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Résumé

Les cryptomarchés sont des plateformes virtuelles, similaires a eBay, qui permettent d'échanger
de la drogue en ligne en tout anonymat, de manicre professionnelle et sécuritaire. Cette étude
vise a caractériser la structure du march¢ de la drogue sur les cryptomarchés, afin de comprendre
le contexte économique. La structure du marché est évaluée selon le degré de concurrence ainsi
que la portée et I'importance des vendeurs de drogue en termes de visibilité, de diversité et
d’expérience. Les résultats de I’étude illustrent que le marché est concurrentiel mais également
trés inégal. Les vendeurs ont une portée et une importance relativement limitées. Ceci s’explique
par le fait que les transactions en ligne, anonymes et illégales imposent d’importantes
contraintes aux vendeurs. Le statut d’illégalité oblige les vendeurs a limiter leurs activités hors
ligne, diminuant leur potentiel de croissance en ligne. De plus, le contexte en ligne favorise la
concurrence, mais les risques qui découlent de I’anonymat des transactions intensifient la
tendance des acheteurs a choisir des vendeurs réputés et expérimentés. Les vendeurs font donc
face a des « barrieres a la vente » et 90% agissent comme des spectateurs dans le marché. En
plus, les vendeurs expérimentés utilisent des techniques agressives de publicité, afin d’empécher
leurs compétiteurs d’entrer sur le marché, gardant ainsi leur position avantageuse et contribuant
a ’inégalité du marché. Un paradoxe émerge : le marché est compétitif, mais également peuplé
de quelques vendeurs « superstars » qui ont une portée et une importance relativement limitées.
Suite a cette analyse, il est peu probable que les cryptomarchés représentent 1’avenir de
I’industrie de la drogue, en raison des difficultés rencontrées par les vendeurs lors de la vente

de drogue en ligne.

Mots-clés : cryptomarchés, marchés illégaux en ligne, structure de marché, compétition



Abstract
Since 2011, drug market participants have had the opportunity to trade illegal drugs through

online anonymous marketplaces dubbed cryptomarkets. Cryptomarkets offer a user-friendly
infrastructure, similar to eBay, where market participants can meet and conduct business
together. These well-designed anonymous platforms offer a professional setting for drug sales,
but to what extent they are the future of drug dealing is unclear. This study characterizes the
structure of the drug market hosted on cryptomarkets in order to better understand the economic
setting of cryptomarket drug vendors. Market competition and the size and scope of drug vendor
activities are analyzed. We find that the drug market hosted on cryptomarkets is fiercely
competitive and deeply unequal. The size and scope of vendors’ activities are limited.
Challenges arise due to the online, anonymity and illegality features of cryptomarket drug
transactions. The illegality status of drugs forces vendors’ offline activities to stay within a small
size and scope, limiting their potential growth online. The online nature of cryptomarkets fosters
competition, but the risks that arise from anonymous transactions exacerbate buyers’ tendency
to choose well-reputed and experienced vendors. Thus, vendors face strong barriers to sales and
90% of them act as spectators in the market. This inequality is exacerbated by aggressive
advertising conducted by established vendors to push out potential competitors. A paradox is
found: the market is fiercely competitive, but also populated by market superstars, whom,
however, still have limited size and scope. We conclude that cryptomarkets are not likely be the
future of drug dealing because of the challenging environment they offer to cryptomarket drug

vendors.

Keywords: cryptomarkets, online illegal markets, market structure, competition
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“I don't do drugs. I am drugs.”
— Salvador Dali

Introduction

The global trade of'illicit drugs is a massive industry worth upwards of tens of billions of dollars
US (Reuter and Greenfield, 2011). Its customers (individuals who used illicit drugs at least once
during the year) represented 3.3% to 6.1% of the worldwide population in 2008 according to the
UNODC (2011). The illegal drug market is large, but also dynamic; market participants adapt
to new constraints and to new opportunities quickly. Opportunities like technological
innovations help the development of new techniques or new tools that make the commission of
crimes easier (Natarajan et al., 1995). For instance, in the 1990s, cellphones were considered a

technological innovation which eased communication among drug dealers (Natarajan et al.,

1995).

Nowadays, two technological innovations combined, The Onion Router (Tor) and the
cryptocurrency Bitcoin, have enabled the development of anonymous online drug marketplaces,
dubbed cryptomarkets. Tor is an international network allowing one to browse online with
anonymity, ensuring privacy and security on the Internet (Tor Project, 2015). Bitcoin is a digital
currency based on peer-to-peer technology with no central authority or banks (Bitcoin
Organisation, 2015). With these technologies combined, cryptomarkets allow market
participants to meet and conduct transactions anonymously on a user-friendly online platform

similar to eBay (Barratt, 2012).

These platforms represent a new channel for the sale of illegal drugs, one that is anonymous and
global, localised in neither space nor time. The well-known newspaper The Economist

published an article in June 2016 mentioning that “The drug trade is moving from the street to

1



online cryptomarkets”. Are drug vendors actually shifting their dealing activities towards these
online platforms, “upping their game”, as stated in the article? In fact, are cryptomarkets the
future of drug dealing? One way to assess this inquiry is to understand the market structure and
the economic dynamics behind this new online drug market. Cryptomarkets represent an
innovative channel for the sale of drugs, and understanding the structure of the drug market
evolving in this new channel will provide an assessment of the extent to which cryptomarkets

are profitable for vendors.

This study characterizes the structure of the online drug market hosted on cryptomarkets in order
to evaluate if these platforms are, indeed, the future of drug dealing. Through data collected on
one of the largest cryptomarkets to date, market competition and the size and scope of drug
vendors are evaluated. The size and scope of drug vendors lie in three dimensions: exposure,
diversity and experience. The study provides an holistic understanding of the economic market
in which cryptomarket drug vendors evolve, as well as the challenges and opportunities they

face when selling online.

Transactions in online drug markets have specific features: they are online, anonymous and
illegal. These features are known to influence the structure of markets towards less or more
competition. The first chapter provides a comprehensive overview of these three features and
the changes they may create on market structure. The second chapter presents the data collection
process, the dataset and the methodology of the research. The strategies used to measure market
competition, evaluate the size and scope of drug vendors and develop proxies for vendors’
exposure, diversity and experience are exposed. The third chapter presents the results of the

analyses. The conclusion considers the features of cryptomarket drug transactions -online,



anonymity and illegality- and their potential impact on market structure while discussing the
findings. This provides a deep understanding of the market dynamics behind the online drug
market hosted on cryptomarkets. The limits of the study are then presented, along with possible

further research and a coda note.



Chapter 1

Online Transactions, Anonymity and Product Illegality



This study characterizes the structure of the drug market hosted on cryptomarkets. Transactions
in online drug markets have features that need to be taken into account when characterizing the
subsequent market structure: they are online, anonymous and illegal. This chapter presents the
changes these features could engender in the structure of markets. To begin, we present the
economic dynamics behind online markets. We then focus on the specific setting related to this
study: online anonymous markets and, more specifically, cryptomarkets. We afterwards shift to
the offline world and discuss the consequence of product illegality on market structure. Finally,

the problematic arising from the literature review is presented at the end of this chapter.

Online Markets

A main feature of economic transactions on cryptomarkets is the fact that they are taking place
in an online environment and participants in these online illegal markets have no border to cross
or time zone to face (Décary-Hétu and Leppénen, 2013). In the legal world, online markets are
a common place to conduct economic transactions and the Internet is now a robust channel for
e-commerce (Cambini et al., 2011; Smith et al., 2001). This section presents the characteristics
of online markets -and the economic forces behind them- that alter the structure of markets

towards more or less competition.

First, Wigand (1997) defines e-commerce as “any form of economic activity conducted via
electronic connections” and electronic markets as electronic settings where e-commerce takes
place (p. 2). For this study, the terms “digital”, “electronic”, “e-" or “online” refer to activities

and/or processes that happen through computer networks and are enabled by the Internet. For

simplicity, we use the term “online”, unless a citation requires the use of another word.



Online markets possess features that allow them to be more competitive than traditional offline
markets (Cambini et al., 2011). First, search costs -the costs of searching for products and
comparing their prices- are reduced in these markets, especially with the help of search engines.
This imposes higher competitive pressures for online sellers and, consequently, decreases
products’ prices compared to those of traditional offline markets (Brynjolfsson et al., 2003;
Brynjolfsson and Smith, 2000). Also, lower search costs provide greater product variety for

consumers, thereby increasing their welfare (Brynjofsson et al., 2003).

Second, buyers’ switch costs -consumers’ costs related to changing supplier for a specific
product or service- decrease in online markets. This imposes higher competitive pressures for
online sellers because consumers can switch to other sellers easily when unsatisfied with their
purchases (Cambini et al., 2011). Lower search and switch costs result in a higher elasticity of
demand. The elasticity of demand is a measure of buyers’ sensitivity toward an increase in price.
Ellison and Ellison (2009) found that online buyers are highly sensitive to prices. Online sellers
can face price elasticity of demand of -20 when buyers have access to efficient search engines.
This means that a 1% increase in the price of a product sold online could lead to a 20% decrease

in the demand for the product.

Third, seller menu costs -the costs for sellers to change prices- are expected to be quasi-null on
online markets, allowing retailers to optimally adjust prices according to market demand.
Brynjolfsson and Smith (2000) found that online prices change more frequently, allowing better
flexibility for sellers. However, they mention that online sellers are inclined to make small price

changes when they face higher competition.



Hence, online markets’ features: low search, switch and menu costs, as well as high price
elasticity of demand, promote competition among sellers. However, Cambini et al. (2011) point
out that, despite these features, online markets do not reach perfect competition as predicted by
them. There seems to be a high level of concentration of market power in online markets

(Brynjolfsson and Smith, 2000; Clay et al., 2001; Elberse, 2008; Wang and Zhang, 2015).

Y C6

In fact, online search costs are not limited to products’ “price attributes”, but also include “non-
price attributes”, such as delivery time, shipping costs and product availability. This creates
product differentiation because online products that seem homogenous at first are in fact
differentiated by non-price attributes (Cambini et al., 2011). Absolute search costs decrease
online, but buyers’ relative search costs increase, because they have to search among different
sellers for non-price attributes related to the same product (Kauffman and Walden, 2001). Due

to non-price attributes, sellers can trick consumers and charge different prices, altering market

efficiency and competition online.

Brand and reputation are two other significant non-price attributes that create product
differentiation in online markets, allowing sellers to charge higher prices. Consumers in online
markets are willing to pay higher prices for well-reputed sellers compared to unknown ones
(Smith and Brynjolffson, 2001). Brynjolfsson and Smith (2000) found that the online company
Amazon.com was able to charge a price premium of 7-12% because of its strong reputation in
book retailing. Good reputation provides a certain level of trust in specific sellers, which is
directly translated into a price premium. Moreover, Chevalier and Goolsbee (2003) found that
consumer price elasticity depends on market sellers. Sellers with a well-established reputation,

known as market-leaders, face lower price elasticity of demand than do others.



Branding is of great importance for buyers in online settings, mainly because buyers are
concerned about unobservable quality control (Latcovitch and Smith, 2001). Advertising can be
considered as a signal of reliability and security in online shopping. With product development,
advertising and revenue data, Latcovitch and Smith (2001) found that consumers respond more
to advertising -rather than low prices- when shopping online. They posit that online sellers may
need to spend more on online advertising than traditional ones do to develop a branding and
consequently establish a good online reputation. This can induce market power for those who
invest largely in advertising to gain a good reputation in online markets and push out smaller
competitors with lesser advertising budgets. Moreover, according to Wang and Zhang (2015),
the fact that the market is one large virtual place where sellers face high fixed costs and low
marginal costs influences online sellers to act aggressively in advertising. Popular products sold
online are stunningly profitable compared to other, less-known products (Latcovich and Smith,

2001; Wang and Zhang, 2015).

Wang and Zang (2015) conclude that the winner-takes-all theory better explains the effect of
the Internet on industry competition. The winner-takes-all-theory of Frank and Cook (1996)
states that contemporary society tends to concentrate wealth in a small number of winners,
dubbed “the superstars”. As an example, Elberse (2008) found that blockbusters capture even
more market than they used to with their online music services, as niche products have even less
share of the market. The increasing multiplication of choices available on the Internet would
therefore have the opposite effect, converging customer purchases and habits towards popular

similar products.



Hence, online markets have features, such as low search costs, switch costs and menu costs, that
should create greater competition in online markets (Cambini et al., 2011). However,
consumers’ tendency to choose branding and reputation online over low prices favors market
leaders (Cambini et al., 2011; Ellison and Ellison, 2009; Latcovictch and Smith, 2001; Pozzi,
2012; Ulph and Vulkan, 2000). The effect of the Internet on industry competition would
therefore be associated with a decrease in industry competition, rather than an increase (Elberse,
2008; Wang and Zhang, 2015). This review shows that there is a need to be prudent when
assessing the structure of online markets, as several economic forces come into play and
influence variously the degree of competition among sellers. Keeping this in mind, we now look

at online illegal markets where illegal goods and services are sold.

On the Anonymous Features of Online Illegal Markets

The section above illustrates that online markets present different features that may influence
their structure to be more or less competitive. However, online illegal markets are quite different
from legal ones: they are anonymous and market participants cannot rely on the legal system if
they are swindled. Online illegal markets often evolve within a marketplace, such as discussion
forums or cryptomarkets. This section briefly presents the first generation of online
marketplaces selling illegal products: discussion forums and chat rooms. It then discusses more
thoroughly the second generation: cryptomarkets. The aim is to provide a better understanding
of how markets operate in an anonymous context and to present the setting in which this study

takes place: cryptomarkets.



Discussion Forums and Chat Rooms
The first generation of illegal online marketplaces is hosted in forum discussions and chat
rooms. They can be considered a form of online social networks, as online participants maintain
personalities, add fellow users and engage in private or public conversations to learn and
exchange information, but one of their principal purposes is the sale of illegal goods and services
(Motoyama et al., 2011). Stolen financial information, exploit kits, fake identity papers, account
credentials, spam or hacking services and much more are sold on these online platforms, filling

a market demand for such products (Yip et al., 2013).

With the appropriate use of technology, market participants in these forums conduct their online
activities anonymously, through pseudonyms, allowing a certain degree of concealment from
law enforcement (Yip et al., 2013). However, the anonymity feature also generates uncertainty,
as participants can steal and act opportunistically while keeping a high level of impunity.
According to Wehinger (2011), being a victim of a fraud or a scam is a bigger threat for market
participants than the threat of being arrested by law enforcement. Furthermore, the absence of
quality control of products bought and sold and -again- a lack of means to enforce agreements
increases the risk of unsuccessful transactions. All this results in higher transaction costs for
market participants (Yip et al., 2013). Trust must be created and maintained -despite anonymity-

to ensure successful transactions and prevent market failures.

Wehinger (2011) investigated the functioning of illegal online marketplaces and illustrated that
these marketplaces use alternative mechanisms to create trust among market participants and
overcome the risks associated with online transactions. For example, the reporting of routines

for fraud or granting “verified status” to participants are mechanisms frequently used by
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administrators of discussion forums and chat rooms to generate institution-based trust among
market participants. Wehinger (2011) concluded that, by “policing” the marketplace,

administrators provide a minimum level of stability.

Also, process-based trust can reduce the overall level of risk of failed transactions in the
marketplace (Wehinger, 2011). Process-based trust develops through past exchanges among
participants. Lusthaus (2012) and Radianti (2010) showed that forums allow participants to
communicate and develop trust relationships among one another. Active participation in forums,
especially for sellers, creates a visibility and subsequently augments process-based trust among
market participants. Active participation in online forums can also be considered as signals sent
by sellers to show to the community that they are serious businessmen. This idea comes from
Gambetta (2009), who theorized that the criminal underworld abounds with uncertainty and
those involved in market crimes need to interpret and respond to “signals” in order to ensure
that they are not conducting business with an undercover policeman or with a scammer. In the
case of online illegal markets, buyers need to look for signals before deciding whom to trust and
conduct business with. As stated in Décary-Hétu and Leppdnen (2013), “buyers need to
carefully assess the signals that each seller broadcasts in order to reduce the chances of being
scammed” (p. 5). Good reputation, positive feedbacks, and active participation are all signals
sent by sellers to the community to show that they are serious in conducting business. These

signals, when well interpreted, also ensure successful transactions in the market.

Also, there has always been a concern related to the use of multiple accounts by one individual
in online illegal markets. Due to the online and anonymous nature of these markets, there is no

possible way to verify if an individual uses many accounts or solely one. Vendors can use
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several accounts to avoid being detected as “large vendors” by law enforcement. However,
Décary-Hétu and Eudes (2015) found that only 8.9% of vendors owned multiple accounts on an
online carding forum. Motoyama et al. (2011) in their study of six underground forums also
consider that using multiple accounts to mask the level of an illegal trader’s online activity is
unlikely. They argue that reputation is hard to accrue online and using multiple accounts on
which reputation needs to be built is not viable for high volume traders. Moreover, Radianti
(2010) observed that administrators in a credit card-related forum established a rule that required
an online persona to post a minimum number of times in beginners’ forums before being allowed
to interact in the more serious and formal forums. According to Radianti (2010), this rule was

implemented by market administrators to prevent multiple account creations by an individual.

Once trust is established within the platform, these illegal online markets are known to be global,
competitive and driven by market dynamics (Yip et al., 2013). Forums become an open
advertising space (Holt, 2013) where sellers can post their listings knowing they will be exposed
to many potential buyers. They create threads within the forums and list their products and
services to the rest of the community (Chu et al., 2010; Holt and Lampke, 2010 and Motoyama
et al, 2010). Also, the relationships among buyers and sellers are structured around
communication, price, quality and services (Holt and Lampke, 2010). Quickly responding to
customers, offering low prices with good quality products and providing resources and concern
to customers ensures successful transactions (Holt and Lampke, 2010). To entice customers,
sellers offer products with competitive pricing and consumer support, ensuring positive
feedbacks for future successful transactions (Holt, 2013; Holt and Lampke, 2010; Motoyama et
al., 2011). Studies on online illegal markets conclude that these markets are competitive and

driven by market dynamics (Holt, 2013; Holt and Lampke, 2010; Yip et al., 2013).
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Cryptomarkets

Lately, a second generation of illegal online marketplaces has emerged, called cryptomarkets.
As opposed to chat rooms and discussion forums, cryptomarkets offer a clean and user-friendly
infrastructure for market participants to meet and conduct business together (Christin, 2013).
The visual design is similar to eBay or Amazon (Barratt, 2012). Vendor’s listings permit
advertisements and description of products sold and are centralized into a profile, allowing a

global vision of what is sold by a vendor.

The key innovation of cryptomarkets is to offer stronger anonymity properties to its participants
than the usual illegal online marketplaces (Martin, 2014ab; Soska and Christin, 2015).
Anonymity is provided through a combination of two technological innovations: The Onion
Router (Tor) network and cryptocurrencies. The Tor network provides anonymity by making IP
addresses of clients and servers unknown to each other; users connect through a series of virtual
tunnels rather than through direct connections (The Onion Router, 2015). Cryptocurrencies,
such as Bitcoin, are currencies based on peer-to-peer technology with no central authority or
banks (Bitcoin Organization, 2015). According to Martin (2014a), the participants’ reliance on
encryption technology is what differentiates cryptomarkets from other illegal online

marketplaces.

Cryptomarkets also provide sophisticated mechanisms to ensure institution-based trust among
participants. They provide feedback systems on listings, allowing market participants to rate
sellers according to the quality of products and services provided; they impose escrow services,
where a third party holds payment until delivery of the product; and they encourage market

participants to interact through encrypted messaging. When problems emerge during
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transactions (e.g., no delivery of the product bought), some marketplaces offer a customer
resolution service, where the problem between a vendor and a buyer is mediated by market
administrators (Morselli et al, forthcoming). Discussion forums are also established, where
market participants can interact and build process-based trusts. Participants routinely interact in
these forums to talk about, for example, drug experiences (Buxton et Bingham, 2015; Maddox

et al., 2016).

Also, both digital and physical products are sold on cryptomarkets. When delivery of a physical
product is needed, vendors disguise the good in a package that will resemble a package from
large online retailers such as eBay, and send it through postal services to the address provided
by the buyer (Volery, 2015). To ensure that sellers are cautious, some marketplaces require
buyers to rate sellers according to stealth skills. Sellers may also choose to sell at the
international level - incurring more risk of package interception because of multiple frontiers -

or at the domestic level, in the seller’s country (Décary-Hétu et al., 2016).

The first cryptomarket to appear was called Silk Road. It was launched in February 2011 and
ran for more than two years with almost total impunity, until the Federal Bureau of Investigation
(FBI) seized the site in October 2013 (Aldridge and Décary-Hétu, 2014). The shutdown of the
first cryptomarket, Silk Road, received international press and media attention. During the
following weeks, Silk Road sellers and buyers moved to other markets or started their own
anonymous marketplaces and, ever since, numerous marketplaces following the same model
have appeared (Soska and Christin, 2015). Even Silk Road 2.0, the “sister site” of the first Silk

Road, emerged no later than a few weeks after the first shutdown.
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Of course, even with the use of several good encryption technologies, cryptomarkets are not
totally exempted from the threat of law enforcement and fellow criminals. Arrests and seizures
have been made by law enforcement, as well as voluntary closures by scam administrators, but
these online marketplaces continue to appear and disappear. Soska and Christin (2015) find that,
after a shutdown, market participants’ confidence is re-established after two to three months,

suggesting it is a resilient online ecosystem.

Most listings advertised on cryptomarkets are related to drugs, which is a major shift from the
first generation of illegal online markets. In the first Silk Road, drugs accounted for 17 of the
20 largest categories (Aldridge and Décary-Hétu, 2014; Christin, 2013); marijuana,
prescriptions, narcotics, prescription medicine and benzodiazepine were the top categories in
terms of items available (Christin, 2013). Moreover, since 2015, cannabis, MDMA (ecstasy)
and cocaine-related products are the most popular drugs sold online, averaging about 70% of all
sales (Soska and Christin, 2015). Hence, cryptomarkets are principally an infrastructure for drug

dealing, even though other products such as E-books are sold.

The experience of selling online has been reported as convenient and pleasant. Vendors reported
that they enjoyed the “simplicity in setting up vendor accounts and the opportunity to operate
within a low risk, high traffic, high mark-up, secure and anonymous Deep Web infrastructure”
(van Hout and Bingham, 2014, p.183). They also reported appreciating the harm reduction ethos
and the professionalism of the site, as well as the possibility for “professional advertising of
quality products, professional communication and visibility on forum pages [...]” (van Hout
and Bingham, 2014, p.183). However, Christin’s (2013) study found that Silk Road sellers did

not stay long on the marketplace, as the majority of them disappeared within three months of
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market entrance and only 9% of Silk Road sellers (112 sellers) were present for the entire period
of the study (a few months in 2012). The overall lifespan of listings was also found to be quite
short, less than three weeks, with a very low ratio of long-lived listings (Christin, 2013).
Following the fall of Silk Road, Soska and Christin (2015) conducted a two-year period of
observation on multiple cryptomarkets, between 2013 and 2015, and found that the number of
sellers had considerably increased. A large proportion of them also sold on multiple
marketplaces at the same time to reduce the uncertainty associated with sudden marketplace

closures.

During this two-year period of observation, Soska and Christin (2015) found that about 70% of
sellers sold less than $1,000 worth of products and only 2% sold more than $100,000. The same
study found that the total volume of sales across all cryptomarkets was stable between $300,000-
$500,000 USD per day, reaching sometimes up to $650 000 USD daily. However, since the
methodology of Soska and Christin (2015) does not consider listings with a price over $1,000

USD, the numbers mentioned above may be undervalued.

On the other hand, drug consumers buying on cryptomarkets noted that transactions were more
convenient, professional and safer, avoiding the face-to-face meeting with the dealer (Barratt et
al., 2013; van Hout and Bingham, 2013a; van Hout and Bingham, 2013b). They also mentioned
that they enjoyed the harm reduction ethos within the virtual community, the wider range of
products available, the better quality of the drugs and the use of vendor rating systems (Barratt
et al., 2013). In a van Hout and Bingham (2013b) study, buyers reported that escrow service
protected them from scamming and they appreciated online forums with information on the

quality of sellers and products sold. They mentioned that cryptomarkets enhanced their decision-
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making process and broadened their drug consumption horizons (van Hout and Bingham,
2013b). Lastly, the participants (N=20) surveyed by van Hout and Bingham (2013b) “reported
intentions to continue using the site in the future, with several intending to set up vendor

accounts” (p. 527).

Since the first cryptomarket, Silk Road, the size and scope of this online market ecosystem has
expanded (Aldridge and Décary-Hétu, 2014; Soska and Christin, 2015). Barratt et al. (2013)
added questions on cryptomarkets in the 2012 Global Drug Survey and found that no more than
a year since the appearance of Silk Road in 2012, 40% of consumers in Great Britain, Australia
and the United States had heard of Silk Road and at least 7% of them had purchased once online.
Barratt et al. (2013) also found that differences in the kind of drugs bought by Silk Road users
appear to reflect drug trends in their own countries. van Buskirk et al. (2013) concluded likewise
in their bulletin on drug trends sold via the Internet to Australia. Also, Aldridge and Décary-
Hétu (2014) illustrated that an important proportion of the Silk Road transactions were more
business-to-business like, with sales in quantities and at prices not typical of a consumer’s
purchase. Hence, if transactions in cryptomarkets are not for reselling to end-consumers, their

impacts on the international drug trade - and local drug markets - could be substantial.

The resilience of cryptomarkets, their relative growth over time and participants’ strong
appreciation suggest that cryptomarkets fill a void for a market demand. They are therefore not
expected to disappear anytime soon. Yet, little is known on the structure of these markets. This
research is about developing a first understanding of the structure of drug markets hosted on
cryptomarkets. However, as drugs sold online have an illegality status, we now discuss the

consequence of product illegality on market structure.
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Revisiting the Consequence of Product Illegality on the Organization of

Markets

Even though transactions take place online, drugs sold on cryptomarkets need to be packaged
and shipped once the online transaction is completed. Part of the process takes place in the
physical world and this is why understanding the structure of traditional illegal drug markets is
useful to understand the structure of online illegal markets. In this section, we first present
Reuter’s work on the consequence of product illegality on the size and scope of illegal firms,
and, subsequently, the organization of markets. Second, we present empirical research on the

drug market.

Size and Scope of Illegal Firms
Reuter’s (1983) study on the organisation of illegal markets followed a supply-side approach to
study the structure of illegal markets and argued that the legal status of a product -its illegality-
should affect the way in which its production and distribution is undertaken by enterprises'.
From this argument, he aimed at assessing the size and scope of firms producing and distributing

illegal products in order to have a better understanding of the organization of illegal markets.

For his study, Reuter (1983) worked in a sub-field of industrial organization that accounts for
firms’ mode of transactions: Williamson’s (1973) transaction costs economics (TCE), and

aimed at assessing the size and scope of illegal firms through an analysis of the transaction costs

! For simplicity, the terms “enterprise” and “firm” will be employed as synonyms throughout the text. A definition
of what is an illegal firm/enterprise — for purposes of clarification throughout this paper — is provided by Haller
(1990), as an entity that conducts the “sale of illegal goods and services to customers who know that the goods or
services are illegal” (p.207). Illegal enterprises may be composed of one individual — the entrepreneur — or several
who work together, as long as this/these individuals are involved in the sale of illegal goods and services.

18



associated with expansion. This gave him insights into illegal firms’ mode of governance and,

subsequently, into the organization of illegal markets.

Reuter (1983) argues that, as opposed to legal enterprises, illegal ones operate in a risky and
uncertain environment. He establishes two operational consequences — or driving forces — of
product illegality: (1) contracts are not enforceable by law and (2) there is a risk of arrest and/or
seizure of assets by law enforcement. First, contracts, however formal or informal they may be,
are of great importance for enterprises and the lack of legal recourse in the illegal world is likely
to affect the internal organization of firms. Second, arrests and asset seizure are costly for illegal
firms and need to be minimized. This can be done by controlling the flow of information about
the firm’s illegal activities, something that is likely to influence the mode of transactions among

individuals in a firm on a day-to-day basis.

To assess the costs of expansion, Reuter (1983) formulates the assumption that most costs
associated with the supply of illegal goods (e.g., drugs) and services (e.g., bookmaking or
loansharking) originate from the number of individuals involved in the distribution and their
subsequent coordination. Factors affecting the costs curves of illegal firms are therefore
considered “human factors” and are mostly associated with the coordination of group activities.
To analyze the mode of governance of illegal firms, three angles associated with expansion are
used: internalize functions within illegal firms (vertically integrating activities such as
wholesales or retails of drugs), geographic scope (expanding to other locations) and
diversification (producing multiple lines of products). These expansions depend primarily on
the costs associated with investments in human factors, such as the level of employment or

investments in human capital. Reuter’s assessment of the size and scope of illegal firms allows
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him to conclude that illegal markets are likely to be populated by localized, fragmented,
ephemeral and undiversified enterprises, which creates a very competitive environment. We
provide below a short review of Reuter’s line of inquiry that brought him to conclude that the

size and scope of illegal firms are limited.

The decision to vertically integrate the production of goods or services within an illegal firm
depends on the costs and benefits associated with this activity versus buying it in the market.
The integration of production requires an increase in the number of employees. However, as
Reuter (1983) states, the level of employment in illegal firms is likely to be limited because
employees are a significant threat® to the entrepreneur. They are witness to the entrepreneur’s
involvement in the criminal business and they are aware of past deals in the enterprise, as well
as future ones. This prevents the entrepreneur from tapping economy of scale in production and

tends to reinforce pressures for illegal enterprises to stay small in the number of employees

hired.

The integration of production — forward or backward — determines the number of autonomous
firms an entrepreneur has to deal with. Employment relationships in the legal context are
advantaged by the possibility of being long-term, thus encouraging human capital investment.
Illegal enterprises, on the other hand, are always subject to shut-down and entrepreneurs are
consequently less inclined to invest in human capital within their firm. Plus, because employees
need to cover their activities from the possible threat of law enforcement, the costs of monitoring
employees’ performance dramatically increase. According to Reuter (1983), the relative

instability of enterprises and the uncertainty of their relationships is a sufficient explanation for

22 The conclusions on the level of employees can also be applied to partners, as they also represent a threat for the
illegal entrepreneur.
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firms to be unintegrated and to buy in markets instead. Also, Reuter (1983) demonstrates that
entrepreneurs have little motivation to integrate activities forward up to the end of the chain of
distribution. Final customers are the most significant threat to the entrepreneur, because they
have little loyalty, take fewer precautions and are a source of information for the police. If the
entrepreneur really wishes to integrate the final sale, she/he will have a strong incentive to
fragment the enterprise to isolate the end-dealing activity. Illegal firms therefore tend to be more

fragmented instead of integrated.

Illegal enterprises, furthermore, lack the durability to invest in time and money, according to
Reuter (1983). The lifespan of illegal enterprises is shorter than that of legal ones. Illegal firms
do not exist independently from the entrepreneurs and they do not have access to external credit
markets, compared to their legal counterparts. Indeed, in the legal market there is usually a legal
distinction between ownership and management of firms; creditors do not have to get involved
directly in the management of the firm, which ensures its longevity. However, illegal enterprises
cannot rely on or attract external creditors because bookkeeping with proof of the firms’ activity
can be a serious liability for the entrepreneur. Illegal enterprises’ operating time is therefore
usually no longer than the criminal lifetime of the entrepreneur, which, as Reuter (1983) states,
may be terminated by either a lack of willingness to continue or an arrest. Illegal firms are
consequently more likely to be ephemeral.

Moreover, Reuter (1983) argues that illegal enterprises are expected to be geographically small
because illegal enterprises cannot monitor the overall level of exposure of the firm to the police
when geographically dispersed. As Reuter (1983) mentions, aversion to risk is personal to every
individual and entrepreneurs may not be able to monitor the level of risk taken by their

employees in remote locations and sanction them if needed, because of the limited information
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available. Higher costs of transportation and communication due to risk may also hinder the
growth of the illegal enterprise, just as the multiplication of law enforcement agencies at the
interstate level may prevent illegal entrepreneurs from expanding geographically. Also, illegal
enterprises cannot advertise their products efficiently because advertising provides information
to the police and attracts attention. This prevents illegal enterprises from tapping consumer

brand loyalty and from expanding geographically to new markets.

Additionally, Reuter (1983) argues that illegal enterprises are more likely to be undiversified in
their production. Pure conglomeration — diversification into unrelated product lines - is unlikely
for illegal enterprises because it increases the exposure to law enforcement. The costs associated

with monitoring multiple production activities are too high.

When assessing the costs of firms’ expansion, Reuter (1983) concludes that illegal markets are
more likely to be populated by small, fragmented, ephemeral and undiversified firm due to the
driving forces preventing them from gaining expansion. This creates a very competitive

environment where no market players can easily expand and gain market power.

About the Functioning of Illegal Drug Markets
Illegal drugs are basically consumer goods; they are primarily exchanged through markets, just
as any other products (Caulkin and Reuter, 1998). The market “consists of the buyers and sellers
whose interaction determines the price and quantity of the good that is traded” (Hindriks and
Myles, 2006, p. 209). The idea that large-scale criminal organizations dominate illegal markets
by controlling the supply of drugs and their prices has been demystified (Paoli, 2002). Even
when criminal organizations sell illegal goods or services in markets, a more flexible approach

-taking into account market dynamics and networks- has been found to be a better fit to
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understand the underlying economic activities of their members and associates (Morselli, 2009).
Participants in illegal markets are involved in a small and flexible network of free independent
entrepreneurs who seek financial opportunities (Desroches, 2007; Morselli, 2009; Pearson et al.,
2001). Their governance is more a market type than a hierarchy. Pih, Hirose and Mao (2010)
found that members in Taiwanese criminal gangs are governed by the availability of financial
opportunities and their relations consisted of market-like weak ties, these ties being usually

interpreted as gang affiliations.

Illegal entrepreneurs associate for a few transactions with large economic gains and split
afterwards (Adler, 1993; Desroches, 2007; Morselli, 2001; Pearson et al., 2001). The time-to-
task is also recognized to be generally short. According to Morselli et al., (2007), criminal
operations for enterprises pursuing economic gains are recognized as being much shorter than
those of other more ideological organizations, such as terrorist groups. Plus, illegal
entrepreneurs and their fellow employees sometimes have a sense of attachment together, but
will rarely prevent themselves or their partners/employees from taking advantage of a profitable
operation because of their prior association (Adler, 1993). Illegal enterprises are therefore
expected to be short-term, ephemeral, and mostly composed of specialized independent
entrepreneurs associating for a few deals or to grasp an opportunity (Paoli et al., 2001). Although
specialized, entrepreneurs and their associated group may sometimes grasp opportunities and
switch position. For example, in Adler’s (1993) study, some illegal firms specialized in
wholesale deals did grasp an economic opportunity and got involved in smuggling or the other
way around. Others switched the product they sold due to profitable opportunities. As shown in
Adler (1993), some high-level dealers were involved in smuggling or selling of marijuana for a

few years and subsequently diversified their activities to include cocaine for economic and law
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enforcement reasons. Entrepreneurs and their associated groups tend to diversify their activities

when a profitable opportunity emerges (Dorn and South, 1990).

These associated groups involved in the sale of illegal drugs are known to be quite small,
consisting of fewer than 10 participants (Bouchard and Morselli, 2014), but emerging from
larger networks of offenders who loosely collaborate depending on the opportunities. In
interviews, illegal entrepreneurs asserted that smaller groups of individuals are considered more
secure than larger groups (Adler, 1993; Jacobs, 1999; Reuter and Haaga, 1989) because little
economic advantage can be gained from formal large or enduring corporations. In addition,

smaller groups are more resilient to external shocks (Morselli and Petit 2007).

Drug prices are set according to the characteristics of the markets in which they are sold (Adler,
1993; Desroches, 2007). Indeed, the price at which illegal drugs are traded depends on the extent
of the demand for the drug and its overall availability in the geographic location of the
transaction (Adler, 1993). Caulkin and Reuter (1998) found that drug prices are extremely
variable across time and space. The lack of advertising and trademarks makes it harder for
customers to compare the prices of different products (Kleiman, 1991). The price difference is
sometimes large enough for illegal entrepreneurs to make a living out of buying cheap drugs at
one specific place and selling them at a higher price somewhere else, making a profit from the

geographic price differences, a phenomenon called “arbitrage” (Kleiman, 1991). Moreover,

the price elasticity of demand for drugs tend to be elastic. Estimates range from -0.7 to -2.0
(Wilson and Stevens, 2010). These estimates are much lower than what is found in online

markets where buyers have access to efficient search engines (Ellison and Ellison, 2009).
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Within a market, both high and low-level drug sellers face a competitive setting; they cannot fix
the price as they want (Adler, 1993). Instead, prices are set according to the supply and demand
in the specific market, but also according to the risks associated with production and distribution
of the drug. These risks explain the high prices found in drug markets (Caulkin and Reuter,
1998). Also, many entrepreneurs are specialised at each level and, from importation to retailing,
each of them takes their own share, increasing the price of drugs by up to 10 times the price at
import (Adler, 1993; Haller, 1990; Reuter and Kleiman, 1986). This complements Reuter’s
(1983) analysis on the organization of illegal markets. The costs of drugs sales are related to

human capital, but also to the risks taken by all individuals involved in the supply chain.

Moreover, little knowledge or skills are needed to enter the drug trafficking market. The barriers
to entering drug markets to conduct drug business are minimal (Bouchard, 2007) even at the
higher levels of the drug supply (Reuter and Haaga, 1989). With minimal investment required,

participants can enter, quit and re-enter drug markets without much difficulty (Adler, 1993).

The three sections above exposed what is known on the online, anonymous and illegal features
of transactions that may affect market structure. The last section of this chapter reviews the

findings and states the purpose of this study.

On the Structure of the Drug Market Hosted on Cryptomarkets
The Internet has become a robust channel for e-commerce for both legal and illegal market
participants. Lately, new technologies, such as the Internet, encryption and cryptocurrencies,

have given an opportunity for drug vendors to conduct online transactions on anonymous
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marketplaces dubbed cryptomarkets. This study characterizes the structure of the online drug
market hosted on cryptomarkets. However, cryptomarket drug transactions have features that
change the structure of online drug markets: they are online, anonymous and the product sold is

illegal.

Indeed, online markets have low search, switch and menu costs that should foster competition
among vendors (Brynjolfsson et al., 2003; Brynjolfsson and Smith, 2000; Cambini et al., 2011).
However, buyers’ susceptibility to branding and advertising tends to decrease competition,
especially when large firms conduct aggressive advertising in online markets (Cambini et al.,
2011; Latcovictch et al., 2001; Pozzi, 2012; Wang and Zang, 2015). Thus, although the online
markets have competitive features, there is a need to be prudent when assessing the structure of
the market. Some studies even state that the structure of online markets is closer to that described
in the winner-takes-all-theory where market shares are concentrated among a few market
leaders, dubbed “the superstars” (Elberse, 2008; Wang and Zhang, 2015). Online cryptomarket
drug transactions are also anonymous. Anonymity protects market participants from law
enforcement but also creates uncertainty in the transactions because market participants cannot
rely on the legal system if they are swindled. Yet, despite the risks, anonymous online markets
have been found to be quite competitive, driven by market dynamics (Wehinger, 2011; Yip et
al., 2013). Finally, the status of the products sold is illegal. Product illegality constrains illegal
firms’ activities to stay within a small size and scope (Reuter, 1983), creating a very competitive

setting.

Although the distinct features of cryptomarket drug transactions have been studied separately,

no research has focused on integrating them to understand a setting that includes all these
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features, such as cryptomarkets. This is what this study does: it characterizes the structure of the
drug market hosted on cryptomarkets while considering the potential impact of the online,
anonymity and illegality features of cryptomarket drug transactions. Such an approach provides
an in-depth understanding of the economic dynamics behind this specific online drug market.
Moreover, understanding the structure of markets allows an assessment of the challenges and
opportunities vendors face when selling products; it gives a wide-ranging overview of the
relative competition within the market. It also helps in apprehending the potential social
consequences of new markets, consequences such as the prospective number of participants and
their possible profits. Cryptomarkets represent an innovative channel for the sale of drugs, and
understanding the structure of the drug market evolving in this new channel will provide an

assessment of the extent to which traditional vendors may switch and start selling online.

To characterize the market structure, we focus on the supply-side and study market structure by
assessing the number of firms, their relative size and what they offer within the market
(Armstrong and Porter, 1989, p. 1845). The concept of market “consists of the buyers and sellers
whose interaction determines the price and quantity of the good that is traded” (Hindriks and

Myles, 2006, p. 209).

In this study, the drug market encompasses all drugs sold -and their related vendors- on a
cryptomarket. The decision to study the market for all drugs has limitations because it may
encompass some vendors that do not compete against each other because, for example, hashish
and marijuana may not be considered perfect substitutes for buyers. Yet, it remains relevant to
consider the market for all drugs for three major reasons. First, some vendors may sell a wide

range of products, such as cocaine and marijuana, as well as pills. By assessing the whole market
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for drugs, we can consider the relative power of a vendor compared to other vendors, regardless
of the types of illegal drugs advertised. Second, a large variety of products are available on
cryptomarket platforms and easily accessible through a few clicks, which increases the range of
choices available for buyers. This wide range of products offered has been reported to be one
major reason for buyers to shop on these platforms (Barratt et al., 2013; van Hout and Bingham,
2013b). Third, studying the whole market for illegal drugs allows us to consider all drug market
players instead of only a fringe. Future studies should look closely into the sub-markets of the

larger illegal-drug market.

The selling entities on cryptomarkets are named “sellers” or “vendors” in the literature; they
represent illegal firms that conduct online selling activities. For concision purposes, the term
vendor will be employed in the rest of this paper as an overall term referring to illegal firms

selling drugs on cryptomarkets.

Drawing from the literature, we expect the drug market hosted on cryptomarkets to have a
market structure that is relatively competitive, with multiple firms earning little market share.
We expect this because online markets have features that foster competition (Brynjolfsson et
al., 2003; Brynjolfsson and Smith, 2000; Cambini et al., 2011) and online illegal markets on
discussion forums and chat rooms are known to be relatively competitive (Wehinger, 2011; Yip
et al., 2013). Yet we are aware that the literature review on the structure of online markets
suggests that we remain prudent when assessing competition in an online setting, as certain
economic forces push online markets to be less competitive than previously believed (Elberse,

2008; Wang and Zhang, 2015).
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To characterize the structure of the online drug market hosted on cryptomarkets, we establish
two objectives. The first objective aims at assessing market competition in the online drug
market through two dimensions: the concentration of market shares and their distribution. The
second objective aims at evaluating the size and scope of drug vendors. This second objective
is inspired by Reuter (1983) who assessed the size and scope of firms in illegal markets. First,
we conduct a group-based trajectory model on vendors’ market shares. Second, we compare the
grouped trajectories found according to the size and scope of their vendors based on three
dimensions: exposure, diversity and experience. These three dimensions allow us to go beyond
market share to assess the size and scope of vendors. The exposure measure is a proxy for
advertising. It assesses to what extent a vendor is visible in the market in terms of drug listings
advertised online. A vendor with more exposure is expected to have large size and scope. The
diversification measure is based on the degree of diversity in the types of products offered by a
vendor. A vendor diversified in the types of products he/she offers is expected to also have large
size and scope. The experience dimension measures how long a vendor has been on the market.
An experienced vendor is expected to be well-known in the community, thereby having a large
size and scope. These dimensions were determined according to the data available and inspired
from Reuter’s conclusion. With these two objectives, the structure of the drug market hosted on
cryptomarkets is characterized from several angles, thus providing a holistic overview of the

online drug market structure.
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Chapter 2

Methodology



This research characterizes the structure of the drug market hosted on cryptomarkets. To do so,
two objectives have been established. The first objective assesses competition through the
concentration and distribution of market share and the second objective evaluates, with the
results of the group-based trajectory model, the size and scope of vendors based on three

dimensions: exposure, diversity and experience.

This chapter provides the methodology of the study. It gives a full understanding of the measures
and techniques used to determine the structure of the online drug market hosted on
cryptomarkets. The data collection process and the sample are firstly presented. Then, we
explain how we calculate market share along with the measures we use to assess its
concentration and distribution. Next, we present our strategy to assess the size and scope of
firms. We present what is group-based trajectory modeling and how we use it to find the
distribution of vendors’ market share trajectories. We explain how we operationalise the three
dimensions of the size and scope of vendors: exposure, diversity and experience and how we
put these measures in relation with the results of the group-based trajectory model in a one-way

ANOVA analysis.

Data Collection and Sample

To assess the structure of the drug market hosted on cryptomarkets, we decided to gather
information on one cryptomarket platform, the largest up to date. We used the DATACRYPTO
software tool developed by Décary-Hétu and Aldridge (2015) to download all the listings,
feedbacks and vendors’ profile pages available on the chosen cryptomarket. DATACRYPTO is

a software tool designed to crawl the web. The tool connects to a website and automatically
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downloads all pages available. It functions through an iterative process: when connecting to a
website (in this case, the targeted cryptomarket), it downloads the home page and remembers
all the hyperlinks available on it. The tool then visits and downloads every hyperlink stored in
memory one after the other, while storing any new hyperlinks available on the pages visited in
its memory. Through this iterative process, DATACRYPTO can download an entire website.
Moreover, specific features of the tool facilitate the data collection process. For example, the
tool is state-aware: it signals the researcher when logged out from a website. It can also filter
out uninteresting pages according to predetermined rules and it can validate the results based on

previous data collections on the website.

To visualize the data collection and understand its limitation, it is best to imagine that a
screenshot was taken of the entire cryptomarket. No assessment of the changes that happened
on the platform before or after the screenshot is possible. This means that, if a listing is taken

down a day before the data collection, the dataset does not include it.

With this DATACRYPTO tool, we collected information on one cryptomarket platform, one of
the largest up to now, at six successive points in time for six months: end of September, end of
October, end of November and end of December of 2015, as well as end of January and end of
February 2016. The period of study spans from September 2015 to February 2016. At the
beginning of the period of study, the tool took five days to download the entire cryptomarket
whereas, at the end, it took up to 10 days. This suggests that the cryptomarket expanded

throughout the period of the study, with more and more pages to download.

This study is about the drug market hosted on cryptomarkets; it therefore focuses on vendors,

listings and feedbacks that are related to drug sales. However, a wide range of products and
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services are offered on cryptomarkets, from drugs to jewels, hacking services to eBooks. For
this reason, we did a selection in the dataset to keep only drug listings and their associated drug
vendors and feedbacks. Drug listings encompass any listing posted in the drug section of the
cryptomarket that offers the sale of drugs. We removed from the dataset any listings that sold

materials related to drugs, but were not actual drugs, such as smoking pipes or syringes.

The sample contains drug vendors, listings and feedbacks collected by the DATACRYPTO tool
at six points in time for six months. Table I presents the distribution of the sample through time,
taking into account only the drug listings and their associated vendors and feedbacks. It shows
that the number of drug listings, vendors and feedbacks increases through time. This increase
indicates an expansion in the market, but can only be considered partial. As mentioned above,
listings that were posted before or after the data collection are not included in the dataset. Hence,
this increase is only a partial picture of the real change in vendors, listings and feedbacks on the
cryptomarket. The more we go back in time, looking at feedbacks left months ago, the less
accurate the assessment of the market is because of the likelihood that other similar listings were
taken down by competitor vendors. To avoid any bias in our research, we decided to be
conservative and consider only feedbacks left two weeks prior to the data collection. This gives
us a more accurate picture of the number of sales conducted by vendors every two weeks in
order to compare vendors’ total number of sales together. The number of feedbacks left two

weeks prior to data collection is presented in the last column of the table below.
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Table I - Distribution of the six samples over the period of study

Month of data Number of Number of Number of Number of Feedbacks

. . . two weeks before data
collection Vendors Listings Feedbacks .

collection

September 2015 692 6,923 21,749 2,176
October 2015 813 10,734 34,303 3,462
November 2015 1,210 16,139 51,972 5,356
December 2015 1,369 20,112 87,616 4,389
January 2016 1,416 22,040 121,708 7,312
February 2016 1,582 25,395 153,331 6,134

To conduct our analysis, we extracted information on every relevant page collected. On vendors’
pages, we collected (1) the pseudonym and (2) the date the vendor started to sell on the
cryptomarket, usually dubbed “since date” on vendors’ profile. On the listing pages, we
collected (1) the listing’s title (2) the description and (3) the drug category. Finally, on the
feedback section, usually posted under listings, we collected (1) the date the feedback was
posted and (2) its associated listing and vendor. We stored all information extracted in a MySQL
database in order to facilitate the analysis. How the extracted information is used to develop

variables for market share, exposure, experience and diversity is presented further below.

Competition on the Online Drug Market Hosted on Cryptomarkets

The first objective of this research is to assess the degree of competition on the drug market. To
do so, competition is measured based on two dimensions: concentration of market share and its
distribution. The first dimension -on the concentration of market share- is measured according
to the Herfindhal-Hirshmann Index (HHI) on competition. The second dimension is based on
the Lorenz curve and depicts the distribution of market share in the vendors’ population. This

section presents the HHI Index and the Lorenz curve, the measures needed to assess market
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competition. First, however, how market share is conceptualized and calculated is presented,

because this variable is central to achieve both the first and the second objective.

Conceptualization and Operationalisation of Market Share
The market share variable is key to assessing the structure of the drug market hosted on
cryptomarkets. The concept of “market share” refers to the portion a firm sells compared to the
total amount available for sale in a market. It shows the relative power of a firm in a market

compared to firms (Hindriks and Myles, 2006).

We decided to measure the total sales of vendors according to the number of feedbacks left on
their listings. On cryptomarkets, leaving a feedback after a purchase is not mandatory for buyers,
but it is highly recommended. The proportion of buyers who leave a feedback on cryptomarkets
is unknown. According to Resnick and Zeckhauser (2002), about 51.1% of buyers leave a
feedback after a purchase on eBay. Aldridge and Décary-Hétu (2014) estimated that the
feedbacks metric matched the total transactions metric, available on the vendor’s profile for Silk
Road 1, by 88%. They conducted the same analysis on a second cryptomarket, two years later

and concluded that feedbacks were representative of 80% of total sales (Kruithof et al., 2016).

Even though the feedbacks metric does not indicate the total number of sales, it is a good proxy
of a vendor’s total sales relative to others. It can be considered a credible market dynamics
indicator, assuming that the probability that a vendor does not receive a feedback from a buyer
is consistent across all buyers and at all levels of purchase (Li et al., 2008; Lin et al. 2006). In

this study, feedbacks are considered indicators of vendors’ total sales relative to others.

We believe that the number of feedbacks left on a vendor’s listing is a better indicator of the

relative power of a vendor on the market compared to vendor’s estimated total revenue. The
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number of feedbacks is indicative of the number of transactions completed by a vendor; it
indicates the level of activity of this vendor. This metric does not take into account if a vendor
sells grams, ounces, cocaine or MDMA, but instead indicates to what extent a vendor is
successful in terms of the number of trades completed on the market. The estimated revenue, on
the other hand, may be a more biased proxy of vendors’ levels of activity on cryptomarkets for
three reasons. First, considering a vendor’s total revenue as a proxy of his/her overall sales could
give importance to a few vendors who listed expensive listings, but only completed one or two
transactions on the platform. These vendors could well be scammers who left with the buyer’s
money without shipping the product. Yet, with the revenue proxy, they would still be considered
as important market players due to the listing’s high price. Second, holding price is the practice
of increasing the price of a listing up to thousands during shortage of products to keep the listing
online with its feedbacks. This practice could inflate the total revenue of vendors, because the
total revenue is based on the price of a listing during data collection, and biases the results.
Third, vendors may also keep the same listings and change the price and the quantity offered,
in order to keep the feedbacks left on that listing. Taking into account the number of feedbacks
and the listing’s price at the moment of the capture may, again, not be indicative of the exact
sales completed, in terms of price and quantity sold. For all these reasons, we considered the

number of feedbacks to be a better indicator of vendors’ market power.

To calculate market share, we divided the total sales of a vendor by the sum of all market sales

as shown in the equation below:

TS;
Market share; = <TMS) * 100
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Where T'S; is the total number of sales conducted by vendor i divided by TMS, the total market
sales. Note again that the number of sales is based on the feedbacks left two weeks prior to data
collection. Market share is calculated at each period of the study and consists of the proportion

(in percentage) of a vendor’s sales compared to the total number of sales in a market.

We consider that vendors having no market share due to nil sales are part of the cryptomarket
drug supply. We therefore include them in the analysis since they are part of the market and
show willingness to conduct online drug transactions. Concentration of market share is known

to be a good indicator of the overall competition in a market.

Concentration of Market Share
The first dimension of market competition, concentration of market share, is calculated with the
Herfindahl-Hirshmann Index (HHI). This index - also known as full-information statistics -
originates from the theory of oligopoly and is one of the most commonly used measures of
competition in the literature (Diallo and Tomek, 2015; Hindriks and Myles, 2006). Precisely,
the HHI characterizes the distribution of a variable of interest according to its concentration

across units (Owen et al., 2007). It is defined as:

n
HHI = Z(MSi)Z
i=1

Where MS represents the market share of firm i in a market with n firms. The HHI is bound
between 1/n and 1 because market share is distributed between 0 < MS; <1 and

®,MS; = 1. An index close to 1 represents a pure monopoly market and an index close to
1/n represents a highly competitive market (Owen et al., 2007). Since market share in the

formula is squared, more weight is given to firms with more market power. In the end, the Index
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gives an indication of the degree of competition in the market and is calculated at each period

of study.

However, the more firms there are in an industry, the less sensitive the HHI becomes to changes
in the number of firms (Biker and Haaf, 2002; Davies, 1979). Biker and Haaf (2002) mentions
that the Index has been often criticized for not taking into account the distribution of market
share. To counter this loss of sensitivity, several attempts have been made in the literature to
link the Index with the distribution theory. We link the Index to the distribution theory by

assessing the distribution of market share with a Lorenz-like curve graph.

Distribution of Market Share
The second dimension of market competition, distribution of market share, is depicted with the
Lorenz curve. The Lorenz curve is a graphical representation of an inequality distribution that
“plots the percentage of total income earned by various portions of the population when the
population is ordered by the size of their incomes” (Gastwirth, 1971, p. 1037). The curve starts
at zero and ends at one (or 100%). It depicts on a graph the degree of inequality in the
distribution of revenue across a predetermined population. The line in the graph y = x, known
as the equidistribution, represents perfect equality in the distribution of wealth among a
population. The farther the Lorenz curve is from the equidistribution line in the graph the more
unequal the distribution is (Bellu and Liberati, 2005). An example of a typical Lorenz curve is

presented below.

38



Figure 1 - Example of typical Lorenz curve graph
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(Taken in Bellu and Liberati (2005) Charting Income Inequality: The Lorenz Curve, p. 3)
The Lorenz curve will indicate the degree of equality/inequality in the distribution of the
vendors’ market shares in the online drug market. We calculate distribution curves for the six

periods of study and present them in one graph.

Size and Scope of Drug Vendors

The second objective of this research is to assess the size and scope of cryptomarket drug
vendors’ activities. This objective follows a vendor-based approach -a micro approach- to
characterize the structure of the drug market hosted on cryptomarkets. First, we conduct a
trajectory cluster analysis on vendors’ market shares through time. This shows if groups of
vendors with similar trajectories in market shares emerge in the market. We then compare the
trajectory groups that emerge in the population according to the three dimensions that
characterize the size and scope of vendors: exposure, diversity and experience. The section

below first explains group-based trajectory modeling and the model that better fits market share
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trajectories for this study. A walk through the model selection process and model fit is also
presented. After, we expose the operationalisation of the three dimensions of size and scope of
vendors. Lastly, we present the strategy analysis -a one-way ANOV A analysis- to compare the

results of the three dimensions among the groups.

Group-Based Trajectory Modeling
Group-based trajectory modeling (GBTM) was developed in criminology by a group of scholars
(Jones et al., 2001; Jones and Nagins, 2013, 2007; Nagin, 2005, 1999) to assess developmental
trajectories in delinquency. Group-based trajectory models are latent class analyses that aim to
identify homogeneous trajectory groups within a heterogeneous population (Dodge et al., 2006).
“The statistical question is how to best model the population heterogeneity of individual-level
trajectory” (Nagin, 2005, p. 45). GBTM tests for taxonomic theories (assumed differences
across subpopulations), identify distinctive developmental pathways in longitudinal datasets and
respect a “person-based approach” for analysis (Nagin and Odgers, 2010). The longitudinal
method uses finite/discrete trajectories to approximate a continuous population distribution of
trajectories. The finite trajectories can be considered “points of supports” of an unknown

continuous distribution of trajectories (Nagin, 2005).

Nagin (2005, 1999) explains that the semi-parametric model uses maximum likelihood
estimation to identify clusters of individuals with similar trajectories. The objective is to define
a set of parameters that will maximize the probability of an outcome. The model defines the
shape of trajectories and states random assignment probabilities. First, the shapes of trajectories
are developed following a polynomial function over time. They vary freely across groups

because a set of parameters is determined for each group. Moreover, the programs that calculates
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the polynomial functions in group-based trajectory modeling (SAS/STATA) can go up to the
cubic form to determine trajectory shapes. Second, random assignment probabilities, dubbed r,
calculate the proportion of a population that belongs to a group. For example, a random
assignment probability of 0.7 for a group would mean that, at random, an individual has a 70%
chance to end up in this group. In other words, it gives the probability that an individual, chosen

randomly, belongs to one of the groups (Nagin, 2005).

The model has been developed with three specific forms of likelihood functions: censored
normal, Poisson and logit. The choice of the likelihood functions for each group depends on the
distribution of the outcome variable in the model. In this study, the model follows the form ofa
censored normal because of the distribution of market shares. Market shares span from zero to
one hundred and cluster at the low end of the scale. Further description of the specific model for

this study is presented in the next section.

Extensions of the GBTM are available, such as time-stable and time-varying covariates. Time
stable characteristics, known as risk factors, allow “statistical testing of whether such individual-
level characteristics distinguish trajectory group membership” (Nagin, 2005, p. 95). Time-
varying covariates models include other time variables in the specification of a trajectory (Jones
et al., 2001). This extension of the model tests whether a variable fluctuating over time is
associated with a change in the direction of a group trajectory. Time-varying estimates are

group-specific because they consider only within-group changes.

The model also allows dealing with data missing at random, which prevents deleting subjects

with missing data at certain points in time.
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Modeling Trajectories of Vendors’ Market Shares: A Censored Normal Model
Group-based trajectory modeling aims to identify groups with similar trajectories in a
population. This study assesses whether groups of vendors with similar market share trajectories
emerge. As mentioned above, the group-based trajectory model offers three specific forms of
likelihood functions: censored normal, Poisson and logit (Nagin, 2005). The outcome variable
for our model is market shares. The distribution spans from zero to one hundred, with more than

half of vendors having zero market share.

The censored normal (CNORM) model is the most appropriate model for our data. CNORM
allows for censoring when the data tends to cluster at the maximum or minimum scale (Jones et
al., 2001). The linkage between the outcome variable and time is determined with a latent
variable. The latent variable can be considered a measure of subjects’ potential to engage in the
observed action or behavior at each period (Nagins, 2005). The latent variable is determined
according to a polynomial function (i.e. y* = ﬁ({ + ﬁlj T + ﬁzj T2 + €;;) where the error term
(&;¢) 1s normally distributed with a mean of zero and a constant standard of deviation (Nagin,
2005). The reference to “censored normal” comes from the fact that the latent variable
distribution of its observed and censored (potential action) counterpart is assumed to be

normally distributed.

In the model, the distribution of vendors’ market shares clusters at the minimum scale, with
more than half of vendors having no market share. Vendors with no sales have a potential to
actually make some sales. If the demand for drugs on a cryptomarket increased, a portion of
vendors making zero sales would start making some transactions. Our model considers vendors’

censored market shares and allows us to consider the vendors’ potential to start making
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transactions. In sum, the latent variable in our model measures the potential for drug vendors to

actually engage in the market and start making some sales.

Walking Through Model Selection
The objective of group-based trajectory modeling is to identify groups of individuals with a
similar trajectory through time. There are infinite possibilities, because the number of
approximated groups can go up to the number of individuals in a sample and each trajectory has

the possibility of going up to the cubic form.

Nagin (1999, 2005) determined a formal procedure to select the most appropriate model based
on formal statistical references: The Bayesian Information Criterion (BIC). The procedure can
be complemented with subjective judgment based on researchers’ domain knowledge and the

model diagnostics presented in the next section.

The first step of the procedure is to determine the appropriate number of groups for the model.
This is done by fitting the model with predetermined polynomial functions, based on prior
knowledge of the data, and subsequently adding groups to the model. The Bayesian Information
Criterion is considered a suitable statistical method to determine the best model (Schwarz,

1978). The BIC is determined according to the formula:

BIC = log(L) — 0.5klog(N)

where L is the value of the model’s maximized likelihood, N is the size of the sample and k
represents the number of parameters (Nagin, 2005). The largest BIC is desired. The formula
takes into account the improvement of the model fit with the addition of a group (Log(L)), but
also subtracts a penalty for its addition (—0.5klog(N)). To determine if a change in BIC,

between two models with a different number of groups, is significant, Kass and Wasserman
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(1995) developed the formula B;; = e®'“i"5!%  They determined that if B;; is larger than ten,
(Bij > 10), there is strong evidence in favor of the ith model. If B;; is between three and ten
(3 < B;j < 10) there is moderate evidence in favor of the model ith and if B;; is smaller than
three (B;j < 3), there is weak evidence in favor of the ith model. The ith model is the one that
contains an additional group. Also, group-based trajectory modeling comprises two BICs, a

BIC based on the number of subjects and a BIC based on the number of observations in the

model. These two BICs bracket the “theoretical correct BIC” (Nagin, 2005).

Sometimes, the BICs do not identify the best number of groups, because they constantly increase
when more groups are added. In such a situation, model selection must balance the parsimony
of the model and the distinctive features of the data (Nagin, 2005). The model diagnostics can
help the researcher to decide which model is the best fit according to the data. Also, Nagin
mentions: “the recommendation is to select a model with no more groups than is necessary to
communicate the distinct features of the data” (2005, p. 77). Once the best model has been
determined according to the number of groups, the second step in model selection is to determine
the polynomial functions that will define the shape of the trajectories of the groups, based on

the highest BICs.

Finally, Nagin (2005) emphases the importance of domain knowledge and subjective decisions

during model selection:

“Model selection must balance the sometimes competitive objectives
of model parsimony and capturing the distinctive features of the data.
When BIC not useful in identifying a preferred model, the
recommendation is to select a model with no more than the groups
necessary to communicate the distinct features of the data” (p. 75).
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Diagnostics of Model Fit
Once the number of groups and the form of the polynomial functions are determined, four

additional diagnostics are available to assess the model’s fit to the data.

The first indicator is a group average of individuals’ posterior group membership probabilities,
dubbed AvePP. Posterior group membership probabilities (1t;) are calculated for each individual
as “the probability that an individual with a specific behavior profile belongs to a specific
trajectory group” (Nagin, 2005, p. 79). They are calculated, at posteriori, according to the
estimated coefficients of the model. Nagin’s (2005) personal rule of thumb for adequate AvePP
is 70%, meaning that individuals associated to a group have on average a 70% probability of

actually belonging to this group.

The second indicator is the odds of correct classification (OCC), which is based on the formula:

AvePP;
1 — AvePP;
Ty
1-— TT;

0cc; =

where AvePP; is the average posterior probability for group i and m; is the random assignment
probabilities for group i. The larger the OCC;, the more accurate the model is. Nagin’s (2005)
personal rule of thumb is OCC > 5. Also, when OCC = 1, “the maximum probability rule has
no predictive capacity beyond random chance” (Nagin, 2005, p. 88).

The third diagnostic compares the estimated group membership probabilities with the proportion
of the sample assigned to the group, dubbed P;. P; is equal to : N;/N where N; is the number of
subjects assigned in group j and N is the total number of subjects. If all subjects are assigned to

a group with perfect certainty (AvePP = 1), m; and P; are equal. As the assignment error
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increases, the difference between the two measures increases as well. Nagin (2005) mentions
that reasonable correspondence among the two measures is an indication of model accuracy.

The fourth indicator is confidence intervals calculated on group membership probabilities (1;).
Small confidence intervals indicate that the probability is accurate (Nagin, 2005). However,
confidence intervals cannot be calculated with the standard method because “the probabilities
are not a linear function of the parameter estimates”, but “are a function of multiple parameter
estimates” (p. 111). Confidence interval should therefore be calculated with a bootstrap method
(Enfron, 1970) over at least 10 000 random draws. However, Jones and Nagin (2007) mention

that the bootstrapping resampling requirements make the model estimation time excessive.

The Three Dimensions of Vendors’ Size and Scope
Once the best GBTM is created and group trajectories on market shares are found, we look at
the size and scope of groups in terms of exposure, diversity and experience in order to achieve

the second objective of this study.

This is possible because results of group-based trajectory models can be used to compare group
characteristics. A cross-tabulation “of individual-level assignments with individual-level
characteristics that might be associated with trajectory group membership” can be conducted
(Nagin, 2005, 1992). Comparing the size and scope of vendors among trajectory groups
provides an understanding of the relative importance of each group in the market, beyond market

share.

Nagin (2005) mentions that individual’s group membership probability needs to be taken into
account when comparing groups characteristics. Indeed, simply comparing groups does not take

into account the uncertainty that an individual belongs to another group trajectory. Using group
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probabilities to weight individuals’ characteristics in each group ensures better precision. It
answers the question: should the characteristics of an individual with 99% post-probability of
group membership be worth the same as an individual with 70% post-probability of group

membership? (Nagin, 2005).

We compare the groups according to the three dimensions of the size and scope of vendors:
exposure, diversity and experience. These three dimensions illustrate to what extent a vendor
has exposure on the market, how diversified he/she is and how experienced he/she is. Also, we
weight the results according to each vendor’s post-probability of group membership. The three

sections below present how the three dimensions are operationalised.

The Exposure Measure

Cryptomarkets are designed so users can easily browse through listings and compare prices.
Vendors advertise their drugs through listings. They can attract consumers with nice pictures or
discounts. They can also expand their exposure by posting many listings related to the drugs
sold. The exposure measure is the first dimension of the size and scope of vendors. We consider
the number of listings as a proxy for advertisement because listings increase vendors’ visibility
on the platform. Vendors can post one listing related to their products, or post many in order to
gain more exposure. Vendors’ exposure is meant to attract buyers to their profile and shops,
increasing the probability of making successful sales. A vendor with many drug listings has

more chance of being viewed and noticed by a buyer shopping online.

Thus, exposure is calculated according to the number of listings posted by a vendor at each
period of the study and is assumed to be a proxy for advertisement. The measure is calculated

for each vendor at each period of study.
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The Diversity Measure

The second dimension of the size and scope of vendors is their degree of diversification. This
dimension measures to what extent a vendor is diversified according to the types of drugs
advertised in his/her listings. A vendor selling many types of drugs is involved in many
submarkets and has large size and scope. We also assume that a vendor advertising two types
of drugs must have the capacity to supply for both. Selling more than one type of drug increases

one’s size and scope online in terms of capacity and visibility.

To calculate vendors’ diversity, we categorize listings according to their drug type. To do so,
we use the predetermined category extracted from each listing’s page on the cryptomarket. This
category variable represents the drug category in which the listing was posted on the
cryptomarket platform under the drug section. More specifically, the categories are: (1) ecstasy
(2) cannabis (3) psychedelics (4) stimulants (5) prescriptions (6) opioids and (7) others. Table 11

illustrates the specific drugs included in the seven broader categories.

Table II - Drug type categorization

Category Most common drugs included in the category

Ecstasy MDMA, euphoric stimulants, cathinone, combinations of pills and
powders

Cannabis Herbal cannabis, hash, synthetic cannabinoids, edibles, extract and oil

Psychedelics Psychedelics, hallucinogens and dissociative

Stimulants Cocaine, crack, speed (amphetamines) and synthetic stimulants
Prescriptions Benzodiazepines, sedatives, hypnotics and barbiturates
Opioids Heroin and codeine

Others Steroid, tobacco and alcohol
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Since we used the categorization of the cryptomarket platform, we went through the results of
one data collection manually and looked to see if the drug categorization was correct. In total,
95% of the listings were placed in the right drug category. This was surprising, at first, because
Soska and Christin (2015) implemented a complex machine learning classifier to find product
categories of each listing. However, their analysis spanned multiple cryptomarkets. Our study
includes only one cryptomarket, in which the sub-sections are well-divided. Also, our
categorization includes large categories of drugs: a vendor who misplaced a listing in cannabis
edible instead of cannabis extract, would still end up in the cannabis category. This explains the

high validity in the categorization.

With the seven categories, we use the Diversity Index developed by Agresti and Agresti (1978)
to operationalise the diversity dimension. This Diversity Index has been used in several
criminological studies to construct measures of offenses dispersion or specialization in
offending (Mazerolle et al., 2000; Piquero et al., 1999; Sullivan, 2006). The Index “measures
the amount of heterogeneity, within a population with respect to variables at the nominal level,

such as race and gender” (Agresti and Agresti, 1978, p. 204). The Index is defined as:

where k represents the number of categories and p; is the proportion of observations in the
ith category (i = 1,...k). In this study, k represents the number of categories associated to a

vendor’s listings and p; is the proportion of listings in each of the ith categories. We decided to
standardize the diversity index (SDI = [ﬁ] D ) in order to facilitate the interpretation of the

results. SDI ranges from 0 for no diversity to 1 for perfect vendor diversification.

49



Overall, the Index indicates the probability that two listings, selected at random in a population
of listings related to one vendor, are in different categories (Agresti and Agresti, 1978). The

measure is calculated for each vendor at each period of study.

The Experience Measure

The last dimension of the size and scope of vendors is the experience measure. This dimension
evaluates to what extent a vendor is experienced on the cryptomarket platform. Christin’s (2013)
study found that Silk Road sellers did not stay long on the marketplace; the majority of them
disappeared within three months of market entrance and only 9% of Silk Road sellers (112
sellers) stayed for the entire period of Christin’s study (a few months in 2012). We assume that
vendors with more days of experience have large size and scope because they are likely to be

known by other market participants.

Vendors’ experience is assessed according to the number of days a vendor has been selling on
the cryptomarket. We calculate vendors’ experience at every data collection. Subsequently,

vendors that stay throughout the period of study have 30 days more experience at every period.

One limit of this measure, however, is the fact that vendors can delete their accounts and create
a new one with a new and similar pseudonym. If so, they lose their sales history, but their
reputation acquired from their experience on the platform could be preserved because market
participants may recognize that the same vendor is behind the new account. This is a problem
because we assume the date the vendor has entered the market is representative of the beginning
of'the vendor’s selling history. Yet, we cannot control for this limitation because we do not have
the information. We could have tried to do an in-depth qualitative analysis of the profiles, but

we considered that this type of analysis would create another, different bias to the results. For
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example, finding that two accounts under two names are from the same vendors is difficult and
involves subjective decisions. Also, even if we assess that two accounts belong to the same
vendor, we do not know to what extent one account’s experience is transferred to another based
on market participants’ perception. For these reasons we decided to consider every account with
different pseudonyms as different vendors. Moreover, no studies have raised, so far, questions

or issues regarding the fact that vendors may have multiple accounts on one cryptomarket.

To ensure that all three variables are not correlated, a correlation matrix is presented in Annex I.
Highly correlated variables would mean that only one variable could be used as a proxy for the
three of them.
Group Comparison on Vendors’ Size and Scope

The three sections above illustrate how each dimension of the size and scope of vendors is
computed. Based on these operationalisations, the degree of exposure, diversity and experience
for each vendor is calculated. Then, following Nagin’s (2005) suggestion, we weight the results
of vendors’ exposure, diversity and experience according to their group membership

probabilities. This ensures precision and minimizes bias when comparing groups.

To evaluate whether differences in the size and scope of vendors in each group emerge, a simple
analysis of variance (ANOVA) is conducted. Explicitly, ANOVA calculates if significant
differences subsist in the exposure, diversity and experience means among the groups found in
the model. The null hypothesis (H,) is: there are no significant differences in the experience,
diversity and exposure means among the groups. The alternative hypothesis (H,) is: there are

significant differences in the experience, diversity and exposure means among the groups.
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The one-way analysis of variance makes the assumptions that: (1) observations are independent;
(2) data is randomly sampled from a population; (3) the variable tested is sampled from a
population with a normal distribution; and (4) the variance is homogenous (Salkind and
Rasmussen, 2007). Even though ANOV A assumes that the data fits a normal distribution, the
statistical method is not very sensitive to moderate deviations from this assumption (Harwell et
al., 1992; Lix et al. 1996). The ANOVA model compares groups based on significant or non-

significant differences in the means of each group for each dimension.
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Chapter 3

Market Competition and the Size and Scope of Drug Vendors



Following the statistical methods discussed in the methodology, this chapter presents the results
of'the analyses that characterize the structure of the online drug market hosted on cryptomarkets.

The results are presented formally below and discussed more thoroughly afterwards.

To achieve the two objectives established in this study -assess market competition and the size
and scope of drug vendors- four variables are required: market share, exposure, diversity and
experience. This chapter starts by presenting their values with descriptive statistics. After, the
results of the first objective on the concentration and distribution of market share are presented.
We turn afterwards to the second objective. The steps taken to select the best group-based
trajectory model are explained, followed by the model results and the model diagnostics. Once
the trajectory groups are found, we compare them according to their associated vendors’ level

of exposure, diversity and experience, based on the results of a one-way ANOV A analysis.

Descriptive Statistics

To characterize the structure of the drug market, we established two objectives that require the
operationalisation of four concepts: market share, exposure, diversity and experience, into four
variables. Market share is a key variable for this study because it is used to assess competition
in the market, but also to determine vendors’ trajectories. Variables on exposure, diversity and
experience, on the other hand, allow us to determine the size and scope of drug vendors. This
section presents the descriptive statistics on the values of the four variables in order to provide

a full understanding of the operationalisation of the concepts.
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Market Share
The market share variable represents the proportion, in percentage, of a vendor’s total sales
compared to the total number of sales in a market. It is calculated according to the number of
feedbacks left on vendors’ drug listings two weeks prior to each data collection. Table III

presents the distribution of the drug feedbacks left two weeks prior to each data collection.

Table III - Descriptive statistics on drug feedbacks

Number of vendors Min Max Mean S.D. Median Sum

September 2015 692 0 68 3 6 1 2,176
October 2015 813 0 103 4 10 1 3,462
November 2015 1,210 0 131 4 9 1 5,356
December 2015 1,369 0 93 3 7 1 4,389
January 2016 1,416 0 181 5 11 1 7,312
February 2016 1,582 0 115 4 8 1 6,134

Table III illustrates that, during the six periods of study, the maximum number of sales a drug
vendor completed is 181 and the minimum number of sales is zero. The mean varies between
three and five sales every two weeks, with large standard deviations. The median shows that,
for the period of study, half of the vendors did not make more than one sale in two weeks. The
sum of the feedbacks suggests that the market is increasing with more feedbacks left every

month, except for the month of February.

Based on these feedbacks, the market share variable is calculated. Market share is considered
an indicator of a vendor’s importance in the market in terms of his/her total sales. It is a key
variable for this study. Table IV gives the descriptive statistics on market share for the six

periods of study.
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Table IV - Descriptive statistics on market share

Number of vendors Min Max Mean S.D. Median

September 2015 692 0% 3.13% 0.14% 027% 0.05%
October 2015 813 0% 298% 0.12% 028%  0.03 %
November 2015 1,210 0% 245% 0.08% 0.17%  0.02%
December 2015 1,369 0% 212% 0.07% 0.16%  0.03 %
January 2016 1,416 0% 248% 0.07% 0.16% 0.01 %
February 2016 1,582 0% 1.87% 0.06% 0.14% 0.02%

Table IV illustrates that, for the period of study, the maximum percentage of market share owned
by a single vendor is 3.13% and the minimum percentage of market share is zero. Throughout
the six months, the mean ranges between 0.06% and 0.14% and the market share median is even
lower as it ranges between 0.01% and 0.05%. The descriptive statistics on the market share

variable already suggest that the drug market is not concentrated around a few market players.

The Exposure Measure
The exposure measure is the first dimension of the size and scope of vendors. It is a proxy to
assess the degree of vendors’ advertisement and subsequent visibility on the platform. The
exposure variable is calculated according to the number of drug listings posted by a vendor for
each period of study. Table V illustrates the exposure variable’s descriptive statistics.

Table V - Descriptive statistics on vendors’ exposure

N Min Max Mean Std. Dev. Median
September 2015 692 1 89 10 12 6
October 2015 813 1 219 13 17 8
November 2015 1,210 1 343 13 19 8
December 2015 1,369 1 367 15 22 8
January 2016 1,416 1 369 16 24 8
February 2016 1,582 1 383 16 24 9

Table V shows that the maximum number of listings posted by a vendor, during the period of

study, is 383 and the minimum is one. The average number of listings ranges from 10 to 16
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listings with large standard deviations. The median indicates that the number of listings posted
ranges between six and nine for half of the vendors. Table V also illustrates that the number of

listings posted on average increases through the period of study.

The Diversity Measure
The second dimension of the size and scope of vendors is about vendors’ degree of diversity in
the types of drugs advertised in their listings. The diversity measure is calculated according to
the Standardized Diversity Index (SDI) developed by Agresti and Agresti (1978) and spans from
zero to one, where zero represents perfect specialization whereas one represents perfect
diversification. The SDI indicates the probability that two listings, selected at random in all
listings related to a vendor, end up in two different categories. Table VI illustrates the descriptive

statistics on the diversity variable for each period.

Table VI- Descriptive statistics on vendors’ diversity

Number of vendors Min Max Mean S.D. Median

September 2015 692 0 0.94 0.23 0.29 0
October 2015 813 0 0.93 026  0.30 0
November 2015 1,210 0 0.94 0.25 0.30 0
December 2015 1,369 0 0.96 0.25 0.31 0
January 2016 1,416 0 0.92 022  0.29 0
February 2016 1,582 0 0.96 0.27  0.31 0

Table VI shows that vendors’ maximum degree of diversification, during the period of study, is
0.96 and the minimum degree of diversification is zero, indicating perfect specialization. The
mean ranges from 0.22 to 0.27. This indicates that the percentage chance that two listings - taken
at random in a population of a vendor’s listing - end up in two different categories is between
22% and 27%, on average. According to the median, half of the vendors are specialized with a

zero probability that two random listings will end up in two different categories. The results in
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table VI suggest that drug vendors are much more specialized than diversified in terms of the

types of drugs advertised.

The Experience Measure
The experience measure is the third dimension of the size and scope of vendors. The experience
variable evaluates to what extent a vendor is experienced according to the number of days he/she
has been registered as a vendor on the platform. Table VII illustrates the descriptive statistics

on the experience variable for the six periods.

Table VII - Descriptive statistics on vendors’ days of experience

Number of vendors Min Max Mean S.D. Median

September 2015 686 5 281 110 67 126
October 2015 802 0 315 124 80 129
November 2015 1,206 3 342 119 88 93
December 2015 1,365 2 373 130 94 109
January 2016 1,412 0 400 146 99 122
February 2016 1,578 5 439 162 106 133

The number of vendors varies by about five vendors in the table, compared to original
sample, because we did not have their registration date.

Table VII shows that the most experienced vendor has been registered for 439 days — about 15
months - in February 2016. The fact that the minimum number of days ranges between zero and
five indicates that new vendors entered the market during the period of study. On average,
vendors have between 110 and 162 days - three to six months- of experience on the cryptomarket
platform. The average increases through the six periods and suggests that some vendors tend to
stay on the market. The median in number of days ranges between 93 and 133 -three to four
months- and indicates that about half of the vendors had less than four months’ experience

during the period of study.
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The correlation matrix in Annex [ shows that there is little correlation between the three
measures for each period of study. This illustrates that all three measures are relevant for the

subsequent analyses.

Market Competition

The two measures that characterize the online drug market competition are the concentration
and the distribution of market share. The section below presents the results of the concentration
of market share, calculated with the Herfindhal-Hirhsmann Index (HHI), and the results of the

distribution of market share, depicted with Lorenz curves.

Concentration of Market Share
Already, market share descriptive statistics indicate that the vendor with the highest proportion
of market share -throughout the period of study- earned no more than 3.13% of the total market.
From these results, low market share concentration can be inferred. Table VIII illustrates the
results of the HHI on the concentration of market share for the online drug market for each

period of study.

Table VIII - Results on the concentration of market share

Number of vendors Total market feedbacks HHI
September 2015 692 2,176 0.006614
October 2015 813 3,462 0.007397
November 2015 1,210 5,356 0.004366
December 2015 1,369 4,389 0.001832
January 2016 1,416 7,312 0.001871
February 2016 1,582 6,134 0.001343

Results in Table VIII show that the online drug market is highly competitive throughout the
period of study. Indeed, they indicate that the structure of the online drug market is much closer

to perfect competition (HHI = 1/N) than to a monopoly (HHI = 1). Market share is not
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concentrated among a few important market players. The last three months ofthe period of study
even illustrate a marginal decrease in market share concentration compared to the first three

months.

Distribution of Market Share
To assess market competition, we decided to also evaluate the distribution of market share,
because the HHI is often criticized for not taking into account the distribution of the targeted
variable in the population (Biker and Haaf, 2002). The distribution of vendors’ market share is
depicted with a Lorenz curve, for each period of study, in Figure 2. The Lorenz curve shows the
cumulative percentage of market share in relation to the cumulative percentage of vendor

population.

Figure 2 - Distribution of market share
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Figure 2 shows distribution curves that are concentrated towards the right of the graph, far from
the center. This suggests that the distribution of market share is unequal, with about 60% of

vendors making near zero sales.

The results on the concentration and distribution of market share indicate that the online drug
market is competitive, but also unequal, with more than 60% of vendors making near zero sales.
Drug vendors therefore face a competitive setting in which the opportunity to make some sales
does not seem to be accessible to all. We now turn towards the results of the size and scope of

vendors, the second objective of this study.

The Size and Scope of Vendors

The size and scope of vendors is evaluated according to group trajectories of vendors’ market
shares and three dimensions of their size and scope: exposure, diversity and experience. The

dimensions evaluate the importance of drug vendors in online markets beyond market share.

The section below begins by presenting the several steps undertaken to select the best group-
based trajectory model on vendors’ market shares. The results of the model are then presented
along with the outcomes of the model fit diagnostics. The size and scope of vendors -in terms
of exposure, diversity and experience- is afterwards compared, based on the trajectory groups

found in the model.

Model Selection
In this study, the group-based trajectory model aims to find group trajectories on vendors’

market share between September 2015 and March 2016. The model selection procedure follows
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the one developed by Nagin (2005). It includes two steps: (1) determine best model fit in terms
of the number of groups; and (2) determine the form of the polynomial function for each group

in the model. To find the best model fit, we use BICs and random assignment probabilities.

The censored normal (CNORM) model is the most appropriate model for the data because the
distribution of market share spans from zero to one hundred, with more than half of vendors

having zero market share.

First, to determine the best number of trajectory groups, we fix the predetermined polynomial
functions to be linear in the model. This assumes that drug vendors make more or fewer sales
in a relatively constant manner through the six periods. The assumption of linearity in
trajectories of market share is the most plausible, but we still evaluate other polynomial function
forms in the second part of this section.

With linear polynomial functions for all group trajectories, we add one group at a time to the
model and evaluate if the changes in the BICs are significant, based on the formula developed

by Kass and Wasserman (1995).

The model generates two BICs. The first BIC is based on the number of observations in the
sample (N=708) and the second one is based on the number of possible trajectories -or vendors

(N=2479). The highest BICs are favored. The formula B;; = e®/“i"5/¢/ allows us to assess if

the changes in the BICs are significant, supporting evidence for an additional group in the

model. Recall that B;; > 10 is strong evidence in favor of the ith model; 3 < B;; < 10 is
moderate evidence for the model it/ ; and B;; < 3 is weak evidence for the ith model. The ith

model is the one that contains an additional group.
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To determine the best number of groups in the model, we also use random assignment
probabilities (7r;). Random assignment probabilities show whether the distribution of the vendor

population among the trajectory groups is adequate.

Table IX illustrates the results of the model selection process. How the two BICs change when
groups are added into the model are presented, along with how significant the changes are

according to Kass and Wasserman’s (1995) formula (B;;). The column to the right shows the

distribution of random assignment probabilities for every group combination.

Table IX — Model selection process — Number of groups

BIC, BIC, Bij,  Bijp Random Assignment Probabilities (%)*
N=7082 N= 2479 7 5 ————
2 groups - _
1,949.77  1,946.62 96.8 3.2
3 groups - -
166689 L67L61 13 273 903 87 1
4 groups - .
48065 147635 103 631 842 138 18 02
5 groups - -
41246 1doasy 04 146 767 200 22 09 0.
6 groups - .
1,325.31 1,315.86 7.06 3.43 57 3640 47 08 1.0 0.1
7 groups

1,333.22  1,322.20 57 647 239 1 39 08 0.1

a Numbers for the random assignment probabilities are rounded to the nearest tenth

Table IX shows that, every time a group is added to the model, both BICs increase until the
addition of the sixth group, for which the two BICs decrease. Comparing the two groups model
with the three groups model indicates that B;j; gives moderate evidence in favor of the three
groups model, while B;;, gives only weak evidence in favor of this model. The vendor
population in the third model, based on random assignment probabilities, is distributed as: 90%,

9% and 1%. Comparing the three groups model with the four groups model shows that B;j;
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gives weak evidence in favor of the four groups model while B;;, gives moderate evidence for
the model. The vendor population in the four groups model, based on random assignment
probabilities, is distributed as: 84%, 14% 1.8% and 0.2%. The four group model displays a
group that contains only 0.2% of the vendor population. This group, according to the sample,
would represent about five vendors and would be too small for any further analysis. In fact, table
IX illustrates that adding more groups to the model generates groups that contain only a tiny
portion of the population. Also, in the process of adding groups, only weak or moderate evidence

supports the new model with an extra group.

We do not want to keep a model with groups containing tiny portions of the vendor population
because these groups would be too small for subsequent analyses. As mentioned by Nagin
(2005), the model selection must balance the parsimony of the model and the distinctive features
of the data. The distinctive feature of the data, in this case, is the fact that a small number of
vendors have a distinctive trajectory, which makes them stand out in the analysis as outliers. To
keep this distinctive feature, but also favor the model with no more groups than necessary, we
select the three groups model. This model displays an adequate distribution of the vendor
population (90%, 9%, and 1%) and is better than the two groups model because weak to

moderate evidence is in favor of the three groups model.

The second step of the model selection is to determine the groups’ polynomial function forms.
In the first step of the procedure, the polynomial functions are linear. The second step requires

testing other polynomial function forms to find the best model that fits the data.

The model selected has three groups and the polynomial functions can go up to the cubic form

(constant, linear, squared and cubic). Hence, 64 possibilities of function forms are possible (4"
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= 4% = 64 possibilities). Several attempts with different forms mixing constant, linear, squared
and cubic were tested. However, functions taking squared or cubic forms did not show higher
BICs than the simpler, linear ones. For purposes of concision, Table X presents the results of
the BICs for models with functions that take either a constant or a linear form (2" = 2° =8

possibilities). The model with the highest BICs is preferred.

Table X - Model selection process — Polynomial function forms

Groupl Group2 Group3

8, 8, 8, BIC, BIC,
1 Linear Linear Linear -1,671.61 -1,666.89
2 Constant Linear Linear -1,668.89 -1,664.69
3 Constant Constant  Linear -1,728.49 -1,724.80
4 Constant Constant Constant -1,744.06 -1,740.91
5 Linear Constant Linear -1,730.76 -1,726.57
6 Linear Linear  Constant -1,677.91 -1,673.71
7 Linear  Constant Constant -1,745.59 -1,741.92
8 Linear Linear Constant -1,675.86 -1,672.18

Table X shows that the model with the highest BICs is that with one function taking a constant
form and two functions taking linear forms. Hence, one group has a constant trajectory, and two

groups have linear trajectories.

Model Results
Through the model selection process exposed above, the best model is the three groups model
that has one group with a constant trajectory and two groups with linear trajectories. The model

estimates and results are presented in table XI.
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Table XI - Results of the group-based trajectory model on market share

Estimate SE P-value

Group 1

Intercept -0.039 0.004 0.000
Group 2

Intercept 0.492 0.026 0.000

Linear -0.057 0.005 0.000
Group 3

Intercept 1.239 0.060 0.000

Linear -0.072 0.013 0.000
Random Assignment Probabilities 3 SE P-value

Group 1 90% 1.038 0.000

Group 2 9% 1.004 0.000

Group 3 1% 0.220 0.000
BIC

N =7082 -1668.89

N = 2479 -1664.69

A key feature of group-based trajectory models is that all estimates determine the shape of a
group trajectory regardless of the other group trajectory shapes. In this model, the estimates are

all significant.

The first group accounts for 90% of the population and the trajectory is constant and negative.
This is the result of our censored data that cluster at a minimum of zero. The model assesses the
group trajectory on market share with a latent variable that accounts for the potential of vendors
to start making some sales. These potential transactions are assumed to be normally distributed.
The potential of vendors starting to make some sales is therefore negative. Let’s assume, for

simplicity, that it equals zero.

The second group accounts for 9% of the population. Its intercept is positive at 0.492 and the

slope is negative at -0.057. This indicates that the second group includes vendors who make
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some sales at the beginning of the period of study (earn on average 0.492% of market share),

but their market share decreases in time.

The third group accounts for 1% of the population. Its intercept is positive at 1.239%, which

indicates that, at the beginning of the period, vendors in this group earned on average 1.239%

of market share. The slope is however also negative, suggesting that vendors’ market share in

this group also decreased through time.

Figure 3 below illustrates the three trajectories found in the model, with 95% confidence

intervals for the six periods of study.

Figure 3 - The three trajectories of drug vendors’ market share
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Based on these results, names were given to the three trajectory groups. The first group accounts

for 90% of the vendor population and is called “The Failed.” We see in Figure 3 that they are
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the ones making very few to no sales throughout the period of study®. The second group is
dubbed “The Fringe” and accounts for 9% of the vendors’ population. They are the ones in the
middle, making between zero and 0.5% of total market share. The last group is called “The
Established” and accounts for 1% of the population. Vendors in this group are the ones making
between 0.5 and 1.5% of total market share. Since all slopes are negative, we can infer that drug
vendors, on average, earn less market share throughout the period of study. This does not mean
that vendors are making fewer sales. The descriptive statistics on total sales showed that the
market was growing, with relative increases in number of sales through time. The negative
slopes indicate that the market is more competitive and vendors earn, on average, less in

proportion of the total sales.

Model Diagnostics
Finally, to ensure that the model is solid and fits the data on market share, the results of the
model diagnostics are presented in table XII, except for the confidence intervals. We did not
calculate the fourth diagnostic, because the bootstrapping requirements makes the model
estimation time-excessive (Jones and Nagin, 2007) and the three model diagnostics presented

below already indicate that the model is a good fit to the data.

The AvePP is the average posterior probability of vendors in a group. The model calculates a
posterior probability for every vendor in each group and AvePP is the average of the posterior
probabilities of all vendors assigned to this group. The m; is random assignment probabilities

and needs to be compared with the P;, which is the ratio of the number of subjects assigned in a

* Even though the parameter is negative in the result table for this group, the expected value is positive in the
figure. This is because the expected value of market share is a function of the estimate, the cumulative
distribution function, probability density function of the normal distribution, and sigma.
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group against the total number of subjects. The closer m; is to P; the better the model fit is.

Finally, OCC represents the odds of correct classification, which needs to be larger than one.

Table XII - Diagnostic of the group-based trajectory model on market share

Number of vendors  AvePP  S.D AvePP T; P; OCC
The Failed 2304 0.96 0.24 0.900 0.929 2.67
The Fringe 150 0.89 0.22 0.009 0.061 81.81
The Established 25 0.97 0.10 0.010 0.010 3233
Total 2479

The first indicator is the average posterior probability (AvePP) for each group, based on the
posterior probability of group members. The posterior probability of group membership
accounts for the probability that a vendor with a specific profile belongs to a specific trajectory
group. Nagin’s (2005) personal rule of thumb for adequate AvePP is 70%. The AvePP in the
model is 0.96 (SD=0.24). 0.89 (SD=0.22) and 0.97 (SD=0.10) for The Failed, The Fringe and
The Established respectively. The three AvePPs in this model greatly surpass Nagin’s (2005)

rule of thumb.

The second diagnostic is P; which is equal to: N;/N where N; is the number of individuals
assigned in group j and N is the total number of individuals. The closer P; is to m; (random
assignment probabilities) the more accurate the model is. In this model, the P; for two groups,
The Fringe and the Established, is extremely close or almost identical. However, the P; for The
Fringe is a little lower and equals 0.061 compared to the mr;, which equals 0.09. This means that
the proportion of individuals assigned to this group is lower than the random assignment

predicted by the model.

The third diagnostic is the odds of correct classification (OCC). Nagin’s (2005) personal rule of

thumb is OCC > 5. The OCC for The Fringe and The Established are well above Nagin’s
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criteria. However, the OCC for The Failed is not. This may be explained by the fact that the
group incorporates 90% of the population and the odds of being randomly assigned to this group
are high. When OCC = 1, “the maximum probability rule has no predictive capacity beyond
random chance” (Nagin, 2005, p. 88). With an OCC at 2.67 and The Failed accounting for 90%
of the population, the predictive capacity of the OCC is beyond one, which is more than

expected.

Size and scope of Vendors Within Each Group
The size and scope of vendors is based on the exposure, diversity and experience variables and
is compared between each trajectory group. To ensure that group means are adequate, we take
into account vendors’ uncertainty of belonging to his/her associated group by weighting each
vendor’s scores according to his/her posterior probability of group membership. This weighting
is computed for the three dimensions and for each individual at each period of the study. For
example, a vendor with an exposure score of 10 (holding 10 listings) in September and a
posterior group membership probability of 0.97% for the first group has a weighted exposure
score of 9.7. Hence, the weighted score on each dimension takes into account the vendor’s
uncertainty of belonging to a group and prevents us from finding differences in groups where

there is none.

To assess the differences in the size and scope of vendors in each group we conducted a one-
way analysis of variance (ANOVA). The variance analysis determines if there are significant
differences in the means of each group for the three dimensions. As stated in the methodology
section, the null hypothesis tested is: there are no group differences in group means and the

alternative hypothesis is: there are differences in group means.

70



We first conducted the analysis on experience, diversity and exposure scores for the six periods
of study. We then conducted the same analysis, but with vendors’ mean scores on experience,
diversity and exposure for the whole period of study. The results were identical. For purposes
of concision, we decided to present in Table XIII the results of the one-way ANOV A based only
on the second analysis: vendors’ mean scores for the six-month period. We present afterwards

figures with trends to illustrate the longitudinal differences in the three groups.

Table XIII - Group comparison on vendors’ size and scope

The Failed  The Fringe The Established
A B C

Group Mean Group Mean  Group Mean  F Ratio A-B* A-C* B-C*

Experience 105 135 167 15.38 0.000 0.001 0.187
Diversity 0.22 0.25 0.22 1.78 0.173 0.961 0.896
Exposure 10 20 38 65.62 0.000 0.000 0.000

* p-value determines if there are significant differences between two groups.

Table XIII illustrates that there are some significant differences in the size and scope of vendors
among the three groups. These differences are discussed below, along with the longitudinal

group scores on exposure, diversity and experience.

Exposure

The first dimension of the size and scope is exposure, which is calculated according to the
number of listings posted by a vendor. The results of the one-way ANOV A analysis illustrate
that there are significant differences in exposure among the three groups. We can reject the null
hypothesis that there is no difference in group means. Vendors in The Established have more
exposure than vendors in the two other groups and vendors in The Fringe have more exposure

than vendors in The Failed.
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Vendors in The Failed post, on average, 10 listings whereas vendors in The Fringe post, on
average, 20 listings. Vendors in The Established surpass the other two groups and post, on

average, 38 listings.

Figure 4 - Vendors’ Exposure
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Figure 4 illustrates the weighted exposure mean scores for the three groups during the six
periods of study. It shows that vendors in The Established have significantly more exposure than
vendors in the other two groups during the whole period of study. Vendors in The Fringe, on
the other hand, hold between 10 to 25 listings and vendors in The Failed do not surpass 15
listings. The differences among the three groups persist throughout time. Vendors in The

Established also post more and more listings as time passes, compared to the two other groups.

Diversity

Diversity is the second dimension of the size and scope of vendors. However, the results of the

one-way ANOVA analysis are not significant. We cannot reject the null hypothesis that the
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means among the three groups are different. The Failed, The Fringe and The Established are not

more or less diversified in terms of the types of drug listed.

Figure 5 - Vendors’ Diversity
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Figure 5 illustrates the weighted diversity mean score for the three groups during the six periods

of study. It shows that the three groups have, on average, a diversity score between 0.15 and

0.30 throughout the whole period of study. This means that, on average, the percentage chance

that two random listings end up in different categories ranges between 15 and 30%. From this,

we can induce -again- that all drug vendors are, on average, quite undiversified.

Experience

The third dimension of the size and scope of vendors is experience. The results of the one-way

ANOVA analysis illustrate that there are significant differences in the experience mean scores

between The Failed and the other two groups. There is, however, no significant difference in

the experience mean score between The Fringe and The Established. We can therefore partially
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reject the null hypothesis that there is no difference in group means. Vendors in The Established

have, on average, 167 days of experience, whereas vendors in The Fringe and The Failed have,

on average, 105 and 135 days of experience.

Figure 6 - Vendors’ Experience
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Figure 6 illustrates the weighted experience mean score for the three groups during the six

periods. It suggests that vendors in The Established and The Fringe have more days’ experience

than The Failed throughout most of the period studied. Vendors in The Established start the

period of study with, on average, 140 days of experience whereas the other two groups start, on

average, with 110 days of experience. Also, experience increases through time for the three

groups, which illustrates that vendors stay on the market and gain experience through time.

Moreover, by February 2016, the vendors in The Established have, on average, 250 days of

experience on the cryptomarket. This illustrates that drug vendors on the market have, on

average, less than a year of experience during the period of study.
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Finally, the results suggest that the size and scope of vendors within each group are relatively
different. Vendors in The Established account for 1% of the population, have more exposure
and more experience. They are the ones with a larger size and scope and the ones that make the
most sales. On the other hand, vendors in the Failed account for 90% of the population, have
less exposure and less experience on the platform. They are the ones with a smaller size and
scope and they make almost no sales. Vendors in The Fringe account for 9% of the population
and have an average size and scope compared to the other two groups. They have more exposure
than The Failed, but less than The Established. They have also more experience than The Failed.
Overall, vendors are quite undiversified on the platform, with a diversity score ranging between

0.15 and 0.30.

Information on each group advertising activities

While this is not the focus of the present study, we still wanted to provide some background
information on the selling activities of each group. Table XIV shows the proportion of vendors
advertising a type of drugs in each group. For simplicity, we took an average of the six periods
for each group and for each type of drugs. Vendors could advertise many drugs; the sum of the
percentages are therefore not 100.

Table XIV — Proportion of vendors advertising a type of drugs in each group

Ecstasy Cannabis Psychedelics Stimulants Prescriptions Opioids Others

The Failed 26 % 34 % 22 % 36 % 28 % 18% 11%
The Fringe 34 % 46 % 24 % 44 % 25 % 21 % 5%
The Established 28 9 61 % 12 % 44 % 20 % 24%  18%

Table XIV shows that The Failed and The Fringe advertise all types of drugs, with no strong
tendency towards one type of drug. On the other hand, The Established seem to advertise more

cannabis. Indeed, 61% of Established vendors advertise at least one cannabis listing.
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Conclusion

Fierce Competition and Market Superstars



This study characterizes the structure of the online drug market hosted on cryptomarkets. To do
so, market competition and the size and scope of drug vendors are assessed. The results suggest
that selling drugs on cryptomarkets is not an easy task. The setting is competitive and only a
few vendors manage to make any sales. Moreover, the size and scope of vendors is limited. This
chapter discusses the structure of the online drug market and how it is related to the online,
anonymous and illegal features of cryptomarkets drug transactions. To begin, we suggest that
the virtual world of cryptomarket drug vendors is embedded within their physical world; offline
drug-related activities need to stay within a small size and scope due to the consequence of
product illegality. After, we discuss the fierce competition and barriers to sales found in the
online drug market. Then, we discuss the paradox of fierce competition and market superstars
that emerges from our findings. We conclude this section with the limits of this study and

possible further research.

Drug Vendors’ Virtual World Embedded in their Physical World

A characteristic related to the activities of cryptomarket drug vendors is the fact that the product
they sell needs to be produced (or, for middle-market dealers, exchanged), packaged and shipped
once sold. This is not the case for online vendors selling virtual products, such as stolen
information or hacking services. Drug vendors have to conduct offline activities when selling
on cryptomarkets; their virtual world is embedded in the physical one. Figure 7 illustrates a

typical shift of vendors’ activities from offline to online.
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Figure 7 - Typical online/offline cryptomarket drug vendors’ activities
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Offline activities are most likely to stay within a small size and scope due to the driving forces
of product illegality. The risky environment in which illegal firms evolve prevents them from
growing, hiring employees or internalizing production functions (Reuter, 1983). Groups
involved in the sales of illegal products are known to be quite small, consisting of fewer than 10
participants (Bouchard and Morselli, 2014), as smaller groups are considered more secure than
larger groups (Adler, 1993; Jacobs, 1999; Reuter and Haaga, 1989). For cryptomarket drug
vendors, expansion in selling activities would require an increase in production (or buying drugs
for middle-market drug dealers), packaging and shipping activities. Yet, these offline activities
are intensive. For example, the drugs need to be carefully hidden in the package to ensure that
they will not be intercepted at the borders. When posting the package, vendors also need to take
all precautionary measures to ensure that enforcement agencies will not be able to trace the
package back to them. Otherwise, vendors face risks of arrests and seizures. Moreover,
interception can be costly for vendors in terms of risk to profit and reputation (Décary-Hétu et
al., 2016). Thus, the packaging and the shipping activities require extensive management on the
vendors’ side, and potential growth would require more human capital. However, more human
capital implies more costs in monitoring, increasing the risks of arrests and seizures (Reuter,

1983). Thus, vendors selling drugs online still need to keep their offline activities small.
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Moreover, cryptomarket drug vendors’ activities are fragmented and rely on independent actors.
First, drug distribution is subcontracted to legal postal services since buyers expect their
physical products to arrive through mail delivery. Legal postal services are unwillingly part of
the cryptomarket drug distribution process and they are completely independent of vendors’
control (Volery, 2015). Plus, since the product sold is illegal, drug vendors have no legal
recourse if the package disappears or is intercepted; they cannot claim their loss. Thus, drug
distribution through postal services is an enormous constraint for cryptomarket drug vendors,
one that fragments their activities and prevents them from growing, mainly due to product

illegality (Reuter, 1983).

Second, cryptomarket platforms control part of drug vendors’ activities, such as payments and
advertisement. Cryptomarket administrators are responsible for designing and maintaining the
online marketplace as well as the smooth functioning of transaction payments. They provide an
infrastructure for drug vendors to access consumers and advertise drug products. Thus,
cryptomarkets provide a service that is cost-economizing for drug vendors, but that is also
completely independent from vendors. Dysfunctionalities in cryptomarket features can impact
vendors’ drug-dealing activity. Scam exits from administrators or law enforcement shut-downs
can terminate drug vendors’ selling activities without notice. Such cryptomarket shut-downs
have happened often in the past (Soska and Christin, 2015) and they prevent cryptomarket drug

vendors from gaining experience and growing.

In fact, we found that cryptomarket drug vendors’ experience is relatively short. The Failed,
which accounts for 90% of drug vendors, has a group average of three and a half months of

experience throughout the period studied. The Established, the 1% elite, has a group average
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that does not surpass five and a half months of experience. Vendors’ experience is, in absolute
terms, quite short. This finding is in accordance with Christin’s (2013) study, which found that
sellers do not stay long on the marketplace, as the majority of them disappeared within three
months of market entrance and only 9% of Silk Road sellers (112 sellers) were present for the
entire period of the study (a few months in 2012). Also, Soska and Christin (2015) mentioned
that multiple cryptomarkets appeared and disappeared. Cryptomarket shut-downs in the past
years can partially explain vendors’ brief experience on the platform. The timeframe of
existence for cryptomarket vendors and cryptomarket platforms is ephemeral, which prevents

drug vendors from gaining significant size and scope in terms of experience.

We also found that most cryptomarket drug vendors are relatively undiversified. Advertising
multiple types of drugs on cryptomarkets implies that one can supply them. However,
diversification may require an increase in a vendors’ offline activities. Reuter (1983) mentioned
that illegal enterprises are more likely to be undiversified because pure diversification in
multiple lines of products increases the exposure to law enforcement and subsequently the risk
of arrests and seizures. However, although drug vendors tend to be specialized, they may
sometimes grasp profitable opportunities (Adler, 1993; Dorn and South, 1990). Cryptomarket
drug vendors may grasp profitable opportunities by selling another type of drug, but overall they
seem to remain relatively specialized. The results on the relative non-diversification of
cryptomarket drug vendors indicate that the driving forces of product illegality push them to

keep their offline activities within a small scope, thus staying relatively undiversified.

One new feature of online markets is the possibility to advertise. Reuter (1983) mentions that

advertising is not possible in traditional illegal markets because it provides information to the

80



police and attracts attention. Subsequently, illegal enterprises cannot enjoy the benefits from

advertising and are unable to develop customer loyalty.

Online, however, drug vendors can advertise their products and reach many potential buyers.
Online illegal markets are known to be an open advertising space (Holt, 2013). Moreover,
cryptomarkets offer an even better setting for advertisements than illegal discussion forums and
chat rooms, they provide a well-designed platform, similar to eBay, where vendors can advertise
products (Barratt, 2012). By posting listings on cryptomarkets that will be exposed to many
market participants, drug vendors can benefit from advertising, expanding their pool of potential
buyers. However, they may not be able to fully enjoy the benefits of massive advertising due to

the consequence of product illegality that prevents them from growing.

Thus, selling drugs on cryptomarkets requires offline activities that need to stay within a small
size and scope due to the driving forces of product illegality (Reuter, 1983). The results on
market share illustrates that all drug vendors earn a small proportion of market share; no vendor
earned above 3.13% of market share throughout the period of study. This suggests that their
activities need to stay within a small size and scope. Moreover, although drug sales fairly
increased during the period of study, market share trajectories are negative. This result does not
illustrate that vendors made fewer sales, but instead that they earned less and less in proportion
to the size of the market. The three negative market share trajectories suggest that none of the

three groups could capture the market expansion observed, not even The Established.

This implies that the growth capacity of the drug market may be limited to the growth in the
number of players in the platform, because every player has a limited capacity for selling due to

the consequence of product illegality.
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However, some vendors may overcome this capacity constraint by becoming online middle-
market dealers, buying drugs online and selling them online, becoming the courtier between
buyers and sellers. In this case, the vendor could gain large size and scope since he/she would
not have offline activities. This vendor would however be dependent on the online seller from
whom the drug is bought, who would in turn be constrained by the consequence of product
illegality. Factors such as package interception would affect the courtier as much as the seller.
Further research on vendors’ potential to expand online selling activities, based on qualitative
interviews, could further help clarify how the drug vendors’ virtual world is embedded in the

physical one.

Yet, the fact that vendors have a limited capacity to grow may explain why the structure of the
drug market is characterized by fierce competition, along with other factors. These other factors

are discussed below.

Fierce Competition and Barriers to Sales

The myth that the drug market is dominated by large-scale hierarchical and criminal
organizations has been demystified (Paoli, 2002). Drug markets have been found to be quite
competitive and driven by market dynamics (Desroches, 2007; Morselli, 2001; Pearson et al.,
2001). Online drug markets are the perfect example of how drugs are basically consumer goods
that are exchanged through markets (Caulkin and Reuter, 1998). The results indicate that the
online drug market hosted on cryptomarkets is highly competitive and far from a monopoly-

type market, but also that it is highly unequal, with strong barriers to sales.
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The fierce competition is found because drug transactions on cryptomarkets take place online,
and features of online markets, such as low search, switch and menu costs, are known to foster

competition (Brynjolfsson et al., 2003; Brynjolfsson and Smith, 2000).

Also, online illegal markets hosted on discussion forums and chat rooms are known to be driven
by market dynamics and be quite competitive (Holt, 2013; Holt and Lampke, 2010; Yip et al.,
2013). Cryptomarkets are even more sophisticated than the first generation of illegal online
markets as they are designed so that buyers can shop through listings and compare prices in an
easy and friendly manner (Barratt, 2012). Moreover, although the lack of advertising in
traditional markets made it harder for customers to compare the prices of different products
(Kleiman, 1991), customers on cryptomarkets can easily compare prices through the advertised
listings. Buyers’ search costs are therefore decreased on cryptomarkets due to the efficient
design of the platform and the possibility of advertising products. Vendors can also easily

change the price of their listings, their menu costs being nil.

Thus, certain features of cryptomarkets foster competition and this competition is exacerbated
by the limited capacity of vendors to expand their offline activities due to the consequence of
product illegality (Reuter, 1983). Competition on cryptomarkets is fierce. However, market
competition analysis also shows that the market is also greatly unequal, with about 60% of
vendors making near zero sales. This finding is even further supported by the results of the
GBTM model showing that 90% of vendors belong to The Failed group. Vendors in The Failed

are spectators in the market; they have vendor a status but they are making few to no sales.

Research on traditional markets suggests that entering drug markets as a vendor is fairly easy

because there are few barriers to entry either at low or high levels of drug dealing (Bouchard,
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2007; Reuter and Haaga, 1989). This is because little knowledge or skill is needed to enter the
drug trafficking market. Drug vendors on cryptomarkets likewise do not face any barriers to
entry: they can easily register on the cryptomarket and start posting drug listings. When
advertising drug products, vendors are considered to be part of the drug supply. However, being
part of the drug supply does not guarantee that actual sales will be completed. Indeed, the results
indicate that the great majority of vendors who post drug listings on cryptomarkets do not make
any sales. This suggests that drug vendors are facing barriers to sales instead of barriers to entry

on cryptomarkets.

Thus, although anyone can enter the market and post listings -making the drug market
superficially big- only a few manage to make a fair number of sales and overcome the barriers
to sales. When studies on cryptomarkets are undertaken to discuss their importance as
distributors of illegal drugs, vendors’ inactivity due to barriers to sales needs to be taken into
account. Assessing the size and scope of the online drug market according to the number of

listings posted on cryptomarkets is unrepresentative of the real market activity.

Barriers to sales may arise due to the online and anonymous features of drug transactions on
cryptomarkets. The paradox of fierce competition on cryptomarkets and few important market

players -The Established- is discussed in the next section.

The Online Drug Market Paradox: Fierce Competition and Market
Superstars

A paradox arises from the results of this study. How can the online drug market be highly

competitive, but also highly unequal? Market shares inequality is depicted with the Lorenz
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curve, but also with the distribution of vendors’ market share trajectories. The fact that the
majority of vendors are part of The Failed group and only a few manage to make a relatively

high number of sales may be due to the online and anonymity features of transactions.

In online markets, buyers grant importance to non-price attributes, such as shipping costs or
delivery time (Cambini et al., 2011; Ellison and Ellison, 2009 Latcovictch and Smith, 2001;
Pozzi, 2012; Ulph and Vulkan, 2000). They are moreover willing to pay higher prices for well-

reputed sellers and products with good branding (Smith and Brynjolfsson, 2001).

In cryptomarkets, the risks associated with conducting a transaction are greater than in online
legal markets due to the anonymity of market participants. The risks of unsuccessful transactions
are greater because dishonest market participants can steal and act opportunistically with a high
level of impunity (Wehinger, 2011; Yip et al., 2013). The anonymity features of online drug
transactions may exacerbate the tendency of buyers to favor branding and reputation over prices
in order to minimize their risk of transaction failures. This could explain not only the strong
barriers to sales discussed above, but also the inequality distribution found in vendors’ market

share trajectories.

We found a distribution of vendors’ market share trajectories of 90%, 9% and 1%, where the
90% consists of vendors in The Failed group and the 1% consists of vendors in The Established,
those accounting for the greatest proportion of market share through time. Interestingly, this
distribution is the same as for the famous “90/9/1” principle of the Internet: “This 90%, 9%, and
1% are also known as Lurkers, Contributors, and Superusers, respectively” (van Mierlo, 2014,

p. 1). Many studies have illustrated that most often 90% of participants are readers, 9% edit new
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content and only 1% actively create new content (Sun et al., 2014). In this study, the 1%

represents active vendors and the 90% represents vendors acting as spectators in the market.

Vendors in The Established, forming the 1%, are the superstars of the market; they are the ones
holding the most market share through time. More than half of them advertise at least one
cannabis listing. This is not surprising since the vast majority of sales on Silk Road were
cannabis sales (Aldridge and Décary-Hétu, 2014). The Established also have more exposure on
the cryptomarket by posting more listings on the platform. To minimize their risks, buyers may
therefore tend to buy more from The Established, the vendors with most visibility and branding,
a tendency seen in legal online markets (Cambini et al., 2011; Ellison and Ellison, 2009;
Latcovictch and Smith, 2001; Pozzi, 2012; Ulph and Vulkan, 2000). Vendors in The Established
are also more experienced than The Failed. In online anonymous markets, buyers need to look
for signals before deciding whom to trust and conduct business with (Décary-Hétu and
Leppénen, 2013). Experience may be a good signal of a vendor’s reliability and credibility for
buyers. Experience is a signal that cannot be faked and can only be gained through time; it may
be the best signal for buyers to ensure successful transactions and fully minimize risks. This

explains why the most experienced vendors are the ones making the most sales.

The anonymous feature of cryptomarkets may intensify buyers’ tendency to buy from vendors
with branding, reputation and experience, thus explaining the high inequality distribution and
the barriers to sales. However, the fact that only a few vendors manage to be in The Established
does not mean that the structure of the online drug market supports the winner-takes-all-theory,
discussed by Wang and Zang (2015). The fact that a few market players stand out in the analysis

does not imply that they hold market power. The market is still fiercely competitive.
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Competition in online markets is so fierce that The Established vendors even seem to do
aggressive advertising. The results on the exposure of vendors illustrate that The Established
post many more listings than do the other vendors. Moreover, this tendency increases through
time during the period of study. The second dimension of the size and scope of vendors also
indicates that they are relatively undiversified. Combined, these two results suggest that
established vendors offer multiple listings of the same type of drugs. They either offer many
listings of the same drug, but in different quantities, or they offer different alternative products
of the same type of drugs. Doing so may be indicative of aggressive advertising techniques.
Wang and Zang (2015) mentioned that firms face high fixed costs and low marginal costs when
conducting business online. This, combined with the fact that the online market is one large
virtual place, influences large firms to act aggressively to prevent other niche products from
being sold. By posting many listings on the same drugs, established vendors may conduct
aggressive advertising to push out potential competitors and keep their position. This could also
increase the barriers to sales faced by other vendors, reducing their chance of making sales.
Aggressive advertising allows established vendors to offer more variation of the product they
sell and better respond to consumer demand, ensuring a better chance of making the most sales

they can manage.

Finally, the fact that The Established consists of only 25 vendors who manage to make the most
sales may be considered a significant result for law enforcement agencies. Yet, because the
market is fiercely competitive, any other vendor is ready to replace anyone in higher groups that
leaves the market due to arrests and seizures. If vendors sell drugs online for profits, an
important vendor quitting the market would create a hole that any other vendors with the

capacity would fill.
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Limits and Further Research

The limits of this study provide interesting ideas for further research. First, this study is based
on the entire drug market hosted on cryptomarkets, which limits the results. To further
understand the structure of drug markets that evolve in cryptomarkets, the same analysis could
be conducted on the different submarkets, such as the cocaine, marijuana or prescription market.
Their structure may be much different from the one found in this study because vendors selling
different types of drugs face different constraints. Moreover, we found that, on average, 61% of
vendors in The Established advertised at least one cannabis listing. This is in accordance with
Aldridge and Décary-Hétu (2014) who found that most drug sales in Silk Road were related to
cannabis. Yet, since these market superstars sell more cannabis, analysing another market -such

as the market for stimulants- could show a different picture.

Moreover, this study calculates market share according to feedbacks left on listings. Repeating
the analysis with a reliable and accurate proxy of vendors’ total revenue could provide another
picture of the market structure and lead to a further understanding of the profitability of the
market. This might be possible with the new BitCluster tool that tracks bitcoin transactions

(Lavoie and Décary-Hétu, 2016).

Another limit of this study is the fact that it does not explain why a vendor is in one group
instead of another. An interesting research could track the trajectory of new vendors to
understand how barriers to sales are overcome and what makes a vendor switch from The Failed
to higher groups. Such a study would give another perspective on the challenges and
opportunities faced by vendors because it would indicate to what extent intensive effort is

needed to be successful.
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This study focuses on only one cryptomarket. However, Soska and Christin (2015) have found
that a large proportion of sellers sell on multiple marketplaces at the same time to reduce the
uncertainty associated with sudden marketplace closures. A study assessing the size and scope
of vendors throughout all marketplaces could better depict vendors’ relative importance within
the larger cryptomarket ecosystem. This would provide a greater understanding of the structure

of the drug market within this wider ecosystem.

Finally, the fact that this study considers that an account is related to a single vendor is an
important limit of this research. This is because many accounts can be held by a single
individual. If this is the case, the results of this research are unreliable. This limit has been -and
will be- faced by many research related to online illegal markets. Yet, an empirical research
(Décary-Hétu and Eden, 2015) showed that only 8.9% of individuals used many accounts on an
illegal carding forum. Also, Motoyama et al. (2011) replied to this critic by emphasizing the
unlikeliness of serious and high-level traders using many accounts on one forum, due to the
difficulty to accrue a reputation in online markets. Our responses to such critics are close to
those of Motayama et al. (2011). The costs in building a reputation on cryptomarkets are high,
due to the many challenges that arise from the anonymity and illegality features of cryptomarket
drug transactions. Also, if a vendor uses many accounts to disseminate the risks of being
detected as an important vendor by law enforcement, then he/she will need to avoid making
clear statements that the accounts are related. However, considering the strong barriers to sales,
the costs related to accrue online reputation on many accounts is high and thus unlikely.
However, more research on the use of multiple accounts by cryptomarket vendors could better

support this theoretical argument.
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Coda

This research characterizes the structure of the drug market hosted on cryptomarkets through
two objectives: assessing market competition and the size and scope of drug vendors.
Characterizing the market structure provides an understanding of the challenges and

opportunities drug vendors face when selling on cryptomarket platforms.

Achieving these two objectives revealed that the structure of the drug market hosted on
cryptomarkets is fiercely competitive and deeply unequal, with few online sellers making any
sales. The size and scope of vendors is limited. Selling drugs on cryptomarkets seems, in fact,
to be quite difficult; vendors face many challenges. This is due to the online, anonymity and

illegality features of cryptomarket drug transactions.

The fact that selling drugs on cryptomarkets requires offline activities and that the product sold
is illegal pushes drug vendors to keep their activities within a small size and scope. The virtual
world of drug dealers is embedded in the physical world, which prevents them from growing
and gaining a greater share of the market. Also, the product is sold online, on a well-designed
platform with advertised listings. This reduces the buyers’ absolute search costs and fosters

market competition.

However, the anonymity feature of cryptomarkets also increases the risk of unsuccessful
transactions and pushes buyers to favor well-reputed and experienced vendors, creating serious
inequality in the market and subsequent barriers to sales. This is even exacerbated by aggressive
advertising techniques employed by established vendors. Yet, even if only a few manage to
make any sales on cryptomarkets, these vendors still face fierce competition that prevents them

from growing and gaining market power.
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Fierce market competition and the rise of market superstars is the paradox in the structure of the
online drug market hosted on cryptomarkets. The three features of drug cryptomarket
transactions, online, anonymity and illegality, create an arid environment for drug vendors to
conduct successful sales, with only a few managing to make constant sales through time.
Cryptomarkets are therefore not likely to be the future of drug dealing due to the many

challenges cryptomarket drug vendors face while trying to sell online.

However, even considering that the structure of the market is fiercely competitive and deeply
unequal, with strong barriers to sales, the online drug market on cryptomarkets still subsists and
many market participants conduct transactions on the platform. Some studies have argued that
online illegal markets avoid failure due to the trust mechanisms developed by market
participants or imposed by market administrators (Yip et al., 2013; Wehinger, 2011). This study
shows that, even with these trust mechanisms, cryptomarkets are a difficult environment in
which to sell drugs, but drug transactions still take place. An understanding of how and why
these online drug markets subsist is needed, but is beyond the scope of this research. The relative
resilience of the online drug market hosted on cryptomarkets may be due to the subculture that
motivates participants, as discussed in Maddox et al. (2015). These authors found that Silk Road
was not simply a market, but also a place to discuss and exchange on subjects that are usually
stigmatized in today’s society, such as drug consumption. The drug market may also be
relatively resilient because some drug vendors have few alternative economic opportunities,
living in poorer countries or in difficult economic situations. In any case, there is something
fascinating about the drug market hosted on cryptomarkets because, although economically

difficult for drug vendors, it still resists and subsists.
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Finally, cryptomarkets are a new and constantly evolving setting. These marketplaces, in the
past years, have appeared and disappeared due to law enforcement take-downs or administrators
scam-exits. Yet, despite these risks, market participants continue to conduct transactions online,
constantly adapting to new settings. Cryptomarkets are stable in their instability. This makes
them a fascinating setting to study, but also an uncertain one. Continuous studying of these
markets is the only solution we have to better understand this new and constantly evolving

criminal phenomenon.
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Annex I
Correlation Matrix

Market Shares Exposure Diversity Experience
September
Market Shares 1 - - -
Exposure -0.261** 1 - -
Diversity 0.027 0.240** 1 -
Experience 0.053 0.175%* 0.048 1
October
Market Shares 1 - - -
Exposure 0.226** 1 - -
Diversity 0.002 0.224%* 1 -
Experience 0.117%* 0.143** 0.068 1
November
Market Shares 1 - - -
Exposure 0.199** 1 - -
Diversity 0.049 0.178** 1 -
Experience 0.087** 0.144** 0.097** 1
December
Market Shares 1 - - -
Exposure 0.277** 1 - -
Diversity 0.060* 0.254** 1 -
Experience 0.069* 0.177%* 0.069* 1
January
Market Shares 1 - - -
Exposure 0.253** 1 - -
Diversity 0.040 0.238%** 1 -
Experience 0.075%* 0.148** -0.025 1
February
Market Shares 1 - - -
Exposure 0.249** 1 - -
Diversity 0.057* 0.257** 1 -
Experience 0.056* 0.165%* -0.001 1

**_Correlation is significant at the 0.01 level (2-tailed).
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