
Institut für Informatik

Neuroinformatics Group

Reinforcement Learning

with

Recurrent Neural Networks

Dissertation

zur

Erlangung der Doktorwürde

der Universität Osnabrück

– Fachbereich Mathematik/Informatik –

Vorgelegt von

Herrn Anton Maximilian Schäfer
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Abstract

Controlling a high-dimensional dynamical system with continuous state and ac-

tion spaces in a partially unknown environment like a gas turbine is a challeng-

ing problem. So far often hard coded rules based on experts’ knowledge and

experience are used. Machine learning techniques, which comprise the field of

reinforcement learning, are generally only applied to sub-problems. A reason

for this is that most standard reinforcement learning approaches still fail to pro-

duce satisfactory results in those complex environments. Besides, they are rarely

data-efficient, a fact which is crucial for most real-world applications, where the

available amount of data is limited.

In this thesis recurrent neural reinforcement learning approaches to identify

and control dynamical systems in discrete time are presented. They form a novel

connection between recurrent neural networks (RNN) and reinforcement learn-

ing (RL) techniques. Thereby, instead of focusing on algorithms, neural network

architectures are put in the foreground.

RNN are used as they allow for the identification of dynamical systems in form

of high-dimensional, non-linear state space models. Also, they have shown to be

very data-efficient. In addition, a proof is given for their universal approximation

capability of open dynamical systems. Moreover, it is pointed out that they are, in

contrast to an often cited statement, well able to capture long-term dependencies.

As a first step towards reinforcement learning, it is shown that RNN can well

map and reconstruct (partially observable) Markov decision processes. In doing

so, the resulting inner state of the network can be used as a basis for standard

RL algorithms. This so-called hybrid RNN approach is rather simple but showed

good results for a couple of applications. The further developed recurrent control

neural network combines system identification and determination of an optimal

policy in one network. It does not only learn from data but also integrates prior

knowledge into the modelling in form of architectural concepts. Furthermore, in

contrast to most RL methods, it determines the optimal policy directly without

making use of a value function. This distinguishes the approach also from other

works on reinforcement learning with recurrent networks.

The methods are tested on several standard benchmark problems. In addition,

they are applied to different kinds of gas turbine simulations of industrial scale.
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”To raise new questions, new possibilities,

to regard old problems from a new angle,

requires creative imagination and marks

real advance in science.”

Albert Einstein, 1879 – 1955

CHAPTER 1

Introduction

Reinforcement learning and control problems of industrial scale, like the con-

trol of a gas turbine, are generally high-dimensional, extensive and only partially

observable. Due to the large amount of different inter-depending parameters and

information, which is still insufficient to fully describe the problem, human beings

are hardly able to find an optimal solution.

Therefore the field of machine learning, in particular approximate dynamic

programming or reinforcement learning, aims at developing (self-adapting) algo-

rithms, which are able to learn how to control a system out of the available data.

Many different solution methods have been proposed during the last 50 years. The

prevalent ones are well summarised in the books of Bertsekas [10, 11], and Sutton

and Barto [89]. Still, besides other restrictions due to Bellman’s ”curse of di-

mensionality” [7], most of them fail to produce good results for high-dimensional

and partially observable problems with continuous state and action spaces where

further the available amount of data is limited. In order to cover these issues,

sophisticated and data-efficient learning methods are required, which are able to

deal with high-dimensionality and non-linearities, and take short and long-term

influences into account.

1.1 Reinforcement Learning Problems

Reinforcement learning (RL) (chap. 2) is an ideal approach to solve optimal con-

trol problems by learning a policy, which maximises a desired outcome. It ba-

sically considers a controller or agent and the environment, with which the con-

troller interacts by carrying out different actions. For each interaction the con-

troller can observe the outcome of its action. In other words, the agent gets a

positive or negative reward, which is used to optimise its action selection or con-

trol policy, i.e., its future actions based on the respective state.

1



2 Introduction

Throughout this thesis a reinforcement learning or control problem is regarded

as an open, time-discrete dynamical system with a correspondent additive reward

function [10]. Those systems can be used to describe most technical or eco-

nomical real-world applications, which are by construction mainly deterministic.

Hereby, it is assumed that stochasticity basically occurs due to partial observabil-

ity.

Let therefore be S ⊆ R
J the system’s (real) environmental state space with

states st ∈ S, X ⊆ R
I the space of observables xt ∈ X , which generally is a

subspace of S, and U ⊆ R
K the control or action space with control or action

parameters ut ∈ U (with I, J, K ∈ N and t = 1, . . . ,∞). The dynamical system

can then be described by the following set of equations

st+1 = g(st,ut)
xt = h(st)

(1.1)

with g : R
J × R

K → R
J and h : R

J → R
I being two arbitrary (non-linear)

functions. This corresponds to the assumption that the next internal state st+1

evolves from the current one st, influenced by the current action ut. Further, the

observables xt develop out of the current internal state st.
1

Nearly all reinforcement learning problems of industrial scale are partially

observable as it is generally too expensive or just impossible to collect all data

determining the system’s state space S. However, in the unlikely event that the

system is fully observable, which means that S = X , equation 1.1 simplifies to

st+1 = g(st,ut) .

The corresponding reward function is denoted by R : X → R (and respec-

tively R : S → R in the case of a fully observable problem). Hence it is based

on the current observation and respectively state of the system.2 Generally the

particular immediate reward Rt := R(xt) is not of major interest as a correspond-

ing action might lead to low rewards in the long run. Therefore, an accumulated

reward over time with a possible discount factor γ ∈ [0, 1] is regarded:

R :=
∞
∑

t=1

γt−1Rt (1.2)

Based on this, the underlying challenge for every high-dimensional and com-

plex control task can be seen as a two step problem:

1Other formulations of controlled dynamical systems can be found in [27, 98].
2Other forms of reward functions, which e.g., also take the applied action into account, can be

found in [89].



1.1 Reinforcement Learning Problems 3

(i) System identification: The majority of technical and economical control sys-

tems cannot be described or represented by simple mathematical equations

as most often the physical or economical interdependencies within the sys-

tem are not (yet) fully explored or the system is simply only partially ob-

servable. Consequently, a model of the system is not a priori known. It

rather has to be learnt out of the data collected during system operation. A

model-building approach is therefore of avail as it allows to derive the future

behaviour of the system given a certain control sequence. As the amount of

available data is, due to time or cost restrictions, further generally limited,

a data-efficient system identification is of importance. Moreover, system

identification is the crucial part of solving a control problem as it serves as

a basis for the second step, where the actual optimal control policy is learnt.

With regard to the open dynamical system (eq. 1.1), the related optimisation

task consists of determining two functions ḡ : R
J̄ × R

K → R
J̄ and h̄ :

R
J̄ → R

I (with J̄ ∈ N), such that the error between the observable data,

determined by the model, x̄t ∈ R
I , and the one of the real system, xt, is

minimal for all available data patterns t = 1, . . . , T ∈ N:

T
∑

t=1

‖x̄t − xt‖2 → min
ḡ,h̄

(1.3)

This implies that the unknown system state st ∈ R
J is modelled by the

model’s inner state s̄t ∈ R
J̄ , which might be of a different dimension,

i.e. J 6= J̄ . Note that in this step there is no change in the applied con-

trol parameters ut. These are given as a part of the available data set and are

used to learn their effects on the system’s dynamics. In case that a model of

the analysed system is known and can easily be described by a set of differ-

ential equations, one can directly refer to step (ii). However, throughout this

thesis it is assumed that a model has to be determined out of an available

data set.

(ii) Learning of the optimal control policy: The determination of the optimal

control policy is based on the model identified in step (i). The objective

is to find an optimal control policy, which maximises the future rewards

Rt (eq. 1.2) of the RL problem. In the ideal case one can achieve a stable

operating point of the system but mostly a continuous adjustment of the

control parameters is required. In other words, the objective of step (ii) is

the calculation of an optimal action selection or control policy, π̄ : R
J̄ ×

R
I → R

K , which determines the model’s next action ūt ∈ R
K based on

the approximated inner state of the system s̄t ∈ R
J̄ and the calculated latest



4 Introduction

observation x̄t ∈ R
I ,

ūt = π̄(̄st, x̄t)

under the consideration of the reward function R (eq. 1.2). This results in

the following optimisation problem

T
∑

t=1

γt−1Rt → max
π̄

. (1.4)

1.2 Main Focus of the Thesis

The main objective of the thesis is the development of a new model-based rein-

forcement learning method on the basis of recurrent neural networks for a data-

efficient solution to the described reinforcement learning problems (sec. 1.1). The

approach focuses on a novel connection between reinforcement learning (RL)

(chap. 2) and recurrent neural networks (RNN) (chap. 3) with the objective to

solve the outlined two step problem (sec. 1.1).

RNN are used as they allow for the identification of dynamical systems in form

of high-dimensional, non-linear state space models. Moreover, the architecture of

RNN allows for a perfect modelling of the RL environment over a certain num-

ber of consecutive time steps. Also, they have shown to be very data-efficient.

Therefore they are well suited for an application to the described extensive RL

problems. To strengthen their utilisation it is proven that RNN possess a universal

approximation ability and that they are well able to learn long-term dependencies.

Also, some elaborated model-building approaches for RNN are presented. In this

regard the thesis also provides important new theoretic results on RNN.

For the development of the aspired recurrent neural reinforcement learning ap-

proach the focus is on new neural network architectures instead of algorithms. In

doing so the new methods not only learn from data but also integrate prior knowl-

edge into the modelling in form of architectural concepts. This aims at support-

ing the efficient learning and mapping of the full environment of an RL problem.

Furthermore, in contrast to most RL methods, the optimal policy is determined di-

rectly without making use of an evaluation respectively value function (sec. 2.3).

This distinguishes the approach also from other works on RL with different kinds

of recurrent networks (chap. 4).

However, the thesis does not aim at improving or even outperforming those

existing approaches. It rather presents a new application of the described RNN

(chap. 3) to RL (chap. 2) and shows that this combination can be successfully

used to solve the aforesaid RL problems (sec. 1.1).
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The new methods are tested on several standard benchmark problems, like

different settings of the cart-pole (sec. 4.2) and mountain car problem (sec. 4.6).

Still, from the application point of view, the main focus has been put on the con-

trol of gas turbine simulations as used in industry. Those mainly show the focused

characteristics of RL problems, high-dimensionality, partial observability, contin-

uous state and action spaces and a requirement for data-efficiency (sec. 2.5). They

also motivated the generated work and underlying research.

Based on the mentioned characteristic figure 1.1 illustrates the main objective

of the thesis and classifies it in terms of data efficiency and the ability to solve

complex, i.e., high-dimensional, partially observable and with continuous state

and action spaces, RL problems.

− model−based

− table−based

− model−free

− table−based

Main Objective

of the thesis

D
a

ta
−

ef
fi

ci
en

cy

Complexity

− model−based
− funct. approx.

− model−free

− funct. approx.of a model

inclusion

generalisation

Figure 1.1: Main objective of the thesis classified in comparison to other principal

classes of standard RL methods (sec. 2.4) with regard to data-efficiency

and the ability to solve complex (high-dimensional, partially observable,

continuous state and action spaces) RL problems. The purpose is the

development of a model-based method on the basis of RNN for a data-

efficient solution to complex RL problems.

1.3 Structure of the Thesis

Chapter 1 outlines the problem setting and states the main focus of the thesis.

Chapter 2 forms a brief introduction to reinforcement learning. The presen-

tation focuses on basic aspects, which are relevant for the further course of the

thesis. It enfolds a description of Markov decision processes and dynamic pro-

gramming. Furthermore, standard reinforcement learning algorithms, which are
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used as benchmarks in chapters 4 and 5, are introduced and analysed. Finally,

the key problems and requirements for real-world applied reinforcement learning

algorithms are discussed in more detail.

In chapter 3 recurrent neural networks and their capability to identify open

dynamical systems are introduced and described. A proof for their universal ap-

proximation capability is given. Learning techniques and especially the capability

to learn long-term dependencies are examined, analysed and discussed. Those

aspects, long-term learning and universal approximation, form a basis and pre-

requirement for the application of the networks to RL and control problems. Ad-

ditionally, a couple of modelling issues, which have been shown to be valuable in

practise, are presented.

Chapter 4 presents the novel conjunctions between recurrent neural networks

and reinforcement learning. As a first recurrent neural RL approach, only the

ability of RNN to model and reconstruct the (approximately) Markovian state

space of an RL problem is used. This is especially useful for partially observ-

able RL problems. In this context a hybrid RNN approach is presented, where the

RNN identifies the problem’s dynamics (step (i)) and subsequent to that standard

RL algorithms are applied on the networks inner state space to learn the opti-

mal policy (step (ii)). On this basis the recurrent control neural network (RCNN)

is introduced, which combines the two steps ((i) + (ii)) into one integrated neu-

ral network. Consequently, it not only learns the underlying dynamics but also

determines the optimal policy. In an extended version, the idea of approximat-

ing the system’s (minimal) Markovian state space is further incorporated. Thus,

the extended RCNN embeds the presented hybrid RNN approach within one sin-

gle neural network. Furthermore, the extended network calculates the changes in

the control parameters instead of absolute values. Both aspects marked crucial

improvements for controlling the gas turbine simulations (chap. 5). The two ver-

sions of RCNN and the idea of a state space reconstruction with RNN form the

key contribution of this thesis. They have been filed for patents by Siemens AG.

In chapter 5 the novel recurrent neural RL approaches are tested on a real-

world problem, the control of different kinds of gas turbine simulations. The

problem is, within the limits of confidentiality, described and analysed. The new

methods are applied and compared to standard controllers. It turns out that a

significant increase in performance can be achieved.

Finally chapter 6 summarises the main results of the thesis.



”Knowledge must come through action; you can

have no test which is not fanciful, save by trial.”

Sophocles (496 BC – 406 BC)

CHAPTER 2

Reinforcement Learning

Reinforcement learning (RL) combines the fields of dynamic programming [11]

and supervised learning to develop powerful machine learning algorithms [32].

Besides its use for solving control problems, RL can be seen as “one of the only

designs of value in understanding the human mind” [96]. It is an approach to

learn an optimal behaviour, i.e. policy, in an unknown or at most partially known

environment. Thereby, it is based on the idea of trial-and-error interactions with

the dynamic environment [32, 42, 89]. The main elements of an RL or control

problem (sec. 1.1) are shortly summarised in the following. Their interrelationship

is also illustrated in figure 2.1:

(i) Environment: The environment corresponds to any kind of economical or

technical system, e.g. stock market, revenue management, or a gas turbine.

Its development is based on its history and the actions performed by the

agent. For each interaction it sends a reward Rt to the agent, which serves

as an evaluation criteria for the agent’s action in the last system state. The

state st of the environment can be discrete or continuous.

(ii) Agent: The agent represents the controller of the system. It can at least

partially observe the system’s state st by receiving observations xt. Us-

ing those, it interacts with the environment by performing actions ut and in

return retrieving rewards Rt+1, which it can use to improve its policy.

(iii) Actions: Actions influence the development of the environment. They gen-

erally represent a chosen change in or an absolute value of the control pa-

rameters allowed by the system. According to the problem setting those can

be discrete or continuous. Here, a credit-assignment problem [54] has to be

solved as the temporal dependencies are generally a priori unknown, i.e.,

some actions may not immediately change the system but may do so with

a certain delay. Actions can be bounded or limited by the problem setting.

7



8 Reinforcement Learning

Examples for actions are the decision of buying or selling, adjustments of

a temperature or of a steering wheel, or simply the application of a certain

physical force to the environment.

(iv) Policy: The mapping from states of the environment to the action to be taken

in this state is called a policy π. Following a policy forms a sequence of ac-

tions and reflects the learnt behaviour of the agent at a given time. For most

applications one is interested in controlling a system over a certain time pe-

riod. Therefore, instead of a one-step optimisation, one tries to determine an

optimal policy with regard to a given overall objective, respectively reward

function. According to Sutton and Barto ”the policy is the core of a rein-

forcement learning agent in the sense that it alone is sufficient to determine

behaviour” [89].

(v) Reward / cost function1: The reward function specifies the overall objec-

tive of the reinforcement learning problem. It depicts the immediate reward

the agent receives for performing a certain action at a given system state.

Consequently, it defines the desirability of an event for the agent. Generally

the simple immediate reward is only of minor interest because high imme-

diate rewards might lead to low ones in the future. Instead, one is usually

interested in the (discounted) value of collected rewards in the long run.
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Figure 2.1: Basic idea of reinforcement learning: An agent iteratively interacts with

an environment by carrying out an action ut based on its observed state

information xt, which can be smaller (partially observable) or equal

(fully observable) to the environmental state st. In return it retrieves

a feedback in form of a reward Rt+1, which it uses to improve its policy

π and thereby increase its future sum of rewards (t = 1, . . . ,∞) [89].

The dashed line indicates the transition to the next time step.

1For simplification in the following it is mostly referred to reward functions. However, reward

maximisation and cost minimisation can be used interchangeably.
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2.1 Markov Decision Process

The mathematical basis for most theoretical RL problems is a Markov decision

process (MDP), which describes the development of a (fully observable) con-

trollable dynamical system (eq. 1.1). An MDP is basically defined by a tuple

(S, U, Tr, R) with the following objects [18, 41, 65], whereby t ∈ N indicates the

time step:

• a state space of the environment S,

• an action or control space U , with sets U(st) of available or allowed actions

in state st ∈ S,

• a deterministic or stochastic state-transition function Tr(st+1|st,ut) : S ×
U × S → [0, 1], which defines the probability for reaching state st+1 being

in state st and applying action ut with st, st+1 ∈ S and ut ∈ U(st),
2

• a reward function Rt := R(st) : S → R denoting the immediate one-step

reward for being in state st.
3

The relation of the different objects is described by a one-step transition:

Given an open (controllable) dynamical system (eq. 1.1) with a state space S.

Being in an arbitrary state st ∈ S at time step t, the agent chooses an action

ut ∈ U(st). As a consequence the system evolves to the next state st+1 ∈ S
according to the transition function Tr(st+1|st,ut). At the same time the agent

receives the one-step reward R(st+1) [18]. The generated sequence of states and

actions is called a trajectory. Due to the assumed Markov property (defn. 2.1) the

next state st+1 hereby only depends on the current state st and the applied action

ut. In other words, the Markov property states that the development of the system

only depends on the last system state and the taken action [18, 50]. Consequently,

it is independent of its history, i.e. the previous states and actions.

In mathematical terms the Markov property in discrete time is stated as fol-

lows, whereby s0 stands for an arbitrary starting state [50].

Definition 2.1. Markov property: A discrete stochastic process st ∈ S with action

ut ∈ U and a transition function Tr(st+1|st,ut) is called Markovian if for every

t ∈ N it is

Tr(st+1|ut, st,ut−1, st−1, . . . ,u0, s0) = Tr(st+1|ut, st) .

2In case of a continuous state space Tr is defined as a probability density function.
3Again, it is also possible to define the reward function such that it takes the applied action

or even the full transition (st,ut, st+1) into account. An extension is trivial, but for simplicity

throughout this thesis it is referred to the described form.
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The actions can be chosen on the basis of a pre-defined (or learnt) decision

rule, i.e. policy, or simply randomly. If the state and action spaces, S and U ,

are discrete, the MDP is called discrete. In the non-discrete case, one naturally

assumes that they are measurable spaces endowed with σ-algebras S and U [18].

This comprises the case that S and U are continuous spaces in R
J and R

K . The

MDP is called deterministic if Tr(st+1|ut, st) is deterministic and stochastic oth-

erwise.

Following the illustration of basic reinforcement learning (fig. 2.1), figure 2.2

gives a (general) graphical representation of a Markov decision process. As the

system is per definition fully observable, the agent’s observation xt is equal to

the environmental state st. Due to the Markov property (defn. 2.1) this contains

all required information for the agent to determine its next action ut. Its decision

rule and respectively policy is therefore a direct mapping from the observed state

xt(= st) to the next action ut. The environment then evolves according to the

transition function Tr(st+1|ut, st).
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Figure 2.2: Graphical representation of a Markov decision process. As the system is

per definition fully observable, it is xt = st. Due to the Markov property

the agent’s decision making process is a direct mapping from the ob-

served state to its action. Anew, the dashed line indicates the transition

to the next time step.

2.2 Partially Observable Markov Decision Process

Partially observable Markov decision processes (POMDP) differ from MDP (sec.

2.1) in the fact that the state space S is not fully observable. This is generally

the case in real-world applications, e.g. gas turbine control (chap. 5). The agent

only receives an observation xt ∈ X as an indicator for the actual state of the

system, st ∈ S. Hereby xt is generally not Markovian. Formally a POMDP can
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be described by a tuple (S, X,U, Tr,R), where in addition to MDP X represents

the observation space, which can be a subspace of the state space S but might also

include redundant information.

Figure 2.3 gives a (general) graphical representation of a partially observable

Markov decision process. Unlike in MDP (fig. 2.2) the environmental state st is

now only partially observable by the agent, which is depicted by the expression

xt ⊂ st. This implies that the agent has the additional task to approximate or

reconstruct the environmental, Markovian state st out of its observations xt to

determine its next action ut. In other words, the agent has to build a model of the

environment, which it uses as a basis for its decision making. Therefore also past

time information about the system’s development can be helpful.

action
ut

reward
R t

s t

st+1

R t+1

Environment

Agent

system state

internal state

x
o
b
se

rv
at

io
n

t

st
at

e

Figure 2.3: Graphical representation of a partially observable Markov decision pro-

cess. As the system is partially observable, the agent only receives an ob-

servation xt as an indicator for the system state st (xt ⊂ st). Therefore,

it builds up an internal state out of past time information to determine

the next action ut. Again, the dashed line indicates the transition to the

next time step.

As already pointed out, most real-world RL applications are partially observ-

able (sec. 1.1). Therefore partial observability (sec. 2.5.2) is also in the main focus

of this thesis. In chapter 4 new RNN based RL approaches are presented, which

amongst others reconstruct the state space of a POMDP.

2.3 Dynamic Programming

The term dynamic programming (DP) refers to a group of algorithms, which can

be used to solve multi-state decision processes with a perfect model of the envi-

ronment, like MDP [89]. It is based on Bellman’s principle of optimality, which

can be formally written in the following form [6, 10]:
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Theorem 2.1. Principle of Optimality

Let {u∗
0,u

∗
1,u

∗
2,u

∗
3, . . .} be an action sequence resulting from an optimal policy

π∗ for the basic (fully observable) problem and assume that when using π∗ a

given state st occurs at time t with positive probability. Consider the sub-problem

whereby one is at st at time t and wishes to maximise the ”reward-to-go” from

time t on with a discount factor γ ∈ [0, 1]

∞
∑

τ=t

γτ−tR(sτ+1)

Then the truncated action sequence {u∗
t ,u

∗
t+1,u

∗
t+2, . . .} is optimal for this sub-

problem.

The explanation is quite intuitive. If the solution to the sub-problem was not

optimal, the total reward of the problem could be further increased by switching

to the optimal policy when being at state st. Hence, π∗ could not be optimal [10].

In return this implies that the optimal policy can be determined by solving step by

step the respective ”tail sub-problem”, which is the basic principle of the dynamic

programming algorithm [10].

Based on the principle of optimality DP operates on a so-called value function

V π(st), which represent the (expected) reward-to-go [10] for each system state st

given a policy π : S → U :

V π(st) = E

(

∞
∑

τ=t

γτ−tR(sτ+1)

)

The DP algorithm, which is also called value iteration, aims at maximising the

value function by proceeding a backward iteration (k ∈ N)[10]:

Vk+1(st) = max
ut

∈U(st)





∑

st+1∈S

Tr(st+1|ut, st) [R(st+1) + γVk(st+1)]



 ∀t (2.1)

It has been shown to converge to the correct V ∗, the value function of the optimal

policy π∗ [6, 9, 42].

The maximisation of V is done over the policy space because the dynamics of

the state-action space is given by the underlying system respectively problem set-

ting. Typically one takes an intermediate step and regards a so-called Q-function,

which takes in addition to the value function also the chosen action ut into ac-

count. This allows for an evaluation of every state-action pair instead of the states

only. The Q-function is defined by

Qπ(st,ut) =
∑

st+1∈S

Tr(st+1|ut, st) [R(st+1) + γQπ(st+1, π(st+1))] ∀t.
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Furthermore, it is V π(st) = Qπ(st, π(st)) ∀t.
Analogue to V ∗ the optimal Q-function is set as

Q∗(st,ut) :=
∑

st+1∈S

Tr(st+1|ut, st) [R(st+1) + γV ∗(st+1)]

=
∑

st+1∈S

Tr(st+1|ut, st)

[

R(st+1) + γ max
ut+1

∈U(st+1)

Q∗(st+1,ut+1)

]

∀t

(2.2)

The latter (eq. 2.2) is called the Bellman optimality equation [6]. The optimal

policy π∗ is the one maximising the Q-function:

π∗(st) = arg max
ut

∈U(st)

Q∗(st,ut) ∀t

A variation to value iteration (eq. 2.1) is a so-called policy iteration [42, 89],

which directly takes the policy into account. Here, the value function is deter-

mined by doing a policy evaluation for a given policy πi (i, k ∈ N):

V πi

k+1(st) =
∑

st+1∈S

Tr(st+1|ut, st) [R(st+1) + γV πi

k (st+1)] ∀t

In fact, this is simply the expected infinite discounted reward, which will be gained

when following policy πi. In practical applications the equation is iterated until

|V πi

k+1(st) − V πi

k (st)| < ε ∀t, with ε > 0. In a second step policy iteration de-

termines whether this value could be improved by changing the immediate action

taken. This results in the following policy update:

πi+1(st) = arg max
ut

∈U(st)





∑

st+1∈S

Tr(st+1|ut, st) [R(st+1) + γV πi(st+1)]



 ∀t

The two steps are iterated until the policy becomes stable, i.e. πi = πi+1.

Comparing value and policy iteration it has been shown in practice that the

first is much faster per iteration but the latter needs fewer iterations. For both,

justifications have been brought up, why they are better suited for large problems.

Also modifications, especially with a focus on speed, have been developed [42].

Due to the requirement of a perfect model the standard DP algorithms are only

of limited utility for extensive RL or control problems. Still, they serve as a basis

for a couple of further developed methods, e.g. in combination with feedforward

neural networks [11]. Moreover, they can been seen as the foundation of modern

reinforcement learning [89].
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2.4 Reinforcement Learning Methods

Several different RL methods have been developed over the last years. A good

introduction can be found in the book of Sutton and Barto [89]. In the following

a couple of algorithms are presented, which are either used as a benchmark in the

experiments of chapters 4 and 5 or are required as a reference.

There are many different ways to classify RL methods. A principle distinction

can be made between table-based and function approximation methods. Table-

based methods store the value of each state-action combination within a table. As

the size of the table is computationally limited, those methods are mainly applied

to RL problems with a low-dimensional discrete state space. Examples are Q-

learning (sec. 2.4.2) and adaptive heuristic critic (sec. 2.4.3). In contrast, function

approximation methods learn a mapping from state-action pairs to their respective

value. Those methods can be easier applied to higher dimensions and continuous

state and action pairs. Examples for those are temporal difference (TD-) methods

(sec. 2.4.1) on local basis functions [89] or with neural networks [91, 92] as well

as neural fitted Q-iteration [68].

Another important distinction can be made between model-free and model-

based algorithms. In short, model-free methods learn a controller without learn-

ing a model, i.e., without using the transition function Tr. They directly learn

from the available data without making a detour by building a model. This makes

them generally fast and also easy to implement. Model-based methods however

learn a model first and then use it to derive a controller. This requires additional

computation but makes them generally more data-efficient and hence better ap-

plicable to extensive real-world problems like a gas turbine (chap. 5), which can

hardly be controlled directly out of the available data. TD-learning (sec. 2.4.1)

and also Q-learning (sec. 2.4.2) for example are model-free whereas DP (sec. 2.3)

and prioritised sweeping (PS) (sec. 2.4.4) are model-based.

2.4.1 Temporal Difference Learning

Temporal difference (TD) learning [88] can be seen as a combination of dynamic

programming (sec. 2.3) and Monte-Carlo [52] ideas, as its methods bootstrap like

DP and directly learn from raw experience without a model of the dynamics [89].

Hence, in contrast to standard DP (sec. 2.3), TD-learning is model-free. In fact,

the iteration over the value function is done without any knowledge of the underly-

ing dynamics, i.e. the transition function is not explicitly taken into account. TD-

learning served as a basis for many further developed algorithms like Q-learning

(sec. 2.4.2) or SARSA [89]. They all focus on improving the basic method for

a certain problem class. Therefore standard TD-learning is rarely applied but the

extended algorithms are of high value for solving RL problems.
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The standard update rule for TD-learning is defined as

V (st)← V (st) + α[R(st+1) + γV (st+1)− V (st)]

with a learning rate α ∈ [0, 1], which can either be fixed or variable [89].

TD-learning can either be implemented table-based or with function approxi-

mation [89, 91, 92].

2.4.2 Q-Learning

Q-learning [93] represents an off-policy TD-algorithm and is considered to be

one of the ”most important breakthroughs in RL” [89]. Off-policy means that

in contrast to standard TD-learning (sec. 2.4.1) the algorithm iterates without the

assumption of a specific policy. It rather assumes that every state-action pair is

performed infinitely often, independent of a particular policy. In its original form

Q-learning is table-based. The different Q-values are all stored in a table, which

is updated during every iteration. As Q-learning is based on TD-learning it is also

model-free, which means that no knowledge about the underlying dynamics is

required. Its update rule is defined as follows:

Q(st,ut)← Q(st,ut) + α

(

R(st+1) + γ max
ut+1

∈U(st+1)

Q(st+1,ut+1)−Q(st,ut)

)

At hitherto, the learning rate α ∈ [0, 1] can be fixed or variable, which mainly

is a trade-off between efficiency and accuracy. Convergence can only be guaran-

teed with a decreasing α. Still, this is based on the assumption that the number of

observations goes to infinity. Since one focus of this thesis is data-efficiency, this

theoretic result is of minor interest. Hence, for the experiments in chapters 4 and

5 the learning rate is kept fixed.

Again, several extensions have been developed for Q-learning. Most important

is the replacement of the table by function approximation. In connection with

neural networks, especially neural fitted Q-iteration [68] has shown remarkable

results. Here the Q-values are approximated by a feedforward neural network

(eq. 3.1). In contrast to similar approaches past-time transition triples (st,ut, st+1)
are stored and reused. The updates are done offline on the basis of a batch of

transition triples, which are provided as inputs to the neural network. Thus, the

method significantly improves the learning quality and data-efficiency.

2.4.3 Adaptive Heuristic Critic

The adaptive heuristic critic algorithm (AHC) [5, 72] is an adaptive and model-

free version of policy iteration (sec. 2.3), in which the value function is computed
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by TD-learning. Similar to this, the process of learning the policy is separated

from learning the value function. Basically the algorithm consists of two com-

ponents, a critic and a controller part. The controller determines the policy π by

maximising the heuristic value function V π determined by the critic. The critic

however learns the value function V π, given the policy determined by the con-

troller. In contrast to policy iteration, this is mostly done simultaneously although

only the alternating implementation has shown to converge under appropriate con-

ditions [100].

The AHC belongs to the class of actor-critic methods [45, 89]. Those all apply

the same principle by separating the learning of the value function and the one of

the controller. Over the last years all sorts of algorithms have been applied for

both components, two even with kinds of recurrent neural network [4, 62]. A

discussion on those is given in chapter 4.

2.4.4 Prioritised Sweeping

Prioritised Sweeping (PS) [55] is a model-based approach, which aims for the

advantages of both DP (sec. 2.3) and TD-learning (sec. 2.4.1). The algorithm is

very close to DP respectively value iteration (eq. 2.1) with the important difference

that a backup is only done for the values of those states whose estimated value

is changing significantly. For this PS keeps a list of states, prioritised by the

size of their changes. When the top state in the list is updated, the effect on

each of its predecessors is computed. If the effect is greater than some small

threshold, the pair is inserted in the list or updated with the new priority. In this

way the effects of changes are efficiently propagated backwards until some kind of

convergence [89]. In doing so, the algorithm needs less computation and is hence

much faster than standard DP. This is important when the number of states is

increasing. Still, PS is generally implemented table-based, which limits its use for

high-dimensional, real-world applications, e.g. control of a gas turbine (chap. 5).

2.4.5 Policy Gradient Methods

Policy gradient methods [90] represent the policy itself by a function approxima-

tor, which is independent of the value function and only updated according to the

gradient information of the expected reward with respect to the policy parame-

ters. By contrast to actor-critic methods (sec. 2.4.3), policy gradient methods not

even make use of the value function. They directly search in the policy space.

This resolves the disadvantage that a small shift of the value function can re-

sult in a decisive change of the policy. In contrast to value function approaches,

policy gradient methods circumvent those discontinuities by learning the policy

directly. Furthermore, they are known to be robust and to behave well in partially
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observable domains [45, 64, 90]. Still, they usually base on Monte-Carlo esti-

mations of the discounted future rewards [89], which implies that they are hardly

data-efficient. Latest results and examples for different kinds of policy gradient

methods can be found in [59, 70]. Besides, a conjunction of actor-critic and policy

gradient methods forms the natural actor-critic method [60].

Also the in chapter 4 developed recurrent control neural network can be clas-

sified as a form of policy gradient method. A deeper discussion on this is given in

section 4.4.

2.5 Classification of the Regarded RL Problems

There is a huge variety of RL-problems, depending on the respective setting and

the underlying objective. In the following the regarded problem class of the thesis

is described in detail and it is pointed out where the existing methods (sec. 2.4)

have drawbacks or even fail to produce satisfactory results. Practical applica-

tions, like the control of a gas turbine, mainly show four important characteristics:

High-dimensionality, partial-observability, continuous state and action spaces and

a limited amount of training data, which in turn requires data-efficiency.

2.5.1 High-Dimensionality

In practical applications high-dimensionality usually comes out of the large

amount of parameters, which influence the (extensive) dynamics of the regarded

RL-problem in one way or the other. Reducing the amount by e.g. feature selec-

tion might result in a loss of important information. In addition, as the amount of

data is often limited (sec. 2.5.4), it will be of advantage to take into account most

of the available information concerning states and actions. For that reason RL

methods, which are able to deal with high dimensions and which are easily scal-

able, are required. This basically excludes all table-based methods, as those are

not representable in large dimensions. Rather an accurate and efficient function

approximation is needed.

2.5.2 Partial-Observability

In plant control often several hundreds of state space variables (sec. 2.5.1) are

measured. Still, those are mostly insufficient to fully describe the system be-

haviour. In other words, real-world applications are generally partially observable

because it is either impossible or too expensive to observe all corresponding infor-

mation. In those cases an optimal system identification of the underlying dynam-

ics is beneficial. Hence, model-based approaches are of advantage as they first
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reconstruct the system’s dynamics out of the observed data. However, the quality

of the model is crucial, as otherwise every policy learnt will be sub-optimal.

2.5.3 Continuous State and Action Spaces

Discrete state and action spaces, whereon most RL-methods focus, are rare in

real-world problems. In most cases both are continuous. Table-based methods can

handle those only with an appropriate discretisation, which tampers the problem.

An appropriate function approximation is therefore of avail.

2.5.4 Data-Efficiency

In real-world applications the amount of available data is generally limited.

Consequently, data-efficiency and generalisation capability are important require-

ments. It is hence of advantage to take the observed trajectories fully into account

and to use them as efficient as possible. So far, most approaches with a focus

on data-efficiency like least-squares policy-iteration [46] have the disadvantage

of not being directly applicable in partially observable environments. They also

possess practical limitations while applying them on continuous action spaces.

Classifying the presented RL methods (sec. 2.4) analogue to figure 1.1 accord-

ing to the four characteristics one achieves the following graphical representation:
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Figure 2.4: Classification of the presented RL methods according to the four char-

acteristics of the regarded RL problem class. For simplicity high dimen-

sionality, partial observability and continuous state and action spaces are

again clustered as complex.



”The art of model-building is the exclusion of real but

irrelevant parts of the problem, and entails hazards for

the builder and the reader. The builder may leave out

something genuinely relevant; the reader, armed with

too sophisticated an experimental probe or too accurate

a computation, may take literally a schematised model

whose main aim is to be a demonstration of possibility.”

P. W. Anderson (from Nobel acceptance speech, 1977)
CHAPTER 3

System Identification with Recurrent

Neural Networks

System identification comprehends the process of learning a model out of an avail-

able amount of observed system data. Thereby it is of importance to capture the

main developments of the underlying system and hence to be able to generalise,

i.e. to explain the system evolvement beyond the observed data region. For this,

one needs amongst others to be able to build up memory, to learn long-term de-

pendencies, capture non-linearities and deal with high dimensions.

Basic time delay recurrent neural networks were already applied to system

identification in 1990 by Elman [17]. Similar types of recurrent networks were

developed in parallel by Williams and Zipser [101] or Giles et al. [23]. These

networks marked a starting point in system identification with recurrent neural

network research, as they seemed to offer the mentioned abilities. However, a

couple of problems, like the learning of long-term dependencies or the efficient

training of the networks, still had to be solved. For this reason various kinds of

recurrent networks have been developed, by what today the expression ”recurrent

neural network” is not clearly defined in literature. Although, they are all more

or less based on neural network techniques, their structure and functioning differs

substantially.

The recurrent neural networks (RNN) used in this thesis are in state space

model form. Their structure is based on the principle of finite unfolding in time

and a shared weight extension of the backpropagation algorithm. The focus is

on the mathematical modelling and the development of architectures instead of

new algorithms. However, Zimmermann [103, 111] could show that a network

architecture automatically implies the use of an adjoint solution algorithm for the

respective parameter identification problem. This correspondence between archi-

tecture and equations holds for simple as well as extensive network architectures

[106]. The application of backpropagation further allows for an easy extension

19
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of the networks, as the algorithm is local in the sense that all necessary informa-

tion is calculated at the affected place, which implies that no global information

storage is required. This has the advantage that training becomes more efficient

and that the networks can be adapted according to the regarded problem setting.

In doing so, one not only learns from data but can also integrate prior knowledge

into the modelling in form of architectural concepts. Moreover, in contrast to lin-

ear function approximators on local basis functions or with fixed local properties,

the proposed RNN have the advantage that by using global, sigmoidal activa-

tion functions, they are well able to cope with higher dimensions. Thus, they

are suited to break the curse of dimensionality [7]. It is further shown that they

are universal approximators and that they are well able to learn long-term depen-

dencies. These aspects are particularly important for the new connection with

reinforcement learning (chap. 4). So far, the outlined RNN architectures have

been mainly used for forecasting of e.g. foreign exchange rates or energy prices

[104, 107, 110]. However, one can profit from the developments and experiences

in this field for their application to RL problems (sec. 1.1).

Other recurrent networks, which have been developed with the particular in-

tention to overcome the problems of basic time-delay recurrent neural networks

[17, 23, 101] are for example echo-state [39, 40] and long short-term memory

(LSTM) networks [22, 37]. Echo-state networks [39, 40] are constructed like

feedforward neural networks, whereby the neurons in the hidden layer have re-

current but fixed connections. The only part that is learnt is a linear connection

between hidden and output layer. This allows for a fast training, but leaves out the

possibility to learn non-linearities, i.e., to adapt the features defined by the hidden

layer. The input data is simply increased to a higher dimensional recurrent hidden

layer, wherefrom the required information is taken to explain the desired output.

Therefore, echo state networks can also be seen as a special form of linear feature

selection. LSTM networks [22, 37] have again a completely different structure.

Those networks possess so-called memory cells, which act as an additional layer

to the network and store the essential inter-temporal information. They have been

developed with a special focus on long-term learning, like in speech recognition

[81]. However, despite their success in certain problem classes, in comparison

to RNN they are not able to integrate prior knowledge into the modelling and to

adapt the network accordingly. An overview of further developments on recurrent

neural networks can be found in the books of Haykin [33, 34], Kolen and Kremer

[44], Medsker and Jain [51], and Soofi and Cao [85].

In the following the outlined RNN are presented in detail. In preparation for

this, first feedforward neural networks are briefly described (sec. 3.1). This is

necessary as they serve as a basis for RNN. Besides, they are used to model the

policy in the developed recurrent control neural network (sec. 4.4). In section

3.2 RNN are introduced. Subsequent to that it is proven that RNN are universal
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approximators in the sense that they can approximate any open dynamical system

(sec. 3.3). In section 3.4 the learning of RNN is described and analysed. Here,

it is especially shown that RNN are well able to learn long-term dependencies.

As already pointed out, being able to universally approximate and to learn long-

term dependencies are key requirements for the aspired connection of RNN with

reinforcement learning (chap. 4). Finally in section 3.5 a number of practical

issues are discussed, which have shown to be very useful for RNN modelling.

3.1 Feedforward Neural Networks

Multi-layer feedforward neural networks (FFNN), also called multi-layer percep-

trons (MLP), basically consist of an input, a number of hidden, and an output

layer. Between the different layers there is a weighted forward directed informa-

tion flow from the input layer over the hidden to the output layer. There are no

backward connections between or within the layers [33], which means that the

output of one layer cannot be used as an input to a previous or the same one.

FFNN therefore mainly serve for a static information processing or respectively

pattern matching.

Consider a three-layered FFNN, which is per definition composed of an input,

one hidden and an output layer. Let x1, . . . ,xt, . . . ,xT , with xt ∈ R
I and I ∈ N,

and y1, . . . ,yt, . . . ,yT , with yt ∈ R
N and N ∈ N, be the measured or given input

and respectively output data. Again, T ∈ N denotes the number of regarded data

patterns. Further, let J̄ ∈ N be the dimension of the single hidden layer.

A three-layered FFNN can then be represented by the following equation

ȳt = V · f(W · xt − θ) ∀t = 1, . . . , T , (3.1)

where W = (wji) j=1,...,J̄

i=1,...,I

∈ R
J̄×I and V = (vnj)n=1,...,N

j=1,...,J̄

∈ R
N×J̄ are the weight

matrices between input and hidden and respectively hidden and output layer, θ ∈
R

J̄ is a bias, which handles offsets in the inputs, and f(·) : R
J̄ → R

J̄ an arbitrary,

but generally sigmoid (defn. 3.3), (non-linear) activation function.

Here, in short, the information flow proceeds as follows: The input vector xt

is transferred from the input layer to the hidden layer by a multiplication with the

weight matrix W . There, the neurons are mapped by the activation function f(·).
Finally the network’s output ȳt ∈ R

N is calculated according to the weight matrix

V [33].

The network is trained by comparing its outputs ȳt with the given target values

yt and adapting the weights such that the error, i.e. the deviation between output

and target, becomes minimal (sec. 3.4). Therefore, neural networks in general

belong to the class of supervised learning.
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Remark 3.1. The hyperbolic tangent, tanh, has shown to be very suitable as an

activation function for most networks and applications due to its characteristics

like non-linearity, differentiability and its codomain (−1, 1), which allows posi-

tive and negative forward (and backward) flows within the network. The latter

corresponds to positive and negative influences of the weights on the next network

layer. Still, any other (sigmoid) activation function (def. 3.3) could be applied.

In any case it is important to note that in the context of artificial neural net-

works the computation of the activation function f(·) : R
J̄ → R

J̄ is defined

component-wise, i.e.,

f(Wxt − θ) :=















f(W1 · xt − θ1)
...

f(Wj · xt − θj)
...

f(WJ̄ · xt − θJ̄)















(3.2)

where Wj (j = 1, . . . , J̄) denotes the j − th row of the matrix W .

It has been proven that a three-layered feedforward neural network (eq. 3.1)

is already able to approximate any measurable function on a compact domain

with an arbitrary accuracy [15, 19, 38]. The main steps of the respective proof of

Hornik, Stinchcombe and White [38] are given in section 3.3.1.

However, a disadvantage of FFNN is their lack of recurrence, which limits

the incorporation of inter-temporal dependencies. By construction they can only

perform a pattern matching from inputs to outputs, which makes their application

to (non-Markovian) dynamical systems questionable.

3.2 Recurrent Neural Networks

System identification with recurrent neural networks (RNN) originally refers to

open dynamical systems (fig. 3.1), which are analogue to equation 1.1 described

as a set of equations, consisting of a state transition and an output equation:1

st+1 = g(st,xt) state transition

yt = h(st) output equation
(3.3)

where g : R
J × R

I → R
J , with J ∈ N, is a measurable and h : R

J → R
N

a continuous function, xt ∈ R
I represents the external inputs, st ∈ R

J the inner

states and yt ∈ R
N the output of the system [79]. The state transition is a mapping

1Alternative descriptions can be found in [79].
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from the internal hidden state of the system st and the external inputs xt to the

next state st+1. The output equation computes the observable output yt out of the

current state st [33, 109].

System
Dynamical

x

y

s

Figure 3.1: Open dynamical system with input x, hidden state s and output y.

The system can be seen as a partially observable autoregressive dynamic state

transition st → st+1 that is also driven by external forces xt. Without the external

inputs the system is called an autonomous system [33, 49]. However, most real-

world systems are driven by a superposition of an autonomous development and

external influences.

The task of identifying the open dynamical system of equation 3.3 can be

stated as the problem of finding (parametrised) functions ḡ and h̄ such that a dis-

tance measurement (eq. 3.4) between the observed data yt and the computed data

ȳt of the model is minimal:2

T
∑

t=1

‖ȳt − yt‖2 → min
ḡ,h̄

(3.4)

If one makes the assumption that the state transition does not depend on st, i.e.,

yt = h(st) = h(g(xt−1)), one is back in the framework of FFNN (sec. 3.1). How-

ever, the inclusion of the internal hidden dynamics makes the modelling task much

harder, because it allows varying inter-temporal dependencies. Theoretically, in

the recurrent framework an event in state st+1 is explained by a superposition of

external inputs xt,xt−1, . . . from all the previous time steps [33].

The identification task of equations 3.3 and 3.4 can be easily modelled by a re-

current neural network. Again, let therefore I , J̄ , and N ∈ N denote respectively

the number of input, hidden and output neurons. For discrete time the basic RNN

is depicted as follows [33, 109]:

s̄t+1 = f(As̄t + Bxt − θ) state transition

ȳt = C s̄t output equation
(3.5)

2For other error functions see [57].
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Here, the (non-linear) state transition equation s̄t+1 ∈ R
J̄ (t = 1, . . . , T where

T ∈ N is the number of available patterns) is a non-linear combination of the

previous state s̄t ∈ R
J̄ and the external influences xt ∈ R

I using weight matrices

A ∈ R
J̄×J̄ and B ∈ R

J̄×I , and a bias θ ∈ R
J̄ , which handles offsets in the input

variables xt ∈ R
I . Note that the (non-linear) activation function f is applied

component-wise (eq. 3.2). The network output ȳt ∈ R
N is computed from the

present state s̄t ∈ R
J̄ employing matrix C ∈ R

N×J̄ . It is therefore a non-linear

composition applying the transformations A, B, and C. Note here that the state

space of the RNN s̄t ∈ R
J̄ (eq. 3.5) generally does not have the same dimension

as the one of the original open dynamical system st ∈ R
J (eq. 3.3), i.e., in most

cases it is J̄ 6= J . This basically depends on the system’s complexity and the

desired accuracy.

Training the RNN of equation (3.5) is equivalent to the described system iden-

tification (eq. 3.4) by specifying the functions ḡ and h̄ as a recurrent neural net-

work with weight matrices A, B, and C and a bias vector θ. In doing so, the

system identification task of equation 3.4 is transformed into a parameter optimi-

sation problem:

T
∑

t=1

‖ȳt − yt‖2 → min
A,B,C,θ

(3.6)

In section 3.3.2 it is proven that RNN (eq. 3.5) are universal approximators,

as they can approximate any open dynamical system (eq. 3.3) with an arbitrary

accuracy.

3.2.1 Finite Unfolding in Time

The parameter optimisation problem of equation 3.6 can be solved by finite un-

folding in time using shared weight matrices A, B, and C [33, 71]. Shared weights

share the same memory for storing their weights, i.e., the weight values are the

same at each time step of the unfolding τ ∈ {1, . . . , T} and for every pattern t
[33, 71]. This guarantees that the dynamics stays the same in every time step. A

major advantage of RNN written in form of a state space model (eq. 3.5) is the

explicit correspondence between equations and architecture. It is easy to see that

by using unfolding in time the set of equations 3.5 can be directly transferred into

a spatial neural network architecture (fig. 3.2) [33, 71]. Here, circles indicate the

different clusters, whereat the hidden layer s̄τ also includes the (non-linear) tran-

sition function. Connections stand for the addition of the neurons of one layer (or

the bias) to another one, respectively multiplied by one of the weight matrices.

The recurrence of the system is approximated with a finite unfolding, which

truncates after a certain number of time steps m− ∈ N. Hereby, the determination
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Figure 3.2: RNN with finite unfolding in time using shared weight matrices A, B

and C: The recurrent network on the left is transferred to the spatial

architecture on the right. Here, circles represent the different clusters,

whereas connections stand for the addition of one layer (or the bias)

to another one, respectively multiplied by one of the weight matrices.

The dashed connection and (. . .) indicate that the network can be finitely

further unfolded into the past.

of the correct amount of past time information needed to predict yt+1 can be de-

termined by a simple heuristic. Since the outputs are explained by more and more

external information, the error of the outputs is decreasing with each additional

time step from left to right until a minimum error is achieved. This saturation

level indicates the maximum number of time steps m−, which contribute relevant

information for modelling the present time state [109].

The unfolded RNN shown in figure 3.2 (right) can be trained with a shared

weights extension of the standard backpropagation algorithm (sec. 3.4.1). Due to

unfolding in time in comparison to equation 3.6 the corresponding optimisation

problem is only slightly altered into:

T
∑

t=m−

t+1
∑

τ=t−m−

‖ȳτ − yτ‖2 → min
A,B,C,θ

(3.7)

In contrast to typical FFNN (sec. 3.1), RNN are able to explicitly build up

memory. This allows the identification of inter-temporal dependencies. Further-

more, RNN contain less free parameters. In a FFNN an expansion of the delay

structure automatically increases the number of weights (fig. 3.3, left). In the

recurrent formulation, the shared matrices A, B, and C are reused when more

delayed input information from the past is needed (fig. 3.3, right).

Additionally, if weights are shared more often, more gradient information is

available for learning due to the numerous error flows when using backpropaga-

tion (sec. 3.4.1). As a consequence, potential overfitting is not as dangerous in
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Figure 3.3: Comparison of feedforward and recurrent neural networks: An addi-

tional time step leads in the feedforward framework (left) to a higher

dimension of the input layer, whereas the number of free parameters re-

mains constant in RNN (right) due to the use of shared weights.

recurrent as in feedforward networks, which in turn implies that RNN are better

able to generalise. Moreover, due to the inclusion of temporal structure in the

network architecture, RNN are applicable to tasks where only a small training set

is available [109]. This qualifies their application for data-efficient RL.

3.2.2 Overshooting

In its simplest form RNN unfolded in time only provide a one-step prediction of

the variable of interest, ȳt+1 (fig. 3.2). Especially with regard to RL but also for

other decision support systems or simply multi-step forecasting this is generally

insufficient. Most often one wants to evaluate the system’s performance over a

certain period of time and hence needs a sequence of forecasts as an output. An

obvious generalisation of the network in figure 3.2 is therefore the extension of

the autonomous recurrence coded in matrix A, i.e., matrices A and C are further

iterated into future direction t + 1, t + 2, . . . [109]. The number of autonomous

iterations into the future, which is defined with m+ ∈ N, most often depends

on the required forecast horizon of the application, but can also be determined

analytically by regarding the error flow. The later can be done analogue to the de-

termination of the number of optimal unfolding steps into the past m− (sec. 3.2.1)

[109]. Note again that overshooting does not add new parameters, since the shared

weight matrices A and C are reused.

Altogether an RNN with overshooting can be described by the following set

of equations:

s̄τ+1 = f(As̄τ + Bxτ − θ) ∀τ ≤ t
s̄τ+1 = f(As̄τ − θ) ∀τ > t

ȳτ = C s̄τ

(3.8)
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Figure 3.4 depicts the corresponding network architecture. Here, the dotted

connections indicate that the network can be (finitely) further unfolded into past

and future.
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Figure 3.4: Overshooting extends the autonomous part of the dynamics into future

direction.

The most important property of the overshooting network (fig. 3.4) is the con-

catenation of an input-driven system and an autonomous system. One may argue

that the unfolding-in-time network (fig. 3.2) already consists of recurrent func-

tions and that this recurrent structure has the same modelling characteristics as

the overshooting network. This is not the case as the learning algorithm leads

to different models for each of the architectures. Learning with backpropagation

usually tries to model the relationship between the most recent inputs and the lat-

est output because the fastest adaptation takes place in the shortest path between

input and output [35]. Thus, the learning of yt+1 mainly focuses on xt. Only later

in the training process learning will also extract useful information from input

vectors xτ (t −m− ≤ τ < t), which are more distant from the output. As a con-

sequence, the simple RNN unfolded in time (fig. 3.2, right) tries to rely as much

as possible on the part of the dynamics that is driven by the most recent inputs

xt, . . . ,xt−k with k < m−. In contrast, the overshooting network (fig. 3.4) forces

learning to focus on modelling the autonomous dynamics of the system, i.e., it

supports the extraction of useful information from input vectors that are more dis-

tant to the output [109]. In extension to equation 3.7 the complete optimisation

problem for an RNN unfolded in time and with overshooting is

T−m+
∑

t=m−

t+m+
∑

τ=t−m−

‖ȳτ − yτ‖2 → min
A,B,C,θ

(3.9)

In summary, overshooting generates additional valuable forecast information

about the analysed dynamical system and stabilises learning. It also further en-

hances the generalisation ability of the RNN.
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3.2.3 Dynamical Consistency

RNN with overshooting have the problem of unavailable external information xτ

in the overshooting part (τ > t) of the network. Those are simply set to zero.

This might form a gap in the input information between past and future part of the

network, if it doesn’t correspond to the expected value of the inputs. Even then

neglecting the missing influences of future inputs is equivalent to the assumption

that the environment of the dynamics stays constant or respectively that the ex-

ternal influences are not significantly changing, when the network is iterated into

future direction. In other words the networks are not dynamically consistent [106].

Considering external variables with a high impact on the dynamics of interest like

control parameters, this becomes questionable. Especially in long-term forecasts,

it might lead to bad generalisation abilities.

RNN with dynamically consistent overshooting solve this problem by fore-

casting not only the variables of interest yτ but all environmental data xτ and

using the network’s own predictions for those, x̄τ , as a replacement for the un-

known future inputs xτ (τ > t). In doing so the expected future development

of the environment gets integrated into the modelling and the networks become

dynamically consistent. As a side effect this allows for an integrated modelling of

the dynamics of interest. Analogue to equations 3.8 and 3.9 RNN with dynami-

cally consistent overshooting can be described by the following set of equations

(eq. 3.10). Here, for τ ≤ t the state transition uses the available external infor-

mation xτ as inputs, whereas in the future part (τ > t) this gets replaced by the

network’s own predictions x̄τ .

s̄τ+1 = f(As̄τ + Bxτ − θ) ∀τ ≤ t
s̄τ+1 = f(As̄τ + Bx̄τ − θ) ∀τ > t

x̄τ = C s̄τ

T−m+
∑

t=m−

t+m+
∑

τ=t−m−

‖x̄τ − xτ‖2 → min
A,B,C,θ

(3.10)

Again, it can be easily represented in an architectural form (fig. 3.5), where in

the overshooting part (τ > t) of the network the (dashed) connections between

the outputs x̄τ and the states s̄τ provide dynamical consistency. Again, the dotted

connections indicate that the network can be (finitely) further unfolded into past

and future.
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Figure 3.5: RNN with dynamically consistent overshooting. The network now fore-

casts all environmental data xτ . Thus, the dashed connections between

output and hidden layer provide dynamical consistency.

3.3 Universal Approximation

In 1989 Hornik, Stinchcombe, and White [38] proved that any Borel-measurable

function on a compact domain can be approximated by a three-layered neural

feedforward network (sec. 3.1) with an arbitrary accuracy. In the same year Cy-

benko [15] and Funahashi [19] found similar results, each with different meth-

ods. Whereas the proof of Hornik, Stinchcombe, and White [38] is based on the

Stone-Weierstrass theorem [86, 94], Cybenko [15] makes in principle use of the

Hahn-Banach and Riesz theorem. Funahashi [19] mainly applies the Irie-Miyake

and the Kolmogorov-Arnold-Sprecher theorem.

Some work has already been done on the capability of RNN to approximate

measurable functions, e.g. [30]. In the following it is proven that RNN (sec. 3.2)

are able to approximate any open dynamical system with an arbitrary accuracy.

The proof is based on the work of Hornik, Stinchcombe and White [38]. Therefore

their definitions and main results are recalled in section 3.3.1.

3.3.1 Universal Approximation by FFNN

Definition 3.1. Let AI with I ∈ N be the set of all affine mappings A(x) = w·x−θ
from R

I to R with w,x ∈ R
I and θ ∈ R. ‘·’ denotes the scalar product.

Transferred to neural networks x corresponds to the input, w to the network

weights and θ to the bias.

Definition 3.2. For any (Borel-)measurable function f(·) : R→ R and I ∈ N be
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∑I(f) the class of functions

{NN : R
I → R : NN(x) =

∑J̄

j=1 vjf(Aj(x))

x ∈ R
I , vj ∈ R, Aj ∈ AI , J̄ ∈ N}.

Here NN stands for a three-layered feedforward neural network (sec. 3.1)

with I input-neurons, J̄ hidden-neurons and one output-neuron. vj denotes the

weights between hidden- and output-neurons. f is an arbitrary activation function

(sec. 3.2).

Remark 3.2. The function class
∑I(f) can also be written in matrix form

NN(x) = vf(Wx− θ)

where x ∈ R
I , v, θ ∈ R

J̄ , and W ∈ R
J̄×I .

Recall, that in this context the computation of the function f(·) : R
J̄ → R

J̄ is

defined component-wise (eq. 3.2).

Definition 3.3. A function f is called a sigmoid function, if f is monotonically

increasing and bounded, i.e.,

f(a) ∈ [α, β], whereas lim
a→−∞

f(a) = α

and lim
a→∞

f(a) = β

with α, β ∈ R and α < β.

Definition 3.4. Let CI andMI be the sets of all continuous and respectively all

Borel-measurable functions from R
I to R. Further denote B

I the Borel-σ-algebra

of R
I and (RI , BI) the I-dimensional Borel-measurable space.

MI contains all functions relevant for applications. CI is a subset of it. Con-

sequently, for every Borel-measurable function f the class
∑I(f) belongs to the

setMI and for every continuous f to its subset CI .

Definition 3.5. A subset S of a metric space (X, ρ) is ρ-dense in a subset T , if

there exists, for any ε > 0 and any t ∈ T , s ∈ S, such that ρ(s, t) < ε.

This means that every element of S can approximate any element of T with

an arbitrary accuracy. In the following T and X are replaced by CI andMI and

S by
∑I(f) with an arbitrary but fixed f . The metric ρ is chosen accordingly.

Definition 3.6. A subset S of CI is uniformly dense on a compact domain in CI ,

if, for any compact subset K ⊂ R
I , S is ρK-dense in CI , where for f, g ∈ CI

ρK(f, g) ≡ supx∈K |f(x)− g(x)|.
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Definition 3.7. Given a probability measure µ on (RI , BI), the metric ρµ :MI ×
MI → R

+ be defined as follows

ρµ(f, g) = inf{ε > 0 : µ{x : |f(x)− g(x)| > ε} < ε}.

Theorem 3.1. (Universal approximation theorem for FFNN)

For any sigmoid activation function f , any dimension I and any probability mea-

sure µ on (RI , BI),
∑I(f) is uniformly dense on a compact domain in CI and

ρµ-dense inMI .

Proof. The full proof of the theorem can be found in [38]. Its main steps are as

follows: First the theorem is proven for an extended class of functions
∑

ΠI(f),

which is defined as {F : R
I → R : F (x) =

∑J̄

j=1 vjΠ
l
k=1f(Aj(x)) x ∈

R
I , vj ∈ R, Aj ∈ AI , J̄ , l ∈ N}, by applying the Stone-Weierstrass theorem

[86, 94]. The transfer from the extended function class,
∑

ΠI(f), to the original

one,
∑I(f), is then done with the help of the trigonometric equation. According

to this, functions of the class
∑

ΠI(cos) can be rewritten in the form of
∑I(cos).

Finally, by using the cosine squasher of Gallant and White[20] it is shown that

any function of the form
∑I(cos) can be approximated by one of

∑I(f), which

proves the theorem.

The theorem states that a three-layered feedforward neural network is able to

approximate any continuous function uniformly on a compact domain and any

measurable function in the ρµ-metric with an arbitrary accuracy. The proposition

is independent of the applied sigmoid activation function f (def. 3.3), the dimen-

sion of the input space I , and the underlying probability measure µ. Consequently

three-layered FFNN are universal approximators.

Theorem 3.1 is only valid for FFNN with I input-, J̄ hidden- and a single

output-neuron. Accordingly, only functions from R
I to R can be approximated.

However with a simple extension it can be shown that the theorem holds for net-

works with a multiple output (cor. 3.1).

For this, the set of all continuous functions from R
I to R

N , I, N ∈ N, be

denoted by CI,N and the one of (Borel-)measurable functions from R
I to R

N by

MI,N respectively. The function class
∑I

gets extended to
∑I,N

by (re-)defining

the weights vj (j = 1, . . . , J̄) in definition 3.2 as N × 1 vectors. In matrix-form

the class
∑I,N

is then given by

NN(x) = V f(Wx− θ)

with x ∈ R
I , θ ∈ R

J̄ , W ∈ R
J̄×I , and V ∈ R

N×J̄ . The computation of the

function f(·) : R
J̄ → R

J̄ be once more defined component-wise (rem. 3.2).

In the following, function g : R
I → R

N has got the elements gk, k =
1, . . . , N .
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Corollary 3.1. Theorem 3.1 holds for the approximation of functions in CI,N and

MI,N by the extended function class
∑I,N

. Thereby the metric ρµ is replaced by

ρN
µ :=

∑N

k=1 ρµ(fk, gk).

Proof. [38].

Consequently three-layered multi-output FFNN are universal approximators

for vector-valued functions.

3.3.2 Universal Approximation by RNN

The universal approximation theorem for feedforward neural networks (theo. 3.1)

proves that any (Borel-)measurable function can be approximated by a three-

layered FFNN. Based on this it is now proven that RNN in state space model form

(eq. 3.5) are also universal approximators and able to approximate any open dy-

namical system (eq. 3.3) with an arbitrary accuracy. The proof resolves a couple of

major difficulties. First the results for FFNN approximating functions (sec. 3.3.1)

has to be transferred to RNN mapping open dynamical systems. Here, especially

the effect of recurrence has to be taken into account. One also has to pay attention

at the different dimensions. Furthermore, the output equation of the open dynam-

ical system (eq. 3.3) is in contrast to the one of the RNN (eq. 3.5) non-linear.

Therefore its non-linearity has to be incorporated into the state equation of the

RNN.

Definition 3.8. For any (Borel-)measurable function f(·) : R
J̄ → R

J̄ and

I, N, T ∈ N be RNN I,N(f) the class of functions

s̄t+1 = f(As̄t + Bxt − θ)
ȳt = C s̄t .

Thereby be xt ∈ R
I , s̄t ∈ R

J̄ , and ȳt ∈ R
N , with t = 1, . . . , T . Further be the

matrices A ∈ R
J̄×J̄ , B ∈ R

J̄×I , and C ∈ R
N×J̄ and the bias θ ∈ R

J̄ . In the

following, analogue to remark 3.2, the calculation of the function f be defined

component-wise, i.e.,

(̄st+1)j = f(Aj s̄t + Bjxt − θj),

where Aj and Bj (j = 1, . . . , J̄) denote the j − th row of the matrices A and B
respectively.

It is obvious that the class RNN I,N(f) is equivalent to the RNN in state space

model form (eq. 3.5). Analogue to its description in section 3.2 as well as defini-

tion 3.2, I stands for the number of input-neurons, J̄ for the number of hidden-

neurons and N for the number of output-neurons. xt denotes the external inputs,
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s̄t the inner states and ȳt the outputs of the RNN (t = 1, . . . , T ). The matri-

ces A, B, and C correspond to the weight-matrices between hidden- and hidden-,

input- and hidden-, and hidden- and output-neurons. f is an arbitrary activation

function.

Theorem 3.2. (Universal approximation theorem for RNN)

Let g : R
J × R

I → R
J be measurable and h : R

J → R
N be continuous, the

external inputs xt ∈ R
I , the inner states st ∈ R

J , and the outputs yt ∈ R
N

(t = 1, . . . , T ). Then, any open dynamical system of the form

st+1 = g(st,xt)
yt = h(st)

can be approximated by an element of the function class RNN I,N(f) (def. 3.8)

with an arbitrary accuracy, where f is a continuous sigmoidal activation function

(def. 3.3).

Proof. The proof is given in two steps. Thereby the equations of the dynamical

system are traced back to the representation by a three-layered FFNN.

In the first step, it is concluded that the state space equation of the open dy-

namical system, st+1 = g(st,xt), can be approximated by a neural network of the

form s̄t+1 = f(As̄t + Bxt − θ) for all t = 1, . . . , T .

Let now be ε > 0 and f : R
J̄ → R

J̄ be a continuous sigmoid activation

function. Further let K ⊂ R
J × R

I be a compact set, which contains (st,xt)
and (̄st,xt) for all t = 1, . . . , T . From the universal approximation theorem for

FFNN (theo. 3.1) and the subsequent corollary (cor. 3.1) it is known that for any

measurable function g(st,xt) : R
J × R

I → R
J and for an arbitrary δ > 0, a

function

NN(st,xt) = V f(W st + Bxt − θ̄),

with weight matrices V ∈ R
J×J̄ , W ∈ R

J̄×J and B ∈ R
J̄×I and a bias θ̄ ∈ R

J̄

exists, such that

sup
st,xt∈K

‖g(st,xt)−NN(st,xt)‖∞ < δ ∀t = 1, . . . , T. (3.11)

As f is continuous and T finite, there exists a δ > 0, such that according to the

ε-δ-criterion one gets out of equation (3.11) that for the dynamics

s̄t+1 = V f(W s̄t + Bxt − θ̄)

the following condition holds

‖st − s̄t‖∞ < ε ∀ t = 1, . . . , T. (3.12)
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Further let

s′t+1 := f(W s̄t + Bxt − θ̄)

which gives that

s̄t = V s′t. (3.13)

With the help of a variable transformation from s̄t to s′t and the replacement A :=
WV (∈ R

J̄×J̄), one gets the desired function on state s′t:

s′t+1 = f(As′t + Bxt − θ̄) (3.14)

Remark 3.3. The transformation from s̄t to s′t might involve an enlargement of

the internal state space dimension.

In the second step it is shown that the output equation yt = h(st) can be

approximated by a neural network of the form ȳt = C s̄t. Thereby one has to

cope with the additional challenge, to approach the non-linear function h(st) of

the open dynamical system by a linear equation C s̄t.

Let ε̃ > 0. As h is continuous per definition, there exists an ε > 0, such

that (according to the ε-δ-criterion) out of ‖st − s̄t‖∞ < ε (eq. 3.12) follows that

‖h(st) − h(̄st)‖∞ < ε̃. Consequently it is sufficient to show that ŷt = h(̄st) can

be approximated by a function of the form ȳt = C s̄t with an arbitrary accuracy.

The proposition then follows out of the triangle inequality.

Once more the universal approximation theorem for FFNN (theo. 3.1) and the

subsequent corollary (cor. 3.1) are used, which gives that equation

ŷt = h(̄st)

can be approximated by a feedforward neural network of the form

ȳt = Nf(M s̄t − θ̂)

where N ∈ R
N×Ĵ and M ∈ R

Ĵ×J be suitable weight matrices, f : R
Ĵ → R

Ĵ

a sigmoid activation function, and θ̂ ∈ R
Ĵ a bias. According to equations (3.13)

and (3.14) it is known that s̄t = V s′t and s′t = f(As′t−1 +Bxt−1− θ̄). By insertion

one gets

ȳt = Nf(M s̄t − θ̂)

= Nf(MV s′t − θ̂)

= Nf(MV f(As′t−1 + Bxt−1 − θ̄)− θ̂). (3.15)

Using again theorem 3.1 equation (3.15) can be approximated by

ỹt = Df(Es′t−1 + Fxt−1 − θ̃) , (3.16)
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with suitable weight matrices D ∈ R
N× ¯̄J , E ∈ R

¯̄J×J̄ , and F ∈ R
¯̄J×I , a bias

θ̃ ∈ R
¯̄J , and a (continuous) sigmoid activation function f : R

¯̄J → R
¯̄J .

If one further sets

rt+1 := f(Es′t + Fxt − θ̃) (∈ R
¯̄J)

and enlarges the system equations (3.14) and (3.16) about this additional compo-

nent, one achieves the following form

(

s′t+1

rt+1

)

= f

((

A 0
E 0

)(

s′t
rt

)

+

(

B
F

)

xt −
(

θ̄

θ̃

))

ỹt = (0 D)

(

s′t
rt

)

.

Their equivalence to the original equations (3.14) and (3.16) is easy to see by a

component-wise computation.

Finally out of

J̃ := J̄ + ¯̄J, s̃t :=

(

s′t
rt

)

∈ R
J̃ ,

Ã :=

(

A 0
E 0

)

∈ R
J̃×J̃ , B̃ :=

(

B
F

)

∈ R
J̃×I ,

C̃ := (0 D) ∈ R
N×J̃ and θ :=

(

θ̄

θ̃

)

∈ R
J̃ ,

follows
s̃t+1 = f(Ãs̃t + B̃xt − θ)

ỹt = C̃ s̃t .
(3.17)

Equation (3.17) is apparently an element of the function class RNN I,N(f). Thus,

the theorem is proven.

A further extension of the proof to other open dynamical systems and nor-

malised RNN [106] can be found in [79].

3.4 Training of Recurrent Neural Networks

Training of neural networks is an important factor, as it is essential for the qual-

ity, speed and robustness in approximation of the networks. Especially with RNN

many researchers apparently see a challenge in finding an optimal training algo-

rithm and even claim that certain structures are impossible to learn with those
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networks [36]. For that reason also new recurrent networks have been developed,

like the mentioned echo-state [39] and LSTM [37] networks, which aim at cir-

cumventing the apparent learning problem. Besides many different algorithms

for recurrent but especially for feedforward neural networks have been proposed,

each with a different focus on performance improvement, e.g. [57, 58, 67, 69, 83].

To show that training of RNN is not a major problem or particularly difficult,

its main aspects are presented in this section. First the already mentioned shared

weights extension of the standard backpropagation algorithm [71, 95, 97] is briefly

explained (sec. 3.4.1). Subsequent, in section 3.4.2, two different learning meth-

ods based on the gradient calculation of the backpropagation algorithm are given.

Here, the focus is on accuracy in combination with robustness instead of speed, as

especially for system identification and reinforcement learning, the quality of the

performance is considered as the crucial issue. In section 3.4.3 finally the often

doubted and criticised aspect of long-term learning is analysed. It is shown that

RNN are in contrast to an often cited statement well able to identify and learn

long-term dependencies.

3.4.1 Shared Weight Extended Backpropagation

Originally the backpropagation algorithm was invented by Paul Werbos in his

PhD-thesis [95]. Still, it was not widely recognised until the (re-)invention of

Rumelhart and McClelland in 1986 [71]. Further developments about the algo-

rithm are summarised in [97].

The backpropagation algorithm is an efficient method for the gradient calcula-

tion of the error function with respect to the weights of a neural network. The error

gradient can then be used to optimise the network’s weights with the objective to

minimise the difference between output and target. Hereby nearly any kind of

mathematical optimisation method [24, 48] can be applied, whereas a couple, like

pattern-by-pattern (sec. 3.4.2.1) and vario-eta learning (sec. 3.4.2.2), have proven

their practicality.

For an application of the standard backpropagation algorithm to the presented

RNN only a slight modification is necessary. Due to unfolding in time and shared

weights (sec. 3.2) the principle structure of the algorithm remains unchanged [71].

The required adjustments in comparison to standard backpropagation are in

the following illustrated on the example of three-layered FFNN. Thereby, the

assumption is made that the weight matrices between input and hidden layer

W ∈ R
J̄×I with the entries wji and between hidden and output layer V ∈ R

N×J̄

with the entries vnj are shared. For two arbitrary but fixed weights wji and vnj ,

this implies that

w := wji = vnj
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Assuming the quadratic error function3

E(w) =
1

2
‖ȳ − y‖22 =

1

2

N
∑

n=1

(ȳn − yn)2 (3.18)

the global partial derivative to the weight w is derived by making use of the

product- and chain-rule:

∂E

∂w
= (ȳn − yn)

∂ȳn

∂ȳin
n

∂ȳin
n

∂vnj

+
N
∑

n=1

(ȳn − yn)
∂ȳn

∂ȳin
n

∂ȳin
n

∂s̄out
j

∂s̄out
j

∂s̄in
j

∂s̄in
j

∂wji

= (ȳn − yn)s̄out
j + f ′(s̄in

j )
N
∑

n=1

vnj(ȳn − yn)xout
i

(3.19)

Taking a deeper look at equation 3.19 it turns out that the calculation of the

global partial derivative of weight w is simply the sum of the two local ones of

the weights vnj and wji [28, 71]. Those can be easily determined by the standard

backpropagation algorithm [95, 97]. Therefore the extension of the backpropa-

gation algorithm to shared weights is simply done by adding a summation of the

respective shared local partial derivatives.

The notation of equation 3.19 can be simplified by setting

∆n = (ȳn − yn)

δj = f ′(s̄in
j )

N
∑

n=1

∆nvnj .

Using those, equation 3.19 becomes by insertion:

∂E

∂w
= ∆n · s̄out

j + δj · xout
i

Figure 3.6 depicts the extended gradient calculation. Analogue to the standard

backpropagation algorithm [95, 97], the local partial derivatives of the weights

vnj and wji are determined by the forward and backward flow of the network.

However, the local derivatives are saved separately for each weight during the

backward iteration. Not until all those are calculated, the extended algorithm de-

termines the complete partial derivative of a weight w by summing the respective

stored local ones [28, 71]. Proceeding this way also the backpropagation algo-

rithm for shared weights stays local, i.e., it only applies values calculated at the

3Here, for simplicity the pattern index t is omitted.
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Figure 3.6: Extension of the backpropagation algorithm to shared weights on the

example of a simple three-layered FFNN with the constraint that w :=
vnj = wji. For simplicity the pattern index t is omitted [28].

required position and not somewhere else in the architecture. This is important

for the extendability of the algorithm and respectively the recurrent networks.

The application of the extended backpropagation algorithm to RNN is due to

unfolding in time and the described connection to FFNN straight forward [28].

3.4.2 Learning Methods

In the following two different learning methods for neural networks are shortly

presented: pattern-by-pattern (sec. 3.4.2.1) and vario-eta learning (sec. 3.4.2.2).

For simplification, the learning rate is assumed to be fixed. In practice it is also

often either reduced manually during training or adjusted according to an algo-

rithm like simulated annealing [43]. As already pointed out, several other learning

algorithms for neural networks have been developed, like Rprop [67, 69] or rapid

stochastic gradient descent [83]. For recurrent neural networks some of them are

summarised in Pearlmutter [58]. However, the following two have shown to be

very useful for training the regarded RNN (sec. 3.2). They have the particular ad-

vantage that they implicitly posses a stochastic term, which allows to leave local
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minima for a global one. Furthermore, they both regularise learning through an

implicit penalty term, which avoids large curvature of the error curve and conse-

quently favours flat minima. This assures a good performance also under noisy

data, because it prevents that a small weight shift might result in a large increase

of the error value [57]. Besides, they are easily scalable into high dimensions and

only require local gradient information, which is both important for the extend-

ability of the networks.

3.4.2.1 Pattern-by-Pattern Learning

The pattern-by-pattern learning algorithm corresponds to (standard) gradient de-

scent [24, 48] with the important difference that the weights are updated after

each training pattern [57]. Thus, the batch size is one, which results in the follow-

ing learning rule for an arbitrary but fixed weight wl ∈ R (l = 1, . . . , L, where

L ∈ N denotes the number of weights in the network), and for each training pat-

tern t = 1, . . . , T

wl ← wl − η
∂Et

∂wl

= wl − ηglt , (3.20)

where η ∈ R
+ denotes the learning rate and glt = ∂Et

∂wl
the gradient for a pattern t

with respect to wl (sec. 3.4.1). Thereby, the pattern are generally chosen randomly

out of the training data to explore the solution space more efficiently [57].

Rewriting equation 3.20, with gl = ∂E
∂wl

= 1
T

∑T

t=1 glt as the cumulative gradi-

ent, it becomes obvious that the pattern-by-pattern learning rule exhibits a stochas-

tic component [57]:

wl ← wl − ηgl − η(glt − gl)

In this form the learning rule consists of the cumulative gradient gl, with a ten-

dency to local minima, and a perturbation term (glt − gl), which acts against it.

The latter is in contrast to gl unequal to zero in a local minima. Therefore it helps

to leave a local minimum for a global one during the learning process.

For the mentioned regularisation effect one regards the expected value of the

error function E(wl) (eq. 3.18) while learning. Around local minima one can

assume that the gradients glt are i.i.d. (independent and identically distributed)

with mean zero and a variance vector var(gl). Further assuming that the first and

second derivatives are stable close to local minima, the expected value of the error

function [E(wl)] can, by Taylor expansion, be approximated as follows

[E(wl)] ≈
1

T

T
∑

t=1

E(wl − ηglt) = E(wl) +
η2

2

L
∑

l=1

var(gl)
∂2E

∂w2
l

. (3.21)

Consequently pattern-by-pattern learning possesses an implicit local penalty

term var(gl), which represents the stability or respectively uncertainty in the
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weights wl (l = 1, . . . , L). In a local minimum the sum of the gradients of a

particular weight wl is zero, whereas the variance var(gl) can be very large. In

this case the solution is susceptible to disturbances. The regularising penalty term

now causes a tendency towards flat or stable minima and therefore decreases the

uncertainty through varying gradient information [57].

3.4.2.2 Vario-Eta Learning

The vario-eta learning rule equals to a stochastic approximation of the Newton

method [24, 48] and therefore belongs to the class of quasi-Newton methods [24,

48]. Thereby the inverse of the Hessian is approximated or respectively replaced,

by the standard deviation of the particular gradients glt for each weight wl (l =
1, . . . , L). In doing so, vario-eta uses, according to its name, a variable factor,

1√
1
T

PT
t=1(glt

−gl)2
in addition to the learning rate η [57]. Consequently an arbitrary

but fixed weight wl is updated as follows

wl ← wl −
η

√

1
T

∑T

t=1(glt − gl)2

N
∑

t=1

glt

where N ≤ T denotes the implemented batch size. The additional variable factor

effects that the learning rate is scaled according to the standard deviation of the

several gradients glt . It is increased when the standard deviation is low and de-

creased when it is high. Therefore the achievement of an optimum is accelerated

[28]. The batch size is generally kept small to achieve, analogue to pattern-by-

pattern learning (sec. 3.4.2.1), a stochastic effect during learning [28, 57].

Note that the effected re-scaling of the gradient in every time step also con-

tradicts the alleged vanishing of the gradient flow in RNN [8, 35, 36]. Here, the

scaling factor serves as a reprocessing of the error information for each weight,

independent of its position in the network [57, 109]. A more detailed analysis of

the corresponding learning of long-term dependencies is given in section 3.4.3.

Similar to pattern-by-pattern learning (sec. 3.4.2.1) also vario-eta possess a

regularisation towards stable minima. Analogue to equation 3.21, with batch size

N = 1 the weight update of this method, − η√
1
T

PT
t=1(glt

−gl)2
glt , leads to an ex-

pected value of the error function

[E(wl)] ≈
1

T

T
∑

t=1

E(wl −
η

√

1
T

∑T

t=1(glt − gl)2

glt) = E(wl) +
η2

2

L
∑

l=1

∂2E

∂w2
l

.

However, in comparison to pattern-by-pattern learning this penalty term is only

global, as the (local) variance term var(gl) has been cancelled down. This can be
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of disadvantage especially in high dimensions [57].

Due to the different properties of vario-eta and pattern-by-pattern learning, in

Neuneier and Zimmermann [57] an iterative application is proposed. Here, the

network is first trained to a minimum with vario-eta and afterwards optimised by

pattern-by-pattern learning.

3.4.3 Learning Long-Term Dependencies

Despite the presented properties and advantages of RNN unfolded in time, there

is often a negative attitude towards them. One reason is, that it has been claimed

by several authors that RNN are unable to identify and learn long-term depen-

dencies of more than ten time steps [8, 35, 36]. To overcome the stated dilemma

new forms of recurrent networks like for example the already mentioned LSTM

networks [37] were developed. Still, these networks do not offer the described

correspondence, i.e., the mutual transferability, between equations and architec-

tures as RNN unfolded in time do.

However, the analysis in the mentioned papers [8, 35, 36] were all based on

basic RNN architectures simulating closed dynamical systems, which do not con-

sider any external inputs. Even more important, they were made from a static

perspective, which means that for the presented calculations only RNN with fixed

weights were assumed whereas the effect of learning and weight adaption was

not taken into account. In the following the statement that RNN unfolded in

time and trained with a shared weight extension of the backpropagation algorithm

(sec. 3.4.1) are in general unable to learn long-term dependencies is therefore

refuted. It is shown that basic RNN (sec. 3.2) have no difficulties with an identi-

fication and learning of past-time information within the data, which is more than

ten time steps apart. In addition it is pointed out that by using shared weights,

training of these networks even helps to overcome the problem of a vanishing gra-

dient [8, 35, 36] as the networks possess a self-regularisation characteristic, which

adapts the internal error backflow.

A very simple but well-known problem is used to demonstrate the ability of

learning long-term dependencies of RNN (sec. 3.2): the prediction of periodic

indicators in a time series. Therefore time series of 10000 random values, which

are uniformly distributed on an interval [−r, r] with r ∈ R and 0 ≤ r < 1, were

created. Every d-th value, with d ∈ N is 1. By construction these time indicators

are the only predictable values for the network. Consequently, for a successful

solution to the problem the network has to remember the occurrence of the last 1,

d-time steps before in the time series. In other words, it has to be able to learn

long-term dependencies. The higher the d the longer memory is necessary. The

first 5000 data points were used for training whereas the other half served for

testing.
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Similar problems have already been studied in [35] and [37]. In both pa-

pers the performance of the thereby considered recurrent networks trained with

backpropagation through time [102] has been tested to be unsatisfactory and the

authors concluded that RNN are not suited for the learning of long-term depen-

dencies.

3.4.3.1 Model Description

An RNN (sec. 3.2) with one input xτ per time step τ ≤ t in the past and a single

output yt+1 in the future was applied. In contrast to the descriptions in section 3.2

no outputs were implemented in the past part of the network, as those would not

help to solve the problem. This implies that the gradient information of the error

function had to be propagated back from the future output to all past time steps.

It also avoided a superposition of the long-term gradient information with a local

error flow in the past. Therefore the omission of outputs in the past also eased the

analysis of the error backflow.

The network was unfolded a hundred time steps into the past. No overshooting

was implemented. This kept the RNN as simple as possible to show that even

such a basic RNN is able to learn long-term dependencies. Thus, total unfolding

amounted to 101 time steps. The dimension of the internal state s̄ was set to 100,

which was equivalent to the amount of past unfolding. Input and output were one

dimensional consisting of the time series information at a time. The architecture

of the network is depicted in figure 3.7.
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Figure 3.7: RNN architecture used for the long-term learning experiment. Accord-

ing to the problem setting it is A ∈ R
100×100, B ∈ R

100×1, C ∈ R
1×100,

and θ ∈ R
100.

The weights were initialised randomly with a uniform distribution on

[−0.2, 0.2]. In all hidden units the hyperbolic tangent was implemented as activa-

tion function f . Furthermore, the quadratic error function was used to minimise

the difference between network output and target (eq. 3.6). The RNN was trained
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with the shared weight extension of the backpropagation algorithm (sec. 3.4.1) in

combination with pattern-by-pattern learning (sec. 3.4.2.1). The learning rate η
was set to 10−4, which is a good trade-off between speed and accuracy. The learn-

ing was restricted to this rather simple algorithm to strengthen the significance of

the experiments. Otherwise also vario-eta learning (sec. 3.4.2.2) could be applied,

which, as already mentioned, inherently avoids a vanishing gradient.

3.4.3.2 Results

An error limit was defined, which marks the optimal achievable error for each

problem plus a 10% tolerance. For r > 0 it is calculated by the variance of the

uniform distribution given a certain noise range r, assuming no error for the time

indicators in every d-th time step and adding 10%. For r = 0 it is set to 0.0001,

which gives together:

error limit =

{

0.0001 for r = 0

1.1 · d−1
d
· r2

3
for r > 0

(3.22)

Table 3.1 summarises the results for different time gaps d and several noise

ranges r. It shows the median, the average number (mean) and the standard de-

viation (STD) of epochs the RNN needed to pass the error limit (eq. 3.22) on the

test set for a minimum of 15 trials each. Hereby, not the actual value but rather

the fact that the networks are able to learn the given task within a limited number

of epochs is of importance. As already pointed out, the former could most likely

be decreased by applying a problem-dependent learning method.

The results demonstrate the capability of a basic RNN to learn long-term de-

pendencies of d = 40, 60 and even 100, which is obviously more than the often

cited limit of ten time steps [36]. As expected, a larger gap d resulted in more

learning epochs for the RNN to succeed. Also a higher noise range, i.e., a larger

uniform distribution of the data, made it more challenging for the network to iden-

tify the time indicators. Still, even in more difficult settings, the RNN captured

the structure of the problem very quickly.

Using smaller dimensions for the internal state s̄ and hence for the transition

matrix A increased the number of epochs necessary to learn the problem. This is

due to the fact that the network needs a certain dimension to store long-term infor-

mation. So e.g., with a hundred dimensional matrix the network can easily store a

time gap of d = 100 in form of a simple shift register. Downsizing the dimension

forces the network to build up more complicated internal matrix structures, which

take more learning epochs to develop [78].
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# epochs RNN

time gap d range r Median Mean STD

40 0.0 27 29 19
40 0.1 41 70 103
40 0.2 27 73 114
40 0.4 93 158 168
60 0.0 131 280 348
60 0.1 132 317 362
60 0.2 298 472 482
60 0.4 596 584 284

100 0.0 50 106 231
100 0.1 30 181 319
100 0.2 23 193 318
100 0.4 123 225 273

Table 3.1: Median, average number (Mean) and standard deviation (STD) of learning

epochs the RNN needed to pass the error limit (eq. 3.22) for a minimum

of 15 trials each, i.e. to solve the problem, on the test set for different time

gaps d and noise ranges r.

3.4.3.3 Analysis of the Backpropagated Error

To put the claim of a vanishing gradient in RNN unfolded in time and trained

with backpropagation [36] into perspective the backpropagated error within the

applied networks was analysed. It turned out that under certain conditions van-

ishing gradients do indeed occur, but are only a problem if one puts a static view

on the networks like it has been done in [35, 36]. Studying the development of

the error flow during the learning process it could be observed that the RNN it-

self has a regularising effect, i.e., it is able to prolong its information flow and

consequently to solve the problem of a vanishing gradient. The concept of shared

weights (sec. 3.2) is mainly responsible for this self-regularisation behaviour, as

it constrains the network to change weights (concurrently) in every unfolded time

step according to several different error flows. This allows the RNN to adapt the

gradient information flow.

Similar to the analysis in [35] and [36] it could further be confirmed that

the occurrence of a vanishing gradient is dependent on the values of the weights

within the weight matrices. By initialising with different weight values it turned

out that an initialisation with a uniform distribution in [−0.2, 0.2] is a good choice

for the tested networks. In these cases no vanishing gradient could be experienced.

In contrast, when initialising the RNN only within [−0.1, 0.1], the gradient van-

ished in the beginning of the learning process. Nevertheless, during the learning
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process the RNN itself solved this problem by changing the weight values. Fig-

ure 3.8 shows an exemplary change of the gradient information flow during the

learning process.
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Figure 3.8: Exemplary adaptation of the gradient error flow during the learning pro-

cess of an RNN, which has been initialised with small weights, i.e.,

within [−0.1, 0.1]: The graph shows that for about the first 100 learn-

ing epochs the gradient vanishes very quickly. After that the error in-

formation distributes more and more over the different unfolding steps,

i.e., the network prolongs its memory span. Finally after about a 150
epochs the error information is almost uniformly backpropagated to the

last unfolded time step.

A further analysis of an optimal weight initialisation is given section 3.5.3.

3.5 Improved Model-Building with RNN

In practical applications different approaches in model-building with RNN have

shown to be very useful, e.g. [29, 104, 107, 110]. Although it is mostly difficult

to prove their evidence, they have empirically demonstrated their effectiveness.

One aspect is the dealing with uncertainty, which can disturb the development

of the internal dynamics and derogate the quality of the system identification. In
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particular, the input data itself might be corrupted or noisy (sec. 3.5.1). Moreover,

in the framework of RNN finitely unfolded in time one is confronted with the

uncertainty of the initial state (sec. 3.5.2). Both types are also relevant for the

application of RNN to RL problems (chap. 4). Furthermore, the topic of weight

initialisation (sec. 3.5.3) is discussed. As already pointed out, it is important for a

proper training of RNN, especially with a focus on long-term learning.

3.5.1 Handling Data Noise

In most real-world applications data is often corrupted or noisy. Reasons for this

are multifarious. Examples are inexact or forgotten measurements, lost data or just

an unstable system development. As one of those generally applies to any appli-

cation, a couple of approaches have been developed, which aim at a minimisation

of this uncertainty in data quality.

One of those methods is so-called cleaning noise. It improves the model’s

learning behaviour by correcting corrupted or noisy input data. The method is an

enhancement of the cleaning technique, which is described in detail in [57, 108].

In short, cleaning considers the inputs as corrupted and adds corrections to the

inputs if necessary. However, one generally wants to keep the cleaning correction

as small as possible. This leads to an extended error function

Ey,x
t =

1

2
‖ȳt − yt‖22 + ‖x̄t − xt‖22 = Ey

t + Ex
t → min

x̄t,w
,

where in addition to equation 3.18 also a correction of the input variables xt is

allowed. Hereby x̄t ∈ R
I stands for the corrected input and w represents all

adjustable weights in the respective network.

The new error function does not change the weight adaption rule (sec. 3.4). To

calculate the cleaned input only the correction vector ρt ∈ R
I for all input data of

the training set is needed:

Cleaning: x̄t = xt + ρt

The update rule for these cleaning corrections, initialised with ρt = 0, can be

derived from typical adaption sequences

x̄t ← x̄t − η
∂Ey,x

t

∂xt

,

leading to

ρt ← (1− η)ρt − η
∂Ey

t

∂xt

.

This is a non-linear version of the error-in-variables concept from statistics [21].
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All required information, especially the residual error
∂E

y,x
t

∂xt
, is derived from

training the network with backpropagation (sec. 3.4.1), which makes the com-

putational effort negligible. In this way the corrections are performed by the

model itself and not by applying external knowledge. This refers to the so-called

”observer-observation-dilemma”, which is an important problem in (neural net-

work) model-building [108].

If the data is not only corrupted but also noisy, it is useful to add an extra noise

vector −ρτ ∈ R
I (τ = 1, . . . , T ) to the cleaned value as this allows to represent

the whole input distribution to the network instead of using only one particular

realisation [57]:

Cleaning Noise: x̄t = xt + ρt − ρτ

The noise vector ρτ is hereby a randomly chosen row vector {ρiτ}i=1,...,I of the

cleaning matrix

CCl :=

















ρ11 · · · · · · · · · ρI1

ρ12
. . . ρI2

... ρit

...
...

. . .
...

ρ1T · · · · · · · · · ρIT

















,

which stores the input error corrections of all data patterns. The matrix has the

same size as the pattern matrix, as the number of rows equals the number of pat-

terns T and the number of columns equals the number of inputs I .

A variation on the cleaning noise method is so-called local cleaning noise.

Cleaning noise adds to every component of the input vector the same noise

term −ρτ . In contrast, local cleaning noise is able to differentiate component-

wise. Hence, it corrects each component of the input vector xit individually by a

cleaning correction and a randomly taken entry ρiτ of the corresponding column

{ρit}t=1,...,T of the cleaning matrix CCl:

x̄it = xit + ρit − ρiτ

The advantage of the local cleaning technique is that, with the increased num-

ber of (local) correction terms (T · I), one can cover higher dimensions. In con-

trast, with the normal cleaning technique the dimension is bounded by the number

of training patterns T , which can be insufficient for high-dimensional problems,

where only a limited amount of training data is available.

3.5.2 Handling the Uncertainty of the Initial State

A difficulty with finite unfolding in time RNN is to find a proper initialisation

for the first state vector. An obvious solution is to set the last unfolded state
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s̄m− ∈ R
J̄ to zero. However, this implicitly assumes that the unfolding includes

enough (past) time steps such that the misspecification of the initialisation phase

is compensated along the state transitions. In other words, one supposes that the

network accumulates sufficient information over time, and thus can eliminate the

impact of the arbitrary initial state on the network outputs.

The model can though be improved by making the unfolded RNN less sensi-

tive to the unknown initial state s̄m− . For this purpose an initialisation is proposed

for which the interpretation of the state recursion is consistent over time.

Here, a noise term is added to the last unfolded state vector s̄m− to stiffen

the model against the uncertainty of the unknown initial state. In practise a fixed

noise term that is drawn from a predetermined noise distribution has shown to be

inadequate, as in particular the associated variance is difficult to estimate. There-

fore, according to the cleaning noise method (sec. 3.5.1), an adaptive noise term

is added, which fits best the volatility of the unknown initial state. As explained

in section 3.5.1, the characteristics of the adaptive noise term are automatically

determined as a by-product of the error backpropagation algorithm (sec. 3.4.1).

The basic idea is as follows: The residual error ρt ∈ R
J̄ of an arbitrary but

fixed pattern t (t = 1, . . . , T ) as measured at the last unfolded state vector s̄m−

can be interpreted as a measure for the uncertainty originating from missing in-

formation about the true initial state vector. If one disturbs s̄m− with a noise term,

which follows the distribution of the residual error of the network, the uncertainty

about the unknown initial state during system identification can be diminished.

Technically, the noise is introduced into the model via an additional input

layer. Its dimension is equal to that of the internal state. The input values are fixed

to zero over time. The desensitisation of the network from the initial state vector

s̄m− can therefore be seen as a self-scaling stabiliser of the modelling. The noise

vector ρτ ∈ R
J̄ is drawn randomly from the observed residual errors, without any

prior assumption on the underlying noise distribution.

The effect becomes easier to understand if one regards the model’s internal de-

velopment over time. In general, a time-discrete state trajectory forms a sequence

of points over time. Such a trajectory is comparable to a thread in the internal

state space. Most notably, it is very sensitive to the initial state vector s̄m− . If

noise is applied to s̄m− , the space of all possible trajectories becomes a tube in the

internal state space (fig. 3.9). Due to the characteristics of the adaptive noise term,

which decreases over time, the tube contracts. This enforces the identification of

a stable dynamical system. Consequently, the finite volume trajectories act as a

regularisation and stabilisation of the dynamics.

Table 3.2 gives an overview of several initialisation techniques, which have

been developed and examined. The first three methods have already been ex-

plained in section 3.5.1. The idea behind the initialisation with start noise is, that

one abstains from a cleaning correction but solely focuses on the noise term. In
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s t

steps of unfolding in time

Figure 3.9: Creating a tube in the internal state space by applying noise to the initial

state.

all cases local always corresponds to the individual application of a noise term

to each component of the initial state s̄m− (sec. 3.5.1). From top to bottom the

methods listed in table 3.2 use fewer information about the training set. Hence,

start noise is preferred when only a limited amount of training data is available.

Cleaning: s̄m− = 0 + ρt

Cleaning Noise: s̄m− = 0 + ρt − ρτ

Local Cleaning Noise: s̄m−

i
= 0 + ρit − ρiτ

Start Noise: s̄m− = 0 + ρτ

Local Start Noise: s̄m−

i
= 0 + ρiτ

Table 3.2: Overview of initialisation techniques

3.5.3 Optimal Weight Initialisation

In section 3.4.3.3 it was already stated that a proper weight initialisation is of

importance for the learning of the networks. It turned out that choosing the dis-

tribution interval too small can lead to a vanishing gradient in the beginning of

learning. In contrast, a too large one can generate very high values in the back-

flow. In most cases this can be corrected during training (sec. 3.4.3.3), but it

generally leads to long computational times. For extremely small or large values

the network might even be unable to solve the problem.

For that reason the effects on the backpropagated error flow of different weight

initialisations in RNN were analysed. This can be done by measuring the error

values backpropagated to the last unfolded time step.

For the experiment the same RNN as in section 3.4.3.2 with internal state

dimensions of dim(s) = 40, 50, 60, 70, 80, 90 and 100 was taken and the error
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value backpropagated to the hundredth unfolded time step for different weight

initialisations was calculated. The problem setting was as before d = 40 and r =
0.1. Figure 3.10(a) plots the measured logarithmic error values against different

ranges of uniform distributed weight initialisations, each respectively averaged

over ten different random initialisations. Note that for this no learning, i.e., weight

adaption, was involved, which is equivalent to η = 0 (sec. 3.4). In the plot the

more left the curve is the larger is its internal state dimension.

The test confirmed that for the 100-dimensional RNN as used in the long-term

experiment (sec. 3.4.3.1) an initialisation with weights in [−0.2, 0.2] generates

a stable error backflow with neither a vanishing nor an exploding gradient. For

those values a reasonable error E (0.0001 < E < 1) is propagated back to the last

unfolded time step. Interestingly also for initialisations close to [−0.2, 0.2] the

error flow stays on a similar level whereas for higher or smaller values it increases

and respectively decreases quickly. This saddle point exists for all tested state

dimensions, respectively for a slightly shifted interval. A plausible explanation

for this, is the transfer function used, the hyperbolic tangent, which stays in the

linear range for those values.
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(a) Backpropagated error information to

the last unfolded time step in relation

to the range of the uniform weight ini-

tialisation. From left to right the cor-

responding internal state dimension is

100, 90, 80, 70, 60, 50, and 40.
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Figure 3.10: Influence of the initial weight distribution on the backpropagated error

flow in RNN using different internal state dimensions.
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Figure 3.10(a) also illustrates that the smaller the internal state dimension is

the higher the weights should be initialised. This is caused by the fact that with

a higher dimension the probability of larger absolute values of the row sum in

the weight matrices increases, which leads to larger factors backpropagating the

error through the unfolded network. Still, as the curves all run in parallel, there is

obviously a connection between the optimal weight initialisation and the internal

state dimension of the network.

The following useful conjecture was developed

̺2 = ̺1

√

dim1

dim2

(3.23)

where ̺i stands for the range of the initialisation interval [−̺i, ̺i] and dimi for

two different internal state dimensions of the RNN (i = 1, 2). It is based on con-

siderations about connectivity within a matrix [106] and can be easily confirmed

by normalising the results of the initialisation test (fig. 3.10(a)). As expected af-

ter normalisation all curves coincide (fig. 3.10(b)), which shows that, for a given

problem, there is a general development of the error flow within RNN. Still, inde-

pendent of the internal state dimension the optimal weight initialisation should be

determined for each problem setting and network architecture individually. How-

ever, as described, this can always be done by measuring the backpropagated error

in the last unfolded time step.

The results correspond to an heuristic for weight initialisation in feedforward

neural networks [16]. Thereby a reported rule for an optimal weight initialisation

is

̺ =
3√
dim

, (3.24)

where dim denotes the dimension of the hidden layer. For the tested RNN this

would result in ̺ = 0.3, which is slightly larger than the empirically determined

value, 0.2. The deviation is probably caused by the different network structures.

In contrast to feedforward networks for RNN the number of unfolded time steps

m− has to be taken into account. The larger m− the greater is the influence of the

weight initialisation on the last unfolded state, because the weights factorise the

error flow in each time step.
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”The sciences do not try to explain, they hardly

even try to interpret, they mainly make models.

By a model is meant a mathematical construct

which, with the addition of certain verbal

interpretations, describes observed phenomena.

The justification of such a mathematical construct

is solely and precisely that it is expected to work.”

John von Neumann (1903 – 1957)
CHAPTER 4

Recurrent Neural Reinforcement

Learning

There have already been a few attempts to combine RL with different kinds of

recurrent neural networks, e.g. [3, 4, 62, 80]. Schmidhuber’s approach [80] is

the first work into this direction. He already applies a form of RNN for learn-

ing the reward and the dynamics. Two independent networks are used, one for

modelling the dynamics and one for modelling the control. Training is done in

parallel or sequential. However, in contrast to the presented dynamical consistent

RNN (sec. 3.2.3) the applied networks are fully recurrent but do not offer the same

flexibility and adaptation ability. Furthermore, problems with learning have been

reported [80], which do not apply to the presented RNN (chap. 3).

Bakker [3, 4] showed remarkable results in combining reinforcement learning

with LSTM networks [37]. In his PhD-thesis [3] he developed an integrated ap-

proach, which learns the problem’s dynamics and the optimal policy at the same

time. However, he altered this approach to learning both tasks separately and even

showed that this is superior than the original version [4]. Still, LSTM networks

do not offer the explicit resemblance, in architecture and method, to RL or respec-

tively MDP like RNN (sec. 4.3). Besides, the presented approach follows the idea

of an actor-critic method (sec. 2.4.3), where one network learns the value function

and the other one determines the optimal policy. As pointed out, this construction

has a couple of drawbacks for the regarded RL problem class (sec. 2.5).

Prokhorov [62] follows a similar idea, but uses recurrent networks close to

those applied in this thesis (chap. 3). His approach is also based on the idea

of actor-critic (sec. 2.4.3). Due to that, the construction of his neural controller

differs essentially. Most important, as in the work of Bakker [4], two recurrent

networks are trained, one for the critic and one for the actor. However, it is the

only known method that is also applied to an industrial problem [63].

In the following different novel recurrent neural RL approaches based on RNN

53
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(chap. 3) are presented. It starts with a so-called hybrid RNN approach, where

RNN are solely used for the system identification of RL problems (sec. 4.1). The

method is successfully applied to a partially observable version of the cart-pole

problem (sec. 4.2). Subsequent, an enhanced RNN architecture to model and re-

spectively reconstruct (partially observable) Markov decision processes, which

improves the hybrid RNN approach, is introduced (sec. 4.3). Finally the recurrent

control neural network (RCNN), which combines RL and RNN within one inte-

grated network architecture, is presented (sec. 4.4). Its performance is evaluated

on a data-efficient cart-pole (sec. 4.5) and the mountain-car problem (sec. 4.6). At

last, the RCNN is further extended to improve its applicability to RL problems of

industrial scale (sec. 4.7).

4.1 The Hybrid RNN Approach

As pointed out in the introduction, in technical or economic applications the state

st of an RL problem (eq. 1.1) is generally at least partially unknown. Mostly one

can only observe a certain number of variables, which might have an influence

on the system’s dynamics. In contrast, for solving an optimal control problem the

knowledge about the dynamics is an essential requirement to estimate the (future)

influence of a certain action. Therefore an accurate and robust system, respec-

tively state space, identification is a valuable first step for a real-world application

of RL methods (sec. 1.1).

The hybrid RNN approach aims into this direction. It basically consists of

a subsequent application of an RNN (sec. 3.2.3) and any standard RL method

(sec. 2.4). The idea is quite intuitive. Due to partial observability but also high

dimensionality, a couple of RL problems (sec. 2.5) cannot directly be treated by

standard RL methods. The hybrid RNN approach now uses an RNN first to trans-

form the state space of the RL problem such that standard RL methods can be

applied. As argued in chapter 3, RNN offer an ideal framework to model open

dynamical systems. This quality is used to simulate the system development

of an RL problem. Hereby one can profit from the description of RL problems

by dynamical systems (sec. 1.1) and a structural resemblance between RNN and

POMDP (sec. 2.2). The latter aims at the fact that both are state space models.

The states of an POMDP can therefore easily be mapped into the architecture of

an RNN.

The RNN gets the observable state information xτ as external inputs and tar-

gets. Additionally, the last chosen actions uτ−1 are provided as inputs. Impor-

tantly, this is also done in the overshooting part of the network (τ > t) as the

actions are necessary to determine the system’s dynamics but cannot or should

not be learnt by the network. The RNN can then learn the underlying dynamics of
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the RL problem within its inner state s̄t+1. Altogether, analogue to equation 3.10,

this results in the following set of equations:

s̄τ+1 = f(As̄τ + B

(

xτ

uτ−1

)

− θ) ∀τ ≤ t

s̄τ+1 = f(As̄τ + B

(

x̄τ

uτ−1

)

− θ) ∀τ > t

x̄τ = C s̄τ

T−m+
∑

t=m−

t+m+
∑

τ=t−m−

‖x̄τ − xτ‖2 → min
A,B,C,θ

(4.1)

The corresponding architecture is depicted in figure 4.1. For the illustration of

dynamical consistency a matrix [II 0]T , where II denotes a fixed identity matrix

of dimension I and 0 a K × I dimensional zero matrix, is added. It transfers the

predicted observations x̄τ+1 (τ ≥ t) to the input vector without overwriting the

observed action uτ .
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Figure 4.1: RNN architecture for the hybrid RNN approach. Matrix [II 0]T is added

for the illustration of dynamical consistency. In the second step the in-

ternal state s̄t+1 (shaded) is used as a basis for common RL methods.

The approach can mainly be applied for two different aspects. One can either

use the RNN to reduce a problem’s dimensionality or to reconstruct a partially

observable state space:

(i) A reduction of a problem’s dimensionality is done by setting the dimension of

the RNN’s inner state s̄t+1 to a desired value, which is minimal but sufficient

to learn the problem’s dynamics. Thus, one can compress the observables’

system information to the problem’s essential state space. The dimension of
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s̄t+1 just has to be large enough to evolve the original system development.

Alternatively one can also start with a larger state space and reduce its di-

mension by incrementally applying node pruning [12, 47]. That way, the

RNN provides some kind of feature selection, where in contrast to classical

approaches, the features provide across-the-time information.

(ii) A state space reconstruction profits from the advantage that RNN can fairly

easy handle partially observable problems as they are, in contrast to most

standard RL methods, still able to learn a problem’s dynamics although

only a small part of the system’s information is provided. In short, due to

the techniques of unfolding in time and overshooting RNN can develop au-

tonomously the complete system dynamics. They build up a finite memory

and learn inter-temporal dependencies out of the available data to compen-

sate the missing information at each time step (sec. 3.2). In doing so they

can reconstruct the original state space of the RL environment in their inter-

nal state s̄t+1. An application of this approach is given in section 4.2, where

it is shown to be a valuable method.

In a second step the developed internal state s̄t+1 of the RNN is used as basis

for common RL methods. In other words, having a lower dimensional or recon-

structed state space, one can, after a sufficiently fine-gridded discretisation, apply

standard and well-known RL algorithms like Q-learning (sec. 2.4.2), prioritised

sweeping (sec. 2.4.4), or AHC (sec. 2.4.3) to determine an optimal policy. Simi-

larly one can also use the hybrid RNN approach to extend the applicability of other

data-efficient RL methods like least-squares policy-iteration (sec. 2.5) to partially

observable problems.

Figure 4.2 illustrates the structure of the hybrid RNN approach, after the RNN

has been trained on the observed environmental data xτ and actions uτ−1. Here,

the RNN is used to provide its inner state s̄t+1 as an estimator for the real environ-

mental state st. The calculation is done by the RNN’s learnt dynamics, which is

based on the respective past time observations xτ and chosen actions uτ−1 (τ ≤ t).
Note that for this no learning is involved and no overshooting is used. Based on

the RNN’s inner state s̄t+1 an RL method determines the next action ūt. After-

wards the RNN’s inputs are shifted by one time step to the past (τ ← τ−1) and the

chosen action and the resulting next observation xt+1 are given to the network as

most recent input. Thus, referring to section 1.1 the RNN fulfils step (i), whereas

the RL method is applied for step (ii).

The hybrid RNN approach can be further enhanced by using an extended RNN

architecture, where the observables xτ and the control variables uτ are imple-

mented as separate inputs (sec. 4.3).
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Figure 4.2: Hybrid RNN approach. The trained RNN is applied to minimise or re-

construct the environmental state space st out of the current observation

xt, the last applied action ūt−1 and its past time information about the

system’s development. The RNN’s inner state s̄t+1 then serves as a basis

for an arbitrary RL method, which in turn determines the next action ūt.

Again, the dashed line indicates the transition to the next time step.

4.2 The Partially Observable Cart-Pole Problem

The classical cart-pole problem [89] consists of a cart, which is able to move on a

bounded track and trying to balance a pole on its top. The system is fully defined

through four variables (t = 1, . . . , T ):

χt ∈ R := horizontal cart position

χ̇t ∈ R := horizontal velocity of the cart

αt ∈ R := angle between pole and vertical

α̇t ∈ R := angular velocity of the pole

(4.2)

The problem’s system dynamics is given by

[

M + m ml cos αt

ml cos αt
3
4
ml2

] [

χ̈t

α̈t

]

−
[

mlα̇t
2 sin αt

mgl sin αt

]

=

[

F
0

]

where M ∈ R
+ and m ∈ R

+ are the masses of the cart and pole respectively,

l ∈ R
+ is half the length of the pole, g ∈ R

+ the acceleration due to gravity and

F ∈ R the force applied to the cart. Here, the following setting was used [89]:

χt ∈ [−2.4, 2.4] and αt ∈ [−12◦, 12◦] ∀t = 1, . . . , T , M := 1.0, m := 0.1,

l := 0.5, g := 9.8, and F = 10.0. The system is illustrated in figure 4.3.

The goal is to balance the pole for a preferably long sequence of time steps

without moving out of the limits. Possible actions are to push the cart left or



58 Recurrent Neural Reinforcement Learning

α

F

χ

Figure 4.3: The cart-pole problem [53].

right with the constant force F . The pole tilts when its angle αt is larger than 12
degrees. Either then or when the cart hits one of the boundaries (±2.4) the system

is punished with a negative reward of one. In all other cases the reward is zero.

The problem has been extensively studied in control and RL theory and serves

as a standard benchmark, because it is easy to understand and also quite repre-

sentative for related questions. The classical problem has been completely solved

in the past. Sutton and Barto [89] for example demonstrated that the pole can be

balanced for an arbitrary number of time steps.

Still, there exist a couple of variations, which are generally more challenging.

Gomez for example solved the problem with two poles [25], whereas Gomez and

Miikkulainen considered a two dimensional cart [26]. Besides, often the original

problem is regarded as only partially observable [2, 53]. A good summary of the

different problem classes is given in [99].

Nevertheless so far nobody tried to reduce the observability to only one single

variable. When the system was studied as partially observable, one usually omit-

ted the two velocities, χ̇t and α̇t, i.e. only the cart’s position and the angle between

the pole and the vertical were given as inputs [2, 25, 53]. Solving this problem

is not very challenging because the model or algorithm just needs the memory of

one past time step to calculate the missing information.

While the following experiment is aimed at fully profiting from the advantages

of RNN reconstructing a partially observable state space (sec. 4.1), only the hori-

zontal position of the cart, χt, is given as an observable. All other information is

absolutely unknown to the system.

In an extension the problem is even further complicated by adding noise to

the only observable variable χt. This strengthens the requirement that the hybrid

RNN approach cannot absolutely rely on the single information that it receives

about the cart-pole problem’s environment, but has to extract the true underlying

dynamics.
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4.2.1 Model Description

To solve the described partially observable cart-pole problem the hybrid RNN ap-

proach was applied. According to its description (sec. 4.1), first an RNN (eq. 4.1)

was used to develop the full dynamics of the cart-pole system. Here, the observ-

able environmental information consisted of the horizontal cart position χt as well

as the first and second discrete differences of it. It was given to the RNN as part

of the input and as target xτ ∈ R
3. Additionally, the input contained the agent’s

last action uτ−1 ∈ R. No other information was observable by the model. The

internal state space s̄t ∈ R
4 was limited to four neurons. Thus, it was intended

that the RNN reconstructs the complete but only partially observable environment

(eq. 4.2) in its internal state space. The network was respectively unfolded ten

time steps into past and future. The results had shown that this memory length

was sufficient to identify the dynamics. To make the network independent from

the last unfolded state cleaning noise was used as a start initialisation (sec. 3.5.2).

The hyperbolic tangent was implemented as activation function f and the RNN

was trained with the shared weight extended backpropagation (sec. 3.4.1) and

pattern-by-pattern learning (sec. 3.4.2.1) until a minimum error between output

x̄t and target xt is achieved.

In the second step the adaptive heuristic critic (AHC) algorithm (sec. 2.4.3),

which has shown competitive results on the standard cart-pole problem setting,

was applied on the developed internal state s̄t+1 of the RNN. Note that, due to the

unfolding in time of the RNN, the algorithm had to be started with an already filled

lag structure. Otherwise the first ten steps would be uncontrolled and consequently

there would be a high probability that the algorithm is faced with an unstable pole

in its first learning step.

4.2.2 Results

Several different data sets were used to train the described RNN (sec. 4.2.1). As

a first result it was confirmed that the number of observed transitions is more

important than the number of training epochs. The more different information

about the single input variable the network experienced the more it was able to

reconstruct the original (complete) state space.

As a verification of if and how well the RNN could identify the underlying

dynamics out of the single observable variable, the original and the recon-

structed state vectors were analysed and compared. The result is shown in figure

4.4. The four plots show the correlation between the original state space vari-

ables of the environment, χt, χ̇t, αt, α̇t, (eq. 4.2) and the best linear combination

of the reconstructed state space variables (s̄t+1)1, . . . , (s̄t+1)4 and their squares

(s̄t+1)
2
1, . . . , (s̄t+1)

2
4 in each case. It turned out that the correlation for each state
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space variable was very high. This demonstrates the reconstruction quality of the

RNN and underlines the use of the hybrid RNN approach for partially observable

RL problems.
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Figure 4.4: Correlation between the best quadratic combination of the reconstructed

state space variables (s̄t+1)1, . . . , (s̄t+1)4 of the RNN and the original

ones (eq. 4.2).

The results of the hybrid RNN approach were compared to a direct application

of the AHC algorithm, which means without using an RNN in the first step. In

both cases the discretisation of the state space that yielded the best results was

taken. Figure 4.5(a) plots the achieved number of steps the pole could be balanced

to the number of trials. The training was stopped when the first method was able

to balance the pole for a minimum of 1000 steps. The result reveals the advantage

of the hybrid RNN approach as it outperforms a direct application of the AHC

algorithm by far.

The better performance of the hybrid RNN approach became even more obvi-

ous when a Gaussian noise was added to the single observation χt. Already for

a 1% noise level a direct application of the AHC algorithm failed almost com-

pletely to learn the task. In contrast, the hybrid RNN approach was, for all tested

noise levels, able to balance the pole for at least more than a hundred time steps
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(fig. 4.5(b)). This result well demonstrates that the RNN is still able to identify

and reconstruct the original state space of the environment although the only ob-

servable information is covered by noise.
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Figure 4.5: Comparison of the performance in the partially observable cart-pole

problem of the hybrid RNN approach (solid) to a direct application of

the AHC algorithm (dotted). The hybrid RNN approach clearly outper-

forms the direct application of the AHC. With a 1% noise level on the

single observable variable χt it is able to balance the pole for at least a

hundred time steps whereas the direct application of the AHC fails al-

most completely to learn the task. The curves have been averaged over

50 trials.

4.3 Markovian State Space Reconstruction by RNN

The basic hybrid RNN approach (sec. 4.1) applies a standard RNN to identify

and respectively reconstruct the RL problem’s state space. The following RNN

resumes this idea by adapting its structure to the task of reconstructing the sys-

tem’s (minimal) Markovian state space. Here, one can profit from the described

extension ability of RNN (chap. 3).

Modelling and respectively reconstructing higher-order POMDP (sec. 2.1)

with RNN (sec. 3.2) follows the idea of explicitly mapping the process’s dynam-

ics by a high-dimensional non-linear system equation. Similar to equation 4.1

the RNN is therefore constructed such that it receives the external observations
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xτ (τ = 1, . . . , T ) of a POMDP (sec. 2.2) as inputs and targets. However, now

the actions uτ are given to the network as separate inputs (fig. 4.6). In doing so

one gets, analogue to a POMDP, the sequence of the observable states xτ and the

subsequent actions uτ on the input side of the RNN. Moreover, also with regard

to the later extension to the recurrent control neural network (RCNN) (sec. 4.4),

an additional internal state ŝτ is included, which adapts the role of the approxi-

mately Markovian state. It allows to explicitly reconstruct the RL problem’s state

sτ out of the observables xτ (respectively x̄τ ) and the RNN’s inner state s̄τ , before

applying a new action ūτ . The vector s̄τ represents as hitherto the internal state

of the RNN determining the target, i.e., the observations, xτ . This results in the

following optimisation problem:

s̄τ+1 = f(IJ̄ ŝτ + Duτ − θ)

x̄τ = C s̄τ

with ŝτ =

{

As̄τ + Bxτ ∀τ ≤ t
As̄τ + Bx̄τ ∀τ > t

T−m+
∑

t=m−

t+m+
∑

τ=t−m−

‖x̄τ − xτ‖2 → min
A,B,C,D,θ

(4.3)

Here, analogue to equation 3.5, the state transition equation s̄τ+1 ∈ R
J̄ is a non-

linear transformation of the previous approximately Markovian state ŝτ ∈ R
J̄ , the

actions uτ ∈ R
K using weight matrix D ∈ R

K×J̄ , a fixed identity matrix IJ̄ of

dimension J̄ , and a bias θ ∈ R
J̄ . As pointed out, the approximately Markovian

state ŝτ aggregates the information from the internal state s̄τ and respectively the

external observation, xτ ∈ R
I , or the network’s own prediction for it, x̄τ ∈ R

I ,

applying weight matrices A ∈ R
J̄×J̄ and B ∈ R

I×J̄ . The expected next obser-

vation of the POMDP, x̄τ+1 ∈ R
I , is computed from the previous internal state

s̄τ+1 employing matrix C ∈ R
J̄×I . As hitherto, f denotes an arbitrary non-linear

activation function. Analogue to the basic hybrid RNN approach (sec. 4.1), the

actions uτ are also given to the RNN as future inputs (τ > t) because they directly

influence the POMDP’s dynamics but cannot or should not be learnt by the net-

work. Besides, the approximated state space of the RNN (eq. 4.3) in general does

not have the same dimensionality as the one of the original POMDP (sec. 2.2).

It basically depends on the order and complexity of the respective POMDP as

well as the desired accuracy. Again, the RNN is trained with the shared weights

extension of the backpropagation algorithm (sec. 3.4.1) and a suitable learning

algorithm (sec. 3.4.2). Figure 4.6 depicts the resulting RNN architecture.

As shown in section 3.3, RNN are able to approximate any deterministic open

dynamical system arbitrarily precisely. Although this does not necessarily apply
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Figure 4.6: RNN architecture for modelling POMDP: Observations xτ and actions

uτ are modelled as separate inputs. The additional state ŝτ adapts the

role of an approximately Markovian state. It allows to explicitly recon-

struct the RL problem’s state sτ out of the observables xτ (respectively

x̄τ ) and the networks inner state s̄τ . Thus, regarding the hybrid RNN ap-

proach ŝt (shaded) can be used in second step as a basis for an arbitrary

RL method.

for stochastic systems, there is no true restriction. The construction of the state ŝτ

can just be seen as the transformation into an appropriate Markovian feature space,

which is built from past and present observations. In the deterministic case, the

feature space is identical to the perfect description of all information determining

the future, while in the general stochastic case the state ŝτ has to be designed in

order to forecast the expected future. Additionally, it has been shown that under

slightly restrictive conditions the Markov property can indeed be reconstructed by

knowing the expected future states while the state space is observed partially [82].

Summarising, the RNN (eq. 4.3) is used to identify the system’s (minimal)

approximately Markovian state space out of the observed data. For this, the di-

mension of the Markovian state ŝτ of the RNN can be set to a desired value,

which is minimal but sufficient to learn the problem’s dynamics. In doing so, one

can compress the observables’ system information to the problem’s essential state

space. The dimension of ŝτ just has to be large enough to evolve the original

system development.

Analogue to the description in section 4.1 in a second step then any stan-

dard RL method (sec. 2.4) can be applied. However, those are now based on the

Markovian state ŝt, which has been especially inserted for the reconstruction of

the POMDP’s state space. An application of this approach to gas turbine control

is given in chapter 5.
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4.4 The Recurrent Control Neural Network

The recurrent control neural network (RCNN) has been developed for the pur-

pose to identify and control the dynamics of an RL or optimal control problem

(sec. 1.1) directly within one integrated network. Thus, it rounds off the hybrid

RNN approach (sec. 4.1) in the sense that the RL problem (steps (i)+(ii)) can now

be completely solved by a recurrent neural network.

The principal architecture of the RCNN is based on the RNN for the Marko-

vian state space reconstruction (sec. 4.3). It is extended by an additional control

network and an output layer, which incorporates the reward function. Overall

its integrated structure follows the idea of solving the complete optimal control

problem within one network, i.e., the system identification (step (i)) as described

in section 3.2 (and respectively section 4.3) and learning the optimal policy (step

(ii)). Here, the policy is determined directly by a maximisation of the finite sum

of expected future rewards without calculating any value function. In this regard

the RCNN also has some similarity to policy gradient methods (sec. 2.4.5).

The additional and integrated control network has the form of a three-layered

FFNN (sec. 3.1). Despite other (more extensive) topologies would be possible,

this already allows to model any arbitrary control function (sec. 3.3.1). As one

wants to predict the optimal (future) actions uτ ∈ R
K , the control network is

only applied in the present and overshooting part of the RCNN (τ ≥ t) (fig. 4.7,

dashed part). In the past unfolding (τ < t) the RCNN is provided with the last ac-

tions taken. The control network uses the values of the determined approximately

Markovian state ŝτ , which combines the information of the inner state s̄τ and the

environmental observables xτ (or respectively x̄τ ) as inputs. As an output it deter-

mines the next action or control variables ūτ (τ ≥ t). Putting this into equations

the control network has the form (∀τ ≥ t)

ūτ = fu(Ffc(Eŝτ − b)) (4.4)

where E ∈ R
H×J̄ and F ∈ R

K×H , with H ∈ N as the number of hidden neurons

of the control network, are weight matrices, b ∈ R
H is a bias and fc an arbitrary

activation function. Additionally, fu denotes a problem-specific, component-wise

applied activation function, which can be used to scale or limit the network’s

action space. The hidden state (fig. 4.7) of the control network is denoted by

hτ ∈ R
H .

The RCNN has to fulfil two different tasks (sec. 1.1), the identification of the

problem’s dynamics (step (i)) and the optimal control (step (ii)), and is hence

trained in two successive steps. For both steps the training is done offline on the

basis of previous observations. This again distinguishes the approach from other

work on RL and recurrent neural networks, e.g. [3], where one usually tries a

combined learning of both tasks in one step.
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Figure 4.7: Recurrent Control Neural Network Architecture of step two: The control

network (dashed) determines the policy by adjusting the weight matrices

E, F and the bias b according to the gradient flow from the reward

cluster Rτ (τ > t). Matrices A,B, C, and D, and the bias θ, which code

the dynamics, are fixed.

In the first step the RCNN is limited to the identification and modelling of

the dynamics of the underlying POMDP. It is consequently reduced to an RNN

reconstructing a Markovian state space (sec. 4.3). Hence, the optimisation task of

step one takes on the following form with the variables defined as in equation 4.3:

s̄τ+1 = f(IJ̄ ŝτ + Duτ − θ)

x̄τ = C s̄τ

with ŝτ =

{

As̄τ + Bxτ ∀τ ≤ t
As̄τ + Bx̄τ ∀τ > t

T−m+
∑

t=m−

t+m+
∑

τ=t−m−

‖x̄τ − xτ‖2 → min
A,B,C,D,θ

(4.5)

In the second step all connections coding the dynamics and learnt in the first

step, in particular matrices A, B, C, and D and the bias θ, get fixed, while the

integrated control network with the matrices E and F and the bias b is activated

(fig. 4.7, dashed part). These are also the only tunable parameters in this training

step. Besides that, as the RCNN’s task is now to learn the optimal policy it does

not get the future actions as external inputs in this step (fig. 4.7). Still, in the past

unfolding (τ < t) the RCNN is, as in step one, still provided with the actions

uτ of the observed training data. Furthermore, in the past unfolding (τ < t) the
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output-clusters are deactivated, because they are only needed for the identification

of the system dynamics. However, in the present and future part (τ ≥ t) of

the network the error-function (eq. 4.5) of the output clusters gets replaced by

the reward function. Architecturally this is realised by additional reward clusters

Rτ , which are connected to the output cluster by a problem specific, on the reward

function R (sec. 1.1) dependent, and fixed matrix G as well as a possible activation

function fr within the output clusters x̄τ (fig. 4.7). In other words the RCNN

maps the reward function R of the underlying RL problem by coding it in a neural

architecture, which, as in the case of gas turbine control (chap. 5), often also

requires some additional, fixed connected, clusters. Here, also a discount factor γ
(eq. 1.2) could be incorporated but is generally omitted due to the finiteness of the

future unfolding, i.e., the calculation of a finite sum of future rewards. It is further

possible to learn the reward function from the observations, which is especially of

interest in cases where R is not known or incompletely specified in the problem

setting. This can be realised by an additional three-layered FFNN.1

The weights of the control network are only adapted according to the back-

propagated error from the reward clusters Rτ (τ > t). This follows the idea that

in the second step one wants to learn a policy that maximises the finite sum of ex-

pected future rewards given the system dynamics modelled in step one (eq. 4.5).

Note that in doing so the learning algorithm changes from a descriptive to a nor-

mative error function.

Summarising, step two can be represented by the following set of equations

(eq. 4.6). Here, bold capital letters stand for fixed matrices, which are not learnt

in this step.

s̄τ+1 =

{

f(IJ ŝτ + Duτ − θ) ∀τ < t
f(IJ ŝτ + Dūτ − θ) ∀τ ≥ t

Rτ = Gfr(Cs̄τ ), ∀τ > t

with ūτ = fu(Ffc(Eŝτ − b)) ∀τ ≥ t

and ŝτ =

{

As̄τ + Bxτ ∀τ ≤ t
As̄τ + Bx̄τ ∀τ > t

T−m+
∑

t=m−

t+m+
∑

τ>t

Rτ → max
E,F,b

(4.6)

The architecture of the RCNN in the second step, i.e. during learning of the

optimal control, is depicted in figure 4.7.

1By an additional connector from uτ to Rτ+1 one can also easily incorporate the applied action

into the reward function (sec. 2.1).
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Recurrent control neural network

Technology Neural networks

Problem class High-dimensionality, partial observability,

continuous state and action space, data-efficiency

Philosophy Identification of system dynamics and

optimal policy by an integrated RNN

Data-efficiency Through batch approximation of dynamics and

analytical incorporation of a reward function

Prior knowledge Reward function and influences of actions

on a subset of the state space

Biasedness Through system identification

Task of RNN Identification of the system dynamics

Task of control network Maximising sum of future rewards

by virtual Monte-Carlo policy gradient

Table 4.1: Summarised features of the recurrent control neural network.

In both steps the RCNN is trained on the identical set of training patterns T
and with the shared weight extended backpropagation (sec. 3.4.1). Concerning

the second step this means in a metaphoric sense that by backpropagating the loss

of the reward function Rτ the algorithm fulfils the task of transferring the reward

back to the agent. In either case, an optimal system identification is an essential

part of the RCNN as it forms the basis for learning the optimal policy in the second

step. Consequently, in both steps the RCNN must be operated until a sufficient

generalisation performance is achieved.

As already pointed out, the second step has some connection to policy gra-

dient methods (sec. 2.4.5). Analogue to those the RCNN makes no use of the

value function. It rather searches directly within in the policy space and uses the

reward’s gradient for its policy improvement. In fact, the RCNN can be seen as a

virtual Monte-Carlo policy gradient approach as the value of the current policy is

determined virtually within the unfolded network and improved according to the

gradient of the reward function. On this basis an explicit Monte-Carlo estimation

[52], which would require a generation of new data-samples, is avoided. This

increases the RCNN’s data-efficiency.

Table 4.1 outlines the main characteristics and features of the RCNN.

Summarising, the RCNN ideally combines the advantages of an RNN with dy-

namically consistent overshooting for identifying the problem’s dynamics and an

FFNN for learning the optimal policy. In doing so, one can benefit from a high

approximation accuracy and therefore control extensive dynamics in a very data-

efficient way. Besides that, one can easily scale into high dimensions or recon-
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struct a partially observable environment (sec. 4.3). Furthermore, by construction

of the RCNN it can well handle continuous state and action spaces.

A further advantage of the RCNN is the inherent embedding of an analytically

given reward function. This allows in the second step to maximise the sum of

expected future rewards without any statistical bias. However, a statistical bias

might be brought into the network by learning the dynamics in the first step. For

the same reason it is structurally difficult to solve stochastic problems. Still, the

RCNN has the possibility to deal with stochasticity by using a higher-dimensional

and more extensive deterministic dynamics.

4.5 The Data-Efficient Cart-Pole Problem

The problem setting has already been described in section 4.2. As pointed out,

in its classical form it has been completely solved in the past, e.g. [89]. Still all

successful methods need quite a large number of training patterns to find a solu-

tion. In contrast, as described in section 2.5, for real-world applications training

data is in general very limited. Consequently, methods that require less training

data to solve the problem, i.e., which are more data-efficient, are preferable. In

the following experiment therefore a special focus is put on data-efficiency and

it is shown that the RCNN achieves outstanding results. However, in contrast to

the experiment in section 4.2 the system is now fully observable. Similar tests

have been reported in [68], but with a slightly different dynamics and an extended

action space.

4.5.1 Model Description

An RCNN as described in section 4.4 was used with an unfolding of 10 steps into

the past and 30 into the future. This gave the network both, a memory length,

which was sufficient to identify the dynamics, and an overshooting length, which

enabled it to predict the consequences of its chosen actions. To make the network

independent from the last unfolded state, start noise (sec. 3.5) was used as start

initialisation. The internal state dimension, dim(s), was set to 20 and the hidden

state of the control network, dim(h), to 40 neurons. These dimensions were ef-

fectual to generate stable results in terms of system identification and learning the

optimal policy. Larger networks in general only require more computational time.

Furthermore, the hyperbolic tangent was implemented as activation functions f ,

fc and fu. The latter limits the action space of the RCNN to (−1, 1) (eq. 4.4).

For training the RCNN, data of different set sizes was generated where the

actions were chosen randomly. Here, it was varied from the standard setting as

the originally episodic task was transformed into a continuous one by keeping the



4.5 The Data-Efficient Cart-Pole Problem 69

pole or cart at their limits instead of starting a new episode when the pole falls or

the cart hits one of the boundaries. Hence, a reward function of the form

R = −
T−m+
∑

t=m−

t+m+
∑

τ≥t

[

(gχτ )
2 + (ατ )

2
]

(4.7)

was used, where g is a scaling factor, which balances the error values of the two

variables. In the experiment g was set to 0.1. According to this and recalling that

the (predicted) observations are of the form x̄τ = [χτ χ̇τατ α̇τ ]
T , matrix G takes

on the form

G =

[

0.1 0 0 0
0 0 1 0

]

,

the activation function fr in the outputs x̄τ is set to identity, and the clusters Rτ

get a squared error function with constant targets of zero.

The adaption made the time series more applicable for the RCNN, in particu-

lar learning with backpropagation (sec. 3.4.1), but did not simplify the problem;

especially as the generated data was only used for training. The learnt policy was

later tested on the original system and consequently had to cope with the slightly

different setting. Here also the continuous action space of the network got re-

discretised to −1 and 1.

4.5.2 Results

The RCNN was trained with different amounts of training data. The learnt pol-

icy was then tested on the original dynamics of the cart-pole problem where the

number of steps N ∈ N, which it was able to balance the pole, was measured.

Respectively three data sets were used with 300, 1000, 3000, 10000, 30000, and

100000 training patterns. For each set the median of the performance over 100
different random start initialisations of the cart and pole was taken during testing.

The results are given for each set size as the median and average over the values of

the respectively three different training data sets (tab. 4.2). The maximum number

of steps balanced was set to max = 100000, which was considered as sufficient

to demonstrate that the policy has solved the problem.

The results were compared to the adaptive heuristic critic (AHC) algorithm

(sec. 2.4.3), which shows competitive results on the cart-pole problem. As a sec-

ond benchmark served (table-based) Q-learning (sec. 2.4.2), which is one of the

commonly used RL methods (sec. 2.4). In contrast to the RCNN for both al-

gorithms the standard setting of the cart-pole problem was used, because their

application to the modified one (eq. 4.7) produced inferior results.

The results (tab. 4.2) clearly indicate that the RCNN can solve the cart-pole

problem very data-efficiently. With only 1000 training patterns the average num-
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# of RCNN AHC Q-learning

obs median average median average median average

300 61 100 74 56 61 52
1000 387 33573 124 150 121 121
3000 max 66912 334 312 111 116
10000 max max 1033 1554 148 163
30000 max max 2988 9546 193 501
100000 max max max 75393 503 624

Table 4.2: Median and average number of steps the pole was balanced by the RCNN,

the AHC, and the Q-learning policy given different numbers of observa-

tions (obs).

ber of steps balanced is very high. On one of the tested training data sets with 1000
observations even an optimal policy was learnt. With already 10000 observations

the maximum number of steps balanced was achieved on the basis of all tested

three data sets. In comparison, the AHC needed at least a 100000 observations for

finding a satisfying solution. Q-learning required even more observations, as it

still failed to balance the pole with the maximum number of observations tested.

Figures 4.8(a) and 4.8(b) illustrate the results for the median and average number

of steps balanced.
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Figure 4.8: Numbers of steps balanced with respect to the number of observations

taken the median over the different tested data sets. The RCNN (solid)

clearly outperformed the AHC (dotted) and Q-learning (dashed).
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To examine the stability of the RCNN policy a uniform noise was put on the

force F of the action (sec. 4.2). The task was particularly difficult because the

network had not seen any noise during training but its policy had to cope with it

during the test on the original dynamics. The median and average of the perfor-

mance over a hundred different random start initialisations of the cart and pole

were taken. Table 4.3 shows the results for different noise levels on an RCNN

policy trained with 10000 observations. It demonstrates that even with a noise

level of a 100% the RCNN policy balanced the pole in median for the maximum

number of steps. Note that a noise level of more than 100% means that the cart

can be pushed into the reverse direction of the one, intended by the policy. This

also explains the sharp decrease in performance after increasing the noise to more

than 100%. Figure 4.9 illustrates the robust performance of the RCNN policy.

noise level # of steps balanced

on F median average

10% max max
20% max max
30% max 99953
40% max 97337
50% max 98019
60% max 96937
70% max 92886
80% max 88181
90% max 84191
100% max 74554
110% 55154 53775
120% 16519 27730
130% 8238 12476
140% 2961 5294
150% 1865 2863
160% 1008 1503
170% 557 939
180% 173 555
190% 76 344
200% 83 242

Table 4.3: Median and average number of steps balanced with different noise levels

on the force F by an RCNN trained with 10000 observations. Even with

a noise of a 100% the RCNN was able to balance the pole the maximum

number of time steps.
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Figure 4.9: Median (solid) and average (dotted) number of steps balanced with dif-

ferent noise levels on the force F by an RCNN trained with 10000 ob-

servations.

4.6 The Mountain Car Problem

The application of the RCNN to the cart-pole problem (sec. 4.5) showed its data-

efficiency. To demonstrate that the RCNN is able to achieve an optimal policy it

is further tested on the mountain car problem, which is fully described in [89]. Its

objective is to reach the top of a hill with an underpowered car by gaining kinetic

energy through driving forward and backward . The car’s continuous state consists

of a position p ∈ R and a velocity v ∈ R. There are three possible actions: wait,

full power forward and backward, which is equivalent to the application of zero,

a fixed positive or negative force F ∈ R. The system dynamics of the problem is

given by the following set of equations

pt+1 = pt + vt

vt+1 = vt + 0.001F − 0.0025 cos(3pt)

whereby in the used setting pt ∈ [−1.2, 0.5], vt ∈ [−0.07, 0.07] ∀t and F :=
{−1, 0, 1}. In the case pt and vt hit one of their boundaries, their values remain

unchanged within their domain. The reward is one when the car has reached the

top of the right hill (pt = 0.5) and zero otherwise [89]. A trivial near-optimal

policy, as reported in [87], is to drive the car always full power in the direction of

the car’s current velocity vt. The system is illustrated in figure 4.10.

Two different settings of the outlined problem were regarded, the standard

[89] and a slightly simplified one. In the latter so-called meta-actions or options
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v

p

Goal

Figure 4.10: The mountain car problem.

[61] were used, which let the agent only take a decision in every fifth time step.

This allows the car to travel longer distances in between taking actions. Conse-

quently the car can reach the top of the hill with less decision steps than in the

standard setting. For each setting 100000 observations were allowed for training

and the learnt policy was afterwards tested on the respective simulated dynamics.

Note that, like on the cart-pole problem (sec. 4.5), for the latter the continuous

actions determined by the RCNN had to be re-discretised, which can be seen as

an additional difficulty. In the simplified setting the training set for the RCNN

was created with random actions. For the standard version ε-greedy prioritised

sweeping [89] (with ε = 0.5) was pre-applied to obtain a representative training

set because random actions never reached the top of the hill.

4.6.1 Model Description

The used RCNN was similar to the one applied to the data-efficient cart-pole prob-

lem (sec. 4.5). It is ten time steps unfolded into the past. For the standard setting

the future unfolding counted 300 and for the simplified one 50 time steps, which

allowed the network to see at least one goal state within its (finite) future horizon.

Again, start noise (sec. 3.5.2) was used to make the network independent from the

initial unfolded state. Furthermore, it was again dim(s) = 20 and dim(h) = 40.

The problem was supposed to be fully observable, which implied that the environ-

mental state information pτ and vτ were given to the network as inputs and targets

xτ . Anew, the hyperbolic tangent was implemented as activation functions f , fc

and fu, which also limited the RCNN’s action space to (−1, 1) (eq. 4.4).

According to the problem setting the following reward function was used:

R =

T−m+
∑

t=m−

t+m+
∑

τ≥t

logistic10(pτ − 0.5)

where logistic10(x) = 1
1+e−10x is a steep logistic function, which is close to a

threshold-function but still differentiable. This implies that it approximately is
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one for pτ > 0.5 and zero otherwise. Due to that, in the equations of the RCNN

(eq. 4.6) matrix G was set to G := [1 0] and the activation function fr within

the outputs corresponded to the described logistic function. Besides, a bias of

the value −0.5 was added within the reward clusters Rτ , where further an error

function, which maximises the output, was implemented.

4.6.2 Results

The results were compared to the described trivial near-optimal policy [87], stan-

dard PS (sec. 2.4.4) and the minimum number of decision steps determined by

manual tuning. Table 4.4 summarises the results for the two settings. It shows

that the RCNN is able to learn a potentially optimal policy as it was even as good

as the manually tuned one. It also outperformed the best results on the problem

reported in [1].

RCNN PS Trivial Near-Optimal Potentially Optimal

Standard 104 144 125 104
Simplified 21 27 26 21

Table 4.4: Number of decision steps needed by the RCNN, the PS, the trivial near-

optimal [87], and the manually tuned potentially optimal policy to drive

the car up the hill.

4.7 Extended Recurrent Control Neural Network

In the course of its application to gas turbine control (chap. 5) the RCNN (sec. 4.4)

got extended by a couple of important features. The main structure and idea re-

mained unchanged but modifications to equations and architecture were made.

This again underlines the advantage of RNN to be easily extendable and to be

able to integrate prior knowledge. Thus, it is also possible to adapt the network to

a certain application or problem class.

Two major changes were undertaken: First, instead of using the control net-

work to choose the new actions, only the changes of certain control parameters

are determined. More important, the idea of identifying the essential Markovian

state space (sec. 4.3) is further incorporated into the network by adding a bot-

tleneck structure. Therefore, in contrast to the standard RCNN (sec. 4.4), the

internal state s̄τ and the approximately Markovian state ŝτ now have different di-

mensions. Generally, one sets dim(̄s) > dim(̂s), but also the opposite direction

is thinkable. However, this implies that the identity matrix between those two

layers is now replaced by an additional matrix Â, which is also learnt during the
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first step. The resulting bottleneck structure forces the network to put more em-

phasis on the relevant, autonomous dynamics of the RL system (eq. 1.1). It even

improves the universal approximation ability (sec. 3.3) of the RCNN, as the state

transition s̄τ+1 now forms a three-layered FFNN, which is itself a universal ap-

proximator (sec. 3.3.1). The required internal dimension to model the system’s

dynamics may therefore be reduced. By this means, also the reconstruction of

the relevant Markovian state space is enforced. Besides, the improved dynamics

also enhances the action selection, as it is now based on a better mapping of the

dynamics. Moreover, the bottleneck structure increases the influence of the con-

trol parameters on the development of the dynamics, which supports solving the

underlying credit-assignment problem. Especially short-term influences can now

be better taken into account.

Analogue to equation 4.5 the optimisation task to model the dynamics (step

(i)) can be represented by the following set of equations:

s̄τ+1 = f(Âŝτ + Duτ − θ)

x̄τ = C s̄τ

with ŝτ =

{

As̄τ + Bxτ ∀τ ≤ t
As̄τ + Bx̄τ ∀τ > t

T−m+
∑

t=m−

t+m+
∑

τ=t−m−

‖x̄τ − xτ‖2 → min
A,Â,B,C,D,θ

(4.8)

For the second step, the control network is altered as follows. Analogue to

the standard RCNN (eq. 4.4) it uses the Markovian state ŝτ , which combines the

information of the inner state s̄τ and the environmental observables xτ , respec-

tively its predictions x̄τ , as inputs. However, it now determines the next change

of control variables ∆ūτ ∈ R
K as an output instead of a full new action ūτ . This

results in the following equation:

∆ūτ = fu(Ffc(Eŝτ − b)) ∀τ ≥ t (4.9)

where, as before, E ∈ R
H×J̄ and F ∈ R

K×H , b ∈ R
H is a bias, fc an arbitrary and

fu a problem specific activation function, which can be used to scale or limit the

network’s action space. The calculation of ∆ūτ instead of ūτ allows for a limited

increase or decrease of the control variables and therefore avoids the learning of

impossible or non-permitted changes in control. The latter is especially important

with regard to gas turbine control, where the control variables can generally only

be varied within a bounded interval at each time step.

As the control network now only determines the change of parameters ∆ūτ ,

an identity connector IK of dimension K is added, which maintains the previous
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control ūτ−1 (respectively uτ−1 for τ = t). The sum of both form the new control

ūτ . Note that hereby the change in control can be further scaled or bounded by a

fixed and problem-dependent diagonal matrix L ∈ R
K×K (fig. 4.11).

Summarising, learning the optimal control (step (ii)) in the extended RCNN

can be represented by the following set of equations (eq. 4.10). Anew, bold capital

letters stand for fixed matrices, which are not learnt in this step.

s̄τ+1 =

{

f(Âŝτ + Duτ − θ) ∀τ < t

f(Âŝτ + Dūτ − θ) ∀τ ≥ t

Rτ = Gfr(Cs̄τ ), ∀τ > t

with ūτ = ūτ−1 + Lfu(Ffc(Eŝτ − b)) ∀τ ≥ t

and ŝτ =

{

As̄τ + Bxτ ∀τ ≤ t
As̄τ + Bx̄τ ∀τ > t

T−m+
∑

t=m−

t+m+
∑

τ>t

Rτ → max
E,F,b

(4.10)

Its architecture is depicted in figure 4.11:
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Figure 4.11: Extended recurrent control neural network architecture of step two. The

control network (dashed) now determines the next change of control

variable ∆ūτ by adjusting the weight matrices E, F and the bias b. Its

sum with the previous action, which is maintained by the fixed identity

matrix IK , forms the new action ūτ (τ ≥ t). Matrix L allows to further

limit the change of the control parameters.

In chapter 5 the newly developed recurrent neural RL approaches are applied

to a real-world problem, the control of three different gas turbine simulations.



”Any sufficiently advanced technology is

indistinguishable from magic.”

Sir Arthur C. Clarke, 1917-2008, (”Profiles of

The Future”, 1961 (Clarke’s third law))

CHAPTER 5

Real-World Application: Control of

Gas Turbine Simulations

Gas turbines are, in contrast to burning lignite or coal, an environmental friendly

way to produce electrical energy. In addition, the efficiency of gas turbines is

significantly higher compared to coal-fired power plants. In combined cycle oper-

ation efficiencies of more than 60% have been achieved. Based on the short start

up time and the capability of fast load changes, gas turbines are well suited to com-

plement the fluctuating energy production from wind turbines and solar sources.

They can operate on gas and oil of various qualities, while producing few emis-

sions that can be further reduced with affordable effort. As a consequence gas

turbines are, due to their good ecological properties in comparison with coal-fired

power plants, increasingly deployed. Because of their high operational flexibility,

they also serve as a compensation for the less predictable energy production of

alternative energy sources [66].

Goals of the current developments are low emissions of NOx, CO, and un-

burned hydrocarbons, while maintaining a highly efficient and smooth operation.

To provide this, several parameters of gas turbines such as fuel flows, tempera-

tures and air related settings need to be chosen optimally for the different ambient

conditions and fuel properties. Furthermore, besides the instantaneous reaction of

the gas turbine to parameter modifications also medium-term dynamical effects

have an influence.

With the focus on controlling a gas turbine, there have already been a few

attempts with feedforward neural networks [13, 14, 56, 84]. However, so far no

recurrent approach has been applied. Besides, no application of reinforcement

learning to gas turbine control has been reported.

77
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5.1 Problem Description

The data was taken from industrial gas turbines as used for electrical power gen-

eration. A general schematic representation of those is depicted in figure 5.1. The

amount of available real data samples ranged from sixty thousand to about one

million. However, also in the case of one million samples only a selection of about

seventy thousand could be used. The remaining data was recorded during static

operation with very little variation of the control parameters and consequently did

not provide any system development information. The time spans covered by the

data sets, it was finally worked on, ranged from multiple hours, spread over a cou-

ple of days, to several months. They all contained different operating points of the

turbines. Three different problem settings were examined:

(i) Combustion tuning (CT): Here the overall objective was to optimise the re-

garded turbine’s operation for stable combustion at high load.

(ii) Emission tuning (ET): In addition to (i) also an ecological aspect, the re-

duction of NOx, had to be taken into account. Moreover, further pressure

intensities in the combustion chamber were considered.

(iii) Extended Emission tuning (EET): In addition to (ii) a different turbine with a

more difficult dynamics was regarded. Furthermore, also a reduction of CO

had to be achieved and again further pressure intensities were incorporated.

Out of the available data sets simulation models were developed as direct ex-

periments on the gas turbines were too expensive. The simulations operate in set-

ting (i) on 20, in (ii) on 28 and in (iii) on 40 different parameters such as electrical

load (Load), exhaust temperature, temperature and pressure behind the compres-

sor, fuel fractions, acceleration and pressure intensities in the combustion chamber

(RMS). Regarded actions were in the CT setting limited modifications of pilot gas

and inlet guide vane (IGV), which are two master control parameters of such tur-

bines. In the ET setting the action space was extended to four and in the EET

setting even to five different control parameters, which for both mainly consisted

of the adaption of fuel fractions. Furthermore, by construction in these two set-

tings seven and respectively four further controls were regarded in the past but

assumed to be fixed in the future development of the turbine. In other words, their

influence was taken into account but no changes were determined. The time grid

was set to five seconds each, i.e., the simulation models were used to predict the

states of the turbines five seconds ahead.

The three simulations served as a basis for testing the recurrent neural RL

approaches (chap. 4). In order to guarantee the quality of the experiments first

the simulations’ accuracy was checked by comparing the predictions for all data
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Figure 5.1: Schematic illustration of a gas turbine.

points with the true behaviour of the respective gas turbine. Furthermore, the in-

fluence of the control parameters was tested and their physical plausibility was

verified. The experiments have shown that the simulations well capture the im-

portant aspects of the gas turbines’ dynamics as relative one-step approximation

errors of less than 3% were achieved. Moreover, the closed loop iteration over

longer time periods showed a stable behaviour that kept the parameters in the

valid range.

Although the problem has been already made more tractable by working on

simulations, a direct application of discrete and localised RL methods, such as

Q-learning or PS (sec. 2.4) on local basis functions, showed to be infeasible as the

state space is still of high dimensionality, continuous, and non-Markovian. For

that reason the presented recurrent neural RL approaches (chap. 4) were applied.

A number of 100.000 observations each were allowed for training. With the time

grid of five seconds this covers about a week of data, which is sufficient to train

and update the applied methods on a regular basis. The learnt policies were tested

afterwards on the respective simulation.

The reward functions used in the different settings are as follows, whereby

the exact parameters p1, . . . , pn with pi ∈ R (i = 1, . . . , n) are withheld due to

confidentiality reasons. Here, Load ∈ R
+ denotes the electrical load, RefLoad

∈ R
+ a reference load of a certain data stream, RMSi ∈ R

+ with i ∈ N pressure

intensities in the combustion chamber, and NOx ∈ R
+ and CO ∈ R

+ the regarded

emissions of the respective turbine. 1A stands for the indicator function of a subset

A of an arbitrary set X , which is formally defined as

1A(x) =

{

1 if x ∈ A
0 if x /∈ A

(5.1)

Further it is logistic(x) = 1
1+e−4x . The reward functions were motivated by the

different problem settings. They basically resulted from the respective objective
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and the considered parameters.

(i) Combustion tuning:

RCT := p1Load− p2 − p3(RMS1 − p4)
2 · 1(RMS1>p4)

Here, only one pressure intensity in the combustion chamber, RMS1, is con-

sidered and has to be minimised to achieve an optimal reward.

(ii) Emission tuning:

RET := Load −
4
∑

i=1

pi+4(RMSi − pi)
2 · 1(RMSi>pi)

− p9 · NOx − p10 · logistic (p11(NOx − p12))

In this setting already four different RMS are considered. Furthermore, the

amount of NOx has to be minimised.

(iii) Extended Emission tuning:

REET := 1 − p9|Load− RefLoad| · 1(RefLoad>Load)

−
6
∑

i=1

p7logistic (piRMSi − p8)

− p10 tanh
(

p11(NOx)
2 + p12(CO)2

)

Here, the reward function is normalised to one. For this reason also the

difference between the current Load and a reference load (RefLoad) are

considered. Furthermore, six different RMS are taken into account and in

addition to (ii) also CO emissions have to be minimised.

5.2 Model Description

The new developed recurrent neural RL approaches as described in chapter 4 were

applied to control the different gas turbine simulations. For each, the underlying

RNN was provided with the respective number of observables of the simulations

as inputs and targets xτ and the number of control parameters as actions uτ .

First, the extended RNN (sec. 4.3) was used within the hybrid RNN approach

(sec. 4.1) to reduce the high-dimensional state spaces of the turbine simulations



5.3 Results 81

and hence make the task applicable for standard table-based RL methods on a

sufficiently fine-gridded discretisation. The RNN was unfolded ten time steps

into past and future. It was started with a twenty dimensional state space ŝτ of

the RNN and incrementally applied node pruning [12, 47] to it. As described in

section 4.3, the idea is to condense the state description into a lower dimensional,

but approximately Markovian state, on which table-based RL algorithms can be

deployed. In doing so the best compromise between generalisation performance

and internal dimensionality of the state space was achieved with an only four

dimensional state space. This reduced state space then served as a basis for Q-

learning (RQ) (sec. 2.4.2) and prioritised sweeping (RPS) (sec. 2.4.4) to determine

the optimal policy.

Second, forms of the extended RCNN (sec. 4.7) were used, as due to the

problem setting, in particular the requirement to determine changes in the con-

trol parameters, the standard architecture was not applicable. The internal state

dimension was set to J̄ = 100. For the combustion tuning (i) and the emission

tuning (ii) setting no bottleneck structure was implemented, which means that

dim(̂s) = dim(̄s) and Â := IJ̄ . In contrast, for the extended emission tuning

setting the inclusion of the essential Markovian state space reconstruction turned

out to be essential. Here, the dimension of the Markovian state ŝτ was set to

Ĵ = 10, which led to the desired bottleneck structure. The hidden state hτ of

the control network was set to H = 20 neurons. Further, matrix L was imple-

mented appropriately to keep the changes of the actions ∆ūτ within the allowed

limits. The chosen dimensions were effectual to generate stable results in terms

of system identification and learning the optimal policy. The reward function was

respectively (hard) coded into the neural architecture, which means that fr and G
were set accordingly and if needed additional clusters were implemented. As a

preprocessing the parameters were scaled to the interval [−1, 1]. The RCNN was

unfolded eight steps into the past and 24 into the future. This gave the network

both, a memory length that was sufficient to identify the dynamics, and an over-

shooting length that enabled it to predict the consequences of its chosen actions

and to calculate the desired finite sum of expected future rewards. For the same

reasons as hitherto, in all networks start noise was used to handle the uncertainty

of the initial state (sec. 3.5.2) and the hyperbolic tangent was implemented as

activation functions f and, in the case of the RCNN, also fc, and fu.

5.3 Results

Table 5.1 depicts the results for the three different problem settings. Here, Ref-

Con denotes the reference controller, whose behaviour is reflected by the original

turbine data.
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In all three settings the applied RCNN achieved the highest average and final

reward. Also the two applied hybrid RNN approaches, RQ and RPS, showed re-

markable results. In the first two settings, combustion and emission tuning, they

outperformed the reference controller. Especially in the combustion tuning set-

ting the simple RPS approach performed remarkably well. Only in the extended

emission tuning setting, the hybrid RNN approach produced inferior results. Ob-

viously, even with a reconstructed state space, the standard RL methods were not

able to develop a satisfying policy. In contrast, here the extended RCNN reveals

its advantage. The integrated approach allows the determination of a policy, which

is superior to the reference controller. Figure 5.2 depicts the development of the

achieved reward for the three different settings.

Method Combustion tuning setting

average final

RefCon 0.53 ± 0.01 0.53 ± 0.01
RQ 0.72 ± 0.01 0.73 ± 0.01
RPS 0.84 ± 0.005 0.84 ± 0.005
RCNN 0.86 ± 0.004 0.85 ± 0.005

Method Emission tuning setting

average final

RefCon 0.23 ± 0.02 0.23 ± 0.02
RQ 0.29 ± 0.04 0.29 ± 0.04
RPS 0.45 ± 0.03 0.51 ± 0.04
RCNN 0.59 ± 0.03 0.74 ± 0.03

Method Extended emission tuning setting

average final

RefCon 0.79 ± 0.02 0.79 ± 0.02
RQ 0.63 ± 0.02 0.57 ± 0.03
RPS 0.71 ± 0.02 0.68 ± 0.02
RCNN 0.92 ± 0.01 0.92 ± 0.02

Table 5.1: Average over 1000 trials and final reward after 1000 time steps achieved

by the respective methods for the three regarded problem settings. Note

that in each setting a different reward function was used, which implies

that the results are incomparable between the three settings.

For the combustion tuning setting further the developed policies of the four

regarded methods were analysed. Figure 5.3 illustrates their performance be-

haviours after reaching a stable operating point. Figure 5.3(a) compares the re-

spective mean setting of the control parameters, pilot gas and IGV. It shows that
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Figure 5.2: Evaluation of the reward development for the different controllers for (a)

the combustion tuning and (b) the emission tuning setting. The reward

is plotted for the reference controller (RefCon), RNN based Q-learning

(RQ), RNN based prioritised sweeping (RPS), and the extended RCNN

averaged over 1000 trials with different starting points.
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the presented recurrent neural RL controllers developed the most stable policies

as their standard deviation is low. Notably, these four methods approach very sim-

ilar operating points. Figure 5.3(b) depicts the two major performance indicators,

Load and RMS. It confirms the good results of the novel methods as they reach

the highest Load level with only a minor increase in RMS. To ease interpreta-

tion ”iso-reward” curves are plotted, which indicate identical reward for different

combinations of the performance indicators.
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Figure 5.3: Comparison of the final operation points reached by different controllers

in the combustion tuning setting. The plots show the mean value and

standard deviation in (a) the space of the control parameters and (b) the

space of the performance indicators. In the latter ”iso-reward” curves

indicate identical reward in this space.



”Science, never solves a problem without

creating ten more.”

Georg Bernhard Shaw, 1856-1950

CHAPTER 6

Conclusion

In this thesis a novel connection between reinforcement learning and recurrent

neural networks is presented. Its practicality to solve high-dimensional and

partially observable RL problems with continuous state and action spaces

data-efficiently has been shown on several benchmarks and an application to

gas turbine simulations. As a preposition theoretical results on RNN have been

developed. The thesis therefore contributes valuable results for both research

fields, reinforcement learning and recurrent neural networks.

In summary the following contributions have been made:

(i) A proof for the universal approximation ability of RNN: It has been proven

that RNN in state space model form can approximate any open dynamical

system with an arbitrary accuracy. The result is of great importance as it

forms a theoretical basis for recurrent neural network research in general,

but also for the application of RNN to reinforcement learning.

(ii) A demonstration of RNN’s ability to learn long-term dependencies: It has

been shown that RNN unfolded in time and trained with a shared weight

extension of the backpropagation algorithm are, in opposition to an often

stated opinion, well able to learn long-term dependencies. Using shared

weights in combination with a reasonable learning algorithm like pattern-

by-pattern learning and a proper weight initialisation the problem of a van-

ishing gradient becomes a minor issue. Due to shared weights RNN even

possess an internal regularisation mechanism, which keeps the error flow up

and allows for an information transport over at least a hundred time steps.

The analysis confirms that RNN are valuable in system identification and

forecasting. However, it is of particular importance for reinforcement learn-

ing where a long horizon is necessary to evaluate the policies.

85



86 Conclusion

(iii) Practical details on an improved model-building with RNN: A couple of

approaches in RNN model-building were presented, which have shown to

be very useful in practical applications. Hereby, methods to deal with uncer-

tainty in the data as well as in the initial state of the finitely unfolded RNN

were described. Additionally, ways for an optimal weight initialisation were

discussed. These aspects are of importance for an optimal system identifi-

cation and also positively influenced the performance of RNN applied to

RL problems.

(iv) An RNN based method for an optimal state-space reconstruction as well

as minimisation: A novel RNN based method to reconstruct or minimise

the state space of a partially observable system was introduced. RNN were

used to reconstruct or minimise a system’s state space within their inner

state. In doing so a problem can be made more tractable. The method

served as a basis for recurrent neural reinforcement learning. Still, it is

itself valuable as it allows a kind of feature selection, where in contrast to

classical approaches, the features provide across-the-time information.

(v) A hybrid RNN approach to solve RL problems with a combination of

RNN and standard RL algorithms: The hybrid RNN approach represents

a combination of state space reconstruction and respectively minimisation

with RNN (iv) and RL. It is a two step method. In the first step the RNN

is used to create a suitable state space, which standard RL methods can

deal with. In the second step the internal state of the RNN then serves as a

basis for those RL methods, which are applied to learn the optimal policy.

The approach is quite simple, but has shown remarkable results. For the

first time the cart-pole problem could be solved with only one observable

variable.

(vi) An RNN to explicitly model POMDP: A special RNN architecture was de-

veloped for the mapping of POMDP and the reconstruction of a (minimal)

approximately Markovian state space. Its structure is adapted to POMDP.

So it considers actions as separate inputs and allows to explicitly recon-

struct the RL system’s state out of the observables and the networks inner

state. The network can be used to enhance the hybrid RNN approach (v).

This has shown to be particularly of advantage for RL algorithms, which

are by construction unable to deal with partially observable environments.

Their application range can be enlarged through a preprocessing of the RL

system’s state space with the described RNN.
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(vii) The recurrent control neural network in its standard and its extended

form: The RCNN forms the desired connection between RL and RNN. It

combines system identification and learning of the policy of an RL problem

within one integrated recurrent neural network. The approach is model-

based and by construction able to solve high-dimensional and partially ob-

servable RL problems with continuous state and action spaces in a data-

efficient manner. On this note it also offers a good approach to break Bell-

man’s curse of dimensionality [7]. In contrast to most RL methods it makes

no use of a value function. Its learning of a policy can rather be referred to

as virtual Monte-Carlo policy gradient method.

The application to the classical cart-pole problem demonstrated the capa-

bilities of the RCNN, especially in terms of data-efficiency and robustness.

The results on the mountain car problem further showed that the RCNN is

able to learn a potentially optimal policy.

In an extended version the RCNN further incorporates the idea of a mini-

mal Markovian state space reconstruction and allows for the calculation of

changes in the control parameters instead of absolute values only. This has

shown to be a clear advantage for real-world applications.

(viii) An application to gas turbine control: The application on gas-turbine

control was motivated by a research project at Siemens AG. Within the lim-

its of confidentiality the problem setting was described and its particular

difficulties were pointed out. For a solution the novel recurrent neural RL

methods were applied. Overall, the results were remarkable as in compar-

ison to the given reference controller a substantial performance gain could

be achieved. Furthermore, the methods have been shown to significantly

improve the turbines stability and its lifetime by guaranteeing the accus-

tomed high performance. However, in the application to the three different

simulations of gas turbines it became also evident that the integrated RCNN

approach is more powerful than the hybrid one. Nevertheless, despite its

simplicity the latter showed a remarkable performance.

Future research can be done in several directions. On the one hand the theory

of RNN can be further developed. Thereby proofs for numerous assumptions, like

the details on improved model-building, would be desirable. Besides, a compari-

son between the multiple recurrent neural network types might be of interest. On

the other hand one might further enhance the novel neural RL approaches. Here

a combination with the theory on sparse matrices, which have shown very good

results on long-term learning [78], large neural networks [106] or also safe explo-

ration [31] would be thinkable. In addition, an application to real gas turbines and

similar real-world applications is aspired. Coming along with that is a constant

improvement and adaptation of the networks to each respective problem setting.
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