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ABSTRACT

We introduce a hierarchical model for efficient placement of computational graphs
onto hardware devices, especially in heterogeneous environments with a mixture of
CPUs, GPUs, and other computational devices. Our method learns to assign graph
operations to groups and to allocate those groups to available devices. The grouping
and device allocations are learned jointly. The proposed method is trained with
policy gradient and requires no human intervention. Experiments with widely-used
computer vision and natural language models show that our algorithm can find
optimized, non-trivial placements for TensorFlow computational graphs with over
80,000 operations. In addition, our approach outperforms placements by human
experts as well as a previous state-of-the-art placement method based on deep
reinforcement learning. Our method achieves runtime reductions of up to 60.6%
per training step when applied to models such as Neural Machine Translation.

1 INTRODUCTION & RELATED WORK

Deep neural networks have been successfully applied to many practical problems, such as image
classification (LeCun et al., 1998; Krizhevsky et al., 2012; Taigman et al., 2014; Szegedy et al., 2015),
speech recognition (Hinton et al., 2012; Hannun et al., 2014), and machine translation (Sutskever
et al., 2014; Bahdanau et al., 2015; Wu et al., 2016b). These successes have lead to a surge in
demand for the computational resources needed to train and infer with neural networks. A common
approach to addressing this demand is to use a distributed environment with a combination of CPUs
and GPUs. In this environment, it is typical for a machine learning practitioner to explicitly place
the operations of their neural network onto particular computing devices for model parallelism and
data parallelism. For example, one might distribute the computation of the first layer in a translation
network onto the first GPU and the computation of the second layer onto the second GPU (Sutskever
et al., 2014; Wu et al., 2016b). Although these decisions can be made by a human practitioner, such
an approach does not scale well or produce optimal results, especially in the case of more complicated
networks (Szegedy et al., 2016b;a). Given the growing diversity of hardware devices (e.g., Google
TPUs, Intel Nervana, etc.) and recent trends toward automated neural architecture search (Zoph & Le,
2017; Real et al., 2017; Baker et al., 2016), where new models are generated, trained and evaluated
in an entirely end-to-end fashion, it seems natural to move toward more automated solutions for
efficiently distributing computation.

Device placement can be framed as the problem of learning to partition a graph across available
devices. Given that graph partitioning is a well-studied subject in computer science (Fiduccia
& Mattheyses, 1988; Karypis & Kumar, 1995b; Pellegrini, 2009b), traditional graph partitioning
methods represent a natural baseline for automated device placement. We ran experiments using
Scotch (Pellegrini, 2009b), a well-established open source library for graph partitioning, which
includes optimizations such as k-way Fiduccia-Mattheyses (Fiduccia & Mattheyses, 1988), Multilevel
methods (Barnard & Simon, 1994; Hendrickson & Leland, 1993; Karypis & Kumar, 1995a), the
Band Method (Chevalier & Pellegrini, 2006), the Diffusion Method (Pellegrini, 2007), and Dual
Recursive Bipartitioning Mapping (Pellegrini & Roman, 1996). The objective was to balance the
computational load across a set of connected processing nodes, while colocating neighboring nodes
to minimize communication cost. Despite its promise, this approach yielded disappointing results,
likely due to the non-stationarity of the cost function. We target a distributed environment where we
use a shared cluster of CPUs and GPUs, and our CPUs may also serve other jobs at the same time.
Thus, while cost-based models such as (Matthias Boehm & Tian, 2014) provide a strong baseline
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for memory optimizations, since memory usage is deterministic, they cannot be directly applied to
environments with dynamic costs.

Using deep networks and reinforcement learning for combinatorial optimization has already been
proposed (Vinyals et al., 2015; Bello et al., 2016; Mirhoseini et al., 2017). Recent work (Mirhoseini
et al., 2017) uses a recurrent neural network (RNN) policy network to predict the placement of
operations in a computational graph, optimizing for speed of computation using policy gradient
methods. While this approach outperforms traditional graph partitioning heuristics and human expert
placements, it is prohibitively expensive for the RNN policy to learn when the number of operations
is large. This method is therefore limited to small graphs (with fewer than 1000 nodes) and requires
human experts to manually partition the graph into collocation groups as a pre-processing step in
order to scale to larger graphs. We refer to the method in (Mirhoseini et al., 2017) as ColocRL.

In this paper, we propose a more flexible approach which learns to optimize device placement
for training neural networks that have tens of thousands of operations with no need for manual
grouping. Our method consists of a two-level hierarchical network, in which the first model groups
the operations of the graph (the Grouper) and the second model places those groups onto devices (the
Placer). The Grouper is a feed forward network which reads in information about each operation and
its context within the graph, in order to predict the group to which that operation should be assigned.
The Placer is a sequence-to-sequence model (Sutskever et al., 2014) that reads in the embedding of
the group and predicts the device placement for that group. The entire two-level network is trained
jointly using reinforcement learning to optimize for speed of computation and for feasibility (e.g.,
having sufficient memory available on each device for the computation assigned). Unlike the previous
work, our method is end-to-end and does not require human experts to manually group operations as
a pre-processing step, making it a fully automated solution to optimizing device placement.

Our main result is that our model effectively handles very large graphs and finds non-trivial placements
on multiple devices for models such as Inception-V3 (Szegedy et al., 2016b), ResNet (He et al., 2016),
Language Modeling (Jozefowicz et al., 2016), and Neural Machine Translation (Wu et al., 2016b).
The placements found by our model outperform TensorFlow’s default placements (Abadi et al.,
2016), the Scotch algorithm’s placements, and human expert placements, as well as those of ColocRL
(Mirhoseini et al., 2017). Our results demonstrate that the proposed approach learns the properties
of the environment, including the complex tradeoff between computation and communication in
hardware. For example, on a Neural Machine Translation model, our method achieves a 60.6%
reduction in training time per iteration.

2 METHOD

An overview of our hierarchical model for device placement is shown in Figure 1. Our model consists
of two sub-networks: A Grouper that assigns operations to groups and a Placer that assigns groups to
target devices. The two models are trained jointly.

The objective of the proposed approach, which we refer to as the Hierarchical Planner, is to predict
a placement that speeds up the training of neural network graphs. The runtime we are optimizing
for is the time taken to conduct one forward pass, one back-propagation pass, and one parameter
update on the target neural network. To measure the runtime, the predicted placement is run on actual
hardware. Since the reward (runtime) in this problem is non-differentiable, we use policy gradients
to train the Hierarchical Planner. Moreover, the policy gradients flow through to train both the feed
forward Grouper and the recurrent Placer.

The Grouper assigns each operation to a group. Once all the operations are grouped, we use
information about each member operation to generate an embedding for that group. We then pass
these embeddings as input to the Placer, which computes device placements for each group. The
Placer assigns zero or more groups to each available device. The final placement is determined by
placing each operation on the device that its group was assigned to.

In our implementation, the Grouper is a feed forward model followed by a softmax layer with an
output size equal to the number of groups. The Placer is a sequence-to-sequence model (Sutskever
et al., 2014) with Long Short-Term Memory (Hochreiter & Schmidhuber, 1997) and a content-based
attention mechanism (Bahdanau et al., 2015) to predict the placements.
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Figure 1: Hierarchical model for device placement (see text for more details).

We first generate operation embeddings to pass as input to the Grouper. Each operation embedding
consists of 3 vectors: 1) A vector that embeds operation type information (e.g., MatMul, Conv2d,
Sum, etc.). We treat this as a language modeling task and learn an operation type embedding of size
20 with a vocabulary of the 200 most commonly used TF operations. 2) A vector that contains output
sizes and number of outputs for each operation. We limit the number of output edges to 6 and the size
of each of these outputs to 4 elements. We populate this vector by reading the outputs of an operation
one by one and inserting the output operations shapes. We pad the vector with -1 if we have fewer
outgoing edges or smaller sizes. 3) A vector that contains adjacency information for that operation.
We index the graph by traversing it in a BFS manner and set the maximum number of incoming and
outgoing edges to 12 (6 for each direction). We then fill the vector with the index of the incoming and
outgoing operations. We pad the vector with -1, in cases where the number of incoming or outgoing
edges is less than 6.

To generate input for the Placer, we take each group and create its group embedding by concatenating
3 vectors: 1) A vector containing the count of each operation type in the group. 2) A vector that
counts the total number of output shapes of all the operations in that group. This vector is created by
concatenating all the operation output shape embeddings described above (not including the -1) and
is of size 16. 3) A vector that contains group adjacency information. The size of this vector is the
number of groups (256 in our experiments), and its i-th value is 1 if the group has edges to the i-th
group and 0 otherwise.

The Placer’s RNN encoder reads the group embeddings one at a time and produces M hidden states.
We treat M , which is equal to the number of groups, as a hyperparameter. The Placer’s decoder
RNN predicts one device per time step. The devices are returned in the same order as the input group
embeddings, i.e., the operations in the first group will be placed on the device returned by the first
decoder step, and so on. Each device has its own trainable embedding, which is then fed as input to
the next decoder time step.

At each step t (where 1 ≤ t ≤ M ), the decoder uses an attention mechanism to attend over the
encoder states. We use the attention mechanism from Vinyals et al. (2015). At training time, the
decoder samples one device dt per step from the Placer’s softmax. To make the activations lt less
steep and to allow the model to explore, we follow Bello et al. (2016) and use a temperature T and
apply a tanh constant C to lt. Thus, we sample dt as follows:

dt ∼ softmax(C tanh (lt/T )) (1)

The placement decisions are then used to place the model. In the following section, we describe a
policy gradient method to train the Hierarchical Planner, such that it improves its decisions over time.

Training with REINFORCE: The planner optimizes the training time for a target model (e.g., a
TensorFlow graph) given the decisions made by the Grouper and the Placer. Let rd be the runtime

3



Submitted as a conference paper to ICLR 2018

per training step for a predicted device placement d. We define the reward for placement d as
Rd = −sqrt(r). The planner should try to maximize the expectation of Rd given its decisions. As
such, the cost function we are optimizing for is:

J(θg, θd) = EP(d;θg,θd)[Rd] =
∑

g∼πg

∑

d∼πd

p(g; θg)p(d|g; θd)Rd (2)

Let θg and θd be parameters of the Grouper and Placer, respectively. Here, p(g; θg) is the probability
of a sample group assignment g drawn from the Grouper softmax distribution ∼ πg and p(d; θd) is
the probability of a sample device placement d drawn from the Placer softmax distribution ∼ πd. We
can write the derivative of the cost function defined in Eq. 2 w.r.t. θg and θd as follows:

∇θgJ(θg, θd) =
∑

g∼πg

∇θgp(g; θg)
∑

d∼πd

p(d|g; θd)Rd (3)

≈
1

m

1≤i≤m∑

gi∼πg

∇θg log p(gi; θg).
1

k
(

1≤j≤k∑

dj∼πd

Rdj
) (4)

∇θdJ(θg, θd) =
∑

d∼πd

∑

g∼πg

p(g; θg)∇θdp(d|g; θd)Rd (5)

≈
1

k

1≤j≤k∑

dj∼πd

1

m
(

1≤i≤m∑

gi∼πg

∇θd log p(dj |gi; θd)Rdj
) (6)

Deriving Eqs. 3 and 5 from the cost function is straightforward. We use the REINFORCE
rule (Williams, 1992) and approximate expectation values with samples gi and dj drawn from
the Grouper and Placer to arrive at Eqs. 4 and 6.

In our implementation, the Grouper makes independent predictions when assigning operations to
groups. The Placer, however, conditions the placement of groups on those that have already been
placed. To reduce the variance, we also subtract a baseline B from R. In our experiments, we found
that the exponential moving average of the reward was an effective baseline.

Distributed Training: Our policy is trained in a distributed manner. Our framework has a parameter
server that is shared among several controllers. All controllers use the same set of parameters and
update the policy asynchronously. Each controller communicates with k worker nodes, where k is as
shown in Eqs. 4 and 6. Each worker interacts with only one controller.

Each worker executes the placement given by its controller and reports the runtime. In our experiments,
we use 4 controllers and 16 workers (4 per controller). For example, if we are optimizing a placement
on 2 GPUs, each worker needs 2 GPUs to measure runtime. Each controller is hosted on a single GPU.
Therefore, we use a total of 36 GPUs for this example. The workers run the placements in parallel.
Once all workers have finished running the placements, the controller computes the gradients using
the measured runtimes. To reduce the variance of runtime measurements across workers (different
machines), each controller maintains a separate baseline. While we get our best results by using many
workers, we show in Section 3 that it is possible to train the policy and achieve comparable results
with far fewer resources.

3 EXPERIMENTS

In this section, we apply Hierarchical Planner to widely used machine learning models in computer
vision and natural language processing. We compare our results to heuristic and RL-based graph
optimization baselines and demonstrate our approach’s ability to find performant placements. We
also compare our method with two simpler alternatives: 1). no grouping (a feed forward model that
directly places each operation) and 2). random grouping (a random Grouper feeding into a learned
Placer), to demonstrate that our hierarchical architecture allows us to learn better placements.
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Models: We evaluate our approach on four widely used deep neural networks:

• Inception-V3 (Szegedy et al., 2016b) is a model used for a variety of computer vision tasks,
including classification, recognition, or generation (Khetan & Oh, 2016; Esteva et al., 2016).
The network consists of multiple blocks, each of which is made up of several convolutional
and pooling layers. Within a block, the layers can be executed in parallel. However, since
the outputs of each block are concatenated together to form the input to the next block, the
blocks must be executed sequentially. We use a batch size of 1. The TensorFlow graph
encoding this model contains 24,713 operations.

• ResNet (He et al., 2016) is a popular model for image classification. It is a deep convolu-
tional network that uses residual connections to avoid the vanishing gradient problem. We
use batch size 128. The TensorFlow implementation of this model has 20,586 operations.

• RNNLM (Zaremba et al., 2014; Jozefowicz et al., 2016) Recurrent Neural Network Lan-
guage Model is made of many LSTM cells organized in a grid structure. The processing of
each LSTM cell only depends on the results of 2 other cells, which make the concurrent
execution of many LSTM cells possible given enough hardware resources. We use batch
size 64. The corresponding TensorFlow graph contains 9,021 operations.

• NMT (Bahdanau et al., 2015; Wu et al., 2016a) Neural Machine Translation with attention
mechanism has an architecture similar to that of RNNLM, but its many hidden states make
it far more computationally expensive. To decrease the training time, both Sutskever et al.
(2014) and Wu et al. (2016a) propose placing each LSTM layer, as well as the attention
and the softmax layer, on a separate device. While this strategy results in meaningful
speed improvements, we show that our Hierarchical Planner can find significantly better
placements. We use batch size 64. We evaluated 3 versions of the NMT model:

– The original 2-layer encoder-decoder consisting of 28,044 operations.

– An extended 4-layer version consisting of 46,600 operations.

– An even larger 8-layer version consisting of 83,712 operations.

For a fair comparison to previous state-of-the-art deep RL methods (Mirhoseini et al., 2017), we use
the same model architectures (Inception-V3, RNNLM, and 2-Layer NMT models), hyperparameters
and input data. In addition, we evaluate our model on a 152-layer ResNet (He et al., 2016) with
ImageNet data (Deng et al., 2009), as well as more complex NMT models with 4 and 8 layers.

Baselines: We compare the placements found by our approach to the following baselines:

• CPU Only. Here, we execute the model on a single CPU. While this is generally slow, we
find that some large models are very hard to fit on GPUs, given their memory limitations,
leaving a CPU-only placement as the only naive option.

• GPU Only. In cases where it is possible to fit the entire model on a single GPU, this is
a strong baseline as most graph operations run fastest on GPU and this placement incurs
no cross-device communication cost. For operations that are not implemented on GPU,
TensorFlow automatically places them on CPU.

• Scotch. We use the Scotch static mapper (Pellegrini, 2009a) which takes as input the graph,
the computational cost of each operation, the volume of data flowing through each edge,
and the compute and communication capacities of the pertinent devices.

• MinCut. We use the Scotch optimizer, but we only consider GPUs as our devices. The
objective is to balance computation across all the available devices while minimizing inter-
device communication.

• Human Expert. We use hand-crafted placements from previous publications. For Inception-
V3 (Szegedy et al., 2016b) and Resnet (He et al., 2016), where it is difficult to exploit model
parallelism, human experts place the graph on a single GPU. For RNNLM and NMT, existing
work (Sutskever et al., 2014; Wu et al., 2016a) places each LSTM layer on a separate GPU.
For NMT, the attention and softmax layers are placed on the same device as the final LSTM
layer, while the embedding layer is colocated with the first LSTM layer.

• ColocRL. This method (Mirhoseini et al., 2017) uses policy gradient to train a recurrent
neural network that reads in hand-crafted colocation groups and then places each group on a
device.
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Measuring Reward: Our reward is the negative square root of the runtime for one training step of
the target TensorFlow model (lower runtimes are better). We assign a large negative reward of -10
to invalid placements (e.g., due to memory limitations). We define runtime as the time in seconds
required to complete one training step of the target model (i.e. one forward pass, one back-propagation
pass, and one parameter update). To reduce measurement variance, we run each predicted placement
of the model for 10 steps. We discard the first 5 steps (to avoid warmup variations) and use the
median value of the next 5 steps to calculate the reward. We found empirically that calculating the
reward with square root yielded better placements than identity or logarithm. Note that by altering
the reward, we can use our proposed method for optimizing other metrics, such as inference speed,
throughput, and network congestion.

Devices and Software: Our experiments are run on machines with 1 Intel Haswell 2300 CPU and
up to 8 Nvidia Tesla K40 GPUs. We use TensorFlow r1.3 to run our experiments.

Architecture of the Policy Network: In the Hierarchical Planner, the Grouper is a feed forward
network with a hidden size of 64 and the Placer is a sequence-to-sequence (Sutskever et al., 2014)
model with an LSTM hidden size of 256. For the encoder of the sequence-to-sequence model, we
used two layers of LSTM to form a bi-LSTM similar to (Wu et al., 2016b). We used a uni-directional
LSTM for the decoder. The Grouper’s softmax output size is equal to the number of groups, which
we set to 256 in our experiments. We also experimented with a range of group sizes (64 to 1024),
but got the best results with group size 256. The number of unrolled steps in the Placer is equal to
the number of groups. The Placer’s softmax output size in both models is equal to the number of
available hardware devices.

Training Details: We train both policies using Adam (Kingma & Ba, 2015) optimizer with a fixed
learning rate of 0.1, gradient clipping of norm 1.0, tanh constant C = 5.0, and temperature T = 10.0.
The number of Grouper and Placer samples in Eqs. 4 and 6 are m = 1 and k = 4, respectively.

To encourage more exploration, we added noise to the logits of both the Grouper and the Placer
networks for the first 500 policy training steps. The noise was sampled from the normal distribution
and modulated to have a max amplitude of 0.1.

Given that the vast majority of placements are invalid, especially for more complex models such
as NMT, we update the policy only for valid placements after the first 500 steps. By updating the
baseline and the policy only for samples that give valid placements, we prevent the policy from
converging to the reward associated with invalid placements.

Tasks CPU GPU #GPUs Human Scotch MinCut Hierarchical Runtime
Only Only Expert Planner Reduction

Inception-V3 0.61 0.15 2 0.15 0.93 0.82 0.13 16.3%

ResNet - 1.18 2 1.18 6.27 2.92 1.18 0%

RNNLM 6.89 1.57 2 1.57 5.62 5.21 1.57 0%

NMT (2-layer) 6.46 OOM 2 2.13 3.21 5.34 0.84 60.6%
NMT (4-layer) 10.68 OOM 4 3.64 11.18 11.63 1.69 53.7%
NMT (8-layer) 11.52 OOM 8 3.88 17.85 19.01 4.07 -4.9%

Table 1: Model Runtimes (seconds) for different placements (lower is better). OOM: Out Of Memory.

Results Compared with Graph Partitioning Heuristics: In Table 1, we report the performance
of the Hierarchical Planner and compare it to the aforementioned baselines. The only information
available to our models is the TensorFlow graph and a list of devices. The reduction percentages are
computed by taking the difference between the runtime achieved by the Hierarchical Planner and that
of the best prior placement, and then dividing it by that best prior runtime.

For ResNet and RNNLM, our model learns that it is more efficient to use a single GPU, as this
minimizes communication cost. For Inception-V3, the Hierarchical Planner learns to distribute the
model across 2 GPUs, achieving a 16.3% reduction in runtime over placing the model on a single
GPU.
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Figure 2: The Hierarchical Planner’s placement of a NMT (4-layer) model. White denotes CPU and
the four colors each represent one of the GPUs. Note that every step of every layer is allocated across
multiple GPUs. This placement is 53.7% faster than that generated by a human expert.

For NMT with 2, 4, and 8 layers, we ran experiments with 2, 4, and 8 GPUs, respectively. We
outperform the best prior results by 60.6% for NMT (2-layer) and 53.7% for NMT (4-layer). For
further insight into the model’s behavior, we visualize its placement for NMT (4-layer) in Figure 2.

For NMT (8-layer), the Hierarchical Planner finds a placement that is 4.9% slower than that of human
experts. Even in this one case where the method slightly underperforms, it is still useful to have an
automated method of finding placements that are comparable to those of human experts.

Results associated with both Scotch and MinCut were significantly worse than human expert baselines,
which is consistent with results reported in (Mirhoseini et al., 2017).

Results Compared with ColocRL: A fair comparison with ColocRL would require us to run the
models using exactly the same software (TensorFlow version) and hardware (CPU and GPU types).
Although our runtimes are considerably faster, they are not directly comparable to those reported in
(Mirhoseini et al., 2017), because we ran with different GPU types (the slower k40 for us vs. their
k80) and TensorFlow versions (our r1.3 vs. their unspecified but presumably earlier version). We will
discuss the relative improvements achieved by our approach.

For NMT (2-layer), our improvement over best heuristics is 60.6%, compared to 19.0% for ColocRL.
For NMT (4-layer) and NMT (8-layer), no results were reported for ColocRL, which we suspect is
due to the model being unable to handle the large number of operations in these graphs.

Unlike our method, ColocRL makes the strong assumption that certain operations must be colocated.
Figure 2 shows the high granularity of the Hierarchical Planner’s placements, a degree of parallelism
that would be infeasible for prior methods. For example, the Hierarchical Planner places each step of
an unrolled LSTM layer across multiple GPUs, whereas ColocRL colocates all operations in a step.

Analysis: Here, we want to understand and analyze the placements generated by the RL model. In
Figure 2, we show a portion of the placement found by the Hierarchical Planner for NMT (4-layer).
With this placement, the runtime per training iteration is 53.7% faster than that of a hand-crafted
placement. As shown by the figure, the generated placement is non-trivial and highly parallelized. In
particular, all of the unrolled steps of the LSTM, attention, and softmax layers are distributed across
multiple GPUs. Note that it is impossible for an approach like ColocRL (Mirhoseini et al., 2017) to
find such a placement, as this method forces all operations within an unrolled LSTM step to be placed
on the same device. Our method also learns to place the sparse embedding lookup operations on
CPU. In this placement, the policy search space is incredibly large, i.e., 546,600 (5 devices and 46,600
operations). The automated placement enabled by jointly learned grouping not only outperforms
previous methods, but unlike ColocRL, it is deployable with no human effort (e.g. manual grouping).

In our experiments, we set the number of groups to 256. While training the policy, we observed that
initially the operations are assigned nearly uniformly across all the 256 groups, but that the Grouper
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ultimately converges to using only a small subset of groups across all models. This suggests that
the feed forward Grouper has learned to partition the computational graph such that operations that
should be placed on the same device are grouped together.

We cast the device placement problem as a sequential decision-making task. Since there is no
canonical order for a TensorFlow graph, we randomized the order of the groups that we fed into the
the Placer, with the Placer’s bi-LSTM architecture enabling it to look at a graph more holistically. We
ran 10 experiments on our NMT (4-layer) baseline, shuffling the order of group embeddings passed
to the Placer. The difference between the fastest and slowest placements was less than 7%.

Overhead of Training Hierarchical Planner: For each of the models, we train a new policy
which learns to optimize placements for that particular model. All results for the Hierarchical Planner
are after 1000 iterations of updating the policy. In practice, this takes at most three hours for our
largest benchmark. The runtime per policy update is dominated by the time it takes to measure the
reward for a sampled placement. To calculate the reward, we run the target model according to the
predicted placement for 5 training steps and use the median runtime. The policy itself is a lightweight
network that is trained on a single GPU. For measuring the reward, however, we use actual runtime
measurements for the given placements. Measuring runtime is done by worker nodes. For example,
if we are optimizing a model placement on 5 devices (1 CPU and 4 GPUs), we need at least one
worker with that many devices that can run the input model for the predicted placements and report
the runtime.

As described in Section 2, we used 16 workers to train our policy. However, in this section, we will
show that we can generate good results even in limited hardware settings. We consider training the
policy to optimize placement of our 4-layer NMT benchmark model on 5 devices (1 Intel Haswell
2300 and 4 Nvidia Tesla K40s). The goal is to show that the policy can be trained efficiently even
when we have only one worker. Figure 3 demonstrates the policy loss reduction as a function of
policy training time, in 2 different scenarios where we have access to 1 and 4 workers. The policy
is hosted on a single K40 GPU which sends 1 placement at a time to the worker(s) and applies a
gradient step for each reward collected from worker(s). While, more workers can reduce the policy
training time, as seen in Figure 3, we still get reasonable training times with only one worker. In this
case, it takes less than 2.5 hours for the policy to achieve a placement with training step time of 1.94
seconds.

Given that we train NMT models for hundreds of thousands of steps, the overhead of policy op-
timization is more than justified. For example, to train WMT’14 En->Fr dataset which has more
than 36 million examples for one epoch (with batch-size=64), we need to run the NMT model for
approximately 562500 steps. Since we reduce the runtime per step by approximately 46.7% (from
3.64 to 1.94 seconds), this saves us 265 GPU-hours, which is a significant savings even if we consider
the 12.5 GPU-hours we spent on training the policy on a single worker.
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Figure 3: Training the policy with 1 and 4 workers to measure the reward. Each worker is a platform
with 1 Intel Haswell 2300 and 4 Nvidia Tesla K40s.
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For simplicity, we first train the Hierarchical Planner and then use its best placement to train the target
model. For greater efficiency, however, we could interleave the training of the Hierarchical Planner
with the training of the target model, using the runtime of actual training steps as our reward signal.

Alternative Policy Architectures: We compared the Hierarchical Planner against two alternative
policy architectures described below.

The first alternative we considered was a simpler model consisting of a single feed forward network.
This model, which we refer to as the Simple Planner, independently predicts the placement for each
operation in the input model, given information about that operation and its connectivity to others.
This is equivalent to having only a feed forward Grouper which predicts placements rather than
groups (i.e. the number of groups is equal to number of available devices).

The Simple Planner finds placements for Inception-V3 that are within 20% of the Hierarchical Planner,
and it successfully learns to place RNNLM and ResNet benchmarks on a single GPU. Its learned
placement for NMT (2-layer), however, is more than twice as slow as that of the Hierarchical Planner.
The Simple Planner also fails to find any valid placements for larger benchmarks, such as NMT with
4 or 8 layers. The Hierarchical Planner which breaks the problem into grouping and placing sub-tasks
is able to scale to much larger models. The Hierarchical Planner’s sequence-to-sequence model also
enables conditioning placement of an operation on those previously placed.

Another architecture we considered was a Hierarchical Planner with randomized grouping. To verify
that the Grouper was contributing meaningfully to the performance of the Hierarchical Planner, we
compared its performance to a baseline where we fed randomized groupings into the Placer. We ran
this experiment with 10 different randomized group assignments for 1000 iterations. As can be seen
in Table 2, there is significant variance across different trials and the best result is worse than that of
the Hierarchical Planner. This suggests that end-to-end learning of grouping operations and placing
groups does indeed improve the performance.

Benchmark Best Median Worst Improvement with
Hierarchical Planner

Inception-V3 0.22 0.51 0.65 40.9%

ResNet 1.18 1.18 1.18 0%

RNNLM 1.57 1.57 1.57 0%

NMT (2-layer) 2.25 3.72 4.45 62.7%

NMT (4-layer) 3.20 3.42 6.91 47.2%

NMT (8-layer) 6.35 6.86 7.23 35.9%

Table 2: Best, median and worst runtimes for 10 trials each with a different randomized grouping of
operations. These results demonstrate that the Hierarchical Planner, which uses learned groupings
rather than random ones, is able to significantly reduce runtime.

4 CONCLUSION

In this paper, we present a hierarchical method for efficiently placing the operations of a computational
graph onto devices. Our approach consists of a hierarchical model that first assigns the operations
to groups and then places those groups onto devices. We use a policy gradient method to optimize
the parameters of the planner. The proposed method enables us to scale to computational graphs
containing over 80,000 operations. Unlike previous work, our method is end-to-end and requires no
manual effort. On a range of tasks including image classification, language modeling, and machine
translation, our method surpasses placements designed by human experts as well as those of previous
state-of-the-art deep RL methods. Our approach finds highly granular parallelism within the graph,
enabling us to outperform prior methods by up to 60.6%.
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