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I. INTRODUCTION

The classic breeders’ equation, first introduced by Jay Lush, predicts that the response to selection
is given by R = h2S. Strictly speaking, the breeders’ equation is valid only for single generation
of response from an unselected base population. In subsequent generations, selection and genetic
drift change the genetic variances, and hence h? and the response to selection. More subtlely, the
breeders’ equation also requires a linear parent-offspring regression, which is guaranteed if the
joint distribution of parental and offspring breeding values is multivariate normal (Bulmer 1971).
Selection can drive this distribution away from normality by generating skew and/or kurtosis,
potentially further altering the response relative to the breeders’ equation (Bulmer 1980; Zeng 1987;
Turelli and Barton 1990, 1994; Biirger 2000). It is thus not surprising that while the breeders’
equation typically provides a reasonable description of the first few generations of selection, it (at
best) provides a very poor predictor of long-term response.

One can partition the response in a selection experiment into two components. The first is the
response from the initial genetic variation present in the population at the start of selection. The
second component is the continued response from mutations that have arisen during the course
of the selection experiment. During the initial phase of selection, the first component dominates,
while after a sufficient amount of time, all response is due to the second component. We will largely
focus on the exploitation of the initial variation in this review, as Keightley (this volume) provides
an excellent overview of the mutational contribution to response. If population size is sufficiently
small, these two components correspond to two distinct phases of response, with an initial plateau
followed by a waiting period before significant new response can occur. In larger populations, these
two components blur, as new mutations start to make significant contributions before all the initial
variation is exhausted. As a result, it can be extremely difficult, if not impossible, to partition a
selection response into these two casual components.

Our goal here is to review the population- and quantitative-genetics theory of the prediction
of long-term response. Alas, in the most general biological setting, one cannot predict long-term
response simply from knowledge of the base-population variance components. However, in many
settings, we can still gain significant insight into the course of response from some basic theory.
We start by considering the infinitesimal model wherein each locus has only a small effect on
the character, first introducing the basic model and then adding various layers of more realistic
assumptions. One central theme throughout our review is that genetic drift is of fundamental
importance in understanding long-term response. Finally, any review of long-term response would
not be complete without at least mentioning that there have recently been a several rather technical
(but important) papers on short-term selection response under very general settings (Barton and
Turelli 1987, 1991; Turelli and Barton 1990, Biirger 1991, 1993). Biirger (2000) provides an excellent,
although fairly technical, review of this literature.

II. LET’S GET SMALL: RESPONSE UNDER THE INFINITESIMAL MODEL
A. Basic Structure of the Infinitesimal Model

Under the classic infinitesimal model, implicitly introduced by Fisher (1918), the character is deter-
mined by a very large (approaching infinite) number of unlinked and nonepistatic loci, each with
a very small effect on the trait. Under this model, the amount of selection acting on any given
locus is extremely small, and hence the expected change in allele frequencies is negligible. When
summed over a large number of loci, these very small allele frequency changes nonetheless allow
for significant changes in the mean with essentially no changes in the variance and other moments
of the genotypic distribution. Thus, under the infinitesimal model (in an infinite population) there
are no changes in the genetic variance caused by changes in allele frequencies.

Changes in allele frequencies, however, are not the only route by which selection can change
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the variance (and other moments) of the genotypic distribution. Selection also creates associations
(covariances) between alleles at different loci through the generation of gametic-phase (or linkage)
disequilibrium, and such covariances can have a significant effect on the genetic variance. Dise-
quilibrium can also change higher-order moments of the genotypic distribution as well, driving it
away from normality and hence potentially causing parent-offspring regressions to deviate from
linearity.

B. Gametic Phase Disequilibrium and the Additive Genetic Variance

To predict the changes in the genetic variances under the infinitesimal model, we first need to
examine the behavior of the additive genetic variance in the presence of linkage disequilibrium. In
general, the additive genetic variance 0% can be written as

o4 =04+d (1)
where o2 is the additive genetic variance in the absence of disequilibrium and d the disequilibrium

contribution. To formally define o2 and d, let agk) and aék) be average effects of the two alleles at
locus k from a random individual. Since o? is the variance of the sum of average effects over all

loci,
o? <i (agk) + agk))> =2
k

3

o? (a(k)) + 42 o (a(j)7 a(k)) (2a)

k=1 =1 k<j
=2% C+4) Cy (2b)
k=1 k<j

where n the number of loci and Cj;, = o(a?), a(*)) is the covariance between allelic effects at locus j
and k. Thus 02 = 2 Cyy, is the additive variance in the absence of gametic-phase disequilibrium
and the disequilibrium contribution d = 43, , Cj; is the covariance between allelic effects at
different loci. The component of the additive genetic variance that is unaltered by changes in
gametic-phase disequilibrium, o2, is often referred to as the additive genic variance (or simply the
genic variance) to distinguish it from the additive genetic variance 0%.

Under the infinitesimal model, selection does not change the C};, (as this requires changes in
the allele frequencies), and hence does not alter o2. However, selection does generate correlations
between loci (C;;, # 0), and this can result in significant changes in the overall additive variance Ji.
Changes in the covariances C;; between loci i and j (for i # j) are roughly of order n~2 (Bulmer
1980, Turelli and Barton 1990). Since there are n? terms contributing to d, the total disequilibrium
is of order one (n? - n=2) and does not necessarily approach zero as the number of loci becomes
infinite. Similar reasoning holds for changes in the higher-order moments, which are caused by
higher-order associations between groups of loci (Turelli and Barton 1990).

C. The Bulmer Effect: Disequilibrium-Induced Changes in the Variances

The reduction in selection response due to the generation of negative disequilibrium (d < 0) is
often called the Bulmer effect, after the pioneering work of Michael Bulmer (1971). Under the
infinitesimal model, gametic-phase disequilibrium changes the additive, but not the dominance,
variance. Hence, the phenotypic variance in generation ¢ of selection is

ol(t) =0 +op +0oi(t) =02 +d(t) (3a)
where 02 = 02(0) is the phenotypic variance before selection in the initial (unselected) base popu-
lation. The resulting heritability in generation ¢ becomes

2 OA(t) o2 +d(t)
0= 50 = o dm

(3b)
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Assuming that the parent-offspring regression remains linear, the selection response in generation ¢
becomes R(t) = h*(t) S(t). One subtle point is that changes in the variance not only change h?, but
also S as well. For example, under truncation selection with a contrast fraction p of the population
saved, the selection intensity ¢ = S/o, remains constant (for example, i = 1.4 for p = 0.2). However,
changes in o, results in a change in S even if i remains constant. Expressing the response in terms
of the selection intensity gives

R(t) = i h2(t) o (t) — i T2 (4a)

Thus the single-generation response in generation ¢ becomes

2
R(t) =i g +d(t) (4b)
o2 +d(t)
Making the standard infinitesimal assumption that o2 remains unchanged (in an infinite popula-
tion), the complete dynamics of the response to selection (assuming the parent-offspring regression
remains linear) is given by the dynamics of disequilibrium d(t).
Assuming unlinked loci, Bulmer (1971) showed that the change in disequilibrium is given by

d(t) = h*(t

()
where Ji*(t) - aﬁ(t) is the within-generation change in the phenotypic variance. The first term
represents the removal of disequilibrium by recombination, while the second is the generation of
disequilibrium by selection. Note that a within-generation reduction in variances generates negative
d, while an increase generates positive d.

D. The Dynamics of d Under Truncation Selection

1. Dynamical Equations for d. With truncation selection saving a fraction p of a normally-
distributed trait, the within-generation change in the phenotypic variance is

0'5* t) — Ug(t) = —K Uz(t)’ where k=1 (’L — Z[l—p]) (6)

Here 2z, satisfies Pr(U < z[p]) = p where U is a unit normal random variable. Truncation selection
reduces the phenotypic variance, creating negative disequilibrium (d < 0), which in turn reduces
the additive variance and hence the rate of selection response.

Noting that o, = 0% (t)/h*(t) and substituting Equation 6 into Equation 5 recovers the result
of Bulmer (1974),

a1y =20

K d(t)
2 2

Kk [o? 2
R o5t = S -2 m -

Starting with an unselected base population (d(0) = 0), iteration of Equation 7 gives the disequi-
librium (and hence the heritability, phenotypic variance, and response) in any desired generation.
Under truncation selection most of the disequilibrium is generated in the first three to five gener-
ations (Fig. 1), after which d is very close to its equilibrium value d. Fig. 1 shows the effect of the
infinitesimal correction on the selection response. For the values assumed (p = 0.2, h%(0) = 0.3),
the rate of response at equilibrium is reduced to about 85% of the initial response.

—> Fig. ONE HERE <—
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2. Equilibrium Variances and Rates of Response. The equilibrium variances, and hence the
equilibrium rate of response, are easily obtained. At equilibrium,

N ~ 2 2
d:—ﬁhzﬁjz—mw
o2+d

Solving for d gives the equilibrium value for the additive genetic variance under constant truncation
selection as

2h? — 14 /1 +4h2(1 — h?2) Kk

G2=0%6, where 0= 201 r) (8a)
This gives the equilibrium heritability as
P o o (8h)

52 o2+(2-02) 1+0—h2

The resulting reduction in the rate of response (relative to a population under no selection) becomes

R ih?G, h? 0/h>
i 2 \/1=h2 i
R ih?20, h? e +0 V1+6—h2 9)

This ratio is entirely a function of the initial heritability and the strength of selection (as p entirely
determines x) and is plotted in Fig. 2. The relative response is reduced by increasing either the
strength of selection (i.e., decreasing p) or the heritability.

—> Fig. TWO HERE <—

3. Testing the Fit to the Infinitesimal. Ideally, one could test the fit of the infinitesimal model to
an observed pattern of selection response by seeing if the decrease in heritiability is as predicted
from Equation 9. This is generally difficult given the large standard errors typically associated with
estimates of realized heritability. One attempt was made by Atkins and Thompson (1986), who
subjected blackface sheep to selection for increased bone length. Following 18 years of selection,
realized heritability was estimated to be 0.52 &= 0.02. Using the infinitesimal model, they predicted
the expected base population heritability should be 0.57, in agreement with the estimated base
population heritiability of 0.56 & 0.04. Further, the infinitesimal model predicts a 10% decrease in
phenotypic variance. The observed values were a 9% decrease in the upwardly-selected line and
an 11% decrease in the downwardly-selected line.

E. Within and Between-Family Contributions to Additive Genetic Variance

Further insight into the behavior of the infinitesimal model can be obtained by considering the
regression of offspring breeding value (A4,) on the breeding values of its parents (As, A,,). Under the
infinitesimal model, the joint distribution of parental and offspring breeding values before selection
is multivariate normal (Bulmer 1971), and the distribution of breeding values in the offspring is
given by the regression

A, = 1Am + lAf +e (10a)

2 2

The residual e is the contribution due to segregation, which is normally distributed with mean
zero and variance 02/2 = ¢%(0)/2, half the additive genetic variance present in the absence of
disequilibrium (Bulmer 1971, Felsenstein 1981, Tallis 1987). Since e is the residual of a regression,
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it is independent of both A¢ and A,,. Taking variances and assuming random mating (so that Ay
and A,, are independent),

A+ 1) =03 (t+1) =0 (AmT(t)+AfT<f)>+gz

= [0+, 0]+ 5030

1 1
=5 o4 (t) + 3 o2 (10b)

where 0. (t) is the variance of the breeding values of the selected parents. Thus the offspring
additive variance can be decomposed into a between-family component (half the additive genetic
variance, 0%. (t)/2 ) that measures the differences between the mean breeding values of families and a
within-family component (half the additive genic variance, 0% (0)/2 = 02 /2) due to segregation that
measures the variation within families. Equations 10a and 10b imply that the within-family additive
variance remains constant under the infinitesimal model (in an infinite population). The change in
the population additive genetic variance is entirely due to changes in the expected variance between
the mean values of different families. Positive disequilibrium (d > 0) increases the between-family
component while negative disequilibrium (d < 0) decreases it (Wright 1921, Reeve 1953).

An important implication of the constant within-family segregation variance is that it tends to
largely restore a normal distribution of breeding values following selection. Even if the distribution
of breeding values in the selected parents departs significantly from normality, segregation tends
to reduce this departure. Interestingly, Smith and Hammond (1987) found that the deviation from
normality is largest when selection is moderate, becoming smaller as selection increases. This can
be seen from Equation 10a by writing A, = A, + ¢, where A,,,, is the midparental breeding value
and e the contribution due to segregation. Under the assumption that e is normally distributed, as
selection intensity increases, the variance of A,,, decreases, and more and more of the variance of
A, is accounted for by e, decreasing the departure from normality.

III. MODIFICATIONS OF THE BASIC INFINITESIMAL MODEL
A. Drift and the Infinitesimal Model

Under the infinitesimal model, while selection-generated disequilibrium slows the rate of response,
since there are no changes in allele frequencies, there is no selection limit (unless natural selection
opposes artificial selection). Of course, natural populations are finite and the effective population
size N, in most selection experiments is small, usually under 100 and often much closer to 20. In such
cases, genetic drift will rather quickly remove all the genetic variation as alleles drift towards loss or
fixation. Under the infinitesimal model, there is no selective effect on any particular locus and hence
the dynamics of allele frequency change is exactly that for neutral alleles in a finite population. In
the real world where the number of loci is finite, any particular locus no longer has an infinitesimal
effect on the character, and hence if the effective population size is sufficiently large, selection can
influence allelic frequency changes at that locus (see Equation 27). However, if each locus has at
most a minor effect and population size is also modest, allele frequency change is largely governed
by drift and the infinitesimal model is a very reasonable approximation.

Assuming no dominance or epistasis, with drift the expected genic variation o2 declines each
generation from its initial value,

o) =200 (1 - 2;) (11)

Hence, the segregation variance (Equation 10b) declines each generation. If dominance or epsitasis
is present, the additive variation can actually increase (at least while the level is inbreeding is
moderate) before it ultimately declines to zero.



B. Robertson’s Theory of Selection Limits Under Drift

1. Robertson’s Limits. Equation 11 forms the basis for Robertson’s (1960) classic theory of selection
limits. Robertson ignored the effect of disequilibrium, assuming that 0% (t) = o2(t). He further
assumed that the phenotypic variance remains roughly constant. These two assumptions give the

rate response to selection in generation ¢ as

R(t) _ ;%A _ (1 - zjl\fe)ti U%‘Tio) = <1 - 2jlve>tR(1) (12a)

where R(1) is the response in the first generation. Noting that

¢ j
3 (1 - 2]1\[ ) ~ 2N, (1 - e*t/QNe)

Jj=0

the total (cumulative) response at generation 7" becomes
RT = 92N, (1 - e*t/QNc) R(1) (12b)

Thus under Robertson’s model the total response is just 2.V, times the initial response. This result
was first suggested by Dempster (1955) and formally derived by Robertson (1960).

Under the assumption that only additive variation is present, Equation 12b is an upper limit
for total response, which may seem somewhat counterintuitive since it was derived by assuming
weak selection on any underlying QTL (i.e., the infinitesimal model). The key is that (everything
else being equal) the initial response R(1) is much larger when selection dominates than when drift
dominates, so that 2V, times the initial response overestimates the total response when selection
dominates. Thus, when the number of loci is finite, if the effect of selection and/or the population
size is sufficiently small on any given locus, Robertson’s limit is a reasonable approximation. As
the strength of selection relative to drift increases, this limit becomes an upper bound on the total
response.

Another quantity of interest is the expected half-life of response, ¢y 5, the time required to obtain
half the selection limit. Solving 1 — e~%0-5/2Ne = 1/2 gives the expected half-life as

tos = Ne In2 ~ ]..4Ne (].3)

Again, for strictly additive gene action, this is an upper limit with the half-life decreasing as the
product N.i increases (again, reflecting selection becoming increasingly important relative to drift
on an underlying finite number of loci). An observed half-life considerably below that predicted
by Equation 13 suggests that a large portion of the response is due to fixation of favorable alleles by
selection, as selection (when it dominates) changes allele frequencies much faster than drift.

2. Optimal Selection Intensity. One of Robertson’s (1960) key observations from Equation 12b is
that there is a potential tradeoff between short- and long-term response. Suppose M individuals are
measured and the top N chosen, so that the fraction saved is p = N/M. In this case, the associated
effective population size is proportional to N. For a fixed number M of individuals measured,
decreasing the fraction saved p increases the selection intensity ¢ and hence the short-term response,
but decreases the effective population size, potentially decreasing long-term response. Equation
12b illustrates this tradeoff since the long-term response scales with the product N, i. Some specific
examples given in Table 1. For example, while the single-generation response using p = 0.5 is less
than half that for p = 0.1, it gives a selection limit over twice as large.
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Robertson (1960) found that the intensity of selection giving the largest total responseisp = 0.5,
as N, i is maximized for fixed M when half the population is saved. The selection limit as a function
of p becomes extremely flat-topped as M increases, so even fairly large deviations from p = 0.5 give
essentially the same limit. Cockerham and Burrows (1980), relaxing the assumption of normality,
found that the optimal proportion for truncation selection is still near 50%, unless the phenotypic
distribution is extremely skewed. Hill and Robertson (1966), Robertson (1970), and Hospital and
Chevalet (1993) found that the optimal proportion increases above p = 0.5 whenlinkage is important.

Robertson’s prediction of the optimal selection intensity for long-term response is supported
experimentally. For example, Madalena and Robertson (1975) selected for decreased sternopleural
bristle number in Drosophila. When the best 5 of 25 were chosen, the limit was 17.98 bristles, less
extreme than the limit of 17.08 when the best 10 of 25 were chosen. Similar results were seen for
increased abdominal bristle number in Drosophila (Jones et al. 1968), increased egg-laying in Tribolium
castaneum ( Ruano et al. 1975), and increased post-weaning weight in mice (Hanrahan et al. 1973).

C. Joint Treatment of Drift and Disequilibrium

Robertson’s (1960) classic result (Equation 12b) requires two key assumptions — no gametic-phase
disequilibrium and constant phenotypic variance. Both of these assumption can be relaxed. Assume
only additive variation, and write 0% () = o2(t) + d(t), so that equations for o,(t) and d(t) are
sufficiently to describe the response to selection under the infinitesimal model (assuming regressions
remain essentially linear). Change in 02(¢) is given by Equation 11, while Keightley and Hill (1987)
show that, under drift, the change in the disequilibrium is given by

Ad(t) = 7@ <1 + 1\1]> - % (1 - ;f) kh?(t)o? (t) (14)

Hence, when the population size is finite, the variance in any particular generation can be computed
by jointly iterating Equations 11 and 14. Writing the phenotypic variance in generation ¢ as

o2(t) = 02(0) + [02(t) + d(t) — 05(0)] (15a)
gives the response as
_ o2(t)+d(t) ; o2(t) + d(t)
R(t) = o.(t)  \/o2(0) + 02(t) + d(t) — 04(0) (15b)

Fig. 3 compares the expected response under Robertson’s assumption (Equation 12a) with the full
model (iteration of Equations 11 and 14). It is especially instructive to compare the heritabilities un-
der these two models. Initially, (as expected) the heritability under the full model is less than under
the Robertson model (which ignores disequilibrium). Eventually, however (around generation 20
for the parameters in Fig. 3, the heritability under the full model exceeds that under Robertson’s
model. The reason for this is that the full model incorporates changes in the phenotypic variance.
By ignoring this change in the phenotypic variance, the Robertson model underestimates the her-
itabilities. The net result is that the reduction in the additive variance by disequilibrium almost
balances out the Robertson’s model underestimation of the heritability, resulting in very similar
values for the selection limit.

—> Fig. THREE HERE <—
D. The Expected Reduction in NV, from Directional Selection

1. Selection Inflates the Between-family Variance, Decreasing V.. Selection has an obvious effect
on effective population size, in that if a fraction p of the M scored individuals are allow to reproduce,
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the number of parents becomes N = pM. For a fixed number of scored individuals, increasing the
intensity of selection (i.e., decreasing p) decreases N and hence N.. Thus, (all else being equal)
the stronger selection, the lower the effective population size. Selection also has a more subtle
(and cumulative) effect in that it reduces the effective population size below that of an unselected
control population with the same number of parents (so that N, < Mp). This phenomenon was
initially mentioned by Morley (1954), who noted in sheep flocks exposed to selection that “the
genetically superior individuals will tend to be most inbred”. One of the assumptions of an ideal
population (where the actual size IV equals the effective size N. ) is that all parents have an equal
chance of contributing offspring. With a character under selection this is no longer true, as superior
families contribute more offspring to the next generation than inferior families, inflating the offspring
variance and reducing N.. In particular, for a random-mating diploid population

ON-1/2
o2/ +1)2

where o7 is the variance in offspring number. If the number of offspring follows a Poisson distribu-
tion, then 0 = 2and N, = N — 1/2 ~ N. However, if some parents contribute a disproportionate
number of offspring, 07 > 2 and N, < N. The more disproportionate the contribution from some
families, the larger the variance and the smaller N.. Thus, a single generation of selection reduces
N, by inflating o7 over that for a population not under selection. A second factor, and the major
complication in computing N, for a population under selection, is that continued selection has a
cumulative effect in reducing the variance beyond the single-generation effect. This occurs because
for a heritable character under selection, parents pass on some of their ability to have an increased
contribution to their offspring which inflates o7, further reducing in N.. This reduction becomes
more pronounced as either heritability and/or selection intensity increases.

2. Predicting the Selection-Induced Decrease in N.. While the reduction in effective population
size due to artificial selection can easily be retrospectively computed from either pedigree informa-
tion or from the sampling variance in marker allele frequencies, predicting this reduction in advance
is considerably more difficult. The exact value of N./N depends on a variety of assumptions about
both the family and population structure and on the underlying genetical model (the infinitesimal is
typically assumed). Theoretical investigations of the effects of selection on reducing N, were initi-
ated by Robertson (1961), who gave simple approximations for both the single generation change in
N, and the asymptotic change following many generations of selection. Two different approaches
have been used to examine the reduction in N, — computing the expected variance in gene fre-
quency for an unselected locus in a population under selection (Robertson 1961, Nei and Murata
1966, Caballero 1994, Santiago and Caballero 1995) and computing the rate of inbreeding from the
number of ancestors (Burrows 1984a,b; Wolliams 1989; Verrier et al. 1990; Wray and Thompson 1990;
Wray et al. 1990, 1994; Wolliams et al. 1994). The former approach computes variance effective pop-
ulation sizes, the latter inbreeding effective sizes. Both approaches should be essentially equivalent
as the inbreeding and variance size are usually equivalent unless the population size is changing
over time. While these treatments consider the effective population size on a neutral locus unlinked
to loci influencing the traits(s) under selection, the results should be very similar for selected loci
under the infinitesimal model, as in this case drift (rather than selection) is the dominant force for
allele frequency change.

3. Santiago and Caballero’s Approximation for V.. Building on Robertson (1961), Santiago and
Caballero (1995) developed an improved approximation for the effects of selection on N, with
relative value of the effective population size in generation ¢ versus the actual population size being
approximately

Ne,t - 1
N —1+Q%27

(16a)
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where 7 = Cov(F'S)/o? is the intraclass correlation of full sibs. The value of Q;, the cumulative
effect of selection, is complex, but the limiting values approaches

2

Q22—5h2

(16b)

Equation 16 shows that approximating N. by N canbe a severe overestimate, as V. /N decreases
as selection intensity increases (Equation 16a). Increasing selection intensity increases drift by both
reducing N and by further reducing the ratio of N./N. Table 2 illustrates this effect using the same
parameters as Table 1. Without incorporating this further reduction in V., the ratio of expected
limits when p = 0.5 versus p = 0.1 is 200/90 = 2.2. When this reduction in N, due to selection is
accounted for, this increases to 161/41 = 3.9.

E. Test’s of Robertson’s Model

Tests of whether an observed pattern of selection response is compatible with the infinitesimal model
have tended to focus on fit to Robertson’s model to an observed pattern of response. Comparison
of the predicted and expected half-life (¢ 5) and whether the selection limit is consistent with 2N,
times the initial response have been done in a number of studies. Observed limits and half-lives
are usually considerably below the values predicted from Robertson’s theory (reviewed in Roberts
1966, Kress 1975, Eisen 1980, Falconer and Mackay 1996). However, most of these reviews have not
attempted to correct for the reduction in IV, from the accumulated effects of selection (Equation 16),
which can be considerable (Table 2).

Another test of Robertson’s theory is that the selection limit should increase, and half-life de-
crease, as IV, i increases. In general, both these predictions hold. Robertson’s theory further predicts
that when the effective population size is sufficiently large, further increases in IV, should not change
the limit (provided mutational input can be ignored), as (assuming the real-world model of a finite
number of loci) all favorable alleles initially present become fixed. This has yet to be observed, which
is perhaps not surprising given that most experiments have N, below 50. By designing ingenious
devices to facilitate mass selection in Drosophila melanogaster, Weber and colleagues (Weber 1990;
Weber and Diggins 1990) have been able to examine the consequences of larger population sizes.
Selection experiments on wing-tip height (Weber 1990) and ethanol tolerance (Weber and Diggins
1990) had effective population sizes on the order of N, ~ 200-400. Both characters showed an
increased response with increasing V.. The implication is that there is additional “usable” genetic
variation present in the base population that can be exploited by increasing the strength of selection
(Ne ). In very small populations, only major alleles are influenced by selection (see Equation 28).
That response continues to increase with N, suggests that there is a large pool of loci of smaller
effects. As N, i increases, favorable alleles at these loci are more likely to become fixed, increasing
response. Larger populations also provide a greater chance for recombination to breakup dele-
terious linked combinations, which might be fixed in smaller populations, further increasing the
potential for response. One complication is that as population size increases, the contribution from
mutational input becomes increasingly important over the time scales it takes to remove the initial
variation. A second complication is that when the character value is influenced by inbreeding de-
pression (as would occur if directional dominance is present), over the same number of generations,
the effects on inbreeding depression will be more dramatic is smaller populations. One test for
whether inbreeding depression is reducing response is to cross divergently selected lines and look
for significant changes in the mean in the resulting I} population (e.g., Eisen 1975, Kownacki 1979).

F. Gaussian Approximations Allowing for a Finite Number of Loci

Several simulation studies (Bulmer 1974, 1976; Sorensen and Hill 1983; Mueller and James 1983;
Chevalet 1988) have shown that the infinitesimal model gives a reasonably good fit of the change
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in variance over a few generations of selection when the number of loci is finite. However, with a
finite number of loci, allele frequency changes occur and after a sufficient number of generations the
cumulative effects of these changes become large enough that they cannot be ignored. Thus when
either the number of loci n or the population size N is finite, we must incorporate changes in the
genic variance o2 into our model.

If we are willing to assume that the distribution of allelic effects at each locus is normal, so
that the vector of contributions for all underlying loci is multivariate-normal, then fairly simple
expressions for predicting the joint change in both 02 and d assuming a finite number of loci can
be obtained. This assumption is often referred to as the continuum-of-alleles model, and is also
only an approximation, as it requires an infinite number of alleles at each locus, an assumption
clearly violated in finite populations. The continuum-of-alleles model replaces the assumption of
an infinite number of loci with the assumption of an infinite (or at least very large) number of alleles
at each of the n loci.

The historical roots of this model trace back to the classic paper of Kimura and Crow (1964),
which represents the first serious treatment of molecular evolution. The first application of this
model in quantitative genetics was by Kimura (1965), who used this approach to examine the
amount additive variance maintained under the balance between mutation and selection.

Modifications of the Bulmer equations allowing for a finite number of loci (n) were introduced
by Lande (1975) and Felsenstein (1977). The most general result is due to Chevalet (1988, 1994), who
considers the general case where both N, and n are finite. The resulting recursion equations for the
genetic variance and the disequilibrium are

Ao2(t) = [";J\(]t) 4 (1 - Ni> %} (17a)
Ad(t) = —% { (1 + Ni) d(t) + (1 _ %) (1 _ Ni> K h2(1) aj(t)] (17b)

Decreases in the genic variance (which result in a selection limit) scales as the reciprocal of both
the population size and the number of loci. As Fig. 4 illustrates, even when the number of loci
is assumed to be rather small (10), there is only a modest reduction in the selection limit. For the
parameters used in Fig. 4, the limit for 50, 20, and 10 loci is 97%, 92% and 85% (respectively) of the
infinitesimal (finite population) limit.

—> Fig. FOUR HERE <—
IV. STRICTLY DETERMINISTIC MODELS OF RESPONSE
A. Single-locus Models in Large Populations

A complement to analysis under the infinitesimal is to analyze the response based on single-locus
models. The infinitesimal model considers the effects of gametic-phase disequilibrium but ignores
selection-induced allele-frequency change, while single locus models consider allele-frequency
change and ignore disequilibrium. Single-locus models focus on how phenotypic selection influ-
ences a particular locus underlying the trait and the contribution of that locus towards the selection
response. Multiple loci are modeled by simply summing the single-locus results.

The general pattern expected in long-term response to directional selection from these models
is roughly as follows. In the absence of segregating major genes, additive variance (and hence
response) is roughly constant over the first few generations giving a nearly linear response (Fig. 5).
There is a slight reduction in the variance due to the generation of gametic-phase disequilibrium,
but this is generally small unless directional selection is very strong, heritability is high, and the
number of loci is very large. As generations proceed, sufficient allele frequency change accrues to
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significantly alter genetic variances. At this point, additive variance can either increase or decrease,
depending on the starting distribution of allelic frequencies and effects. Eventually the additive
variance attributable to the initial variation in the base population declines, and with it response
(assuming no source of new genetic variation such as mutation or migration/line crosses). Ulti-
mately, a selection limit (or plateau) is reached, reflecting fixation of all favorable alleles and loss
of additive genetic variance at those loci still segregating (e.g., loci overdominant for the character
under selection). If both major and minor alleles influence the character, an initial rapid response
due to large changes in allele frequencies at major loci is followed by a much longer period of slower
response due to allele frequency changes at loci having smaller effects. Such differences in rates
of response can make it difficult to determine whether a selection limit has actually been reached.
As the genetic variation in the base population becomes exhausted, continued response is entirely
dependent on new mutations.

—> Fig. FIVE HERE <—

One reason for the popularity of the infinitesimal model is that we can fully specify the complete
response to selection (including the limit) with just two composite genetic parameters, 0% (0) and
h?(0). In contrast, the dynamics of response considering the summed contributions of single-locus
models is not a simple function of the base population genetic variances. Rather, the response is a
complex function of the underlying genetic parameters at the individual loci (i.e., allele frequencies
and effects). This is seen in Fig. 5, which illustrates differences in the long-term response for four
hypothetical populations with the same initial heritability but different numbers of loci. All show
essentially the same response over the first few generations. By generation five, allele frequencies
have changed enough in the 10- and 25-locus populations to reduce response, while the 250-locus
population shows a roughly constant response through 20-25 generations. The mixed population
(5 major loci, each with initial frequency of the favored allele gy = 0.25, 125 minor loci with ¢ = 0.5)
shows an enhanced response relative to the others in generations 3 — 7. This results from an increase
in heritability as the frequencies of alleles with large effects increase from 1/4 to 1/2, increasing the
additive variance contributed by these loci. If rare recessives are present, there can be a considerable
time lag until an enhanced response appears (e.g., Fig. 8).

B. Single-locus Deterministic Limits

1. General Results. The contribution to the selection limit from a single locus, and the half-
life associated with this contribution, depend on the initial allele frequencies, allelic effects and
dominance relationship among alleles. Let A be the allele favored by directional selection, where
the genotypes aa: Aa:AA have genotypic values of 0:a(1 + k) :2a. Assuming genotypes are in

Hardy-Weinberg proportions, the contribution to the mean character value from this locus is a
function of ¢ (the frequency of A) and is given by

m(q) = 2aq[1+ (1 —q)k] (18a)
The presence or absence of gametic-phase disequilibrium has no influence on this contribution to
the mean, provided there is no epistasis. The total contribution to the selection limit from this locus
if A is fixed, given it starts at initial frequency gy, is thus
m(1) —m(qo) = 2a — 2aqo [1+ (1 = qo)k] = 2a (1 —qo)(1 — qF) (18b)
Some specific values are plotted in Fig. 6.

—> Fig. SIXHERE <—
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If all initially segregating favorable alleles are fixed the total response at the selection limit is
just the sum of the individual locus contributions.. For n underlying loci,

R(>®) — Z 2a; (1= qi0)(1—qioki) (192)
i=1

This equation is the upper limit of response, as in a finite population not all favorable alleles are
fixed. If all loci are additive (k; = 0), the total response can be written as

(c0) — __ 1 S
Ry =2n(a—aq), where a@= p Zl a; and ag= - Zl a; G0 (19b)
Likewise, when selecting for reduced trait values, the total response is given by
RY) = 2nag (19¢)

From Equations 19a and 19c,
Ry 2n(a-ag) a
R 2nag ag

-1 (19d)
where Ry and Rj, are the upper and lower limits of selection response.

2. Simple Approximations. If we assume all loci have the same effect (@ = a; = a), then (Dudley
1977) we can estimate the average starting allele frequency by

~ 1 1 —
9= — h qg= — i 20
©= Ry/Ry 1 Ve 4 n;q’o (20)

Finally, note that the additive variation is given by

where

Thus, the ratio of the total response to the initial additive variance is

R(c0) _ 2ng—_q), __a-ag (21a)
03(0)  2n(a’q—a’¢®) dPq— P

Equation 21a demonstrates that there is no simple relationship between the initial additive variance
and the total response. If we are willing to assume that all loci have the same effect (a; = a) and
starting frequency (¢; 0 = qo), then

R 2na(l-g) _ [2n(1-q) (21b)
a4(0) 2na2qo(1 — qo) 9

This result was first given by Robertson (1970), and can be used to estimate the number of loci
(provided we are willing to assume that all alleles have the same starting frequency).
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C. Allele Frequency Change Required for Partial Response

The allele frequency g at which a preset fraction 3 of the total contribution (from a given locus)
occurs is also of interest. This is determined by solving the quadratic equation

m(qp) —m(qo) = B[m(1) —m(qo)] (22)

A case of particular interest is ¢ /o, the frequency at which half the response occurs (3 = 0.5).
Expressions for ¢/, are given in Table 3 and plotted in Fig. 6. Rare recessives have to increase
substantially in frequency to give half the response (e.g., if o = 0.1 then ¢/ ~ 0.71). Conversely, if
alleles favored by selection are dominant, response slows down considerably as these alleles become
common, reflecting the rarity of homozygous recessives. In such cases, response can be so slow that
the population appears to be at a limit. However, reverse selection on these populations can result
in a fairly rapid response.

V. SELECTION ON A QUANTITATIVE TRAIT LOCUS
A. Selection Coefficients on a QTL

In order to take the first steps beyond the infinitesimal model, we need to consider how selection
changes the allele frequencies at a QTL underlying the trait under selection. For a locus of small
effect, the change in allele frequency due to phenotypic selection on a normally-distributed trait is
approximately

Aqi(a*for)a =" gl = q)[1+ k(1 ~20)] (23)

where ¢ and o* are the frequency and average excess of allele A (Haldane 1931, Griffing 1960,
Kimura and Crow 1978, Milkman 1978). This is a weak-selection approximation as it assumes that
lia*/o,| << 1. It also assumes that epistasis, gametic-phase disequilibrium, and genotype x
environment interactions are negligible. Equation 23 is correct only to linear order (terms of a?
and higher order are ignored, see Nagylaki 1984; Walsh 1990; Hastings 1990, 1992). Thus, there are
potential pitfalls in applying Equation 23 when ¢ ~ 0.

To translate selection on a QTL into the standard single-locus selection model used in population
genetics (e.g., Crow and Kimura 1970), recall that when the genotypes aa: Aa : AA have fitnesses
1:1+ s(1 4 h):1+ 2s, the change in the frequency g of A under weak selection is

Ag~sq(1—¢q)[1+h(1—-2q)]

Matching terms with Equation 23, we find that a QTL under directional selection behaves like a
locus with fitnesses a
s5=—1 and h=k (24)
Oz
Thus, as an initial approximation, the dynamics at a QTL with a small effect on the character follow
those of alocus under these constant fitnesses. With gametic-phase disequilibrium and/or epistasis,
these fitnesses change as the background genotype changes. Even without these complications,
fitnesses still change as the phenotypic variance of the character under selection changes. This is
especially a problem with major alleles. Even if the locus has a small effect, as other loci become
fixed due to selection (and drift), o2 (generally) decreases as the genetic variance decreases, which
increases | s |. Unless heritability is large, this effect is usually small.
The approximate fitnesses given by Equation 24 provide some insight into the behavior of
an allele at a QTL under selection. For example, an additive QTL (of small effect) underlying a
character under directional selection behaves approximately like a locus with an additive fitness
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of s = ia/o,. Alternatively, if the locus displays overdominance in the character (¥ > 1), then
under directional selection this locus displays overdominance in fitness and ¢ = (1 + k)/(2k) is an
equilibrium frequency. Thus, for this locus there is still genetic variation at the selective equilibrium,
although none of it is expected to be additive under this simple model. The dynamics of a QTL under
stabilizing selection are much more complicated, as the linear approximation given by Equation 23
fails near the equilibrium point (as ¢ ~ 0) and an approximation correct to (at least) quadratic order
must be considered.

B. Half-Life of Deterministic Response
For weak selection, approximate expressions for the expected time for an allele to move from

frequency g, to ¢ can be obtained (e.g., Crow and Kimura 1970). Assuming single-locus fitnesses of
1:14s(1 4+ h):1+ 2s, thenif A is additive (h = 0),

tgoq =5 ' ln (H) (25a)
if A is recessive (h = —1),
tq07q28_11 [ln(w)—l—ki} (25b)
2 w0w(l-q9 /) a
while if A is dominant (h = 1),
tav 2571 % [ln ( Zo(}l_—qgi ) 1 i g 1 —1% ] (25c)

These expressions, together the values for g3 obtained from solving Equation 22, allow us to obtain
approximate expressions the expected time until 5 of the total contribution from a single locus occurs
(the time for ¢ to reach ¢3). Note that the dynamics of evolutionary change scaleas s~ = (ia/o,) ™!
— the smaller the allelic effect, the slower the expected response time. Substituting g¢ 5 values
(Table 3) for g gives the expected half-life of response associated with the locus under consideration
(Fig. 7). The half-life for rare recessives can be quite long. Note also that the half-life of response
for dominant loci increases with allele frequency when A is common (although in such cases, the
additional gain made by fixing A is typically very small).

—> Fig. SEVEN HERE <—

These results for locus-specific half-lives ignore the effects of gametic-phase disequilibrium.
Negative disequilibrium generated by directional selection reduces the average effect of an allele (+
alleles are associated with an excess of — alleles, and vice versa, reducing allelic effects relative to
a population in gametic-phase equilibrium). This results in weaker selection and a slower changes
in allele frequency.

C. Increases in Variance and Accelerated Responses

Contrary to the expectations of idealized long-term response, phenotypic and additive genetic
variance often increase, resulting in a burst of response. One obvious source for such a burst is
the presence of favorable rare alleles in the base population (Fig. 8). Recombination generating
new favorable gametes is another source. This can occur when recombination between tightly
linked loci generates gametes with two favorable alleles in coupling (i.e., ++) when only repulsion
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chromosomes (i.e. +—, —+) were initially present in the base population. Yet another source for a
burst of response are new mutations of large effect.

—> Fig. EIGHT HERE <—

Scale effects can also result in increases in variances and / or response, for example if the variance
increases with the mean. A possible example is Enfield’s (1972) selection experiments for increased
pupal weight in Tribolium. Both additive variance and total phenotypic variance increased over time
while heritiability remained roughly constant (so that response was fairly constant). Comstock and
Enfield (1981) suggest that a multiplicative model of gene action was more appropriate in this case
than an additive model, and that this can account for the observed increases in variance. Variances
can also increase due to environmental effects. For example, environmental variance can increase
as genotypes become more homozygous, although this is not inevitable (Lynch and Walsh 1998).
More interestingly, changes in the environment during the course of selection can also increase the
additive variance. A possible example of this is long-term selection in milk yield in North American
dairy cows. Additive variance in yield has been increasing rather than decreasing (Kennedy 1984).
One explanation is changes in environmental effects, as improved management techniques likely
allow for greater discrimination between genotypes, although scale effects may also play a role.

VI. SINGLE-LOCUS MODELS IN FINITE POPULATIONS
A. Fixation Probabilities of Favorable QTL Alleles

The above results (e.g.., Equations 19-21) for single loci assume infinite population size, so that all
favorable alleles are fixed. Since the population sizes for selection experiments are typically very
small, drift can have a significant effect on allele frequencies. The infinitesimal model allows for
drift but not selection as it assumes alleles behave as if they are strictly neutral. A more exact
treatment follows from standard population-genetics theory on the interaction of selection and drift
at a single locus (e.g., Crow and Kimura 1970). When the genotypes aa: Aa : AA have additive
fitnesses (1:1 + s:1 + 2s) the probability u(go) that allele A is fixed given its starts at frequency go,
was obtained by Kimura (1957) and is

1— €—4Ne540

u(qo) ~ Epp=T (26a)

~ go + 2Nesqo(1 — qo) when 2N,|s| <1 (26b)

Similar (but more complex) expressions exist for u(go) under more general fitnesses ( 1:1 + s(1 +
h):1+ 2s), see Crow and Kimura (1970). For weak selection,

h(1 —2qo)

u(qo) =~ qo + 2Nesqo(1 — qo) (1 + 3

) when 2N,|s| <1 (26¢)

as obtained by Silvela (1980). Since the fixation probability for a neutral allele is g (its starting
frequency), selection dominates drift when u(qo) is significantly different from ¢y, while drift dom-
inates when u(qp) ~ go. Noting that 1 — exp(—z) ~ z when | z| << 1 shows that drift dominates
selection when 4N, | s| << 1, while selection dominates when 4N, |s| >> 1. Recalling Equation
24, selection dominates the fixation dynamics at a QTL when

IN, || = an, L1l
g

>>1 (27)

z
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or when
(o

AN |i| >>
lal

Even if selection dominates, the fixation probabilities can still be very small (for example, one might
have 1 >> u(go) >> qo). From Equation 26, the probability of fixation exceeds 0.7 when

, a
Nequ:Ne\z|q0|0—|21/2 (28a)

and exceeds 0.93 when this quantity exceeds 1. We can rearrange Equation 28a to show that the
fixation probability exceed 0.7 when the initial allele frequency is sufficiently large,

Oz
" TaeNi] )
Hence, if the product of initial allele frequency and the standardized allelic effect ¢o| a|/c, is suf-
ficiently small, the allele can easily be lost by drift, even when selection on the character is strong.
With low values of N, i, only alleles of large effect and / or at moderate to high initial frequencies are
likely to be fixed. As N, i increases, favorable alleles with smaller effects and/or lower frequencies
are increasingly likely to be fixed.

B. Limits Under Drift and Selection

The above fixation probabilities allow one to compute the expected contribution of a particular locus
towards the selection limit in a finite population. Let A denote the contribution (at the selection
limit) for a particular locus under consideration. If qq is the initial starting frequency of the favored
allele at this locus, then

A = m(gss) — m(qo) (29a)

where m is given by Equation 18a and ¢ is the final allele frequency. The expected contribution
becomes

E[A] = E[m(gs)] — m(qo0)
= E[2ag (1 + k) — 2aq2,k] — m(qo)
= 2a(1 + k)l o] — 20k [ 2. ] — m(q0) (29b)

The expected allele frequency at the limit is easily obtained, as an allele is either fixed (g = 1)
which occurs with probability u(qp), or it is lost. Hence, E[¢~ ] = 1% - u(qo) = u(qo), giving the
limiting expected contribution from a particular locus as

E[A]=2a [U(QO) —qo— k(‘]o(l - qO)> } (30a)
Two cases of special interest are when A is additive (k = 0), in which case
E[A] =2alu(q) — q0] (30b)
and when A is recessive (k = —1),
E[A]=2a[u(q) — 45 | (30c)
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When A is additive, and there is weak selection on the locus (i.e., 2N,| s| < 1), substituting
Equations 26b and 24 into Equation 30b gives the expected response from that locus as

E[A] = 2au(q) — qo] = 2a2Nesqo(1 — qo)

242 2 (0
=N 2 01— qo) = 2NeiUA( )

[op® Oz
— 2N, iR(0)

which recovers Robertson’s (1960) selection limit without having to assume the infinitesimal model.
The effects of drift can be quantified by considering the ratio of the expected response under drift
with the deterministic response (u(g) = 1). For a single locus,

u(q0) = qo — k(Qo(l - QO))
1—qo— k(QO(l - QO)>

expected response under drift

deterministic response

Table 4 gives this fraction of the maximal response for certain some situations.
—> TABLE FOUR HERE <—
C. Variance In Response
Equation 30 gives the expected selection limit under drift, but there is also a variance about these

expected values. The variance (and indeed all higher moments) of the total response at the selection
limit is easily computed, as the single locus contribution A takes on only two values,

A— { 2a —m(qo) with probability u(qgo) 31)
~ L0—m(g) with probability 1 — u(go)
In particular, the variance in response contributed by a given locus is
2
7 1a1=E[8%] - (B1A]) = ta*ulan) L - u(aw)] (32)
With weak selection, u;(go) > qo (i-e., the allelic dynamics are governed by drift), implying
o [R(OO)} 54262(]0(1*%) (33)

If all loci are additive, this is simply 202 (0), the expected between-line divergence under pure drift.

Under sufficiently strong selection, almost all favorable alleles are fixed and the variance is
close to zero as u(gy) ~ 1. When selection is moderate to weak, then it is often the case that
u(qo)[1 — u(qo)] > qo(1 — q)o, as the function z(1 — x) is maximized (for 0 < x < 1) when z = 1/2.
If this condition holds over enough loci, then selection increases the between-line variance relative
to drift.

The variance in the selection limit across replicate lines has a direct bearing on whether further
response can occur by crossing plateaued lines and then reselecting. If drift has played a significant
role in response, a line formed by crossing replicate plateaued lines should show further response
to selection, as each line should be fixed for a considerable number of unfavorable alleles.

The variance in response at the selection limit is considered in more detail by Hill and Rasbash
(1986a) and Zeng and Cockerham (1990).
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VII. RESPONSE FROM MUTATIONAL INPUT
A. Contribution from New Mutation

As reviewed by Keightley (this volume) , there is strong evidence that new mutants contribute to
response even over the short time scales of many “long-term” selection experiments. The limit
resulting from drift and selection removing all initial genetic variation is thus an artifact of time
scale as it ignores this mutational contribution. Even if an observed limit is due to a balance between
natural and artificial selection, new mutations with less deleterious pleiotropic effects on fitness can
arise, resulting in further response.

If a rare recessive is initially present at low frequency, the appearance of homozygotes involving
this allele may been taken as new mutations. If a recessive is present as a single copy, then the
expected time until the first appearance of a homozygote is approximately 2V''/® generations, with
the distribution of appearance time being nearly geometric (Robertson 1978; Karlin and Tavare’ 1980,
1981a, 1981b; Santago 1989). Since for most selection experiments N < 500, any recessives initially
present will be expresses as homozygotes by generation 15. For more typical values of population
sizes, namely IV = 20, 50, and 100, the expected time is 6, 8, and 10 generations (respectively).

B. Mutational Response Under the Infinitesimal Model

Let 02, be the mutational variance (the per-generation contribution by mutation to the additive
variance). The equilibrium additive variance under drift and mutation becomes 7% = 2N.02,.
Assuming the infinitesimal model, completely additive loci, and ignoring any effects of gametic-
phase disequilibrium, the expected additive genetic variance at generation ¢ is given by

0% (t) ~ 2N.o2, + [05(0) — 2N.o2,] exp(—t/2N,) (34)
Setting 0% (0) = 0 gives the additive variance contributed entirely from mutation as
04,m(t) = 2Near, [1 — exp(—t/2N.)] (35a)
Hence, the rate of response at generation ¢ from mutational input is

G ~ 2N, i i [1—exp(—t/2N.)] (35b)

Oz Oz

where we have made the usual assumption that the phenotypic variance o2 does not significantly
change over time (more generally, 02 can be replaced by o2(t) = 0%(t) + 0%). For t >> 2N, the
per-generation response approaches an asymptotic limit of

2 =2
'fngNeia_m:iU_A (36)
o, o

Assuming 0% (0) = 0, half this rate occurs when ¢t ~ 1.4N, (Hill 1982a,b). One way to intuit the
value of the asymptotic limit follows from Robertson’s theory: we expect the final response to be
2N, times the initial response R(0), which for new mutants arising in any particular generation is
R(0) =i02,/o..

Summing over generations gives the cumulative response due to new mutation as

Oz

RY = Z P (T) =~ 2N i T (t —2Nc[1 — exp(—t/2N,) ]) (37a)
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as found by Hill (1982c, 1990) and Weber and Diggins (1990). Combining the mutational response
with the response due to genetic variation originally in the base population (Equation 11) gives an
expected cumulative response of

R® = 2Negi (to2, +[1 —exp(—t/2N.)] [07%(0) — 2N.02]) (37b)

The to2, term, which represents the asymptotic response, will eventually dominate (i.e., for large
t). The remaining term in the parentheses of Equation 37b represents the transient effect of the
initial additive variance, and is zero if the population starts at the mutation-drift equilibrium (i.e.,
0%(0) = 2N.02)).

Of some interest is the expected number of generations until response from mutational input
exceeds that contributed by the initial variation. Let t* be the generation when the per-generation
response from both sources is equal. Here the initial additive variance remaining at generation ¢*
equals the new additive variance generated by generation t*,

0%,(0) exp(—" /2N,) = 2N, 02, [1 — exp(—t"/2N,)] (38)
This equation has the solution
t* = 2N, In(1 + ¢) (39a)

where ¢ = % (0)/(2N,02,) is the ratio of the initial to the equilibrium additive variance. Denoting
the initial heritability by h?, a little rearrangement gives

h2

©= 122N, (02,5%)

(39b)

The average value of 02, /0% is approximately 0.005 (Lynch and Walsh 1998). Using this value,
it is seen that ¢* is only rather weakly dependent on N, (see Fig. 9). If ¢ << 1, so that the
expected additive variance at the mutation-drift equilibrium exceeds the initial additive variance
(0%(0) << 2N,02), then using the approximation In(1 + ) ~ x for small |z|, we have

h2
(1 = h2)(o7,/0F)
Again using 02, /0%, = 0.005 gives t* ~ 200h?/(1—h?). This translates into 11, 22, and 67 generations

until the rate of response from mutational input exceeds the rate of response due to initial variation
for h? values of 0.05, 0.10, and 0.25, respectively.

t* ~2N.¢ =

(39¢)

—> Fig. NINE HERE <—

It is important to stress that Equation 39 for mutational half-life of response assumes that
drift dominates and thus tends to overestimate the half-life when selection is moderate to strong.
Likewise, we expect that the infinitesimal model underestimates the changes in allele frequencies
of new mutants under moderate to strong selection. Thus, our expression for t* is very likely an
overestimate and we should regard Equation 39 as an upper bound.

VIII. THE ILLINOIS LONG-TERM EXPERIMENT: WHICH MODELS FIT?

TheIllinois long-term selection experiment for oil and protein content in maize (Dudley, this volume)
is one of the classic experiments in all of science. It is certainly one of the longest on-going active
biological experiments and its one hundredth generation is the inspiration for the conference from
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which this volume derives. It is thus appropriate to compare the fit of these data with the simple
theoretical models developed above. We focus on response in the High-Oil and High-Protein lines.
Table 5 summarizes the results of the various analyses given below.

—> TABLE FIVE HERE <—
A. Effective Population Sizes of the Illinois Lines
The exact effective population size of the various Illinois lines is unclear, but we can provide some
clear bounds. The initial generation started with 24 pollinated ears, bounding the effective popula-

tion size at 96. The logic behind this number is that with unequal contribution from the two sexes,
the effective population size is given by

1 1\ !
N, = 4
¢ (4Nem + 4Nef> (40)

With N, = 24 and an infinite effective number of males (N,,, = 00), N. = 96. Dudley (personal
communication) reports the average number of kernels per ear in generation zero was likely around
300-500, giving an upper bound of 89 to 92. These bounds are for the effective size of the founding
population, but as mentioned above, selection reduces N, below this initial value. While expressions
like Equation 16 can provide some insight into the effects of selection, a more direct measure is
available. East and Jones (1920) note that after 10 generations of selection, all descendants in the
High Oil line could be traced back to just a few ancestors, as could all descendants of High Protein
line. In particular, for generation 11 they note (pp. 553-554) that all 24 ears chosen for high protein
trace back to a single ear (bounding N, at 4!), while all ears selected for High Oil trace back to three
founding ears (bounding N, at 12). Given these Fig.s, we consider three effective population sizes
in our discussion, 6, 12, and 24.

1. Reconciling the Observed Levels of Marker Polymorphism. Rocheford (this volume) presents
marker data that is inconsistent with the above bounds. After 50 and 100 generations, 12% and 1.4%
of the initial heterozygosity should be present (assuming N, = 12). Assuming N, = 24, these values
are 34% and 12%, which may be more consistent with the marker data, but as discussed this high
an effective population size is very unlikely. One possible explanation for regions of greater than
expected heterozygosity in the face of inbreeding is the presence of alleles that improve the trait
value but also decrease fitness. This creates selective overdominance, retaining heterozygosity (at
least over short to moderate time scales) in the face of drift. One extreme case of this is often seen in
Drosophila selection experiments where lethal alleles, that also contribute favorably to the character
under artificial selection, arise. If such alleles have arisen in the Illinois lines, tightly linked markers
are expected to show departures from Mendelian segregation.

2. Predicted Response under Robertson’s Model. For our low (6), medium (12), and high (24)
values for N, Robertson’s theory predicts a selection limit of 12, 24, and 48 times the initial response.
The ratio of the current (100 generation) response divided by the response in generation 1 is 259
for protein and 158 for oil. If the lines are at their limit and follow Robertson’s theory, this ratio
estimates 2N, (provided no response from new mutations), implying N. values of 130 for protein
and 79 for oil. If the population is still responding, these are lower limits on N, (again provided
the assumptions of Robertson’s theory hold, most notably that all the response is from the initial
variation). It is perhaps a bit unfair to use the observed value of the response in the first generation,
as there is a considerable variance around the expected response, and any particular realization is
inflated by 2/V.. Hence, a more reasonable approach is to uses the average response over the first
few (we will use the first five) generations as the baseline. This gives responses of 33 and 50 times
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the (average) initial response for effective populations sizes of 16 in protein and 25 in oil. While
these values are a bit more consistent with the likely effective population size, they are still too large.
Robertson’s theory also predicts that the time for half the response (from the initial variation)
to occur is 1.4N, or 8,17, and 34 generations (for N, = 6,12, and 24, respectively). Clearly, these are
not the half-lives of response, as they correspond to 15%, 19%, and 47% of the current total response
for oil and 11%, 22%, and 51% for protein. While the half-times for the upper bound of N, are
consistent with Robertson’s predictions, those under the more realistic values of N, are not.

3. Mutational Response. Mutation contributes to on-going response, obscuring both the half-life
and the limit of response attributable to initial variation in the base population. Taking the realized
heritabilities over the first nine generations (h? = 0.17 for protein, h? = 0.50 for oil) as the actual
heritabilities, Equation 39c gives the expected number of generations until half the response is due
to mutation as 16, 24, and 30 generations for high oil (for N. = 6, 12, and 24, respectively, assuming
02,/0% = 0.005). For protein, these values are 34, 54, and 79 generations. Clearly, under any of
these effective population sizes, the current response is largely due to new mutations. Further, for
the majority of generations, the majority of response has been due to the effects of new mutations
not initially present in the base population.

B. Strictly Deterministic Predictions

Robertson’s predictions are essentially driven by drift, making N, the key predictive parameter.
The complementary modeling assumption is that all the response is due to selection being the
only force changing allele frequencies. We can examine the predicted response under determinstic
single-locus modes by using the rough estimates of underlying genetic parameters obtained by
Dudley (1977) and Dudley and Lambert (1992). Using the assumptions leading to Equation 20
(all loci have the same effect), the 100-generation total responses give estimated average starting
frequencies of favorable alleles in the base population of 0.20 for oil and 0.24 for protein. Likewise,
using estimates of the number of effective factors K (from a line cross analysis) and the total amount
of response, estimates of the average effects of the underling loci are 2@ = 0.39 for oil and 0.21 for
protein. Equation 24 allows us to translate these values into average selection coefficients. The
typical amount of selection has been 20% on ears, for a selection intensity of i ; = 1.4. Since selection
is only on the seed parent, the average selection intensity isi = 1.4/2 = 0.7, giving average selection
coefficients of s = 0.33 (oil) and 0.07 (protein). Assuming additive loci (and the above values for
¢o and s), Equation 25a gives the expected time for half the response to occur at a given locus as
5 generations for oil and 25 generations for protein. These times, especially for oil, are so short
that one would expect to see an initial burst of response followed by a lag in response until new
variation is generated through mutation. The actual pattern has been a relatively smooth response,
suggesting that at least some reasonable fraction of the underlying loci have much smaller effects
(and hence much longer time scales for allele frequency change) than suggested by the average
values of @.

C. Does Selection on QTLs Overpower Drift?

We can take the above rough estimates for the average starting frequency of a favorable allele and
its average selection intensity to compute fixation probabilities. For oil, these are 0.80, 0.96, and
1.00 for N, of 6, 12, and 24 (respectively). The dynamics at average oil QTLs thus seem to be
largely determined by deterministic forces. For protein, these values are 0.41, 0.57, and 0.80. As a
comparison, note that under only drift, the fixation probabilities (for protein) are go = 0.24. Thus
while selection is more important than drift for protein QTLs (the fixation probabilities are 2 and 2.5
times the drift value under the small and moderate population sizes), many of the favorable protein
alleles are expected to have become lost due to drift.
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We can also examine the effects of drift another way: what starting allele frequency (g,) is
required to give a 90% fixation probability for fixing a favorable QTL allele (assuming its effect
equals the average value given in Table 5)? Using Equation 26a, these required initial frequencies
for oil are ¢p = 0.29, 0.14, and 0.07 (corresponding to N, =6, 12, and 24), and gy = 0.79, 0.60, and 0.34
for protein. For a fixation probability of 50%, these values become gy = 0.09, 0.04, and 0.02 (for oil)
and ¢o = 0.31, 0.19, and 0.10. (for protein). Thus, even at very small population sizes, the average
favorable oil gene is likely to contribute to selection response. For protein, favorable alleles at low or
even modest frequencies can become lost and hence not contribute to the response. These dramatic
differences in oil and protein are due to much larger estimated values of a/c for oil compared to
protein.

1. Between-replicate variance. To translate these fixation probabilities into an expected between-
replicate-line variance, from Equations 32 and 33, the ratio of the between-line variance under
selection with that expected under strict drift is

u(go)[1 — u(qo)]
q0(1 — qo)
The significance this ratio is that the higher the between-line variance, the larger the response
expected from a cross between replicate lines. With only alleles of large effect, replicate lines fix
identical alleles and hence the resulting line cross shows little variation. Conversely, with alleles
having low to moderate fixation probabilities, replicate lines may be fixed for different alleles,
leading to considerable variation (and hence response) in the line cross.

A ratio value of one for Equation 41 implies the selected lines show the same between-line
divergence as lines under drift. A value less than one implies less expected response from a line
cross (relative to a cross between drift-divergent lines), while a value greater than one implies a
large expected response. As shown in Table 5, for N. = 6, the expected between-replicate variance
for oil is the same as for two lines under only drift. With larger effective populations sizes, the
expected variance becomes considerably less than under strict drift, and little additional response is
expected in between replicate crosses. With protein, the between-line variance is greater than under
drift for N. = 6 and 12. For these settings, crosses between selected lines should show considerable
variation.

(41)

D. What Can We Conclude ?

The observed amount of response is remarkable given the very low effective population sizes. Given
the average estimated allelic effects, the initial variation for oil has been effectively used by selection,
while favorable protein alleles are likely to have been lost. The observed pattern of response is not
consistent with models assuming no mutational input, as under either a deterministic or finite-
population infinitesimal analysis, the time scale and amount of response requires new mutation.

Table 1.  Differences in short-term versus long-term response as a function of the number of
adults saved N when the number of measured individuals M = 50. Initially h? = 0.5 and ¢ = 100.
The infinitesimal model is assumed and we further assume N, = N. The selection intensity i was
corrected for finite population size. From the breeders’ equation R(1) = 5 ¢, while the total response
is obtained as R(®) = 2N R(1). The half-life of response (ty.5) is obtained from Equation 13.

N P i R(1) R(*) to.s

25 0.5 0.8 4.0 200 35

10 0.2 1.4 7.0 140 14
5 0.1 1.8 9.0 90 7
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Table2. Asselection intensity increases, N, is increasingly less than the actual number of parents,
further increasing drift. The reduction in effective population size due to selection is computed using
Equation 16. Parameters and assumptions are as in Table 1 (e.g., M = 50, h? = 0.5).

N i N, N./N 2N, R(1) tos

25 0.8 20.2 0.81 161 28

10 1.4 5.8 0.58 81 8
5 1.8 2.3 0.47 41 3

Table 3.  Total contribution to the selection limit and the allele frequency (g, /2) at which half this
contribution occurs for a diallelic locus where the favorable allele A has initial frequency go.

Gene action Total contribution q1/2
A additive (k = 0) 2a(1 — qo) (1+q0)/2
A dominant (k = 1) 2a(1 — go)? 1- VI —q2—q)]/2
A recessive (k = —1) 2a(1 —¢q3) (14¢3)/2

Table 4.  Effects of finite population size on the selection limit. The genetic model was the 250
locus model assumed for Fig. 5, where all loci are completely additive, each with an a values of 0.89
and an environmental variance of 100. When the starting frequency of all loci is gy = 0.5, this model
gives an initial heritability of 0.5. For different effective population sizes and initial frequencies, the
table gives the fixation probability u(qo) of a favorable QTL and the expected percentage of response
relative to the response when the favorable locus is always fixed (the maximal possible response).

N qo u(qo) % Maximal response
100 0.5 1.00 100
100 0.3 1.00 100
100 0.1 0.99 98
40 0.5 1.00 100
40 0.3 0.99 98
40 0.1 0.82 80
20 0.5 0.97 94
20 0.3 0.89 84
20 0.1 0.58 53
10 0.5 0.85 71
10 0.3 0.69 55
10 0.1 0.35 28
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Table5. Rough estimates of various parameters from the Illinois long-term selection experiment.
For both traits, i ~ 1.4 on seed parents, with no selection on pollen parents, giving an overall
selection intensity of i ~ 0.7.

Parameter Oil Protein  Remarks

Realized h?  0.50 0.17 Estimated using the first 9 generations

o, 0.41 1.1 Phenotypic standard deviations

qo 0.20 0.24 Using the assumptions leading to Equation 20

K 54 123 Estimated number of segregating factors (Dudley 1997)

2a 0.39 0.21 Estimated as the total observed response divided by K

s 0.33 0.07 Selection coefficient on a typical QTL (Equation 24)

ti/2 5 25 Generations for half the deterministic response to occur assuming

the above s and ¢ at an additive QTL (Equation 25a)

For N, = 6, Half-life of response under Robertson’s model = 1.4N, = 8 generations

u(qo) 0.798  0.408 Fixation probability of a favorable allele (Equation 26)
t* 34 18 Time until half the response from new mutations (Equation 39)
o [R)] 1.02 1.32 Expected between-replicate-line variance in response

scaled by the expected drift variance (Equation 41)

For N, = 12, Half-life of response under Robertson’s model = 17 generations
u(qo) 0.959 0.573
t* 54 24

o?[R™)] 025 1.34

For N, = 24, Half-life of response under Robertson’s model = 34 generations
u(qo) 0.998 0.802
t* 79 30

c?[R>)] 001 087
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Fig. 1:  Upper : The response to truncation selection, assuming the infinitesimal model in an
infinite population. Here it assumed that the upper 20% of the population is saved (p = 0.2 and
hence i = 1.4), with h%(0) = 0.3 and 02(0) = 100. The equilibrium rate of response is 0.85 of the
initial response. Lower: The dynamics of the disequilibrium d(¢). The equilibrium value of d is

essentially reached after three generations.
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Fig. 2. The ratio R/R of the equilibrium rate of response R to the initial rate of response R as a
function of the strength of truncation selection (smaller values of p imply stronger selection). The

five curves correspond to initial heritabilities of 0.1 (uppermost) to 0.6 (lowermost).
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Fig.) and heritability (bottom Fig.) are plotted for Robertson’s approximation (Equation 12a) and

the full model based on jointly iterating Equations 11 and 14. The model parameters are as for Fig.

1 (truncation selection with p = 0.2, h%(0) = 0.3, o2(0) = 100).
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Fig. 4: The effects of a finite number of equal-effect loci, assuming the distribution of allelic effects

at each locus is Gaussian (Normal). The upper curve corresponds to the response under an infinite

number of loci, while the three lower curves (top to bottom) are for 50, 20, and 10 loci, respectively.

The other model parameters are as for Fig. 1 (truncation selection with p = 0.2, h? (0) = 0.3,

o2(0) = 100).
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Fig. 5: Examples of the expected response to selection, assuming truncation selection (with the
upper 20% saved), n identical diallelic loci (at each, the genotypes AA : Aa: aa have genotypic values
2a : a : 0,and all loci have the same initial frequency gy for A). Results are for a population of infinite
size (all favorable alleles increase in frequency) and we further assume no epistasis and ignore any
effects of gametic-phase disequilibrium. All populations start with 0% (0) = 100 and h*(0) = 0.5.
Curves marked 10, 25, and 250 loci correspond to populations with initial allele frequency gy = 0.5

and a values of 4.47, 2.82, and 0.89, respectively. The mixed population consists of 5 identical major

loci (with ¢ = 0.25, a = 5.16) and 125 identical minor (loci with ¢g = 0.5, a = 0.89).
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dialleic loci, with ¢ = 0.5 and ¢go = 0.5, so that the initially additive variance contributed by the
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heritabilities clearly show the acceleration.
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