
Best-arm Identification Algorithms for Multi-Armed

Bandits in the Fixed Confidence Setting

Kevin Jamieson and Robert Nowak

Department of Electrical and Computer Engineering

University of Wisconsin - Madison

Email: kgjamieson@wisc.edu and nowak@ece.wisc.edu

Abstract—This paper is concerned with identifying the arm
with the highest mean in a multi-armed bandit problem using
as few independent samples from the arms as possible. While
the so-called “best arm problem” dates back to the 1950s, only
recently were two qualitatively different algorithms proposed
that achieve the optimal sample complexity for the problem.
This paper reviews these recent advances and shows that most
best-arm algorithms can be described as variants of the two
recent optimal algorithms. For each algorithm type we consider
a specific instance to analyze both theoretically and empirically
thereby exposing the core components of the theoretical analysis
of these algorithms and intuition about how the algorithms work
in practice. The derived sample complexity bounds are novel,
and in certain cases improve upon previous bounds. In addition,
we compare a variety of state-of-the-art algorithms empirically
through simulations for the best-arm-problem.

I. INTRODUCTION

This paper describes recent advances in algorithms for

identifying the arm with the highest mean in a stochastic multi-

armed bandit (MAB) problem with high probability using

as few total samples as possible. Consider a MAB with n
arms, each with unknown mean payoff µ1, . . . , µn in [0, 1].
A sample of the ith arm is an independent realization of

a sub-Gaussian random variable with mean µi. In the fixed

confidence setting, the goal of the best arm problem is to devise

a sampling procedure with a single input δ that, regardless

of the values of µ1, . . . , µn, finds the arm with the largest

mean with probability at least 1− δ. More precisely, best arm

procedures must satisfy supµ1,...,µn
P(̂i 6= i∗) ≤ δ, where i∗ is

the best arm, î an estimate of the best arm, and the supremum

is taken over all set of means such that there exists a unique

best arm. In this sense, best arm procedures must automatically

adjust sampling to ensure success when the mean of the best

and second best arms are arbitrarily close. Contrast this with

the fixed budget setting where the total number of samples

remains a constant and the confidence in which the best arm is

identified within the given budget varies with the setting of the

means. While the fixed budget and fixed confidence settings

are related (see [1] for a discussion) this paper focuses on the

fixed confidence setting only.

The best arm problem has a long history dating back to the

’50s with the work of [2], [3]. In the fixed confidence setting,

the last decade has seen a flurry of activity providing new

upper and lower bounds. In 2002, the successive elimination

procedure of [4] was shown to find the best arm with or-

der
∑

i 6=i∗
∆−2

i log(n∆−2
i) samples, where ∆i = µi∗ − µi,

coming within a logarithmic factor of the lower bound of∑
i 6=i∗

∆−2
i , shown in 2004 in [5]. In 2012, algorithms referred

to as lower upper confidence bound (LUCB) algorithms,

motivated by the success of the upper confidence bound (UCB)

style procedures of [6], were proposed that yielded sample

complexities on the order of
∑

i 6=i∗
∆−2

i log(
∑

j 6=i∗
∆−2

j)
when applied to the best arm problem [1], [7]. In 2013,

[8] proposed a procedure called PRISM which succeeds with∑
i 6=i∗

∆−2
i log log

(∑
j 6=i∗

∆−2
j

)
or

∑
i 6=i∗

∆−2
i log

(
∆−2

i

)

samples depending on the parameterization of the algorithm,

improving the result of [4] by at least a factor of log(n). In the

same year, a procedure similar to PRISM called exponential-

gap elimination was proposed by [9] which identifies the best

arm using order
∑

i 6=i∗
∆−2

i log log∆−2
i samples, establishing

the best known sample complexity result to date, coming

within a doubly logarithmic factor of the lower bound of [5].

In late 2013, [10] pointed out that the sample complexity result

of [9] was indeed optimal for at least the two armed case using

a classical result of Farrell [11]. The Farrell result relies on

the Law of Iterated Logarithm (LIL) which roughly states that

lim supt |
∑t

i=1 Zi|/
√
2t log log t = 1 almost surely where Zi

are standard normals. Inspired by the LIL, [10] proposed a

UCB style algorithm using confidence bounds based on a

finite version of the LIL that achieves the same optimal query

complexity as the exponential-gap elimination procedure of

[9].

Now that the community has two algorithms that obtain

the optimal sample complexity for the best-arm problem in

the fixed confidence setting, we feel that the time is right

to summarize general principles of best-arm algorithms and

present an empirical evaluation of those algorithms. This is

of particular interest due to the fact that all of the algorithms

discussed above use just one of three general sampling strate-

gies: action elimination, UCB, or LUCB (while we consider

LUCB to be a simple variant of UCB, the sampling strategy

is just different enough to justify the distinction). The aim

of this paper is to present a qualitative and quantitative

overview of algorithms that use these sampling procedures.

In addition, using techniques developed in [10], we present

novel, concise proofs of near-optimal sample complexity re-

sults for the action elimination, UCB, and LUCB sampling

strategies. The sample complexity result derived for LUCB

is the best known result for the LUCB sampling strategy

improving the result of
∑

i 6=i∗
∆−2

i log(
∑

j 6=i∗
∆−2

j) [7] to∑
i 6=i∗

∆−2
i log

(
n log(∆−2

i)
)
.

II. GENERAL PRINCIPLES OF BEST-ARM IDENTIFICATION

Despite the multitude of algorithms and sample complexity

results, all of the most popular algorithms can be described by

essentially one of two algorithms. Similar observations have

been made in the past, for instance in [12], but here we wish to

succinctly describe the relationships between the algorithms’

sampling strategies, provide intuition about how they work,

and give sketches of their proofs using the LIL.

We first define some notation. Without loss of generality, let

the n arms be ordered such that µ1 > µ2 ≥ · · · ≥ µn where

µi∗ = µ1 and each µi ∈ [0, 1]. Also, define ∆i = µ1 − µi.

For any algorithm, let Xi,s, s = 1, 2, . . . denote independent

samples from arm i where E[Xi,s] = µi and (Xi,s − µi) is

sub-Gaussian distributed. Let Ti(t) denote the number of times

arm i has been sampled up to time t and define µ̂i,Ti(t) :=
1

Ti(t)

∑Ti(t)
s=1 Xi,s to be the empirical mean of the Ti(t) samples

from arm i up to time t. For any time t define

ht = argmax
i∈[n]

µ̂i,Ti(t) , ℓt = arg max
i∈[n]\ht

µ̂i,Ti(t) + Ci,t

where Ci,t > 0 is typically derived from a tail-bound (e.g.

Hoeffding’s inequality) that may depend on t, Ti(t), n and

some confidence parameter δ.

The sampling strategies and their termination criteria are

described as follows:

• Action Elimination (AE) algorithm - [2]–[4], [8], [9]

Maintaining a set Ωk for k = 1, 2, . . . initialized as Ω1 =
[n], these algorithms proceed in epochs by sampling the

arms indexed by Ωk a predetermined number of times rk,

and maintains arms according to the rule:

Ωk+1 = {i ∈ Ωk : µ̂a,Ta(t)−Ca,Ta(t) < µ̂i,Ti(t)+Ci,Ti(t)}
where a ∈ Ωk is a reference arm (for instance a =
argmaxi∈[n] µ̂i,Ti(t)+Ci,Ti(t)). The algorithm terminates

when |Ωk| = 1 and outputs the single element of Ωk.

In any algorithm, every arm must be sufficiently

sampled before it can be decided with high probability

that it is the best arm or not. This algorithm simply keeps

sampling all the arms and throws those arms out that it

is confident are not the best arm.

• Upper Confidence Bound (UCB) algorithm - [10], [13]

Sample all arms once. For each each time t > n the

algorithm samples the arm indexed by

argmax
i∈[n]

µ̂i,Ti(t) + Ci,t.

One stopping condition is to stop when

µ̂ht,Tht
(t) − Cht,Tht

(t) > µ̂ℓt,Tℓt
(t) + Cℓt,Tℓt

(t) (1)

and output ht. Alternatively, one can stop when

∃i ∈ [n] : Ti(t) > α
∑

j 6=i

Tj(t) (2)

and output argmaxi Ti(t) for some α > 0.

While UCB sampling strategies were originally de-

signed for the regret setting to optimize “exploration

versus exploitation” [6], it was shown in [13] that UCB

strategies were also effective in the pure exploration (find

the best) setting. These algorithms are attractive because

they are more sequential than the AE algorithms that tend

to act more like uniform sampling for the first several

epochs.

• LUCB (a variation on UCB) - [1], [7], [12] Sample all

arms once. For each time t > n sample the arms indexed

by ht and ℓt (i.e. at each time t two arms are sampled)

and stop when the criterion defined in (1) is met.

While the LUCB and UCB sampling strategies ap-

pear to be only subtly different, we are motivated to

discuss the LUCB strategies because they seem better

designed for exploration than UCB sampling strategies.

For instance, given just two arms, the most reasonable

strategy would be to samepl both arms the same number

of times until a winner could be confidently proclaimed,

which is what LUCB would do. On the other hand,

UCB strategies would tend to sample the best arm far

more than the second-best arm leading to a strategy that

seems to emphasize exploitation over pure exploitation.

Our experiments demonstrate this effect.

In the remaining sections we provide a simple analysis

of an instance of each of these algorithms and then present

simulation results to show how they contrast in practice.

III. ANALYSES OF BEST ARM ALGORITHMS

Here we define specifc instances of the general algorithms

described in the previous section and give a simple proof

sketch of their sample complexities. While the specific in-

stances are known to not achieve the optimal sample com-

plexity, they are all optimal up to log(n) factors and perform

very well in practice. These specific instances were chosen

to highlight the core components of the proofs and not bog

the reader down in technicalities. The results rely on the finite

form of the law of iterated logarithm of [10] and is restated

here.

Lemma 1: Let X1, X2, . . . be i.i.d. sub-Gaussian random

variables with scale1 parameter σ ≤ 1/2 and mean µi ∈
R. For any ε ∈ (0, 1) and δ ∈ (0, log(1 + ε)/e) one

has with probability2 at least 1 − 2+ε
ε/2

(
δ

log(1+ε)

)1+ε

that∣∣ 1
t

∑t
s=1 Xs − µi

∣∣ ≤ U(t, δ) for all t ≥ 1 where U(t, δ) :=

(1 +
√
ε)

√
(1+ε)t log

(
log((1+ε)t)

δ

)
2t .

While the algorithms and their analyses are inspired by pre-

vious works, the novelty here is the conciseness of the proofs

1The scale parameter was chosen such that analyses of algorithms that
assumed realizations were in [0, 1] were still valid.

2The range on δ is restricted to guarantee that log(
log((1+ε)t)

δ
) is well

defined. This makes the analysis cleaner but in practice one can allow the

full range of δ by using log(
log((1+ε)t+2)

δ
) instead and obtain the same

theoretical guarantees. This is done in our experiments.

and the use of the LIL bound. For each algorithm we will

show two events hold with high probability: 1) the algorithm

terminates with no other arm than the best arm, and 2) the

algorithm terminates after sampling all the arms no more than

some constant depending on the problem parameters.

A. Action Elimination Algorithm

Consider the AE algorithm above with rk = 1 so that

at the end of the kth epoch we have that Ti(t) = k for

all i ∈ Ωk. Let Ci,k := 2U(k, δ/n) for all i ∈ [n], and

a = argmaxi∈Ωk
µ̂i,Ti(t). Applying Lemma 1 and a union

bound we have

|µ̂i,Ti(t) − µi| ≤ U(Ti(t), δ/n) ∀i ∈ [n], ∀t ≥ 1 (3)

with probability at least 1− 2+ε
ε/2

(
1

log(1+ε)

)1+ε

δ.

1) Algorithm terminates with the best arm: Conditioning

on (3), if i∗ ∈ Ωk then with a = argmaxi∈Ωk
µ̂i,Ti(t),

µ̂a,k − µ̂i∗,k = µ̂a,k − µa + µi∗ − µ̂i∗,k −∆a

≤ 2U(k, δ/n) = 2Ca,k = 2Ci∗,k

which implies i∗ ∈ Ωk+1. By induction we have that i∗ ∈ Ωk

∀k ≥ 1 implying that if the algorithm terminates, it outputs

the best arm.

2) Bounding total number of measurements: To bound the

total number of samples, note that the ith arm is thrown out at

the kth epoch if µ̂a,k − µ̂i,k ≥ 2U(k, δ/n). By the definition

of a and conditioning on (3) we have

µ̂a,k − µ̂i,k ≥ µ̂i∗,k − µ̂i,k ≥ −2U(k, δ/n) + ∆i.

A straightforward calculation (see [10]) shows that

min{k : U(k, δ/n) ≤ ∆i/4}

≤ 2γ

∆2
i

log

(
2 log(γ(1 + ε)∆−2

i)

δ/n

)
(4)

where γ = 8(1 +
√
ε)2(1 + ε). We conclude that for any

ε ∈ (0, 1) and δ ∈ (0, log(1+ε)/e) we have with probability at

least 1− 2+ε
ε/2

(
1

log(1+ε)

)1+ε

δ that the described AE algorithm

terminates with the best arm and has a sample complexity of

order
∑

i 6=i∗
∆−2

i log
(

n log(∆−2
i

)

δ

)
, coming within a log(n)

factor of optimum.

Using a tighter analysis, one can actually show that

what prevents the removal of the suboptimal log(n) fac-

tor is the large deviations of |µ̂a,Ta(t) − µa| with a =
argmaxi∈Ωk

µ̂i,Ti(t). Indeed, PRISM [8] and exponential-gap

elimination [9] use a subroutine called median elimination

developed in [4] to determine an alternative reference arm a
which has smaller deviations and allows for the removal of

the log(n) term. However, the analyses of those algorithms

are more involved and beyond the scope of this paper. Unfor-

tunately, the overhead coming in the form of constants using

median elimination is prohibitively large for practical use, as

we will show later in the experimental section.

B. UCB Algorithm

This analysis is inspired by [10]. Consider the UCB algo-

rithm defined above with Ci,t = (1 + β)U(Ti(t), δ/n) for

some β > 0 and using the stopping condition defined in (2)
with

α =

(
2 + β

β

)2 (
1 +

log
(
2 log

((
2+β
β

)2
n/δ)

)

log(n/δ)

)
.

Once again we will condition on (3) since it holds with

probability at least 1− 2+ε
ε/2

(
1

log(1+ε)

)1+ε

δ.

1) Algorithm terminates with the best arm: Assuming (3)
holds and arm i 6= i∗ is played at time t, we have by definition

that

µi + (2 + β)U(Ti(t), δ/n) ≥ µ̂i,Ti(t) + (1 + β)U(Ti(t), δ/n)

≥µ̂i∗,Ti∗
(t) + (1 + β)U(Ti∗(t), δ/n) (5)

≥µi∗ + βU(Ti∗(t), δ/n)

which implies (2+β)U(Ti(t), δ/n) ≥ βU(Ti∗(t), δ/n). After

some manipulation of this expression, we find that Ti(t) ≤
αTi∗(t). Thus, assuming (3) holds, the algorithm will never

terminate with a suboptimal arm.

2) Bounding total number of measurements: Returning to

(5), the expression also implies that (2 + β)U(Ti(t), δ/n) ≥
∆i. Solving for Ti(t), we find that

Ti(t) ≤ 1 +
2γ

∆2
i

log

(
2 log(γ(1 + ε)∆−2

i)

δ/n

)

where γ = (2 + β)2(1 +
√
ε)2(1 + ε)/2. Using the fact that

Ti∗(t) = t −
∑

i 6=i∗
Ti(t) we observe that i∗ will eventually

meet the stopping criterion resulting in a sample complexity

of order
∑

i 6=i∗
∆−2

i log
(

n log(∆−2
i

)

δ

)
, coming within a log(n)

factor of optimum. The β that optimizes the bounds is found

to be equal to β ≈ 1.66 but smaller values of β tend to work

better in practice (see experiments section).

We remark that one can remove the sub-optimal log(n) term

by running the same algorithm with Ci,t = (1+β)U(Ti(t), δ)
and performing a more careful analysis as is done in [10]. The

only difference in the analyses is that here we use the trivial

lower bound α
∑

j 6=i∗
Tj(t) ≥ αTi∗(t) to make sure an arm

i 6= i∗ is not output from the algorithm whereas a more careful

analysis uses all the terms of the sum.

C. LUCB Algorithm

This analysis is inspired by [7]. Consider the LUCB algo-

rithm defined above with Ci,t = U(Ti(t), δ/n) and using the

stopping condition defined in (1) with Ci,t = U(Ti(t), δ/n).

1) Algorithm terminates with the best arm: Assuming (3)
holds we trivially have that the stopping condition is only met

with the best arm with probability at least 1− δ.

2) Bounding total number of measurements: Define c =
(µ1 + µ2)/2. We say arm i∗ is BAD if µ̂i∗,Ti∗

(t) −
U(Ti∗(t), δ/n) < c and an arm i 6= i∗ is BAD if µ̂i,Ti(t) +
U(Ti(t), δ/n) > c. We claim that for all time t ≥ 1

(3) ∩ {µ̂ht,Tht
(t) − U(Tht

(t), δ
n) < µ̂ℓt,Tℓt

(t) + U(Tℓt(t),
δ
n)}

=⇒ {ht is BAD} ∪ {ℓt is BAD}.
(6)

In words, if the empirical means are well-behaved with respect

to their confidence bounds and the algorithm has not yet

terminated, then either ht or ℓt has not been sufficiently

sampled relative to c. This can be shown by contradiction by

considering all possible combinations of ℓt, ht being assigned

to i∗ or an arbitrary i 6= i∗ [7, Lemma 2].

For all i 6= i∗ define τi to be the first integer such that

U(τi, δ/n) ≤ ∆i/4} and define τi∗ = τ2. Assuming (3) holds,

then for any i 6= i∗ and s ≥ τi

µ̂i,s + U(s, δ/n) ≤ µi + 2U(s, δ/n)

= c+ 2U(s, δ/n) +
(µi − µi∗) + (µi − µ2)

2

≤ c+ 2U(s, δ/n)− ∆i

2
≤ c

which implies that i 6= i∗ is not BAD. An analogous argument

can be made for i = i∗ and τi∗ .

Assuming (3) holds, by the above arguments we observe

that the total number of rounds does not exceed
∞∑

t=1

1{ht is BAD or ℓt is BAD}

=

∞∑

t=1

n∑

i=1

1 {{ht = i or ℓt = i} ∩ {i is BAD}}

≤
∞∑

t=1

n∑

i=1

1 {{ht = i or ℓt = i} ∩ {Ti(t) ≤ τi}} ≤
n∑

i=1

τi

where the last inequality holds by the fact that if {ht =
i or ℓt = i} then Ti(t + 1) = Ti(t) + 1 and this can only

occur τi times before Ti(t) > τi.
Plugging in the right-hand-side of (4) for τi and re-

calling that two samples are taken at each round we ob-

serve that with probability at least 1 − 2+ε
ε/2

(
1

log(1+ε)

)1+ε

δ

the algorithm obtains a sample complexity of order∑
i 6=i∗

∆−2
i log

(
n log(∆−2

i
)

δ

)
, coming within a log(n) factor

of optimum.

We remark that the algorithm and proof of [7] that motivated

the above analysis was originally derived for identifying the

top m-arms and also yielded a non-trivial bound on the

expected number of measurements, which our analysis does

not. Using this analysis approach it is not clear how to remove

the the log(n) factor and this is an interesting avenue of future

work.

IV. EMPIRICAL PERFORMANCE

Here we perform two sets of experiments. The first set of

experiments contrasts the qualitative behavior of the action

elimination, UCB, and LUCB sampling strategies. The second

set of experiments is more quantitative and compares the

stopping times of the state-of-the-art algorithms.

(a) Action Elimination Sampling

(b) UCB Sampling

(c) LUCB Sampling

Fig. 1: Comparison of the three sampling strategies sampling

arms i = 1, 2, . . . , 6 with means µi. The algorithms used in

the comparison were implemented as described in Section III.

A. Sampling Strategies: Action Elimination, UCB, LUCB

The above analyses of the action elimination, UCB, and

LUCB strategies show that the sample complexities of the

algorithms are very similar, even up to constants. And if we

consider small, fixed values of n so that the effect of the

log(n) term in the bounds is negligible, the algorithms are

order optimal. We now explore how the algorithms differ, if

at all, in how they sample the arms to decide the best arm.

The algorithms used in the comparison were implemented as

described in Section III.

We chose to look at the very simple case of just n = 6 arms

with linearly decreasing means: {1, 4/5, 3/5, 2/5, 1/5, 0}. All

experiments were run with input confidence δ = 0.1. And

wherever the finite LIL is used, we use ε = 0.01. All

realizations of the arms were Gaussian random variables with

mean µi and variance1/4. To ignore the artifacts resulting

from the action elimination algorithm taking multiple samples

simultaneously, we estimate P(It = i) at every time t by

calculating a proportion of the indices pulled in the interval

[t − n + 1, t] and average over 5000 trials each algorithm

completed.

The comparison of sampling procedures is plotted in Fig-

ure 1. Axes are plotted in units of H1 :=
∑

i 6=i∗
∆−2

i which

is a dominant term in the sample complexity of best arm

identification problems. We immediately observe a dramatic

difference between the three sampling procedures: the action

elimination strategy peels one arm away at a time and the

plot of P(It = i) gives little indication of the best arm until

many pulls in. On the other hand, the plot of P(It = i) for

the LUCB and UCB sampling strategies clearly identifies the

best arm very quickly with a large separation between the first

and second arm. We remark that these algorithms may vary

in performance using different parameters but the qualitative

shape of these curves remain the same.

B. Stopping Time Comparison

In this section we investigate how the state-of-the-art meth-

ods for solving the best arm problem behave in practice.

Before describing each of the algorithms in the comparison,

we describe an LIL-based stopping criterion that can be

applied to any of the algorithms.

LIL Stopping (LS) : For any algorithm and i ∈ [n],
we can apply the stopping condition of (1) with Ci,t =
U(Ti(t), δ/n). Since (3) holds with probability at least 1 −
2+ε
ε/2

(
1

log(1+ε)

)1+ε

δ any procedure that stops with this crite-

rion outputs the best arm with at least this probability.

The LIL stopping condition is somewhat naive but often

quite effective in practice for smaller size problems when

log(n) is negligible. To implement the strategy for any fixed

confidence algorithm, simply run the algorithm with δ/2 in

place of δ and assign the other δ/2 confidence to the LIL

stopping criterion. The algorithms compared were:

• Nonadaptive + LS : Draw a random permutation of [n]
and sample the arms in an order defined by cycling

through the permutation until the LIL stopping criterion

is met.

• Exponential-Gap Elimination (+LS) [9] : This is an action

elimination procedure that chooses a reference arm using

a subroutine called median elimination [4]. The algorithm

terminates when there is only one arm that has not yet

been discarded (or when the LIL stopping criterion is

met). This algorithm achieves the theoretical optimal

sample complexity.

• Successive Elimination [4] : This is an action elimination

known as Successive Elimination. This procedure uses

Ci,k =
√
log(π2/3 nk2/δ)/k.

• lil’Successive Elimination : This is the action elimination

algorithm of Section III.

• lil’UCB (+LS) [10] : This is a UCB procedure and

is run with β = 1, a = (2 + β)2/β2 = 9, and

δ =
(

νε
5(2+ε)

)1/(1+ε)

for input confidence ν. The algo-

rithm terminates according to the first of (1) and (2).
This algorithm achieves the theoretical optimal sample

complexity.

• LUCB1 [7]: This is an LUCB procedure run with Ci,t =√
log

(

405.5nt1.1

δ
log(405.5nt1.1

δ
)
)

2Ti(t)
as prescribed in [12].

• lil’LUCB : This is the LUCB algorithm of Section III.

We did not compare to PRISM of [8] because the algorithm

and its empirical performance are very similar to Exponential-

Gap Elimination so its inclusion in the comparison would

provide very little added value.

Three problem scenarios were considered over a variety

problem sizes (number of arms). The “1-sparse” scenario sets

µ1 = 1/4 and µi = 0 for all i = 2, . . . , n resulting in a

hardness of H1 = 4n. The “α = 0.3” and “α = 0.6” scenarios

consider n+1 arms with µ0 = 1 and µi = 1− (i/n)α for all

i = 1, . . . , n with respective hardnesses of H1 ≈ 3/2n and

H1 ≈ 6n1.2. That is, the α = 0.3 case should be about as

hard as the sparse case with increasing problem size while the

α = 0.6 is considerably more challenging and grows super

linearly with the problem size. See [8] for an in-depth study

of the α parameterization.

The stopping times of each algorithms are compared in

Figure 2. Each algorithm was run on each problem scenario

and problem size 50 times. The first observation is that

Exponential-Gap Elimination (+LS) appears to barely perform

better than uniform sampling with the LIL stopping criterion.

This shows that despite this algorithm being order optimal,

the constants in median elimination are just too large to make

this algorithm practically relevant. Comparing the individual

variants of the successive elimination and LUCB algorithms

(that is, the originally derived bounds versus LIL bounds) we

see that the LIL bounds provide a substantial improvement

in performance. While the lil’UCB+LS algorithm seems to

perform the best for large sparse problems, the lil’LUCB

algorithm is the clear winner overall. This shows that n, and

consequently the difference of log(n) between lil’UCB and

lil’LUCB, would have to be very large to justify using the

seemingly more exploitative but theoretically optimal lil’UCB.

V. CONCLUSION

This paper presented an overview of best-arm algorithms

and provided some insight into how they work and are

analyzed. Using the LIL we gave simple proofs of the sample

complexities of instances of the three major sampling strate-

gies. The sample complexity derived for LUCB is the best

result to date for the LUCB sampling strategy.

Another family of algorithms that has received a lot of atten-

tion recently in the multi-armed bandit literature is Thompson

Sampling [14]. This Bayesian style algorithm is of interest

due to the ease in which side information about the problem

structure can be encoded into the prior distribution on the

means. While most of this work has been concentrated in the

regret or Bayesian-regret scenarios, recent work suggests that

Thompson sampling may also be effective at identifying the

best arm and is a promising avenue of future work [15].

ACKNOWLEDGMENT

We thank Matt Malloy and Sébestian Bubeck for the many

collaborations that contributed to this work.

REFERENCES

[1] V. Gabillon, M. Ghavamzadeh, A. Lazaric et al., “Best arm identifica-
tion: A unified approach to fixed budget and fixed confidence,” 2012.

[2] E. Paulson, “A sequential procedure for selecting the population with the
largest mean from k normal populations,” The Annals of Mathematical

Statistics, vol. 35, no. 1, pp. 174–180, 1964.
[3] R. E. Bechhofer, “A sequential multiple-decision procedure for selecting

the best one of several normal populations with a common unknown
variance, and its use with various experimental designs,” Biometrics,
vol. 14, no. 3, pp. 408–429, 1958.

[4] E. Even-Dar, S. Mannor, and Y. Mansour, “Pac bounds for multi-armed
bandit and markov decision processes,” in Computational Learning

Theory. Springer, 2002, pp. 255–270.
[5] S. Mannor and J. N. Tsitsiklis, “The sample complexity of exploration

in the multi-armed bandit problem,” The Journal of Machine Learning

Research, vol. 5, pp. 623–648, 2004.
[6] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the

multiarmed bandit problem,” Machine learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[7] S. Kalyanakrishnan, A. Tewari, P. Auer, and P. Stone, “Pac subset
selection in stochastic multi-armed bandits,” in Proceedings of the 29th

International Conference on Machine Learning (ICML-12), 2012, pp.
655–662.

[8] K. Jamieson, M. Malloy, R. Nowak, and S. Bubeck, “On finding the
largest mean among many,” arXiv preprint arXiv:1306.3917, 2013.

[9] Z. Karnin, T. Koren, and O. Somekh, “Almost optimal exploration in
multi-armed bandits,” in Proceedings of the 30th International Confer-

ence on Machine Learning, 2013.
[10] K. Jamieson, M. Malloy, R. Nowak, and S. Bubeck, “lil’ucb: An

optimal exploration algorithm for multi-armed bandits,” arXiv preprint

arXiv:1312.7308, 2013.
[11] R. H. Farrell, “Asymptotic behavior of expected sample size in

certain one sided tests,” The Annals of Mathematical Statistics,
vol. 35, no. 1, pp. pp. 36–72, 1964. [Online]. Available: http:
//www.jstor.org/stable/2238019

[12] E. Kaufmann and S. Kalyanakrishnan, “Information complexity in bandit
subset selection.” COLT, 2013.

[13] J.-Y. Audibert, S. Bubeck, and R. Munos, “Best arm identification in
multi-armed bandits,” COLT 2010-Proceedings, 2010.

[14] S. Agrawal and N. Goyal, “Analysis of thompson sampling for the multi-
armed bandit problem,” arXiv preprint arXiv:1111.1797, 2011.

[15] S. Bubeck and C.-Y. Liu, “Prior-free and prior-dependent regret bounds
for thompson sampling,” in Advances in Neural Information Processing

Systems, 2013, pp. 638–646.

(a) 1-sparse, H1 = 4n

(b) α = 0.3, H1 ≈
3
2
n

(c) α = 0.6, H1 ≈ 6n
1.2

Fig. 2: Stopping times of the algorithms for the three scenarios

for a variety of problem sizes.

APPENDIX

Here we prove equation (6). Let T be the stopping time

of the algorithm, i.e. the first time t such that {µ̂ht,Tht
(t) −

U(Tht
(t), δ/n) ≥ µ̂ℓt,Tℓt

(t) + U(Tℓt(t), δ/n)}. Then:

(3) ∩ {t < T } =⇒ {ht is BAD} ∪ {ℓt is BAD}.

We will prove it by contradiction. Also, to reduce space,

let U [Ti(t)] = U(Ti(t), δ/n). Assume ht and ℓt are both

not BAD and consider the disjoint events which all lead to

contradictions:

Case 1:

{ht = i∗ is not BAD} ∩ {ℓt 6= i∗ is not BAD} ∩ {t < T }
=⇒ {µ̂ht,Tht

(t) − U [Tht
(t)] > c} ∩ {µ̂ℓt,Tℓt

(t) + U [Tℓt(t)] < c}
∩ {µ̂ht,Tht

(t) − U [Tht
(t)] < µ̂ℓt,Tℓt

(t) + U [Tℓt(t)]}
=⇒ {µ̂ht,Tht

(t) − U [Tht
(t)] > µ̂ℓt,Tℓt

(t) + U [Tℓt(t)]}
∩ {µ̂ht,Tht

(t) − U [Tht
(t)] < µ̂ℓt,Tℓt

(t) + U [Tℓt(t)]}
=⇒ contradiction.

Case 2:

{ht 6= i∗ is not BAD} ∩ {ℓt = i∗ is not BAD} ∩ {t < T }

=⇒ {µ̂ht,Tht
(t) + U [Tht

(t)] < c} ∩ {µ̂ℓt,Tℓt
(t) − U [Tℓt(t)] > c}

=⇒ {µ̂ht,Tht
(t) < µ̂ℓt,Tℓt

(t)}
=⇒ contradiction since ht = argmax

i∈[n]
µ̂i,Ti(t) .

Case 3:

{ht 6= i∗ is not BAD} ∩ {ℓt 6= i∗ is not BAD} ∩ {t < T }

=⇒ {µ̂ht,Tht
(t) + U [Tht

(t)] < c} ∩ {µ̂ℓt,Tℓt
(t) + U [Tℓt(t)] < c}

=⇒ {µ̂i∗,Ti∗
(t) + U [Ti∗(t)] < c}

=⇒ contradiction since (3) says µ̂i∗,Ti∗
(t) + U [Ti∗(t)] ≥ µi∗ and µi∗ > c =

µ1 + µ2

2
.

