
Security, Moore’s law, and 
the anomaly of cheap 
complexity

Thomas Dullien / “Halvar Flake”
@halvarflake

Google Project Zero



Escalating complexity

● Almost 20 years since I wrote my first exploit
● I work hard to keep up with changes to the computing stack
● Every year, I feel like I understand a smaller portion of the computing stack

I thought this was because I was getting old, but in reality:

A modern CPU contains factor 1024+ more transistors than an 80486.

This does not account for things like GPUs, NICs, Basebands, TPUs etc.
Things are objectively getting more complicated, at superlinear rate.



Escalating security problems

● For the first 10 years of those 20 years I was convinced security will be solved soon
● … but I am here now.

The only thing that ever yielded real security gains was controlling complexity.

This talk examines the relationship between complexity and failure of security, and 
discusses the underlying forces that drive both.



Transistor density is still moving up

Source: Henessy’s Google I/O presentation



~3 new CPUs per human per year

Source: ARM Marketing material



Device manufacturers are 
“shifting left”

Source: EE times



Security is improving, but insecure 
computing is growing faster

Source: BI intelligence



What is driving this 
complexity ?

5/8/2018

The “anomaly of cheap complexity”.

For most of human history, a more complex device was more expensive to build than a 
simpler device.

This is not the case in modern computing. It is often more cost-effective to take a 
very complicated device, and make it simulate simplicity, than to make a simpler 
device.



Simulate simplicity?
● You need a machine that does something.

● You could design a component that does that.

● Building that component and manufacturing it is 
expensive and complicated.

● Complex general-purpose CPUs are cheap. 
(Economies of scale and Moore’s law)

● Software specializes a CPU that could do 
anything to become a device that does 
something. 
We simulate the simpler component.

What you want: Restricted 
number of well-defined 

states.

What you have: Powerful 
general computer with 
theoretically finite but 

practically infinite states



What causes the anomaly ?

5/8/2018

Cheap ComplexityUniversal computation Moore’s Law

Two forces combine to create the “anomaly of cheap complexity”:



Universal computation 
means I can simulate one 
machine with another

5/8/2018

In most practical scenarios I want a particular finite-state 
machine to perform a task.

Universal computation means I can take a 
general-purpose CPU, and simulate that finite-state 
machine. 

I do not need to physically build the machine I want. 
I can simply simulate it.



Moore’s Law generates 
massive economies of 
scale for general-purpose 
CPUs

5/8/2018

ARM Cortex-M0 CPUs cost pennies.

Small development boards with CPUs that can boot a tiny 
Linux cost less than USD 2 wholesale.



5/8/2018

How does this affect 
security?

Some of the worst security challenges are:

1. Software security issues
2. Software supply chain issues
3. Hardware security / reliability & supply chain issues
4. Lack of device inspectability



5/8/2018

How does this affect 
security?

Some of the worst security challenges are:

1. Software security issues
2. Software supply chain issues
3. Hardware security / reliability & supply chain issues
4. Lack of device inspectability

 Why can an attacker hijack 
my device and make it do 

things it should not be able to 
do?



5/8/2018

How does this affect 
security?

Some of the worst security challenges are:

1. Software security issues
2. Software supply chain issues
3. Hardware security / reliability & supply chain issues
4. Lack of device inspectability

How did this research code 
someone wrote in two weeks 

20 years ago end up in a 
billion devices?



5/8/2018

How does this affect 
security?

Some of the worst security challenges are:

1. Software security issues
2. Software supply chain issues
3. Hardware security / reliability & supply chain issues
4. Lack of device inspectability

Do I have to trust my CPU 
vendor?



5/8/2018

How does this affect 
security?

Some of the worst security challenges are:

1. Software security issues
2. Software supply chain issues
3. Hardware security / reliability & supply chain issues
4. Lack of device inspectability

In the real world, “possession” 
usually implies “control”.

In IT, “possession” and 
“control” are decoupled. Can I 
establish with certainty who is 
in control of a given device?



Software security means 
limiting latent complexity

5/8/2018

A general-purpose CPU can do pretty much anything.

Building “security” into a system involves limiting what 
can happen in the system.

Software specializes a general-purpose CPU to perform a 
specific task, with a strictly limited number of possible 
states and state transitions.



Dynamical systems

● Computers apply simple rules to a state to 
produce a new state.

● Simple rules repeatedly applied can lead to 
complex unforeseen behavior.

● Examples on the right: Apply the same rule 
repeatedly to three initial states with tiny input 
differences.

● Vastly different and unpredictable behavior can 
result, depending on the difference.



Dynamical systems

● Computers apply simple rules to a state to 
produce a new state.

● Simple rules repeatedly applied can lead to 
complex unforeseen behavior.

● Examples on the right: Apply the same rule 
repeatedly to three initial states with tiny input 
differences.

● Vastly different and unpredictable behavior can 
result, depending on the difference.



Complex behavior lurks 
just below the surface

5/8/2018

When something goes wrong, the limits we imposed can go out of the 
window.

Operating on a broken input state, it is hard to predict what will happen.

Carefully chosen broken input states can propagate to all sorts of chaos.

Our experiences in security confirm this: Tiny issues / differences in initial 
state (single bitflips) can make a machine spin out of control, and the attacker 
can carefully control the escalating error to his advantage.



5/8/2018

How does this affect 
security?

Some of the worst security challenges are:

1. Software security issues
2. Software supply chain issues
3. Hardware security / reliability & supply chain issues
4. Lack of device inspectability

 Why can an attacker hijack 
my device and make it do 

things it should not be able to 
do?

It is much more cost-effective 
to build a general-purpose 

CPU into your device, and try 
to control the complexity, than 

to build something 
non-programmable / 

non-generic in the first place.



Software is cheap

5/8/2018

Once you have a general-purpose CPU, you can compile 
most of the software in the world for this platform.

Adding more features, more complexity, and more code 
is almost (if not quite) free.



Engineering

5/8/2018

“How does one design an electric motor? Would you attach a bathtub to it, simply 
because one was available? Would a bouquet of flowers help? A heap of rocks? No, 
you would use just those elements necessary to its purpose and make it no larger 
than needed -- and you would incorporate safety factors. Function controls design.”

 -- Prof. Bernardo de la Paz in The Moon Is A Harsh Mistress (Robert A. Heinlein)

Software makes adding bathtubs, bouquets of flowers, and rocks, almost free. 

So that’s what we get.



5/8/2018

How does this affect 
security?

Some of the worst security challenges are:

1. Software security issues
2. Software supply chain issues
3. Hardware security / reliability & supply chain issues
4. Lack of device inspectability

How did this research code 
someone wrote in two weeks 

20 years ago end up in a 
billion devices?

It provided some marginal 
benefit, it was easy to re-use, 

it seemed to do the job most of 
the time, and it was less effort 

than to write the same 
functionality from scratch.

It was also, most likely, free.



Tiny mistakes have big 
consequences

5/8/2018

A modern high-end CPU has hundreds of millions or billions of transistors.

About 100.8 million per square millimeter.

A tiny number of malfunctioning transistors can have huge security 
consequences.

They cannot individually be inspected in any cost-effective manner.



The economics of 
chipmaking drive 
chipmakers to the edge

5/8/2018

In order to continue Moore’s Law, CPUs have to be manufactured on the boundary of 
what is “reliable”.

Until recently, the link between “reliability” and “security” was poorly understood in a 
lot of the electrical engineering (and computer science) community.

The hardware maker has financial incentive to ship the ‘most unreliable CPU that can 
not be detected as unreliable’.



You need to trust your 
chip manufacturer

5/8/2018

We do not know how to write real-world programs that can operate on untrusted 
hardware.

Any tiny, innocent-looking, intermittent and probabilistic misbehavior can, under 
current architectures, have disastrous security implications.



5/8/2018

How does this affect 
security?

Some of the worst security challenges are:

1. Software security issues
2. Software supply chain issues
3. Hardware security / reliability & supply chain issues
4. Lack of device inspectability

Do I have to trust my CPU 
vendor?

You will have to trust whoever 
fabricates your CPUs, at least 

given today’s software and 
systems.

Also: The vendor makes more 
money by shipping borderline 

cases.



Scaling, firmware engines, 
and inspectability

5/8/2018

Scaling has yielded the performance gains of the last decades, but scaling 
made physical inspection impossible.

Universal computation has replaced many formerly-simpler components in 
your computer with full CPUs + firmware - usually without mechanism for 
inspection.

Current approach for firmware security is based on “ensuring nobody can get 
in” (code signing), but transient faults can be locally induced to bypass, and 
signing keys get stolen with regularity.



Scaling, firmware engines, 
and inspectability

5/8/2018

Nobody has a good way to assure that a given device is reset into a 
“known-good” state, especially if the hardware was under physical attacker 
control.

We can’t check the transistors.

We can’t check the firmware origin.

Establishing “who is in control” is near-impossible against strong adversaries. 



5/8/2018

How does this affect 
security?

Some of the worst security challenges are:

1. Software security issues
2. Software supply chain issues
3. Hardware security / reliability & supply chain issues
4. Lack of device inspectability

In the real world, “possession” 
usually implies “control”.

In IT, “possession” and 
“control” are decoupled. Can I 
establish with certainty who is 
in control of a given device?

Not with current technology 
and processes.

Too many uninspectable 
components with impact that 

can spin out of control.



What does this mean?

5/8/2018

The pervasive insecurity of modern IT infrastructure is driven by the same 
forces that make IT a success in the first place:

Universal computation & Moore’s law provides exponential cost reduction.

Genericity + economies of scale make complexity cheaper than simplicity.

Near-zero short-term marginal cost to add software complexity.



So what’s next?
There is a lot of research and engineering ahead.

● How do we contain untrusted software 
components but still make use of them?

● How do we build systems that we can inspect?

● How do we build systems that do not easily 
spin out of control, or that can detect early 
when they do?

● How do we do this without sacrificing either the 
progress of Moore’s Law, nor the economies of 
scale and other advantages of generic 
programmability?



So what’s next?
There is a lot of research and engineering ahead.

● How do we contain untrusted software 
components but still make use of them?

● How do we build systems that we can inspect?

● How do we build systems that do not easily 
spin out of control, or that can detect early 
when they do?

● How do we do this without sacrificing either the 
progress of Moore’s Law, nor the economies of 
scale and other advantages of generic 
programmability?

Containing latent computational power.
Cooperation between software people, hardware, 
and security experts required to build support for 
constraining attackers (memory tagging, SPARC 
ADI, more?) 

Inspectable systems.
Can we build integrated circuits big and simple 
enough to be inspectable and whose proper 
functionality and integrity can be checked?

If we can do this, can we use those to inspect the 
rest of the system?

Usable isolation technologies. 
SECCOMP_STRICT looks very strong, but nobody 
knows how to use it.



How to pay for it?
● Securable systems require co-design of 

hardware & software.

● Re-architecting legacy infrastructure for security 
is not economical.

● How would we get there?



End-of-Moore as 
opportunity
● Single-core scaling is dead.

● CPU-architecture and programming models are 
in flux for the first time since the 1980’s

● Computing is getting re-architected as we 
speak, for good economic reasons. Both 
hardware and software.

● Historic opportunity to influence design of 
computing for next N years.



Questions?


