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Abstract

Inspired by recent work in machine translation
and object detection, we introduce an attention
based model that automatically learns to describe
the content of images. We describe how we
can train this model in a deterministic manner
using standard backpropagation techniques and
stochastically by maximizing a variational lower
bound. We also show through visualization how
the model is able to automatically learn to fix its
gaze on salient objects while generating the cor-
responding words in the output sequence. We
validate the use of attention with state-of-the-
art performance on three benchmark datasets:
Flickr9k, Flickr30k and MS COCO.

1. Introduction

Automatically generating captions for an image is a task
close to the heart of scene understanding — one of the pri-
mary goals of computer vision. Not only must caption gen-
eration models be able to solve the computer vision chal-
lenges of determining what objects are in an image, but
they must also be powerful enough to capture and express
their relationships in natural language. For this reason, cap-
tion generation has long been seen as a difficult problem.
It amounts to mimicking the remarkable human ability to
compress huge amounts of salient visual information into
descriptive language and is thus an important challenge for
machine learning and Al research.
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Figure 1. Our model learns a words/image alignment. The visual-
ized attentional maps (3) are explained in Sections 3.1 & 5.4
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Yet despite the difficult nature of this task, there has been
a recent surge of research interest in attacking the image
caption generation problem. Aided by advances in train-
ing deep neural networks (Krizhevsky et al., 2012) and the
availability of large classification datasets (Russakovsky
et al., 2014), recent work has significantly improved the
quality of caption generation using a combination of convo-
lutional neural networks (convnets) to obtain vectorial rep-
resentation of images and recurrent neural networks to de-
code those representations into natural language sentences
(see Sec. 2). One of the most curious facets of the hu-
man visual system is the presence of attention (Rensink,
2000; Corbetta & Shulman, 2002). Rather than compress
an entire image into a static representation, attention allows
for salient features to dynamically come to the forefront as
needed. This is especially important when there is a lot
of clutter in an image. Using representations (such as those
from the very top layer of a convnet) that distill information
in image down to the most salient objects is one effective
solution that has been widely adopted in previous work.
Unfortunately, this has one potential drawback of losing
information which could be useful for richer, more descrip-
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tive captions. Using lower-level representation can help
preserve this information. However working with these
features necessitates a powerful mechanism to steer the
model to information important to the task at hand, and we
show how learning to attend at different locations in order
to generate a caption can achieve that. We present two vari-
ants: a “hard” stochastic attention mechanism and a “soft”
deterministic attention mechanism. We also show how
one advantage of including attention is the insight gained
by approximately visualizing what the model “sees”. En-
couraged by recent advances in caption generation and in-
spired by recent successes in employing attention in ma-
chine translation (Bahdanau et al., 2014) and object recog-
nition (Ba et al., 2014; Mnih et al., 2014), we investigate
models that can attend to salient part of an image while
generating its caption.

The contributions of this paper are the following:

e We introduce two attention-based image caption gen-
erators under a common framework (Sec. 3.1): 1) a
“soft” deterministic attention mechanism trainable by
standard back-propagation methods and 2) a “hard”
stochastic attention mechanism trainable by maximiz-
ing an approximate variational lower bound or equiv-
alently by REINFORCE (Williams, 1992).

e We show how we can gain insight and interpret the
results of this framework by visualizing “where” and
“what” the attention focused on (see Sec. 5.4.)

e Finally, we quantitatively validate the usefulness of
attention in caption generation with state-of-the-art
performance (Sec. 5.3) on three benchmark datasets:
Flickr8k (Hodosh et al., 2013), Flickr30k (Young
et al., 2014) and the MS COCO dataset (Lin et al.,
2014).

2. Related Work

In this section we provide relevant background on previ-
ous work on image caption generation and attention. Re-
cently, several methods have been proposed for generat-
ing image descriptions. Many of these methods are based
on recurrent neural networks and inspired by the success-
ful use of sequence-to-sequence training with neural net-
works for machine translation (Cho et al., 2014; Bahdanau
et al., 2014; Sutskever et al., 2014; Kalchbrenner & Blun-
som, 2013). The encoder-decoder framework (Cho et al.,
2014) of machine translation is well suited, because it is
analogous to “translating” an image to a sentence.

The first approach to using neural networks for caption gen-
eration was proposed by Kiros et al. (2014a) who used a
multimodal log-bilinear model that was biased by features
from the image. This work was later followed by Kiros
et al. (2014b) whose method was designed to explicitly al-

low for a natural way of doing both ranking and genera-
tion. Mao et al. (2014) used a similar approach to genera-
tion but replaced a feedforward neural language model with
a recurrent one. Both Vinyals et al. (2014) and Donahue
et al. (2014) used recurrent neural networks (RNN) based
on long short-term memory (LSTM) units (Hochreiter &
Schmidhuber, 1997) for their models. Unlike Kiros et al.
(2014a) and Mao et al. (2014) whose models see the im-
age at each time step of the output word sequence, Vinyals
et al. (2014) only showed the image to the RNN at the be-
ginning. Along with images, Donahue et al. (2014) and
Yao et al. (2015) also applied LSTMs to videos, allowing
their model to generate video descriptions.

Most of these works represent images as a single feature
vector from the top layer of a pre-trained convolutional net-
work. Karpathy & Li (2014) instead proposed to learn a
joint embedding space for ranking and generation whose
model learns to score sentence and image similarity as a
function of R-CNN object detections with outputs of a bidi-
rectional RNN. Fang et al. (2014) proposed a three-step
pipeline for generation by incorporating object detections.
Their models first learn detectors for several visual con-
cepts based on a multi-instance learning framework. A lan-
guage model trained on captions was then applied to the
detector outputs, followed by rescoring from a joint image-
text embedding space. Unlike these models, our proposed
attention framework does not explicitly use object detec-
tors but instead learns latent alignments from scratch. This
allows our model to go beyond “objectness” and learn to
attend to abstract concepts.

Prior to the use of neural networks for generating captions,
two main approaches were dominant. The first involved
generating caption templates which were filled in based
on the results of object detections and attribute discovery
(Kulkarni et al. (2013), Li et al. (2011), Yang et al. (2011),
Mitchell et al. (2012), Elliott & Keller (2013)). The second
approach was based on first retrieving similar captioned im-
ages from a large database then modifying these retrieved
captions to fit the query (Kuznetsova et al., 2012; 2014).
These approaches typically involved an intermediate “gen-
eralization” step to remove the specifics of a caption that
are only relevant to the retrieved image, such as the name
of a city. Both of these approaches have since fallen out of
favour to the now dominant neural network methods.

There has been a long line of previous work incorporating
the idea of attention into neural networks. Some that share
the same spirit as our work include Larochelle & Hinton
(2010); Denil et al. (2012); Tang et al. (2014) and more
recently Gregor et al. (2015). In particular however, our
work directly extends the work of Bahdanau et al. (2014);
Mnih et al. (2014); Ba et al. (2014); Graves (2013).
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3. Image Caption Generation with Attention
Mechanism

3.1. Model Details

In this section, we describe the two variants of our
attention-based model by first describing their common
framework. The key difference is the definition of the ¢
function which we describe in detail in Sec. 4. See Fig. 1
for the graphical illustration of the proposed model.

We denote vectors with bolded font and matrices with capi-
tal letters. In our description below, we suppress bias terms
for readability.

3.1.1. ENCODER: CONVOLUTIONAL FEATURES

Our model takes a single raw image and generates a caption
y encoded as a sequence of 1-of-K encoded words.

Z/:{Yh---7YC}7Yi€RK

where K is the size of the vocabulary and C' is the length
of the caption.

We use a convolutional neural network in order to extract a
set of feature vectors which we refer to as annotation vec-
tors. The extractor produces L vectors, each of which is
a D-dimensional representation corresponding to a part of
the image.

a:{al,...,aL},aiERD

In order to obtain a correspondence between the feature
vectors and portions of the 2-D image, we extract features
from a lower convolutional layer unlike previous work
which instead used a fully connected layer. This allows the
decoder to selectively focus on certain parts of an image by
weighting a subset of all the feature vectors.

3.1.2. DECODER: LONG SHORT-TERM MEMORY
NETWORK

We use a long short-term memory (LSTM) net-
work (Hochreiter & Schmidhuber, 1997) that produces a
caption by generating one word at every time step condi-
tioned on a context vector, the previous hidden state and
the previously generated words. Our implementation of
LSTMs, shown in Fig. 2, closely follows the one used in
Zaremba et al. (2014):

iy = o(WiEy;—1 + Uhy_1 + Z;z + b;),

f; = (T(Wnyt,1 + Ufht,1 + Zfit + bf),

¢t = fic; 1 + iy tanh(WeBy, 1 + Uchy 1 + Zc24 + b,),
o = o(WoEy; 1+ Ushy 1 + Z,2: +b,),

h; = o; tanh(cy).

Here, iy, f;, ¢y, 04, h; are the input, forget, memory, output
and hidden state of the LSTM respectively. W,, U,, Z, and

Figure 2. A LSTM cell, lines with bolded squares imply projec-
tions with a learnt weight vector. Each cell learns how to weigh
its input components (input gate), while learning how to modulate
that contribution to the memory (input modulator). It also learns
weights which erase the memory cell (forget gate), and weights
which control how this memory should be emitted (output gate).

Z Z;
h, I EY.. h, I EYia
ht—l
\ output gate
2, =— o— h,
memory cell
By, |

forget gate

b, are learned weight matricies and biases. E € R™*X is
an embedding matrix. Let m and n denote the embedding
and LSTM dimensionality respectively and o be the logis-
tic sigmoid activation.

In simple terms, the context vector Zz; is a dynamic rep-
resentation of the relevant part of the image input at time
t. We define a mechanism ¢ that computes z; from the
annotation vectors a;, ¢ = 1,..., L corresponding to the
features extracted at different image locations. For each
location ¢, the mechanism generates a positive weight «;
which can be interpreted either as the probability that loca-
tion ¢ is the right place to focus for producing the next word
(stochastic attention mechanism), or as the relative impor-
tance to give to location ¢ in blending the a;’s together (de-
terministic attention mechanism). The weight a; of each
annotation vector a, is computed by an attention model fatt
for which we use a multilayer perceptron conditioned on
the previous hidden state h;_;. To emphasize, we note that
the hidden state varies as the output RNN advances in its
output sequence: “where” the network looks next depends
on the sequence of words that has already been generated.

eti =fatt(ai, he—1)
exp(e;
S — p(eti) )
> k=1 exp(€tk)

Once the weights (which sum to one) are computed, the
context vector 2; is computed by

Z = ¢({ai}7{ai})v (1

where ¢ is a function that returns a single vector given the
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set of annotation vectors and their corresponding weights.
The details of the ¢ function are discussed in Sec. 4.

The initial memory state and hidden state of the LSTM
are predicted by an average of the annotation vectors fed
through two separate MLPs (init,c and init,h):

1 < 1 <
Co = finite (L Zai> , ho = finicn <L Zai>

In this work, we use a deep output layer (Pascanu et al.,
2014) to compute the output word probability. Its input are
cues from the image (the context vector), the previously
generated word, and the decoder state (h;).

p(yila,yi ") o« exp(Lo(Eyi—1 + Lphy + L.2,)), (2)

where L, € RE*™ L, e R™*" L, € R™*P and E are
learned parameters initialized randomly.

4. Learning Stochastic “Hard” vs
Deterministic “Soft” Attention

In this section we discuss two alternative mechanisms for
the attention model fy¢¢: stochastic attention and determin-
istic attention.

4.1. Stochastic “Hard” Attention

We represent the location variable s; as where the model
decides to focus attention when generating the ¢-th word.
¢, 1s an indicator one-hot variable which is set to 1 if the
i-th location (out of L) is the one used to extract visual
features. By treating the attention locations as intermedi-
ate latent variables, we can assign a multinoulli distribution
parametrized by {«; }, and view Z; as a random variable:

P(sti =1|8j<,a) =y 3)

7= siia. “)

We define a new objective function L that is a variational
lower bound on the marginal log-likelihood log p(y | a)
of observing the sequence of words y given image features
a. Similar to work in generative deep generative modeling
(Kingma & Welling, 2014; Rezende et al., 2014), the learn-
ing algorithm for the parameters W of the models can be
derived by directly optimizing

Ly :Zp(s | a) Ing(y | S’a)
<logy p(s|a)p(y|s,a)

=logp(y | a), (5)

following its gradient

0L,
aévzzp(SI

| s,a)
ow

a) {mogp(y )

Ologp(s | a)

ow ©

logp(y | s,a)

We approximate this gradient of L, by a Monte Carlo
method such that

N
1 01
Z{ OgPY|S )+

8W N &~
o . Ologp(3" | a)
1 "a)———— 7
ogp(y | " a)—57 ;D
where §" = (s, s%,...) is a sequence of sampled attention

locations. We sample the location s from a multinouilli
distribution defined by Eq. (3):

1 ~ Multinoulliy ({a?'}).

We reduce the variance of this estimator with the moving
average baseline technique (Weaver & Tao, 2001). Upon
seeing the k-th mini-batch, the moving average baseline is
estimated as an accumulated sum of the previous log like-
lihoods with exponential decay:

b = 0.9 X bp—1 + 0.1 x log p(y | 3k, a)

To further reduce the estimator variance, the gradient of the
entropy H|s] of the multinouilli distribution is added to the
RHS of Eq. (7).

The final learning rule for the model is then

810gpy|8 a)
aw NZ[ +

810gp(§" | a) Jr)\ 0H|[5"]

Ar(logp(y | §n’a) - b) oW oW

where, A\, and \. are two hyper-parameters set by cross-
validation. As pointed out and used by Ba et al. (2014)
and Mnih et al. (2014), this formulation is equivalent to
the REINFORCE learning rule (Williams, 1992), where the
reward for the attention choosing a sequence of actions is
a real value proportional to the log likelihood of the target
sentence under the sampled attention trajectory.

In order to further improve the robustness of this learning
rule, with probability 0.5 for a given image, we set the sam-
pled attention location s to its expected value « (equivalent
to the deterministic attention in Sec. 4.2).
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Figure 3. Visualization of the attention for each generated word. The rough visualizations obtained by upsampling the attention weights

and smoothing. (top)“soft” and (bottom) “hard” attention (note that both models generated the same captions in this example).

ool BT
FERREENAR

bird flying over
4.2. Deterministic “Soft”” Attention

Learning stochastic attention requires sampling the atten-
tion location s; each time, instead we can take the expecta-
tion of the context vector z; directly,

Z i ®)

and formulate a deterministic attention model by com-
puting a soft attention weighted annotation vector
o ({a;},{a}) = Zf a;a; as proposed by Bahdanau et al.
(2014). This corresponds to feeding in a soft o weighted
context into the system. The whole model is smooth and
differentiable under the deterministic attention, so learning
end-to-end is trivial by using standard back-propagation.

P(St|a)

Learning the deterministic attention can also be under-
stood as approximately optimizing the marginal likelihood
in Eq. (5) under the attention location random variable s;
from Sec. 4.1. The hidden activation of LSTM h; is a lin-
ear projection of the stochastic context vector z, followed
by tanh non-linearity. To the first-order Taylor approxima-
tion, the expected value E,(,,|4)[h;] is equivalent to com-
puting h; using a single forward computation with the ex-
pected context vector (s, |q)[Z¢].

Let us denote by n;; as n in Eq. (2) with 2; set to a;.
Then, we can write the normalized weighted geometric
mean (NWGM) of the softmax of k-th word prediction as

H exp(ny, ki )p(St i=1la)

325 I1; exp(ny, ;) plsei=tla)
_ eXp( p(st\a)[nt,k])
Zj exp(]Ep(Stla) [nt,j])

This implies that the NWGM of the word prediction can
be well approximated by using the expected context vector
E [Z;], instead of the sampled context vector a;.

Furthermore, from the result by Baldi & Sadowski (2014),
the NWGM in Eq. (9) which can be computed by a sin-
gle feedforward computation approximates the expectation
E[p(y: = k | a)] of the output over all possible attention
locations induced by random variable s;. This suggests that

NWGMp(y: = k | a)] =

body water

the proposed deterministic attention model approximately
maximizes the marginal likelihood over all possible atten-
tion locations.

4.2.1. DOUBLY STOCHASTIC ATTENTION

In training the deterministic version of our model, we in-
troduce a form a doubly stochastic regularization that en-
courages the model to pay equal attention to every part of
the image. Whereas the attention at every point in time
sums to 1 by construction (i.e ZZ ay; = 1), the attention
>, @¢; is not constrained in any way. This makes it possi-
ble for the decoder to ignore some parts of the input image.
In order to alleviate this, we encourage » , Qi &= T where
T > %. In our experiments, we observed that this penalty
quantitatively improves overall performance and that this
qualitatively leads to more descriptive captions.

Additionally, the soft attention model predicts a gating
scalar 8 from previous hidden state h,_; at each time
step t, such that, ¢ ({a;},{a}) = BZZL a;a;, where
B = o(fs(hy—1)). This gating variable lets the decoder
decide whether to put more emphasis on language model-
ing or on the context at each time step. Qualitatively, we
observe that the gating variable is larger than the decoder
describes an object in the image.

The soft attention model is trained end-to-end by minimiz-
ing the following penalized negative log-likelihood:

L c
—log(p(yla)) + )\Z(l - Zati)Qa 9)

where we simply fixed 7 to 1.

4.3. Training Procedure

Both variants of our attention model were trained with
stochastic gradient descent using adaptive learning rates.
For the Flickr8k dataset, we found that RMSProp (Tiele-
man & Hinton, 2012) worked best, while for Flickr30k/MS
COCO dataset we for the recently proposed Adam algo-
rithm (Kingma & Ba, 2014) to be quite effective.

To create the annotations a; used by our decoder, we used
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Table 1. BLEU-1,2,3,4/METEOR metrics compared to other methods, T indicates a different split, (—) indicates an unknown metric, o
indicates the authors kindly provided missing metrics by personal communication, 3 indicates an ensemble, a indicates using AlexNet

BLEU
Dataset Model BLEU-1 \ BLEU-2 \ BLEU-3 \ BLEU-4 | METEOR
Google NIC(Vinyals et al., 2014)™ 63 41 27 — —
Flickr8k Log Bilinear (Kiros et al., 2014a)° 65.6 42.4 27.7 17.7 17.31
Soft-Attention 67 44.8 29.9 19.5 18.93
Hard-Attention 67 45.7 314 21.3 20.30
Google NICT°* 66.3 42.3 27.7 18.3 —
. Log Bilinear 60.0 38 25.4 17.1 16.88
Flickr30k Soft-Attention 66.7 434 28.8 19.1 18.49
Hard-Attention 66.9 43.9 29.6 19.9 18.46
CMU/MS Research (Chen & Zitnick, 2014)% — — — — 20.41
MS Research (Fang et al., 2014)te — — — — 20.71
BRNN (Karpathy & Li, 2014)° 64.2 45.1 30.4 20.3 —
COCO Google NICT°> 66.6 46.1 32.9 24.6 —
Log Bilinear® 70.8 48.9 344 24.3 20.03
Soft-Attention 70.7 49.2 34.4 24.3 23.90
Hard-Attention 71.8 50.4 35.7 25.0 23.04

the Oxford VGGnet (Simonyan & Zisserman, 2014) pre-
trained on ImageNet without finetuning. In our experi-
ments we use the 14x14x512 feature map of the fourth
convolutional layer before max pooling. This means our
decoder operates on the flattened 196 x 512 (i.e L x D) en-
coding. In principle however, any encoding function could
be used. In addition, with enough data, the encoder could
also be trained from scratch (or fine-tune) with the rest of
the model.

As our implementation requires time proportional to the
length of the longest sentence per update, we found train-
ing on a random group of captions to be computationally
wasteful. To mitigate this problem, in preprocessing we
build a dictionary mapping the length of a sentence to the
corresponding subset of captions. Then, during training we
randomly sample a length and retrieve a mini-batch of size
64 of that length. We found that this greatly improved con-
vergence speed with no noticeable diminishment in perfor-
mance. On our largest dataset (MS COCO), our soft atten-
tion model took less than 3 days to train on an NVIDIA
Titan Black GPU.

In addition to dropout (Srivastava et al., 2014), the only
other regularization strategy we used was early stopping
on BLEU score. We observed a breakdown in correla-
tion between the validation set log-likelihood and BLEU in
the later stages of training during our experiments. Since
BLEU is the most commonly reported metric, we used
BLEU on our validation set for model selection.

In our experiments with soft attention, we used Whet-

lab' (Snoek et al., 2012; 2014) in our Flickr8k experi-
ments. Some of the intuitions we gained from hyperparam-
eter regions it explored were especially important in our
Flickr30k and COCO experiments.

We make our code for these models publicly available to

encourage future research in this area’.

5. Experiments

We describe our experimental methodology and quantita-
tive results which validate the effectiveness of our model
for caption generation.

5.1. Data

We report results on the widely-used Flickr8k and
Flickr30k dataset as well as the more recenly introduced
MS COCO dataset. Each image in the Flickr8k/30k dataset
have 5 reference captions. In preprocessing our COCO
dataset, we maintained a the same number of references
between our datasets by discarding caption in excess of 5.
We applied only basic tokenization to MS COCO so that it
is consistent with the tokenization present in Flickr8k and
Flickr30k. For all our experiments, we used a fixed vocab-
ulary size of 10,000.

Results for our attention-based architecture are reported in
Table 1. We report results with the frequently used BLEU
metric® which is the standard in image caption generation

"https://www.whetlab.com/

https://github.com/kelvinxu/
arctic-captions

3 We verified that our BLEU evaluation code matches the au-
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Figure 4. Examples of attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

="

A woman is throwing a frisbee in a park.

A dog is standlng on a hardwood floor.

A stop sign is on a road with a
mountain in the background.

A I|ttle girl sitting on a bed with
a teddy bear.

research. We report BLEU* from 1 to 4 without a brevity
penalty. There has been, however, criticism of BLEU, so
we report another common metric METEOR (Denkowski
& Lavie, 2014) and compare whenever possible.

5.2. Evaluation Procedures

A few challenges exist for comparison, which we ex-
plain here. The first challenge is a difference in choice
of convolutional feature extractor. For identical decoder
architectures, using a more recent architectures such as
GoogleNet (Szegedy et al., 2014) or Oxford VGG (Si-
monyan & Zisserman, 2014) can give a boost in perfor-
mance over using the AlexNet (Krizhevsky et al., 2012).
In our evaluation, we compare directly only with results
which use the comparable GoogLeNet/Oxford VGG fea-
tures, but for METEOR comparison we include some re-
sults that use AlexNet.

The second challenge is a single model versus ensemble
comparison. While other methods have reported perfor-
mance boosts by using ensembling, in our results we report
a single model performance.

Finally, there is a challenge due to differences between
dataset splits. In our reported results, we use the pre-
defined splits of Flickr8k. However, for the Flickr30k
and COCO datasets is the lack of standardized splits for
which results are reported. As a result, we report the re-
sults with the publicly available splits® used in previous

thors of Vinyals et al. (2014), Karpathy & Li (2014) and Kiros
et al. (2014b). For fairness, we only compare against results for
which we have verified that our BLEU evaluation code is the
same.

* BLEU-n is the geometric average of the n-gram precision.
For instance, BLEU-1 is the unigram precision, and BLEU-2 is
the geometric average of the unigram and bigram precision.

> http://cs.stanford.edu/people/karpathy/

A group of EeoEIe sitting on a boat
in the water.

A giraffe standing in a forest with
trees in the background.

work (Karpathy & Li, 2014). We note, however, that the
differences in splits do not make a substantial difference in
overall performance.

5.3. Quantitative Analysis

In Table 1, we provide a summary of the experiment vali-
dating the quantitative effectiveness of attention. We obtain
state of the art performance on the Flickr8k, Flickr30k and
MS COCO. In addition, we note that in our experiments we
are able to significantly improve the state-of-the-art perfor-
mance METEOR on MS COCO. We speculate that this is
connected to some of the regularization techniques we used
(see Sec. 4.2.1) and our lower-level representation.

5.4. Qualitative Analysis: Learning to attend

By visualizing the attention learned by the model, we are
able to add an extra layer of interpretability to the output
of the model (see Fig. 1). Other systems that have done
this rely on object detection systems to produce candidate
alignment targets (Karpathy & Li, 2014). Our approach is
much more flexible, since the model can attend to “non-
object” salient regions.

The 19-layer OxfordNet uses stacks of 3x3 filters mean-
ing the only time the feature maps decrease in size are due
to the max pooling layers. The input image is resized so
that the shortest side is 256-dimensional with preserved as-
pect ratio. The input to the convolutional network is the
center-cropped 224x224 image. Consequently, with four
max pooling layers, we get an output dimension of the top
convolutional layer of 14x14. Thus in order to visualize
the attention weights for the soft model, we upsample the
weights by a factor of 24 = 16 and apply a Gaussian filter

deepimagesent/
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Figure 5. Examples of mistakes where we can use attention to gain intuition into what the model saw.

A large white bird standing in a forest.

A person is standing on a beach
with a surfboard.

to emulate the large receptive field size.

As we can see in Figs. 3 and 4, the model learns alignments
that agree very strongly with human intuition. Especially
from the examples of mistakes in Fig. 5, we see that it is
possible to exploit such visualizations to get an intuition as
to why those mistakes were made. We provide a more ex-
tensive list of visualizations as the supplementary materials
for the reader.

6. Conclusion

We propose an attention based approach that gives state
of the art performance on three benchmark datasets us-
ing the BLEU and METEOR metric. We also show how
the learned attention can be exploited to give more inter-
pretability into the models generation process, and demon-
strate that the learned alignments correspond very well to
human intuition. We hope that the results of this paper will
encourage future work in using visual attention. We also
expect that the modularity of the encoder-decoder approach
combined with attention to have useful applications in other
domains.
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