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Abstract—Input-handling bugs share two common patterns:
insufficient recognition, where input-checking logic is unfit to
validate a program’s assumptions about inputs, and parser
differentials, wherein two or more components of a system fail to
interpret input equivalently. We argue that these patterns are
artifacts of avoidable weaknesses in the development process
and explore these patterns both in general and via recent CVE
instances. We break ground on defining the input-handling code
weaknesses that should be actionable findings and propose a
refactoring of existing CWEs to accommodate them. We propose
a set of new CWEs to name such weaknesses that will help code
auditors and penetration testers precisely express their findings
of likely vulnerable code structures.

I. INTRODUCTION

Many famous exploitable bugs of the past few years—such

as Heartbleed, Android Master Key, Rosetta Flash, etc.—have

been parser bugs. These parsers tended to give experienced

code auditors the proverbial “bad feeling about this”. However,

a feeling is not a finding and is not actionable, no matter

how unsafe the code might look. As such, telling programmers

to be ever more careful [30, 25, 33] about sanitizing inputs

[11, 37, 21] is not helpful.

An implicit but common assumption has been that properly

following applicable specifications such as RFCs or ISO stan-

dards protects programmers against both unexpected effects

of crafted inputs and incompatibilities. Security lapses in im-

plementations of such standards are then often assumed to be

due to the indefensible carelessness of individual programmers

who failed to follow the standard.

Rather than blaming imperfect programmers, we should

take a look at the root causes of their mistakes. This leads

us to develop specific and easily verifiable requirements and

procedures, which have the potential to end the blame and fix

the problem.

A. Input-driven exploitation

There is a way in which all input-driven vulnerabilities are

alike and exploited alike: invalid input is processed instead

of being rejected. Its intended preconditions unsatisfied, the

processing code drives the system through a sequence of states

its designers did not foresee. An exploit can be thought of as

a program encoded in crafted inputs, using fragments of the

processing code outside of their intended preconditions as its

primitive operations, and operating in the space of states that

arise from precondition violations. [20, 14]

As Morris noted in 1973, the programmer “could begin each

operation with a well-formedness check, but in many cases

the cost would exceed that of the useful processing” [29].

To delineate between paranoia and prudently providing for

the satisfaction of preconditions in application logic, certain

questions must be answered: What are the properties of input

that need to be checked and can be relied upon? What coherent

sets of such properties can scale up to be implemented

correctly by large groups of programmers? To what extent are

the pitfalls properties of the input specifications themselves?

The LangSec methodology seeks to answer these questions.

B. LangSec

In a nutshell, language-theoretic security (LangSec) is the

idea that many security issues can be avoided by applying

a standard process to input processing and protocol design:

the acceptable input to a program should be well-defined (i.e.,

via a grammar), as simple as possible (on the Chomsky scale

of syntactic complexity), and fully validated before use (by a

dedicated parser of appropriate but not excessive power in the

Chomsky hierarchy of automata).

In other words, LangSec methodology starts with an explicit

grammar of expected inputs as a language. It postulates that

a well-constructed parser must plainly follow this grammar,

and must reject non-conforming inputs without operating on

them any further. This requires a clear and obvious boundary

between the input-validating code and the rest of the code,

at which the validated properties of inputs are clearly docu-

mented (and match the input language specification).

Our fundamental measure of input language “safety” is

the Chomsky complexity hierarchy. For a variety of reasons,

LangSec supports limiting protocols and other input language

specifications to grammars no more complex than determinis-

tic context-free. This constraint is both formally testable and

practical. For example, JSON, subsets of XML, and Protocol

Buffers can be used consistently and intuitively to stay within

these bounds if complex inner dependencies can be avoided.

Deviating from these principles opens a Pandora’s box of

bugs and exploits which, in general, cannot be algorithmically

mitigated.



C. Parsing weaknesses in existing CWEs

Before we present our taxonomy, we discuss how the

existing CWEs cover parser weaknesses—and why a more

comprehensive approach is needed.1

Existing CWE entries tend to characterize specific kinds

of programming errors such as buffer overflows (CWE-805),

but also represent broad attack types, e.g. cross-site scripting

(CWE-79) and SQL injection (CWE-89). Many LangSec bugs

could be filed under the abstract CWE-20, Improper Input

Validation. This could hardly be more general, but also, again,

hints that the weaknesses were mere programmer failure.

The CWE guides code analysis and application security

testing in many cases. Code reviewers and auditors generally

test that a program is secure against particular attacks and free

from particular patterns of weakness, and the CWE enumerates

a large corpus of items to check. In addition to the use of CWE

as a categorization of CVEs, code reviewers and code review

tools frequently frame individual findings as instances of a

particular CWE. The CWE acts as a pre-packaged justification

for the reporting of the finding, even where there is no actual

evidence of exploitability. This is valuable because attackers

usually have more time to develop creative exploits than

security analysts.

Generally, a security analyst has to justify a finding in some

way to report it. That justification might take the form of a

reference to a standard, evidence of actual exploitability, or

citation of a CWE or in another taxonomy. The analyst will

then refer to the citation to suggest a remedy.

There are currently 11 potential mitigations listed in CWE-

20, advising developers to attend to several necessary compo-

nents in input validation, but the closest it comes to directing

developers specifically to avoid writing shotgun parsers (see

below) is to call for input canonicalization (transforming input

into an application’s internal format before validation). It is

not explicit about the need to reject invalid input before

processing.

When the MITRE and SANS top 25 was still maintained,

a mitigations index was developed [4]. The index contained

general mitigations for the vulnerabilities identified in the top

25, e.g., M1 Establish and maintain control over all of your

inputs and M2 Establish and maintain control over all of your

outputs. The guidelines are agnostic to the specific method

and nature of the control for which they call. We aim our

taxonomy to include such guidance and add rigor to existing

vague guidelines.

II. TAXONOMY

The existing CWE descriptions related to LangSec-type

bugs are often inexact and concentrate on general effects rather

than underpinnings of the bugs. We propose a new taxonomy

that can be used to describe the relationship between the vio-

lation of LangSec requirements and resulting vulnerabilities:

• Shotgun parsing (ad-hoc validation during processing)

1We build on previous work [22], which classifies LangSec vulnerabilities
according to the MITRE Common Weakness Enumeration database.

• Non-minimalist input-handling code

• Input language more complex than deterministic context-

free

• Differing interpretations of input language

• Incomplete protocol specification

• Overloaded field in input format

• Permissive processing of invalid input

Where the above problems are allowed to exist, they are

likely to cause considerable numbers of vulnerabilities. For

example, we surveyed security bugs in OpenSSL from Jan-

uary 2015 to June 2016, by inspecting the reports of each

vulnerability assigned a CVE number and evaluating whether

the vulnerability could have been averted by avoiding one of

the antipatterns itemized above.

We categorized an OpenSSL vulnerability as relating to the

shotgun parsing antipattern when a discrete validation stage

would have prevented the ingress of invalid input (frequently

too-long input but occasionally other types) into application

logic or complex input transformations. We found permissive

processing of invalid input when a validator intentionally ac-

cepted invalid input and passed it through to application code,

for instance to accommodate interoperability with a buggy

implementation. In other cases, we found that a vulnerability

was related to an incomplete protocol specification when it

arose from a problematic interpretation of what constituted

valid input (or what the meaning of that input was) and

inspection of the relevant specification seemed to allow both

the pre- and post-patch behaviors.

Not all software projects express all types of vulnerabilities

from our taxonomy. For example, we did not categorize any

of the surveyed OpenSSL vulnerabilities as resulting from an

input language more complex than deterministic context-free.2

Of the 47 vulnerabilities enumerated, we estimate that 35

(74.5%) would have been averted if the design of that library

had avoided the problems taxonomized here. Out of these,

13 seemed most attributable to shotgun parsing and 11 to

attempts to process invalid input or corresponding failure to

reject known-invalid input.

We estimate that only 12 reported vulnerabilities in that

time period in OpenSSL were beyond the ken of LangSec.

These were generally cryptographic in nature, or related to

concurrency problems.

That a widely-used, critical cryptography library is mostly

vulnerable not because of cryptography implementation flaws

but because of the difficulty of processing even highly stan-

dardized input languages speaks to the need for a new way to

consider such vulnerabilities beyond “be more careful.”

III. ANTIPATTERNS

We now describe each of these antipatterns, and then discuss

how each antipattern led to serious security bugs.

2This is not to say OpenSSL is structurally immune to such problems. On
the contrary, if the recently-proposed anonymous authentication scheme of
Delignat-Lavaud et al. [19] were implemented in OpenSSL, the path to such
a vulnerability would be open.



a) Shotgun Parsing: Shotgun parsing is a programming

antipattern whereby parsing and input-validating code is mixed

with and spread across processing code—throwing a cloud

of checks at the input, and hoping, without any systematic

justification, that one or another would catch all the “bad”

cases.

Shotgun parsing necessarily deprives the program of the

ability to reject invalid input instead of processing it. Late-

discovered errors in an input stream will result in some portion

of invalid input having been processed, with the consequence

that program state is difficult to accurately predict. This type

of parsing can occasionally be detected by static means, since

it is rooted in program structure [48].

Many injection vulnerabilities, such as SQL injection or

XPath injection, fall into this category because they represent

a failure to correctly validate user input before it is used. In

fact, they usually represent a failure to validate it at all, so

that later application code (a SQL parser or some other type of

query engine) is the only validator the input goes through. This

relates back to the shotgun parsing problem: the “validator”

that accepts the input is both strewn throughout the program,

and not deliberate but rather emergent.

For another extremely common example of this, consider a

recent Rails bug, CVE-2016-0752 [8]. Here, directory traversal

is possible because a developer failed to remember to filter

dots. We can also model this problem as a failure to validate

input before processing it, since what ultimately happened here

and in the litany of similar cases is that the developer failed to

specify valid input, and so validity checking devolved to the

kernel or another component. The component (or composition

of components) to which input checking falls in these cases

tends to be unaware of the security requirements or high-level

notions of acceptable input, and so a breach is inevitable.

b) Non-Minimalist Input-handling Code: Input-handling

code should be minimalist in computing power. A regular

language should be handled by a finite automaton implementa-

tion, not by a pushdown one, nor by a more powerful model.

This precept is related in many ways to the need to avoid

shotgun parsing and complex input languages, but is distinct

from both: it is possible to have an overwrought parser that

validates input before processing and accepts a language that

is expressible by a simple grammar.

Initial input-handling code should do nothing more than

consume input, validate it (correctly), and deserialize it. Bugs

related to any computing power present in input-handling code

that is over the bare minimum required by the language fall

into this category. Computational power exposed at a validator

is power and privilege given to the attacker, and must be

minimized.

We note that the structure of the parser code is important for

enabling meaningful security audits regardless of the parser’s

backend mechanism. For example, it took over 10 years to

discover a chunk-length integer overflow bug, CVE-2012-

2028, in Nginx’s handling of the HTTP Chunked Encoding,

even though a very similar bug in Apache, CVE-2002-3092,

was thoroughly understood in 2002! This is despite Nginx’s

HTTP parser being explicitly structured as a hand-coded finite

automaton—but the inputs and states of this automaton were

all mixed together for all the grammar elements, and thus

thoroughly unintelligible to auditors.3

One important class of problems falling into this category

is the exposed reflection antipattern in the Java platform. For

example, consider the Elasticsearch vulnerability CVE-2015-

1427 [51]. The vulnerability arose from the use of the JVM

language Groovy as a scripting language for user-originated

query scripts. Developers attempted to sanitize the scripts. 4

Unfortunately, reflection was still allowed because the parser

failed to constrain the input language to the minimum effective

sublanguage5, leading to unrestricted remote code execution.

Certainly, one might view this as another instance of the

dreaded missing check, but we posit the problem is more

systemic than this. A minimalist domain-specific language

used instead of Java or Groovy would almost certainly not

have had this problem.

The litany of XML parser vulnerabilities also tends toward

this category. The canonical mitigation for all such problems,

systemized by Späth et al., is to limit the capabilities of the

parser [46], making it more minimalist.

c) Input Language More Complex than Deterministic

Context-Free: We recommend not letting language complexity

go above deterministic context-free (DCF) first and foremost

because of the issue of parser equivalence. Most systems these

days contain not one, but several parser implementations for

the same protocol; it is an implicit requirement for correctness

and often security that these implementations be equivalent

in how they interpret the protocol’s messages. When testing

equivalence, automation is desirable—but syntactic complex-

ity beyond DCF sets a sharp theoretical limit to what can be

achieved algorithmically.

As language complexity moves up the Chomsky hierarchy,

it becomes harder to reason about a parser’s behavior, such as

whether it validates its inputs correctly. Rice’s theorem [38]

already tells us that non-trivial properties are undecidable

over arbitrary programs, so we must naturally seek specialized

ways to ensure that a parser accepts only valid inputs, such

as constructing the parser from a formal grammar, as an

automaton of the right class for that grammar on the Chomsky

scale. Yet even when starting from formal grammars, an

implementation’s accepted language may be hard to reason

about.

Notably, it is still generally undecidable whether two

context-free grammars (i.e., parsers) correspond to the same

3The vulnerable parser, ngx_http_parse.c, contained 57 switch state-
ments with 272 single-character clauses in 2.3K SLOC. Even though such
code can be fast, it should not be hand-written!

4This, only after the developers of Elasticsearch discovered in CVE-2014-
3120 [6] that allowing users to specify arbitrary code for execution in a
query leads to a remote code execution vulnerability. Use of general purpose
languages in this way is problematic for many reasons–they also tend to
be more complex than deterministic context-free to parse, and tend to have
many surprising features. Attempts to sandbox them lead to an endless fount
of sandbox escapes.

5We posit that doing so is impractical in cases where it is not impossible.



language [28]. Thus it may be impossible to determine whether

a given implementation is equivalent to another given imple-

mentation, or indeed even to the specification. We identify this

theoretical result as a leading root cause for parser differentials

such as those found in SSL implementations [32].

However, grammar equivalence is decidable for the deter-

ministic context-free languages [43]. This class is generally

well-studied and consists precisely of the LR-parsable lan-

guages [34]; standard algorithms such as LALR and others

parse large subclasses of it very efficiently. Moreover, context-

free grammars form an accessible language for specification,

and parsers can be conveniently generated from them with

existing software.

For a vulnerability that may be attributed to language com-

plexity, consider CVE-2013-2729. An out-of-bounds memory

access occurs in Adobe Reader when a BMP file using run-

length encoding contains invalid movement deltas, operations

that move the “cursor” in the output buffer. The implemen-

tation performed no bounds check, allowing pixel data to be

written to arbitrary memory locations. Although it is tempting

to assign blame to the missing bounds check, we ask why

it was forgotten in the first place. Our answer is that these

operations are highly context-sensitive, making it difficult to

reason about their correct implementation. Complexity analy-

sis would have highlighted them for scrutiny.

To see how movement deltas lift the language into context-

sensitivity, note that, in a context-free setting, results would

be generated sequentially, and the cursor could be considered

an internal part of the abstract and individually verifiable

parsing algorithm. Explicit movement operations turn this

output pointer into mutable state at the application level;

the input language is no longer free of this context. Control

over this pointer given to user input requires more power to

reason about its validity, leading to the missed check, and thus

exploitability.

A related, yet distinct, issue is excessive computational

power in the semantics of an input language. Obvious in-

stances are Javascript and similar “scripting” languages em-

bedded in input formats. Here we meet the halting problem and

the full weight of Rice’s theorem. Malicious code is impossible

to detect with certainty.

An example of a vulnerability resulting from this is the

recent Ethereum vulnerability allowing exploitation of “The

DAO,” the altcoin’s version of a mutual fund or investment

bank. Cryptocurrencies generally include a notion of a “trans-

action” or “contract,” in the form of a set of instructions. In

the case of Ethereum, this set of instructions had a unique

property: deliberate Turing-completeness [7]!

Cryptocurrency contracts and their semantics should be

viewed as protocols, since they are intended to describe

instructions within specific bounds for other parties to read

and perform. In the case of Ethereum, the Turing-completeness

of its contracts, and in particular the allowance for recursion,

allowed massive theft of funds [18, 15].

Ethereum’s attempt to limit computational power through

the “gas” mechanism [1]—which assigned a cost to individual

operations but placed no limit on the complexity of program

semantics—was ineffective. Unlimited complexity resulted in

unanticipated program semantics; the currency collapsed, and

was ultimately hard-forked in an attempt to annul the heist

[16], while re-architecture of The DAO is ongoing [9].

For further evidence that Turing-complete input languages

tend to lead to vulnerability, consider the catastrophic (that

is, CVSSv2 base score 9.3) vulnerability presented in 2013

by Julia Wolf, CVE-2011-3402 [50]. TrueType fonts contain

a Turing-complete bytecode language; following exploitation

of a related memory corruption vulnerability, the “glyph

program” used to describe scaling of glyphs could manipulate

kernel-mode memory. It provides computational primitives

needed for exploitation right there in the intended program

functionality. It is worth noting that although in this case the

font format exploited was Turing-complete, the functionality

required by the exploit in Wolf’s detailed walkthrough is no

more than that of a linear-bounded automaton. This makes it

a useful example of the need to absolutely minimize compu-

tational power of (weird) machines in program semantics.

d) Differing Interpretations of Input Language: Whether

or not an input language is complex, different programs,

different implementations of the same input language, and

even different components of the same program in the same

runtime context can interpret input differently, both from each

other and from the specification. The result is that input

produced by a trusted entity might become malicious on

interpretation, or that validation methods such as application

firewalls will fail to mask out invalid input. A correctly written

parser is essentially equivalent to an application firewall [45].

An excellent example of this weakness is the series of

bugs collectively known as the Android Master Key bugs [41,

40, 42]. In these, different components of the Android install

chain—namely, the Java-based cryptographic signature verifier

and the C++-based installer—disagreed in the interpretation of

the ZIP-ed package contents, resulting in the attacker’s ability

to install entirely different contents than what was verified.

The remedy eventually included handling package input data

with the same parser.

An earlier but arguably higher-impact example was provided

by Kaminsky, Sassaman, and Patterson [32], introducing the

concept of parser differentials and demonstrating over 20

of these between the different libraries used by the X.509

SSL infrastructure libraries at the time. By manipulating the

X.509 inputs, these attacks created different views of the

apparently benign Common Name (CN) in Certificate Signing

Requests (CSR) as seen and signed by a Certificate Authority

(CA), and the same CN in the CA-signed certificates as seen

by a browser using a different SSL library. Specifically, the

browser would see a high-value CN instead of the benign

obscure CN—and thus trust a malicious site that submitted the

crafted CSR. For instance, CVE-2009-0408 [31] was a critical

vulnerability of this type with respect to the Netscape PKI

and TLS library libnss, leading to clients reading as signed

certain properties not actually intended by the issuing CA. The

vulnerability caused libnss to interpret certain certificates



as authenticating properties that the issuing CA did not intend,

since the issuing CA and libnss interpreted the certificates

differently.

e) Incomplete Protocol Specification: Attempting to

write equivalent parsers is of course impossible if the language

itself is ill-defined. For example, consider OpenSSL CVE-

2016-0703, a high-severity OpenSSL bug involving an obso-

lete method of negotiating the client master key wherein part

of it is sent in the clear. The protocol specification indicates

how to handle “clear key bits”, but says little about permitted

scenarios and usages for them [27]. This specification-level

incompleteness coupled with a faithful implementation of the

protocol led directly to exploitability.

Another vulnerability, this time in libnss, allowed remote

code execution on certificate validation. Cited as CVE-2009-

2404 [36], this critical vulnerability resulted from a simple

heap buffer overflow in libnss, related to a failure to allocate

correct buffer size—or did it?

Our preferred interpretation addresses a different and more

systemic aspect of this vulnerability. The flaw rests in the

processing of a non-standard Netscape certificate syntax that

uses regular expressions to define which hostnames a certifi-

cate is valid for. The specification is very difficult to locate

(and may not exist at all), but it is clear to see how this

extension ambiguates the X.509 subset used in this type

of authentication. This ambiguity resulted in an interaction

between null characters and regular expressions, which could

have been prevented if a specification addressed whether null

characters or regular expressions had their normal meanings

in the CN component of the certificate subject DN.

f) Overloaded Field in Input Format: The reuse of data

fields for different purposes can be a good indication of

ad-hoc constructions or hasty additions—an obvious road to

complexity and mistakes. On the other hand, consider a benign

grammar such as the following:

S → ′
1
′
time | ′

2
′
count

time → 32bit

count → 32bit

Here, the second field of the message is “reused” only in the

sense that it occupies the same space in both forms.

Although it does not necessarily raise language complexity,

overloading can serve as valuable circumstantial evidence.

A classic method [26] for exploiting memory corruptions in

the Windows low-fragmentation heap made use of a chunk

relocation offset to elevate small buffer overflows to arbitrary

writes. The feature was activated by placing the special value

5 in a field otherwise used as a byte counter.

Another high-impact vulnerability of this class relates to

an NTP authentication bypass discovered in 2015 [24]. The

field indicating which cryptographic key to use was overloaded

to indicate “authentication not required”—which any attacker

was allowed to assert at will, because the attacker is allowed

to specify which key they are using.

g) Permissive Processing of Invalid Input: The tradi-

tional “robustness principle” dictates that one should “be

liberal in what you accept” [2]. After leading developers to

implement vulnerable programs for decades, this principle has

attracted considerable discussion [10, 39]. We argue that one

should not be liberal, but definite—or explicit—about what is

accepted.

This class of vulnerability subsumes most cases of failure

to validate program input, but in a more general way, since it

encompasses both deliberate and accidental instances. Rather

than concentrating on the need for programmers to account

for and filter all malicious input, we recommend a strict

whitelisting approach where the whitelist is generated by a

grammar derived from a specification, which describes valid

instances of types the program is prepared to accept.

When programs process invalid input instead of discarding

it, the consequences can be very similar to shotgun parsing:

application state is easily made inconsistent by an attacker

who manufactures bad luck and selectively violates the spec-

ification. The consequences can also be dire. The well-known

“Heartbleed” bug [5] was an instance of this class; heartbeat

requests with a shorter payload than the asserted length are

certainly not strings in the (extraordinarily complex) TLS

protocol grammar, and yet OpenSSL attempted to process

them anyway, with disaster the result.

IV. REMEDIES

There is an unfilled need to mitigate certain types of input

processing failures at the design level. Where such vulnera-

bilities share a common root cause, the task of searching for

and mitigating them individually is impossible to complete

and is also a waste of the resources spent on it. We outline

some design principles, mapped in the CWE style to specific

vulnerabilities from our taxonomy, that promise to prevent

parser bugs from continuing to be the menace that they are.

a) Completely separate input validation from application

logic: Avoid writing shotgun parsers. Input should be fully

validated by a machine expressible as a deterministic push-

down automaton. Only once validation succeeds should any

application logic proceed. Programmers with formal experi-

ence can directly express the recognizer, but in practice, basic

formats such as JSON, XML, Protocol Buffers, or ASN.1 are

common. Only a small number of programs actually have input

languages no more constrained than their data interchange

format. In this case, input should be validated against a

complete schema using bounded state and no more than one

stack.

Parsing of a basic interchange format into an internal

representation is sometimes referred to as canonicalization.

Canonicalization and schema validation must exist as discrete

steps. If validation logic is intermixed with other functional-

ity or no validation beyond canonicalization is being done,

security analysts should make an observation to this effect.

b) Minimize complexity of pre-validation code: This

remedy is only possible for the simpler input languages, such

as finite, regular, or context-free languages, which occupy the



bottom rungs of the Chomsky syntactic hierarchy. For each of

these language classes, the validating parser that accepts only

valid inputs and rejects invalid ones (a.k.a. a recognizer for

the input language) has a well-known structure, ranging from

the finite state to the pushdown automata class.

In general, the code responsible for input canonicalization

and validation should be constrained to just those functions.

This is not the place to introduce application logic. Canoni-

calization should only deserialize input, and validation should

only verify that it matches the defined grammar.

The easiest way to implement this remedy is to make the

structure of the parser code in charge of input validation follow

the structure of the grammar. We look to parser construction

toolkits like Hammer [49] (discussed in V) to allow developers

to write code that literally embodies the grammar’s produc-

tions. Such code will be highly amenable to auditing.

c) Avoid defining complex input languages: It is virtually

never necessary to design an input language that cannot be

reduced to a syntax validatable by a deterministic push-down

automaton.

We recognize that this advice is meaningless to program-

mers and security analysts without a formal language back-

ground; therefore, we distill this recommendation into a simple

rule stated in technical terms.

In essence, the most preferable language is one that can be

fully validated by a regular expression. Programmers should

try to use such languages, but of course this is not always

possible, as these languages do not support recursive nesting

of data structures.

When such nesting is needed, the best way to limit the

corresponding parser complexity is to ensure that if one entity

or statement depends on another, they be hierarchically related.

To give a concrete example, it is acceptable to have XML tags

with meaning and validity dependent on the structure in which

they are contained—but not on structures elsewhere about the

document, since that would likely promote the grammar to

context-sensitive.

In other words, if the input of an application is too complex

to be described by BNF (or EBNF or ABNF, without introduc-

ing complexity by way of prose values), it is too complex to

be safe. In security, the input data format is the code’s destiny.

ABNF exemplifies a particularly useful tool for this purpose,

since it can easily represent length fields through its specific

repetition rule [3]. Due to the use of ABNF in specifying

Internet protocols, there are many parser generators available

that use it, including the multi-language project APG [47]. We

strongly recommend that developers use a parser combinator

library or a parser generator; this will result in fewer parser

differentials, and it centralizes the proof of correctness burden

in code specifically designed to generate correct parsers.

Conditions such as allowed protocol state transitions can

be excluded from this expression of the input language for

simplicity, but should usually be a predicate to validation (that

is, it should dictate what subset of the language is valid for

any given state).

Checksums, message authenticity codes, and signatures

represent another important set of idioms. We do not propose

that applications necessarily take all data at face value once the

parser accepts it; in many cases this would be self-defeating

and would introduce truly excessive complexity into the parser.

Attempting to write checksums and cryptographic primitives in

terms of LR-grammar production rules is unlikely to produce

security gains. However, it is important to represent the fields

which store these values in a manner amenable to reliable

parsing. Messages which are not accepted by the parser may

be rejected without further processing; once the parser accepts

the message, the program may have other checks to do.

It nearly goes without saying that general-purpose program-

ming languages are inappropriate for interchange formats. The

preceding sections detail several instances where accepting

such a language, even in spite of alleged trust (as with fonts)

or attempts to sandbox, results in remote code execution.

However, the same is not true of binary interchange formats–if

they follow the guidelines outlined in this paper, those might

well be more amenable to secure computing than their human-

readable counterparts.

In practice, most systems are not actually universal Turing

machines, because they are capable of storing only finite

amounts of state. In this, they are closer to linear-bounded

automata, which can accept context-sensitive languages [35].

The bounding of state implies that the halting problem for

such machines is indeed decidable, but the complexity of so

deciding is bounded only by the amount of state to which

the linear-bounded automation is limited [13]. Although it is

not strictly impossible to reason about such languages, Blum

shows that it is very difficult and often impractical.

The most complex languages for which there is a general so-

lution to the equivalence problem are the deterministic context

free languages, as mentioned above. A formal system for doing

so is given by Sénizergues [44]; though it is hardly practical

for software developers to verify implementations in this way,

the solution shows that mechanical verification is possible

and reasoning about at least some nontrivial properties of the

languages is possible.

Our recommendation derives both from this result, and from

the undecidability of the grammar equivalence problem for

languages more complex than deterministic context free (dis-

cussed in Input Language More Complex than Deterministic

Context Free, above). We further recommend that a parser

combinator library or at least a code generator be used to

derive the parser directly from the formal specification; this

puts the verification-of-correctness problem on the shoulders

of the developers of parser generators and parser combinators.

d) Be clear about specifications: The practice of making

and following clear specifications will remedy both the differ-

ing interpretations of input language and incomplete protocol

specification problems.

A clear, unambiguous specification makes it possible to

write or generate validators. Where a specification is unclear,

it is critical to document—preferably, in the grammar itself.

A complete specification leaves no bytes to chance. Charac-

ter sets and alphabets must be defined, at least by reference to



a well-defined set, for each field. Each field must be defined

in terms of its meaning, allowed content, allowed length, and

expected place.

An excellent way to make a specification for a context-free

input language is by writing it down in BNF. The exercise will

ensure completeness and make the validator extremely simple

to write.

e) Avoid overloading fields: Do not use special values in

fields to have special meanings. A field’s contents should be

as straightforward as possible. If, for example, the presence of

some field is optional but must be signalled, do not designate

a special value of all zeroes or all ones for that field to

indicate absence; to do so invites confusion. Instead, create

an additional field that indicates whether the optional element

is present or not, or where possible, simply infer the presence

or absence of the field from the presence or absence of a

representation of it (as in XML or JSON).

In general, the correct way to add additional functionality

is to add another field. Do not repurpose existing fields,

especially where existing implementations might use them in

ways that must be deprecated.

f) Do not transparently correct for invalid input: If

input does not validate correctly, either because it cannot be

canonicalized, required entities are missing, or illegal entities

are present, code should not make excuses for the input.

For example, input handlers should reject input containing

illegal entities, rather than discarding just the invalid portion

of the input. They should also reject inputs that are missing

terminating sentinels, rather than “helpfully” adding them.

Code that accepts invalid input definitionally has functionality

beyond the specification, and using input correction code

to apply a transformation to input to “activate” a malicious

payload is a favorite trick of attackers.

If it is necessary to support a buggy client that sends invalid

input, it is preferable to amend the specification (whether

for canonicalization or validation) to account for that input

formally, rather than treating it as an exception. This more

clearly states what the program actually accepts, and better

supports design review processes in determining whether the

compatibility accommodation presents a security threat.

The corresponding anti-pattern explains why the PDF and

Flash formats are the top attack vectors—specifically due to

the designed propensity of their parsers to “correct” faulty

inputs. This anti-feature both allows attackers to co-opt the

“correcting” rewriting mechanism as a part of their exploits,

and to avoid detection of their maliciously crafted payloads—

because it is never clear to a third-party checker which kinds

of malformations are malicious, and which are “benign” due

to being “fixable”.

V. HAMMER AND RELATED WORK

Hammer [49] is a parser construction kit designed to aid

developers in applying the LangSec methodology under pro-

duction constraints in the choice of language (Hammer targets

C/C++ and has bindings for Java, Python, Ruby, Perl, Go, PHP,

and .NET), and where code generation is not a supportable

option. Hammer enables production programmers to write in

parser-combinator style, making it obvious which properties

of input are expected and checked.

For decades, a principled approach to parsing was presumed

synonymous with Yacc and Bison. However, they are tooled

for compiler construction to the exclusion of other applica-

tions, such as parsing of binary payloads, where the need for

secure parsing is the strongest. Their modern successors such

as Spicy6 address binary parsing much better—where code

generation is desired and possible. ANTLR comes closest to

Hammer in its expressiveness, but is limited to the Java/C#

ecosystem.

Hammer does not preclude code generation. Nail [12], a

direct offshoot of Hammer, comes with a code-generation

step. Still, Hammer supports fully inline programming for the

industry environments where it is needed. In this it is similar

to Nom [17], a Rust streaming parser combinators library.

Importantly, Hammer separates the parsing algorithm from

its uniform API, designed to describe the input language, not

the backend. Hammer currently offers five parsing backends

for three different classes of languages, with the Packrat

algorithm [23] as the most general backend—all through the

same API.

VI. CONCLUSION

The existing orthodoxy of software security analysis that

supposes that software could be bug-free if only programmers

were more careful and stamped out all the bugs individually

is untenable, as abundantly demonstrated by the ongoing soft-

ware insecurity epidemic. Clearly, a more systemic approach

is required.

Our taxonomy provides just such an approach. It offers

clear mitigations for some of the most serious and abundant

sources of vulnerability that exist today, at a design level,

before software is released.

The classes of vulnerability we have taxonomized represent

risky behavior that should be treated the same way as issues

like many of those noted in CWE-398, Indicator of Poor Code

Quality. Indeed, we suggest that CWE identifiers be assigned

to each of the items in this taxonomy. They are each strong

indicators of exploitability, and particularly strong indicators

of subtle but severe bugs.

Unless and until we reconceptualize input processing errors

as systemic failings of the types indicated in this paper—and

clarify the linkage between these types of software issues and

actual vulnerability in penetration test and code audit reports—

the insecurity epidemic will continue.
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