational
environment in its entirety, i.e., the composition of all of its abstraction layers,
such as algorithm, protocol, library, OS API, firmware, or hardware. This composi-
tion by definition includes any bugs in the implementation of these abstractions,
and also any potential interactions between these implementations. The practi-
cal trustworthiness of a computer system is naturally a property of the composed



object: a secure server that relies on buggy libraries for its input processing is
hardly trustworthy.

From the methodological point of view, the process of constructing an exploit for a
platform (common server or application software, an OS component, firmware, or
other kind of program) consists of :

1. identifying computational structures in the targeted platform that allow the
attacker to affect the target’s internal state via crafted inputs (e.g., by memory
corruption);

2. distilling the effects of these structures on these inputs to tractable and isolat-
able primitives;

3. combining crafted inputs and primitives into programs to comprehensively
manipulate the target computation.

The second and third steps are a well-understood craft, thanks to the historical
work we described. The first step, however, requires further understanding.

Halvar Flake [3] speaks of the original platform’s state explosion in the presence
of' bugs. The exploded set of states is thus the new, actual set of states of the target
platform.

As much as the “weird machines” are a consequence of this state explosion, they
are also defined by the set of reliably triggered transitions between these “weird”
states. It is the combination of the two that make up the “weird machine” that is,
conceptually, the substrate on which the exploit program runs, and, at the same
time, proves the existence of the said “weird machine.” In academic terms, this is
what the so-called “malicious computation” runs on.

From the formal language theory perspective, these transitions define the compu-
tational structure on this state space that is driven by the totality of the system’s
inputs, in turn determining which states are reachable by crafted inputs such as
exploit programs. The “weird machine,” then, is simply a concise description of the
transition-based computational structures in this exploded space.

In this view, the exploitation primitives we have discussed provide the state transi-
tions that are crucial for the connectivity of the “weird states” graph’s components.
In practice, the graph of states is so large that we study only these primitives, but it
is the underlying state space that matters.

In a nutshell, it is only a comprehensive exploration of this space and transitions in
it that can answer the fundamental question of computing trustworthiness: what
the target can and cannot compute. The language-theoretic approach is a tool for
study of this space, and it may be the only hope of getting it right.

The language-theoretic approach and “weird machines” meet at exploitation.

Practical exploration of real-world computing platforms has led to a discipline
whose primary product is concise descriptions of unexpected computation models
inherent in everyday systems. The existence of such a model is demonstrated by
creating an exploit program for the target system in the form of crafted inputs that
cause the target to execute it.
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This suggests that studying the target’s computational behavior on all possible
inputs as a language-theoretic phenomenon is the way forward for designing
trustworthy systems: those that compute exactly what we believe, and do not com-
pute what we believe they cannot. Starting at the root of the problem, exploits are
programs for the actual machine—with all its weird machines—presented as input
(which is what “crafted” stands for).

This approach was taken by Sassaman and Patterson in their recent research [15,
6]. They demonstrate that computational artifacts (which, in the above terms,
make “weird machines”) can be found by considering the target’s input-processing
routines as recognizers for the language of all of its valid or expected inputs.

To date, language-theoretic hierarchies of computational power, and the targets’
language-theoretic properties, were largely viewed as orthogonal to security, their
natural application assumed to be in compilation and programming language
design. Sassaman and Patterson’s work radically changes this, and demonstrates
that theoretical results are a lot more relevant to security than previously thought.

Among the many problems where theory of computation and formal languages
meets security, one of paramount importance to practical protocol design is algo-
rithmically checking the computational equivalence of parsers for different classes
of languages that components of distributed systems use to communicate. Without
such equivalence, answering the above questions for distributed or, indeed, any
composed systems becomes mired in undecidability right from the start. The key
observation is that the problem is decidable up to a level of computational power
required to parse the language, and becomes undecidable thereafter—that is,
unlikely to yield to any amount of programmer effort.

This provides a mathematical explanation of why we need to rethink the famous
“Postel’s Principle”—which coincides with Dan Geer’s reflections on the historical
trend of security issues in Internet protocols [4].
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