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Abstract—This paper is concerned with identifying the arm
with the highest mean in a multi-armed bandit problem using
as few independent samples from the arms as possible. While
the so-called “best arm problem” dates back to the 1950s, only
recently were two qualitatively different algorithms proposed
that achieve the optimal sample complexity for the problem.
This paper reviews these recent advances and shows that most
best-arm algorithms can be described as variants of the two
recent optimal algorithms. For each algorithm type we consider
a specific instance to analyze both theoretically and empirically
thereby exposing the core components of the theoretical analysis
of these algorithms and intuition about how the algorithms work
in practice. The derived sample complexity bounds are novel,
and in certain cases improve upon previous bounds. In addition,
we compare a variety of state-of-the-art algorithms empirically
through simulations for the best-arm-problem.

I. INTRODUCTION

This paper describes recent advances in algorithms for
identifying the arm with the highest mean in a stochastic multi-
armed bandit (MAB) problem with high probability using
as few total samples as possible. Consider a MAB with n
arms, each with unknown mean payoff w1, ..., pu, in [0,1].
A sample of the ith arm is an independent realization of
a sub-Gaussian random variable with mean pu;. In the fixed
confidence setting, the goal of the best arm problem is to devise
a sampling procedure with a single input § that, regardless
of the values of uy,...,uy,, finds the arm with the largest
mean with probability at least 1 — 4. More precisely, best arm
procedures must satisfy sup,,, , P(i # i.) < 6, where i, is
the best arm, 7 an estimate of the best arm, and the supremum
is taken over all set of means such that there exists a unique
best arm. In this sense, best arm procedures must automatically
adjust sampling to ensure success when the mean of the best
and second best arms are arbitrarily close. Contrast this with
the fixed budget setting where the total number of samples
remains a constant and the confidence in which the best arm is
identified within the given budget varies with the setting of the
means. While the fixed budget and fixed confidence settings
are related (see [1] for a discussion) this paper focuses on the
fixed confidence setting only.

The best arm problem has a long history dating back to the
’50s with the work of [2], [3]. In the fixed confidence setting,
the last decade has seen a flurry of activity providing new
upper and lower bounds. In 2002, the successive elimination
procedure of [4] was shown to find the best arm with or-

der >, ;. A;7?log(nA;?) samples, where A; = p;, — ;s
coming within a logarithmic factor of the lower bound of
Z#i* Ai_z, shown in 2004 in [5]. In 2012, algorithms referred
to as lower upper confidence bound (LUCB) algorithms,
motivated by the success of the upper confidence bound (UCB)
style procedures of [6], were proposed that yielded sample
complexities on the order of >, A2 log(3_ 4. A;z)
when applied to the best arm problem [1], [7]. In 2013,
[8] proposed a procedure called PRISM which succeeds with
Zi#* A;Q log log (Z#i* Aj_Q) or Z#i* A;Q log (A;Q)
samples depending on the parameterization of the algorithm,
improving the result of [4] by at least a factor of log(n). In the
same year, a procedure similar to PRISM called exponential-
gap elimination was proposed by [9] which identifies the best
arm using order Z#i* A;2 log log A;Q samples, establishing
the best known sample complexity result to date, coming
within a doubly logarithmic factor of the lower bound of [5].
In late 2013, [10] pointed out that the sample complexity result
of [9] was indeed optimal for at least the two armed case using
a classical result of Farrell [11]. The Farrell result relies on
the Law of Iterated Logarithm (LIL) which roughly states that
lim sup; | 22:1 Z;|/v/2tloglogt = 1 almost surely where Z;
are standard normals. Inspired by the LIL, [10] proposed a
UCB style algorithm using confidence bounds based on a
finite version of the LIL that achieves the same optimal query
complexity as the exponential-gap elimination procedure of

[9].

Now that the community has two algorithms that obtain
the optimal sample complexity for the best-arm problem in
the fixed confidence setting, we feel that the time is right
to summarize general principles of best-arm algorithms and
present an empirical evaluation of those algorithms. This is
of particular interest due to the fact that all of the algorithms
discussed above use just one of three general sampling strate-
gies: action elimination, UCB, or LUCB (while we consider
LUCB to be a simple variant of UCB, the sampling strategy
is just different enough to justify the distinction). The aim
of this paper is to present a qualitative and quantitative
overview of algorithms that use these sampling procedures.
In addition, using techniques developed in [10], we present
novel, concise proofs of near-optimal sample complexity re-
sults for the action elimination, UCB, and LUCB sampling
strategies. The sample complexity result derived for LUCB



is the best known result for the LUCB sampling strategy
improving the result of ZZ# log(zﬁéi* A;z) [7] to

Doivi, A7 2log (nlog(A; ))
II. GENERAL PRINCIPLES OF BEST-ARM IDENTIFICATION

Despite the multitude of algorithms and sample complexity
results, all of the most popular algorithms can be described by
essentially one of two algorithms. Similar observations have
been made in the past, for instance in [12], but here we wish to
succinctly describe the relationships between the algorithms’
sampling strategies, provide intuition about how they work,
and give sketches of their proofs using the LIL.

We first define some notation. Without loss of generality, let
the n arms be ordered such that p1 > po > --- > u, where
wi, = p1 and each p; € [0,1]. Also, define A; = py — ;.
For any algorithm, let X; s, s = 1,2,... denote independent
samples from arm ¢ where E[X; ;] = u; and (X; s — p;) is
sub-Gaussian distributed. Let T;(¢) denote the number of times
arm i has been sampled up to time ¢ and define fi; 7,(1) :=

T ( 7 Z t) X s to be the empirical mean of the T;(¢) samples
from arm z up to time ¢. For any time ¢ define
hy = arg max fiTie) » be = arg max fi,T,(t) + Cit
where C;; > 0 is typically derived from a tail-bound (e.g.
Hoeffding’s inequality) that may depend on ¢,7T;(t),n and
some confidence parameter 6.
The sampling strategies and their termination criteria are
described as follows:
o Action Elimination (AE) algorithm - [2]-[4], [8], [9]
Maintaining a set )i, for k = 1,2, ... initialized as 2, =
[n], these algorithms proceed in epochs by sampling the
arms indexed by €0, a predetermined number of times 7,
and maintains arms according to the rule:

Qo1 =11 € Qe 2 fla,1,0)—Cla,rat) < i1, 6)FCim,0)

where a € € is a reference arm (for instance a =
arg maX;e|n) fi,1;(¢) + Ci,1; (+))- The algorithm terminates
when |Q| = 1 and outputs the single element of 2.
In any algorithm, every arm must be sufficiently

sampled before it can be decided with high probability
that it is the best arm or not. This algorithm simply keeps
sampling all the arms and throws those arms out that it
is confident are not the best arm.

o Upper Confidence Bound (UCB) algorithm - [10], [13]
Sample all arms once. For each each time ¢ > n the
algorithm samples the arm indexed by

arg 12?}]< i ;) + Cige
One stopping condition is to stop when
fine, T, 0 = Cne iy () > B, (1) + Comy vy (D
and output h;. Alternatively, one can stop when

Ji€n] : Ti(t) >ad Tyt 2)
j#i

and output arg max; T;(t) for some a > 0.

While UCB sampling strategies were originally de-
signed for the regret setting to optimize ‘“exploration
versus exploitation” [6], it was shown in [13] that UCB
strategies were also effective in the pure exploration (find
the best) setting. These algorithms are attractive because
they are more sequential than the AE algorithms that tend
to act more like uniform sampling for the first several
epochs.

o LUCB (a variation on UCB) - [1], [7], [12] Sample all
arms once. For each time ¢ > n sample the arms indexed
by h; and ¢, (i.e. at each time ¢ two arms are sampled)
and stop when the criterion defined in (1) is met.

While the LUCB and UCB sampling strategies ap-
pear to be only subtly different, we are motivated to
discuss the LUCB strategies because they seem better
designed for exploration than UCB sampling strategies.
For instance, given just two arms, the most reasonable
strategy would be to samepl both arms the same number
of times until a winner could be confidently proclaimed,
which is what LUCB would do. On the other hand,
UCB strategies would tend to sample the best arm far
more than the second-best arm leading to a strategy that
seems to emphasize exploitation over pure exploitation.
Our experiments demonstrate this effect.

In the remaining sections we provide a simple analysis
of an instance of each of these algorithms and then present
simulation results to show how they contrast in practice.

III. ANALYSES OF BEST ARM ALGORITHMS

Here we define specifc instances of the general algorithms
described in the previous section and give a simple proof
sketch of their sample complexities. While the specific in-
stances are known to not achieve the optimal sample com-
plexity, they are all optimal up to log(n) factors and perform
very well in practice. These specific instances were chosen
to highlight the core components of the proofs and not bog
the reader down in technicalities. The results rely on the finite
form of the law of iterated logarithm of [10] and is restated
here.

Lemma 1: Let Xy, X5,... be i.i.d. sub-Gaussian random
variables with scale! parameter 0 < 1/2 and mean u; €
R. For any ¢ € (0,1) and 0 € (O log(1 + E)/f) one

€
+e 0
5/2 (log(l—i-a)) that
,ui| < U(t,d) for all t > 1 where U(t,0) :=

has with probability? at least 1 —

|l Zs—l Xs —
(1+2)t log (leal+e)n

(L yoyy s ()

While the algorithms and their analyses are inspired by pre-

vious works, the novelty here is the conciseness of the proofs

IThe scale parameter was chosen such that analyses of algorithms that
assumed realizations were in [0, 1] were still valid.

2The range on § is restricted to guarantee that log(w) is well
defined. This makes the analysis cleaner but in practice one can allow the
full range of § by using log(w) instead and obtain the same
theoretical guarantees. This is done in our experiments.



and the use of the LIL bound. For each algorithm we will
show two events hold with high probability: 1) the algorithm
terminates with no other arm than the best arm, and 2) the
algorithm terminates after sampling all the arms no more than
some constant depending on the problem parameters.

A. Action Elimination Algorithm

Consider the AE algorithm above with 7, = 1 so that
at the end of the kth epoch we have that T;(t) = k for
all i € Q. Let C;p, := 2U(k,0/n) for all i € [n], and
a = argmax;eq, ft;1;(t)- Applying Lemma 1 and a union
bound we have

im0y — ms|l S U(T5(t),0/n) Vie[n], Vt>1 (3)

1+e¢
with probability at least 1 — i% (m) J.
1) Algorithm terminates with the best arm: Conditioning

on (3), if i, € Q4 then with a = argmax;cq, fii1; (1),

fagk = fi, k= fak — Ha + i, — i,k — Da
§ 2U(k75/n) = QC’a’k = 2Cz*k

which implies i, € Q441. By induction we have that i, € €
Vk > 1 implying that if the algorithm terminates, it outputs
the best arm.

2) Bounding total number of measurements: To bound the
total number of samples, note that the ¢th arm is thrown out at
the kth epoch if fi, 1 — f1;.x > 2U(k,d/n). By the definition
of a and conditioning on (3) we have

Pk — ik > i, e — ik > —2U(k,6/n) + A;.
A straightforward calculation (see [10]) shows that
min{k : U(k,d/n) < A;/4}

2 21 1 A2
<7210g< Og(v(é/ZE) ; )) @

?

where v = 8(1 + 1/£)%(1 + ). We conclude that for any
e€(0,1)and ¢ € (0, log1 1+¢)/e) we have with probability at
least 1 — % m - 4 that the described AE algorithm
terminates with the best arm apzd has a sample complexity of
order 2, ;. A;?log (%), coming within a log(n)
factor of optimum.

Using a tighter analysis, one can actually show that
what prevents the removal of the suboptimal log(n) fac-
tor is the large deviations of |fiq 1, (1) — ta| With a =
arg max;eq, i, 1,(¢)- Indeed, PRISM [8] and exponential-gap
elimination [9] use a subroutine called median elimination
developed in [4] to determine an alternative reference arm a
which has smaller deviations and allows for the removal of
the log(n) term. However, the analyses of those algorithms
are more involved and beyond the scope of this paper. Unfor-
tunately, the overhead coming in the form of constants using
median elimination is prohibitively large for practical use, as
we will show later in the experimental section.

B. UCB Algorithm

This analysis is inspired by [10]. Consider the UCB algo-
rithm defined above with C;, = (1 + B)U(T;(¢),0/n) for
some > 0 and using the stopping condition defined in (2)
with

o (2+5>2 <1+ log (210g((25)2n/5))>.

+
B
6 log(n/0)

Once again we will condition on (3) since it holds with
1

probability at least 1 — 25 (logd +8)> 0.

1) Algorithm terminates with the best arm: Assuming (3)
holds and arm i # i, is played at time ¢, we have by definition
that

pi + 2+ B)U(Ti(t),0/n) = Hir, ) + (1 + B)U(Ti(t),d/n)
>Hg, 1, 1) + (1 + B)U(T;, (t),6/n) )
>, + BU(TZ* (t)v 6/”)

which implies (2+ 3)U(T;(t),6/n) > BU(T;, (t),0/n). After
some manipulation of this expression, we find that T;(¢) <
aT;, (t). Thus, assuming (3) holds, the algorithm will never
terminate with a suboptimal arm.

2) Bounding total number of measurements: Returning to
(5), the expression also implies that (2 + B)U(T;(t),d/n) >
A;. Solving for T;(t), we find that

Tt) <1+ 2L log (210g(7(1 “)Az—?))

A? d/n

where v = (2 + 3)%(1 + v/£)*(1 + €)/2. Using the fact that
T;.(t) = t = 3,4, Ti(t) we observe that i, will eventually
meet the stopping criterion resulgng in a sample complexity
of order >, ;. A;?log gnlog?i)) , coming within a log(n)
factor of optimum. The [ that optimizes the bounds is found
to be equal to 3 =~ 1.66 but smaller values of g tend to work
better in practice (see experiments section).

We remark that one can remove the sub-optimal log(n) term
by running the same algorithm with C; ; = (1+ 8)U(T;(¢), 9)
and performing a more careful analysis as is done in [10]. The
only difference in the analyses is that here we use the trivial
lower bound a ), ; Tj(t) > oT; (t) to make sure an arm
1 # 14 1s not output from the algorithm whereas a more careful
analysis uses all the terms of the sum.

C. LUCB Algorithm

This analysis is inspired by [7]. Consider the LUCB algo-
rithm defined above with C;;, = U(T;(¢),d/n) and using the
stopping condition defined in (1) with C;; = U(T;(t),d/n).

1) Algorithm terminates with the best arm: Assuming (3)
holds we trivially have that the stopping condition is only met
with the best arm with probability at least 1 — .



2) Bounding total number of measurements: Define ¢ =
(1 + p2)/2. We say arm i, is BAD if fi; 1, (1) —
U(T;,(t),0/n) < c and an arm i # i, is BAD if fi; 1, +
U(T;(t),d6/n) > c. We claim that for all time ¢ > 1

(3) N {fin, 1, 0y = U(Tn, (£), 2) < fi, 1, 1) + U(Te, (1), 2)}
= {hy is BAD}U{{, is BAD}.
(6)
In words, if the empirical means are well-behaved with respect
to their confidence bounds and the algorithm has not yet
terminated, then either h; or ¢; has not been sufficiently
sampled relative to c. This can be shown by contradiction by
considering all possible combinations of ¢;, h; being assigned
to i, or an arbitrary i # i, [7, Lemma 2].
For all i # i, define 7; to be the first integer such that
U(r,6/n) < A;/4} and define 7;, = 72. Assuming (3) holds,
then for any ¢ # i, and s > 7;

fiis +U(s,0/n) < pi +2U(s,9/n)
(i — pa) + (i — p2)

=c+2U(s,0/n)+ 5

A;
<c+20U(s,6/n) — > <c
which implies that ¢ # i, is not BAD. An analogous argument
can be made for ¢ = ¢, and 7;,.
Assuming (3) holds, by the above arguments we observe
that the total number of rounds does not exceed

Zl{ht is BAD or {, is BAD}

t=1
:ZZH{ht =ior{, =i} N{iis BAD}}
<Y D W{{he=ior =i} n{T:() <m}p <Y

t

Il
-

=1

where the last inequality holds by the fact that if {h; =
tor{, = i} then T;(t + 1) = T;(t) + 1 and this can only
occur 7; times before T;(t) > 7.

Plugging in the right-hand-side of (4) for 7; and re-
calling that two samples are taken at each round we1 ob-
serve that with probability at least 1 — 25725 (m) h 0
the algorithm obtains a sample complexity of order

-2
D i, A7 ?log (%), coming within a log(n) factor

K3

of optimum.

We remark that the algorithm and proof of [7] that motivated
the above analysis was originally derived for identifying the
top m-arms and also yielded a non-trivial bound on the
expected number of measurements, which our analysis does
not. Using this analysis approach it is not clear how to remove
the the log(n) factor and this is an interesting avenue of future
work.

IV. EMPIRICAL PERFORMANCE

Here we perform two sets of experiments. The first set of
experiments contrasts the qualitative behavior of the action

elimination, UCB, and LUCB sampling strategies. The second
set of experiments is more quantitative and compares the
stopping times of the state-of-the-art algorithms.

09 — = 1
o =0.8
08 | —pg = 0.6
orh | TR = 0.4
— 5 =0.2
< o0sf e =0
Il
5 0.5
Q" 0.4
0.3
0.2
0.1
R X ) ‘ )
0 10 20 30 40 50 60 70
Number of pulls (units of H1)
(a) Action Elimination Sampling
1
0.9
08
0.7
gl
Il
:-: 0.5
A oaf
0.3
0.2
) K\

20 30 0 50 60 70
Number of pulls (units of H1)

(b) UCB Sampling

0 10

20 0 40 50 60 70
Number of pulls (units of H1)

(c) LUCB Sampling

0 0

Fig. 1: Comparison of the three sampling strategies sampling
arms ¢ = 1,2,...,6 with means p;. The algorithms used in
the comparison were implemented as described in Section III.



A. Sampling Strategies: Action Elimination, UCB, LUCB

The above analyses of the action elimination, UCB, and
LUCB strategies show that the sample complexities of the
algorithms are very similar, even up to constants. And if we
consider small, fixed values of n so that the effect of the
log(n) term in the bounds is negligible, the algorithms are
order optimal. We now explore how the algorithms differ, if
at all, in how they sample the arms to decide the best arm.
The algorithms used in the comparison were implemented as
described in Section III.

We chose to look at the very simple case of just n = 6 arms
with linearly decreasing means: {1,4/5,3/5,2/5,1/5,0}. All
experiments were run with input confidence § = 0.1. And
wherever the finite LIL is used, we use ¢ = 0.01. All
realizations of the arms were Gaussian random variables with
mean f; and variancel/4. To ignore the artifacts resulting
from the action elimination algorithm taking multiple samples
simultaneously, we estimate P(I; = i) at every time ¢ by
calculating a proportion of the indices pulled in the interval
[t —n + 1,¢] and average over 5000 trials each algorithm
completed.

The comparison of sampling procedures is plotted in Fig-
ure 1. Axes are plotted in units of Hy := 37, ;. A;? which
is a dominant term in the sample complexity of best arm
identification problems. We immediately observe a dramatic
difference between the three sampling procedures: the action
elimination strategy peels one arm away at a time and the
plot of P(I; = i) gives little indication of the best arm until
many pulls in. On the other hand, the plot of P(I; = i) for
the LUCB and UCB sampling strategies clearly identifies the
best arm very quickly with a large separation between the first
and second arm. We remark that these algorithms may vary
in performance using different parameters but the qualitative
shape of these curves remain the same.

B. Stopping Time Comparison

In this section we investigate how the state-of-the-art meth-
ods for solving the best arm problem behave in practice.
Before describing each of the algorithms in the comparison,
we describe an LIL-based stopping criterion that can be
applied to any of the algorithms.

LIL Stopping (LS) : For any algorithm and ¢ € [n],
we can apply the stopping condition of (1) with C;; =
U(T;(t),d/n). 1Since (3) holds with probability at least 1 —

€
28—725 (m i ¢ any procedure that stops with this crite-
rion outputs the best arm with at least this probability.

The LIL stopping condition is somewhat naive but often
quite effective in practice for smaller size problems when
log(n) is negligible. To implement the strategy for any fixed
confidence algorithm, simply run the algorithm with §/2 in
place of § and assign the other §/2 confidence to the LIL
stopping criterion. The algorithms compared were:

e Nonadaptive + LS : Draw a random permutation of [n]
and sample the arms in an order defined by cycling

through the permutation until the LIL stopping criterion
is met.

o Exponential-Gap Elimination (+LS) [9] : This is an action
elimination procedure that chooses a reference arm using
a subroutine called median elimination [4]. The algorithm
terminates when there is only one arm that has not yet
been discarded (or when the LIL stopping criterion is
met). This algorithm achieves the theoretical optimal
sample complexity.

e Successive Elimination [4] : This is an action elimination
known as Successive Elimination. This procedure uses
Cir = \/log(n2/3 nk2/5) [k.

e lil’Successive Elimination : This is the action elimination
algorithm of Section III.

e li'UCB (+LS) [10] : This is a UCB procedure and
is run with 3 = 1, a = (2 + 6)?/82 = 9, and

be \V/a+e) )
0= (m> for input confidence v. The algo-

rithm terminates according to the first of (1) and (2).
This algorithm achieves the theoretical optimal sample
complexity.

e LUCBI [7]: This is an LUCB procedure run with C; ; =

10g(405'5§'t1'1 10g(405»56"t1'1 ) . .
(0 as prescribed in [12].

e I'LUCB : This is the LUCB algorithm of Section III.

We did not compare to PRISM of [8] because the algorithm
and its empirical performance are very similar to Exponential-
Gap Elimination so its inclusion in the comparison would
provide very little added value.

Three problem scenarios were considered over a variety
problem sizes (number of arms). The “l-sparse” scenario sets
wr = 1/4 and p; = 0 for all ¢ = 2,...,n resulting in a
hardness of H; = 4n. The “a = 0.3” and “a = 0.6 scenarios
consider n+ 1 arms with pg =1 and pg; = 1 — (i/n)* for all
i = 1,...,n with respective hardnesses of Hy ~ 3/2n and
H, ~ 6n!2. That is, the « = 0.3 case should be about as
hard as the sparse case with increasing problem size while the
o = 0.6 is considerably more challenging and grows super
linearly with the problem size. See [8] for an in-depth study
of the o parameterization.

The stopping times of each algorithms are compared in
Figure 2. Each algorithm was run on each problem scenario
and problem size 50 times. The first observation is that
Exponential-Gap Elimination (+LS) appears to barely perform
better than uniform sampling with the LIL stopping criterion.
This shows that despite this algorithm being order optimal,
the constants in median elimination are just too large to make
this algorithm practically relevant. Comparing the individual
variants of the successive elimination and LUCB algorithms
(that is, the originally derived bounds versus LIL bounds) we
see that the LIL bounds provide a substantial improvement
in performance. While the /il’UCB+LS algorithm seems to
perform the best for large sparse problems, the lil’LUCB
algorithm is the clear winner overall. This shows that n, and
consequently the difference of log(n) between lil’UCB and
LiI’LUCB, would have to be very large to justify using the



seemingly more exploitative but theoretically optimal /il’UCB.

V. CONCLUSION

This paper presented an overview of best-arm algorithms
and provided some insight into how they work and are
analyzed. Using the LIL we gave simple proofs of the sample
complexities of instances of the three major sampling strate-
gies. The sample complexity derived for LUCB is the best
result to date for the LUCB sampling strategy.

Another family of algorithms that has received a lot of atten-
tion recently in the multi-armed bandit literature is Thompson
Sampling [14]. This Bayesian style algorithm is of interest
due to the ease in which side information about the problem
structure can be encoded into the prior distribution on the
means. While most of this work has been concentrated in the
regret or Bayesian-regret scenarios, recent work suggests that
Thompson sampling may also be effective at identifying the
best arm and is a promising avenue of future work [15].
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Fig. 2: Stopping times of the algorithms for the three scenarios
for a variety of problem sizes.



APPENDIX
Here we prove equation (6). Let 7 be the stopping time
of the algorithm, i.e. the first time ¢ such that {l[l’ht»Tht(t) —
U(Tht (t), (5/71) > laft,Tet(t) + U(Tgt (t), 5/11)} Then:
B)N{t<T} = {his BAD}U{{; is BAD}.
We will prove it by contradiction. Also, to reduce space,
let U[T;(t)] = U(T;(t),0/n). Assume h; and ¢; are both

not BAD and consider the disjoint events which all lead to
contradictions:

Case 1:

{hy =i, is not BAD} N {l; # i, is not BAD} N {t < T}

= {in,1,, ) = UlTh, ()] > ¢} N {jue, 1, ) + UlTe, (8)] < ¢}
N i, 1,6y — UlTh, ()] < fue, 1, 1) + UlTe, (8)]}

= {in, 1, 1) — UlTh, ()] > fre, 7, 1) + U[T2, (1)]}
O L in,, 1, (1) — UlTh, (0] < fre, 10, ) + U2, ()]}

— contradiction.

Case 2:
{ht # i is not BAD} N {{; =i, is not BAD} N {t < T}
= {fn, 1., &) + UlTh, ()] < e} N {fe, 1, 1) = UlTe, (8)] > ¢}
= {fin, 1, (t) < foe,. 1, (1) }
=—> contradiction since h; = arg mz[z)]( Ty (t) -
en

Case 3:
{ht # i is not BAD} N {{; # i, is not BAD} N {t < T}

= {itn, 10, 1) T UTh, ()] < e} N {fie, 1y, (1) + UlTe, ()] < c}
= {fi..1,. 1) + U[T5. ()] < ¢}

= contradiction since (3) says f;, 1, ) + U[Ti, ()] > ps, and p;, > ¢ =

1+ 2

2



