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Supplementary Text

1. Methods GWA Studies

1.1. Study Overview

Our primary analysis extends the discovery sample of a previous genome-wide
association study (GWAS) of educational attainment' from N = 405,072 to N =
1,131,881 individuals. We also conducted genome-wide association analyses of cognitive
performance (N = 257,841), self-reported Math Ability (N = 430,445) and Highest Math
class ever successfully completed (N = 564,698). In what follows, we refer to the four
variables as EduYears, CP, Math Ability and Highest Math.

Below, we begin by describing the methods used in our primary GWAS of
EduYears and summarize its key findings. Next, we describe the GWASs of CP, Math
Ability and Highest Math, all of which were performed using protocols designed to be as
similar as possible to that of the primary GWAS. We conclude the section by describing a
joint analysis of the four traits that exploits their substantial genetic correlations to further
improve both the predictive power of polygenic scores based on our results and our

power to detect individual genetic associations.

1.2. Cohorts in EduYears Meta-Analysis

In this study, we meta-analyzed summary statistics from 71 separate genome-wide
association studies of educational attainment. Our analyses extend a previous genome-
wide study of educational attainment' (referred to as EA2 in what follows), which
combined data from 64 discovery cohorts and one replication cohort, yielding a
combined sample size of N = 405,072. The EA2 study, in turn, built on an earlier GWAS
(which we call EA1)>.

Relative to EA2, we augmented the sample size in two ways. First, we replaced
some EA2 cohort-level results files with results from the cohort based on new analyses of
larger samples. Doing so was possible for some EA2 cohorts for which expanded
genotyped samples became available after the discovery stage of EA2 was closed.
Second, we added data from new cohorts that did not contribute to EA2. Supplementary
Table 16 provides summary information about the 12 cohorts that contributed new data
for the present study (for analogous information about the EA2 cohorts, see
Supplementary Table 16 of Okbay et al.'). Our final meta-analysis also includes 59 of the
65 original EA2 cohorts (the table caption of Supplementary Table 16 lists the six EA2
cohorts whose results were replaced with results from a larger sample).



By meta-analyzing summary statistics from association analyses conducted in the 59
EA2 cohorts (combined N = 199,819), and the twelve cohorts in Supplementary Table
16 (combined N = 932,062), we obtain our final discovery sample of N = 1,131,881.
Over half of the increase in sample size relative to EA is due to sample-size increases in
the 23andMe cohort (an increase from N = 76,155 in EA2 to N = 365,536) and UKB
(increase from 111,349 to 442,183).

The lead PI of each cohort affirmed that the results contributed to the study were
based on analyses approved by the local Research Ethics Committee and/or Institutional

Review Board responsible for overseeing research.

1.3. Phenotypes

The study-specific phenotype measurements and distributions for the new cohorts
are summarized in Supplementary Table 17 (for analogous information about the EA2
cohorts, see Supplementary Table 18 in Okbay et al.!). As in our prior work!?, we map
each major educational qualification that can be identified from the cohort’s survey
measure to an International Standard Classification of Education (ISCED) category. To
construct our outcome variable, EduYears, we impute a years-of-education equivalent for
each ISCED category. Across all cohorts, the sample-size-weighted mean of EduYears is
16.8 years of schooling with a standard deviation of 4.2.

1.4. Genotyping and Imputation

Supplementary Table 18 reports information about genotyping platform, pre-
imputation quality-control filters applied to the genotype data, subject-level exclusion
criteria, imputation software used, and the reference sample used for imputation in each
of the new cohorts. Imputation was conducted using a reference panel from either the
1000 Genomes Project® or a larger panel subsequently released by the Haplotype
Reference Consortium®.

1.5. Association Analyses

Cohorts were asked to estimate this regression equation for each measured SNP:
EduYears = By + 1 SNP+PCy+Ba+ X +e¢, (1.1

where SNP is the allele dose of the SNP; PC is a vector of the first ten principal
components of the variance-covariance matrix of the genotypic data, estimated after the
removal of genetic outliers (we instead used twenty principal components in UKB

analyses); B is a vector of standardized controls, including a third-order polynomial in



year of birth, an indicator for being female, and their interactions; and X is a vector of
study-specific controls. Cohort analysts were asked to impose a number of standard
subject-level filters prior to running the analyses. These include: (i) each subject’s
EduYears was measured at an age of at least 30, (ii) each subject passed the cohort’s
quality control, which always include the removal of genetic outliers and individuals with
poor genotyping rates, and (iii) each subject is of European ancestry.

Supplementary Table 19 provides study-specific details about the association
analyses conducted in the new cohorts. Column 2 shows the association software used by
each study analyst. Column 3 reports whether the cohorts omitted any of the basic control
variables recommended in the Analysis Plan in their specification. Column 4 lists extra
controls included by the cohorts in the vector X, such as controls for cohort-specific
events that may have impacted the education system in the cohort. Column 5 reports
whether association analyses were conducted using mixed linear models that may yield
more robust inference, especially in family-based samples. In the 23andMe sample, the
association analyses were conducted in a sample of European-ancestry research
participants selected so that in the sample, no pair of research participants share more
than 700 cM identically by descent.

1.6. Quality Control

We applied the quality-control protocol and filters described in EA2! to the new
results files. Several of the quality-control and filtering steps are implemented by the
software EasyQC, using the 1000 Genomes Project® phase 1 European sample reference
files provided on the EasyQC website.?

The main filtering steps involved dropping SNPs that: (i) are known to have strand
issues in some imputation programs, (ii) have missing or incorrect numerical values
supplied for some variables (e.g., a P value of association outside the range O to 1), (iii)
have a minor allele count below 25, (iv) have poor imputation accuracy, (v) are indels or
not located on the autosomes, or (vi) have invalid or duplicated chromosomal coordinates
or whose alleles do not match those in the reference file. In association results from
analyses of the full release of the UK Biobank data, we further filter out all SNPs that are
not in the Haplotype Reference Consortium’s reference panel.

1.7. Additional Diagnostics

*http://www.uni-regensburg.de/medizin/epidemiologie-praeventivmedizin/genetische-
epidemiologie/software/



After applying the filters described in the previous section, we conducted several
additional diagnostic checks before clearing a cohort-level results file for inclusion in the

meta-analysis.
The first four of these diagnostics are graphical and summarized below.

Allele Frequency Plots (AF Plots): We looked for errors in allele frequencies and
strand orientations by visually inspecting a plot of the sample allele frequency of filtered
SNPs against the frequency in the 1000 Genomes phase 1 version 3 European panel®.

P value vs Z-statistic Plots (PZ Plots): We verified that the reported P values are
consistent with the P values implied by the coefficient estimates and standard errors in

the results file.

Quantile-Quantile Plots (QQ Plots): We visually inspected the cohort-level QQ

plots to look for evidence of unaccounted-for stratification.

Predicted vs Reported Standard-Error Plots (PRS Plots): We investigated if the
standard errors reported in the files are approximately consistent with the reported sample
size, allele frequency, and phenotype distribution. For a random subset of 500,000 SNPs,
we also plotted the predicted standard errors against the actual standard errors reported by
the cohort.

We generated the above four plots for each new results file and inspected them for
anomalies. Potential issues were discussed with cohort-level analysts and sometimes
resulted in re-uploading of results. We also used bivariate LD score regression to verify
that the estimated genetic correlations between all large cohorts (defined as N > 10,000)

were large and positive.

All of our final analyses are based on results files that pass all the diagnostic tests
described above.

1.8. EduYears Meta-Analysis (N = 1,131,881)

We use the software program METALS’ to conduct sample-size-weighted meta-
analysis of all SNPs that passed the quality-control thresholds in the 71 results files.
Applying a sample-size filter of 500,000 leaves us with meta-analysis results for 10.02M

autosomal SNPs.

Supplementary Figure 1 reports quantile-quantile plots of the P values from the
meta-analysis. Panel a shows the overall distribution of P values, and Panel b shows the
P values of SNPs categorized by allele frequency. As expected under polygenicity®, the P
values deviate strongly from a uniform distribution (Acc = 2.04). The strength of this
deviation depends strongly on allele frequency. For common variants (defined as having



a minor allele frequency above 5%) the genomic control factor is Acc = 2.85; for low-
frequency variants (MAF 1-5%) we have Agc = 1.63; and finally, for rare variants (MAF
< 1%) we have Agc = 1.20.

We did not apply cohort-level genomic control’ to the cohort-level results files prior
to meta-analysis. Instead, we meta-analyzed unadjusted cohort-level summary statistics
and subsequently inflated the standard errors from the meta-analysis by the square root of

the intercept (v/1.11) from an LD score regression®. As recommended by the developers
of LD score regressions, the LD scores are estimated using the 1000G reference sample,
even though LD score regression is run restricting the sample to just the HapMap3 SNPs
with allele frequency above 1%. (The developers recommend restricting to these
HapMap3 SNPs because they can be well imputed.) Consequently, the intercept is
estimated from the HapMap3 SNPs rather than the full set of 1000G SNPs contained in
the GWAS results. When we use this intercept to inflate the standard errors in the GWAS
results, we are implicitly assuming that the inflation of the Z-statistics due to stratification
or other biases in the HapMap3 SNPs is the same as for the 1000G SNPs. The primary
difference between HapMap3 SNPs and 1000G SNPs is that there are many more SNPs
with rare alleles in the set of 1000G SNPs. Thus, the LD score intercept adjustment could
lead to an inflated Type-I error rate for rare SNPs if the bias for rare SNPs were greater
than that of common SNPs. We are not aware of any evidence on this point. We note,
however, that of the 1,271 lead SNPs identified for EduYears, only two have an allele
frequency less than 1%: rs186456786 and rs182355396, which have minor allele
frequencies of 0.94% and 0.84%, respectively. Since there are only two such SNPs, since
both have minor allele frequencies close to 1%, and since the regression includes
HapMap3 SNPs with minor allele frequencies as low as 1%, we think that any potential
inflation of the Type-I error rate in our results due to the restriction of SNPs included in

the LD score regression is likely to be negligible.

Our LD score intercept estimate of 1.11 is in the upper range of estimates previously
reported in the literature (e.g., range 0.980 to 1.149 reported by Bulik-Sullivan et al.® for
24 traits). However, to be informative about the overall amount of inflation due to cryptic
relatedness or stratification biases, the intercept must be interpreted relative to the overall
observed inflation, which greatly exceeds that of the previous studies analyzed by Bulik-
Sullivan et al®. In our data, the average y? statistic among HapMap3 SNPs is 3.81,
substantially larger than the range of values (1.033-1.802) for the set of traits analyzed by
Bulik-Sullivan et al.®. Thus, the intercept estimate of 1.11 suggests that biases explain
only a small share of the overall inflation in the test statistics, with roughly 95% of the
inflation due instead to polygenicity. For a graphical summary of the LD score
stratification analyses, see Supplementary Figure 2. In Supplementary Section 2, we



report results from within-family association analyses that provide complementary
evidence about the amount of stratification bias in our coefficient estimates. Figure 1
displays the Manhattan plot for the main meta-analysis.

Supplementary Table 2 shows the association results for the 1,271 approximately
independent SNPs that reached genome-wide significance in our EduYears meta-analysis
(see Supplementary Section 1.9 for details on the clumping algorithm). In what follows,
we refer to these approximately independent SNPs as our lead SNPs. Of the 1,271 lead
SNPs, 1,190 have minor allele frequencies above 5%, and all but two of the remaining 81
SNPs have a minor allele frequency below 5%. A test of homogenous effects across
cohorts fails to reject the null at the Bonferroni-adjusted P value threshold of 0.05/1,271
for all SNPs barring one. Nevertheless, Supplementary Figure 4 shows that there is a
tendency for the overall P value distribution from the tests of homogenous effects to
deviate from the theoretical expectation. The 1,271 lead SNPs are spread across the
autosomes, with a randomly selected SNP having a 17% chance of being in a genome-

wide significant locus (i.e., pairwise 7* > 0.1 with at least one lead SNP).

We generated an omnibus test statistic for heterogeneity by summing the Cochran
Q-statistics for heterogeneity across all 1,271 lead SNPs’. Because the software used for
meta-analysis does not report Q-statistics, we inferred these values based on the reported
heterogeneity P values. To do so, we treated each lead SNP as if it were available for
each of the 71 cohorts in the meta-analysis, which implies that the Q-statistic for each
lead SNP has a y? distribution with 70 degrees of freedom. The resulting Q-statistics
were almost perfectly consistent with the [? value reported by METAL, suggesting that
our approximation 1is appropriate. The sum of these Q-statistics is therefore
(approximately) y2-distributed with 70 X 1,271 = 88,970 degrees of freedom. This
gave us an omnibus Q-statistic of 91,830, with corresponding P value equal to 9.68 X
10712, We return to the issue of heterogeneous effects across cohorts in Supplementary
Section 3.

To gauge the magnitude of the estimated SNP effects, we used a well-known
approximation to transform the Z-statistics from the sample-size-weighted meta-analysis

(the output of the software METAL) into unstandardized regression coefficients:

Pas

A O
Pi = Z; -
J2N, MAF, (1 — MAF))

1.2)

for SNP j with minor allele frequency MAFj, sample size Nj, Z-statistic Z;, and standard

deviation of the phenotype &y. For a derivation, see the SOM in EA1% Without
adjustment for winner’s curse, the estimated effects (in absolute value) of the 1,271
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genome-wide significant SNPs are all in the range 0.008-0.053 SD units, corresponding
to approximately 2 to 9 weeks of schooling per reference allele (assuming the standard
deviation of EduYears is 40.2). An additional copy of the trait-increasing allele is
associated with 2.7 weeks of schooling on average. When we consider common and low-

frequency variants separately, the averages are instead 2.5 and 6 weeks.

We also used an empirical Bayes’ framework to calculate winner’s-curse-adjusted
estimates of the effect sizes. The framework in its entirety is described in Section 2.5,
but its key assumption is that SNP effects are drawn randomly from the following

mixture distribution:

N(0,72) with probability

~ 1.
B {O otherwise, (1.3)

We used the summary statistics from the full meta-analysis to obtain estimates of the
fraction of non-null variants (r) and the variance of non-null SNP effect sizes (t2). The
resulting estimates are (£2,7) = (3.98 X 107%,0.60), from which we calculated
posterior distributions for the effect sizes of all lead SNPs. We found that after adjusting
for winner’s curse, the average effect falls from 2.7 weeks per allele to 1.8 weeks, and no
longer varies appreciably between low-frequency (1.6 weeks) and common variants (1.8
weeks). We also used the posterior distributions to calculate the total fraction of variation
accounted for by the lead SNPs. The predicted fraction of variance explained by the
variants jointly, 3.86%, is broadly consistent with our estimates of the predictive power

of polygenic scores based on lead SNPs in independent validation samples.

1.9. Clumping Algorithm and Definition of Lead SNPs

Here, we assess the sensitivity of our conclusions about the number of lead SNPs to
alternative definitions and to the choice of the reference file used to estimate LD

structure.

To examine the sensitivity of our conclusions to the choice of reference file, we
conducted follow-up analyses in a sample of approximately unrelated individuals
(pairwise relatedness < 0.025) of European ancestry (N = 405,519) from UKB. Our first
analysis is motivated by the fact that the 1,271 lead SNPs were identified using noisily
estimated patterns of LD from a small reference file (N = 294). Estimation error could
inflate the number of SNPs classified as approximately independent. We therefore reran
our clumping algorithm using the UKB reference sample, which is large enough to ensure
that estimation error will be negligible. With this alternative reference sample, we
identified 1,223 approximately independent SNPs at genome-wide significance,

suggesting that our conclusions about the number of lead SNPs are not sensitive to the
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exact reference sample of European-ancestry individuals used to estimate linkage
disequilibrium.

There is no universally agreed-upon clumping algorithm, and different studies often
use slightly different ones. For example, some algorithms do not assign all SNPs whose
pairwise 7 with the lead SNP exceeds the user-specified cutoff to the lead SNP’s clump,
but only the subset of these SNPs whose distance to the lead SNP is below some cutoff
(e.g. 250 kb). As another example, some algorithms involve a second stage in which lead
SNPs that are physically close to each other are sometimes merged and considered to be a
single locus. Since our clumping procedure did not involve a physical distance threshold,
such merging is likely to be very conservative in our setting. If we apply the clumping

algorithm used in a recent study of schizophrenia'’, our lead SNPs span 795 loci.

We also supplemented our main analyses with a conditional and joint multiple-SNP
analysis (COJO)!' using summary statistics from the main meta-analysis. In our COJO
analysis, we again use the UKB reference sample, primarily to ensure that LD structure is
estimated with minimal error. But since UKB comprises a large share of our overall
estimation sample, a potential additional advantage is that its LD structure may be more
representative of the discovery sample, which would improve the accuracy of the COJO

estimator.

Before running COJO, we applied recommended SNP filters!!, excluding SNPs with
(1) MAF < 0.01, (i1) imputation ¥ < 0.3, (iii) HWE P value < 10°°, or (iv) missingness
rate > 5%. These restrictions leave us with ~4.9M SNPs. We performed COJO using the
implementation found in the GCTA software (Version 1.90.0 beta). Model selection was
performed using the stepwise selection process outlined in the original COJO paper!! in
which SNPs from across the genome are iteratively added to the model. We set the LD
window to 100 Mb, i.e., SNPs that are further than 100 Mb are assumed to have zero LD
correlation.

Our COJO analysis identified 765 variants at genome-wide significance. In
evaluating how this estimate compares to the number of lead SNPs identified by our
clumping algorithm, it is important to consider that the COJO analysis was based on a
restricted set of SNPs. To aid comparisons, we applied our clumping algorithm to the
~4.9M SNPs that passed COJO filters and found 1,053 lead SNPs when UKB is used as
the reference sample (1,070 if we instead use the smaller reference sample used in our

primary analyses).

A priori, it was not clear whether the number of COJO-identified associations
should have been expected to be larger or smaller than the number of approximately

independent SNPs identified by our clumping algorithm (for a fixed set of SNPs). On the
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one hand, COJO could increase the number if there are many loci harboring secondary
associations. On the other hand, COJO could reduce the number of associations if there
are many pairs of lead SNPs with pairwise 7 just below 0.1 and P values just below the
genome-wide significance cutoff. If so, conditioning on one of the SNP may increase the
association P value of the other so that it ceases to be genome-wide significant.

Empirically, our findings suggest that the second effect appears to dominate.

We classified each of the 765 COJO hits as either primary or secondary by applying
our clumping algorithm to the list of COJO variants (Supplementary Table 3), again
using UKB as our reference sample and an 7 threshold of 0.1. We found that our
clumping algorithm eliminated 60 SNPs from the original list of 765 COJO hits (pairwise
> 0.1 with at least one COJO variant). We call these 60 variants secondary associations

and the remaining 705 variants primary associations.

1.10. Replication of EA2 L.ead SNPs

Okbay et al. reported a replication analysis of the 74 lead SNPs from their discovery
meta-analysis in an independent replication sample. Here we conduct a replication
analysis of the 162 lead SNPs identified at genome-wide significance in Okbay et al.’s
pooled (discovery and replication) meta-analysis (N = 405,073).

Of the 162 SNPs, 158 of them pass quality-control filters in our updated meta-
analysis, so we focus on those. To examine their out-of-sample replicability, we
calculated Z-statistics from the subsample of our data (N = 726,808) that was not
included in EA2. Let the Z-statistics of association from, respectively, EA2, the new data,
and our final EA3 meta-analysis, be denoted by Zi, Z> and Z. Note that we cannot
calculate Z» directly. For example, 23andMe contributed association results for N =
76,155 individuals to EA2 and results for N = 365,538 individuals to EA3. The first
cohort is a subset of the second, but we do not have summary statistics from association
analyses conducted only in subjects that contributed to the second but not the first meta-
analysis. The same is true for the other cohorts listed in Supplementary Table 16 that
increased their sample sizes from EA2 to EA3, with the exception of the UKB (for which
we have access to individual-level data).

However, we can calculate Z; indirectly. Since our meta-analysis used sample-size

weighting’, Z, is implicitly defined by:

Ny N,
Z = WZl+ WZZ'
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where SNP subscripts have been dropped for notational convenience and N'’s are sample
sizes. Because this formula holds when Z; and Z, are independent, the implicitly-defined
Z, is interpreted as the additional information contained the new data. If in fact the EA2
and the new data were correlated (because, for example, the additional 23andMe data
likely contains individuals related to individuals in the earlier 23andMe data), Z, would
not be equal to the Z-statistic of association calculated directly in the new data. However,
the implicitly-defined Z, is the correct value to use for assessing replicability of the EA2
results because it captures the independent component of the new data.’

Of the 158 SNPs, we find that 154 have matching signs in the new data (for the
remaining four SNPs, the estimated effect is never statistically significant at P < 0.10). Of
the 154 SNPs with matching signs, 143 are significant at P < 0.01, 119 are significant at
P < 107, and 97 are significant at P < 5x10°% The replication results are shown
graphically in Supplementary Figure 3.

To help interpret these results, we used the statistical framework from Section 1.8 in
the Supplementary Methods of Okbay et al.! to calculate the expected replication record
under the null that all 158 SNPs are true associations. Below, we show the expected
replication record (mean and standard deviation of the number of successful replications
in each category). The theoretical projections are based on shrinkage parameters
estimated from EA2 summary statistics (used to adjust the EA2 effect sizes for winner’s
curse): (£2,7) = (5.02 x 107%,0.33). To facilitate comparisons, the empirical findings

mentioned above that correspond to each prediction are provided in this table:

Test Theoretical Expected Replication Observed Replication
Mean Standard deviation
Sign Concordance 157.7 0.04 154
P <0.01 152.3 0.62 143
P<107° 118.3 0.04 119
P <5x10°8 79.4 3 97

® We note, however, that in our application, the implicitly-defined Z, is approximate because the equation
is only exact if identical methods are used at the cohort level to adjust for stratification biases. In reality,
cohort-level genomic control was applied in EA2, whereas the current study used LD score adjustment.
However, Okbay et al. showed in a robustness analysis that in their setting, differences between the two
approaches are negligible (see footnote g in the Supplementary Methods of Okbay et al.!).
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For the first two categories, the empirical replication record is weaker than
predicted; for the third category, the empirical replication record is close to the theoretical
prediction; and for the fourth category, the empirical replication record is stronger than
predicted. However, the quantitative discrepancies are always fairly small. The weaker-
than-expected success rates observed in the first two categories is likely due to a mix of
two factors: (i) imperfect genetic correlation between the cohorts used to estimate Z; and
Z», and (ii) a low, but non-zero, false-discovery rate in EA2 (our theoretical calculations

assume all 158 SNPs are non-null).

1.11. Cognitive Performance, Math Ability and Highest Math

Supplementary Table 40 provides summary information about the phenotypes used
in our remaining three genome-wide association analyses, two of which were conducted
exclusively among research participants of the personal genomics company 23andMe
who answered survey questions about their mathematical background. Our first variable,
Math Ability (N = 564,698), is derived from the respondent’s answer to the categorical
question “How would you rate your mathematical ability?”” Our second variable, Highest
Math (N = 430,445), is similarly derived from the answer to a question about the most
advanced math course ever successfully completed. Supplementary Table 40 provides
additional information about the questions used and how we generated a quantitative
variable by mapping each response category to a numerical value.

In our analyses of CP, we partnered with investigators from a published study of
general cognitive ability in European-ancestry individuals (N = 35,298) conducted by the
COGENT consortium'2, We combined summary statistics from their study with new
genome-wide association analyses of cognitive performance in the UK Biobank (N =
222,543). Our final analyses are based on a sample-size weighted meta-analysis of these
two results files (N = 257,841).

In the COGENT study all 35 participating cohorts analyzed a phenotype defined as
the first principal component derived from three or more neuropsychological tests (the
exact tests varied by cohort as described in the original study). In the UKB analyses,
following prior work, we used the respondent’s score on a test of verbal-numerical

reasoning as our cognitive phenotype.© The test, which contains thirteen logic and

¢ Other work has found that the genetic correlation between this measure and general
intelligence among children is approximately 0.8°?6. The UKB contains data on three
other cognitive tests, in addition to the one we use: reaction time, pairs matching, and
prospective memory. A previous study contains a detailed description of all four
cognitive tests in the UKB and a comprehensive analyses of their psychometric properties
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reasoning questions with a two-minute time limit, was designed as a measure of fluid
intelligence. Each respondent took the test up to four times. Our phenotype is the mean of
the standardized score across the occasions on which the respondent took the test.

1.12. Association Analyses of CP, Math Ability and Highest Math

Our new genome-wide analyses of cognitive performance in UKB were conducted
using methods identical to those described above for EduYears in UKB, albeit in a
smaller sample because the phenotype is only available for approximately one half of the
respondents. Our genome-wide association analyses of Math Ability and Highest Math in
23andMe were also conducted using methods identical to those described for EduYears in
23andMe. Thus, for details on genotyping and imputation and association models used in
our additional genome-wide analyses in UKB and 23andMe, we refer to Supplementary
Tables 17 and 18. Before conducting clumping and further analyses, we applied the
same set of quality-control filters to all results files and verified that no file failed any of

the diagnostic checks described in Section 1.7.

We performed a sample-size-weighted meta-analysis of the UKB and COGENT
summary statistics, imposing a minimum-sample-size filter of 100,000, leaving 10.10M
SNPs in our final results file. For Math Ability and Highest Math, we imposed sample-
size filters of 500,000 and 350,000, respectively. Applying these final filters leaves us
with association statistics for ~10.0M SNPs in each of the 23andMe results files.

To reduce stratification biases, we adjusted the test statistics using the estimated
intercepts from LD score regressions. The three estimated intercepts are all small relative
to the overall inflation in test statistics: 1.073 for Math Ability, 1.105 for Highest Math,
and 1.046 for CP. Applying our clumping algorithm to the P values derived from the
adjusted test statistics, we identified 618 approximately independent SNPs associated
with Math Ability (Supplementary Table 11), 365 associated with Highest Math
(Supplementary Table 12), and 225 SNPs associated with CP (Supplementary Table
13). Manhattan plots from the analyses are shown in Supplementary Figures 14 (CP),
15 (Math Ability) and 16 (Highest Math).

Although we have considered each of these phenotypes separately and therefore
used the standard genome-wide significance P-value threshold of 5x107® to identify the
lead SNPs for each phenotype, it may also be of interest to consider them jointly with a
Bonferroni corrected P-value threshold of 1.25x1078. Using that threshold in the

333 The study finds that the correlations between the four tests are relatively low, and the

verbal-numerical reasoning test has the highest retest reliability, estimated to be 0.65.
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clumping algorithm yields 1,024, 171, 492, and 284 lead SNPs for EduYears, CP, Math
Ability, and Highest Math, respectively.

1.13. MTAG of CP, EduYears, Math Ability, and Highest Math

Next, we used a recently developed method!?® to perform a joint analysis of the four
phenotypes. The method, MTAG, only requires summary statistics from a GWAS of each
trait and accounts for (possibly unknown) sample overlap through the use of bivariate LD
score regression'®. Prior to our MTAG analysis, we applied the MTAG-recommended
SNP filters, dropping SNPs with minor allele frequency below 1% and SNPs whose
effects fail a sample-size cutoff (66.7% of the 90™ percentile of the sample-size
distribution). In total, ~7.1M SNPs satisfy these restrictions in all four results files, and
the MTAG analyses that follow are all based on this restricted set of SNPs.

To motivate our application, Supplementary Table 14 reports the estimated genetic
correlations between our four phenotypes. The estimates are all substantial, ranging from
0.51 (Math Ability versus EduYears) to 0.85 (Highest Math versus Math Ability). The
substantial genetic correlations suggest that a joint analysis of the phenotypes may have

better power than single-phenotype analyses based on smaller samples.

Supplementary Table 41 instead compares, for each of the four phenotypes, single-
phenotype GWAS results along several dimensions. The comparisons are all based on the
set of SNPs that passed MTAG filters. Overall, the results reported in the table conform
to theoretical expectations, with the largest gains observed for Highest Math and CP.
Following a methodology described in the original MTAG paper, we used the observed
increases in average x? to calculate how much larger the GWAS sample size would have
to be to attain an equivalent increase in expected x?. We find that the MTAG analysis of
EduYears, CP, Math Ability and Highest Math yielded gains equivalent to augmenting
the original sample sizes by 16%, 56%, 19% and 89%, respectively. Intuitively, our
finding of the substantially larger gains for Highest Math than Math Ability is driven in
large part by the higher genetic correlation between Highest Math and the EduYears and
CP phenotypes (Supplementary Table 14). The number of new lead SNPs identified by
MTAG is also greatest for the two phenotypes—CP and Highest Math—for which the
calculations imply the largest increase in effective sample size. Information about all
SNPs that reached genome-wide significance in the MTAG analysis is provided in

Supplementary Table 15.

To allow graphical comparisons, Supplementary Figures 17-20 show inverted
Manhattan plots, with MTAG P values plotted above the x axis, and the original GWAS
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P values below the x axis. To facilitate comparisons, these comparative figures are all
based on the 7.09M SNPs that passed MTAG filters.

1.14. Credibility of MTAG-Identified Lead SNPs

The derivation of MTAG makes the important assumption that all SNP effects are
drawn from a single variance-covariance matrix of effect sizes (). Violations of this
homogeneous-Q assumption can inflate MTAG’s false discovery rate (FDR). The
problem arises when there are some SNPs that are null for a first trait but not a second
trait, especially when the GWAS of the first trait is well-powered relative to the GWAS
of the second trait. Supplementary Table 44 shows that in our application, the CP
GWAS had the lowest relative power, with a mean x? statistic 15-70% smaller than the
remaining three phenotypes. Given the near tripling of the number of genome-wide
significant lead SNPs, from 225 to 661, it is important to probe the credibility of the
MTAGe-identified lead SNPs. The most transparent way to do this is through replication
in independent samples. As a robustness analysis, we therefore repeated our MTAG
analysis, but this time omitting COGENT cohorts from the CP and EduYears GWASs
(there is no known overlap between COGENT and the 23andMe GWASs and bivariate
LD score analysis failed to reject the null hypothesis of zero overlap). We again restricted
the MTAG analysis to SNPs that pass recommended MTAG filters. Additionally, we
limited the analysis to SNPs for which the COGENT results file contains summary
statistics based on analyses of at least 25,000 individuals.

As expected, given that COGENT cohorts comprise a modest fraction of our total
discovery samples, the restricted MTAG analysis described above yielded very similar
findings. Applying our clumping algorithm to the summary statistics for CP by MTAG
with COGENT cohorts omitted, we identified 578 approximately independent SNPs at
genome-wide significance (compared to 661 in the original analysis). By construction,
association statistics for all these SNPs are available in the COGENT results file (with N
> 25,000). As shown in Supplementary Table 44, 485 of the 578 SNPs (84%) had
concordant signs in the independent COGENT sample, with 127 out of 578 significantly
associated with CP at the 5% level (124 of them with the expected sign).

To evaluate this replication record, we used the statistical model described in
Section 2.5 to calculate a posterior distribution for each genome-wide significant SNP’s
effect and used these to calculate the expected replication record in the COGENT data.
Our calculations assume that the genetic correlation is perfect but take into account the
fact that the estimated SNP heritability is approximately 60% higher in UKB than
COGENT  (h3gg/SEyxs = 0.23/0.01;  hZ,cent/SEcocent = 0.14/0.01).  Using
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summary statistics from the UKB GWAS of CP, we estimated the fraction of non-null

variants () and the variance of non-null SNP effect sizes (72).

From our estimates, (£2,7) = (9.2 X 107%,0.46), we calculated the posterior
distribution of each SNP under the maintained assumption that it is non-null. We then
estimated the expected replication record in the COGENT data by drawing simulated
effects from the posterior distributions for each of the 578 SNPs, generating simulated
COGENT summary statistics by adding simulated estimation error to the effect sizes, and
calculating the observed replication record in the simulated summary statistics. This was
repeated 1,000 times, and we used the mean replication record of the simulated data as
the expected replication record under the assumption that the MTAG results are true.
Using this procedure, we found that in the COGENT replication sample, the expected
number of correctly signed and nominally significant SNPs is 140.1 (SD = 10.1) and the
expected number of SNPs with matching signs is 87.8% (SD = 1.3%). Overall, these
analyses thus provide little evidence that MTAG’s false discovery rate is alarmingly high

in our setting.

We can additionally assess the credibility of the MTAG gains in power by
evaluating whether the inflation of the mean y? statistic after applying MTAG are
consistent with the increase in predictive power of a polygenic score (PGS) based on
GWAS vs. MTAG summary statistics. If MTAG is leading to a spurious inflation of the
x? statistics, the observed gains in predictive power will be smaller than the theoretical
gains implied by the y? statistics.

The predictive power of a GWAS-based PGS is

h? +
where R? is the predictive power of the GWAS-based PGS in the prediction sample, h? is
the heritability of the phenotype in the prediction sample, N is the size of the estimation
sample used to create the PGS weights, and M, is the effective number of SNPs in the
sample (assumed to be 30,000 here). We first use this relationship to infer the heritability
of the phenotype in the prediction sample. More precisely, we substitute in the known

values for R%, My, and N and then solve for h?.
To calculate the expected predictive power of the MTAG-based score, we replace N

with the GWAS-equivalent sample size of the MTAG summary statistics,

2
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where yZrac and x&was are the mean y? statistics of the MTAG and GWAS summary
statistics, respectively.

Finally, we take the difference between the observed predictive power of the
GWAS-based PGS and the expected predictive power of the MTAG-based PGS. We
similarly calculate the difference between observed predictive power of the GWAS- and
MTAG-based PGSs. If the inflation of the y? statistics in the MTAG results correspond
to true gains in signal, these two differences should be similar.

A description of how the PGSs were constructed can be found in Section 6.2. The
parameters for this derivation can all be found in Supplementary Tables 41 and 42. We
find that the expected gains in the predictive power of the PGS for EA in Add Health is
0.4%, relative to an observed gain of 0.3% (CI —0.2% to 0.9%). For the PGS of EA in the
HRS, we expect an increase of 0.4% and observe a gain of 0.6% (CI 0.3% to 0.9%). For
CP, in Add Health, we expect a gain of 1.9% and observe a gain of 1.8% (CI 1.1% to
2.4%), and in the WLS, we expect a gain of 1.9% and we observe a gain of 2.7% (CI
1.9% to 3.6%). In all cases, the expected gains are within the confidence intervals of the
observed gains in predictive power, suggesting that the gains in y? statistics reported in

the MTAG analyses represent a true increase in power.
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2. Within-Family Association Analyses

2.1. Introduction

The genotypes of full siblings are randomly assigned conditional on their biological
parents’ genotypes. Estimates from within-family association analyses are therefore
immune to some types of confounding that can cause bias in association studies that rely,
entirely or in part, on between-family variation. In this section, we report results from
within-family association analyses conducted in a sample of N = 22,135 sibling pairs.
Given the small effect sizes of individual SNPs, our sibling sample is too small to allow
well-powered within-family tests of association of single SNPs, including those with
largest estimated effects; according to calculations in Rietveld et al.’®, at least 47,000
pairs of siblings are needed for 80% power at P < 0.05. Instead, we test the SNPs jointly
for association with EduYears in two different ways: we explore how often GWAS and
within-family estimates have concordant signs, and we estimate the ratio of the true
population parameters from within-family and GWAS analyses under different

assumptions about the amount of stratification bias.

Below, we summarize methods used in the within-family association analyses and
describe our subsequent implementation of the two tests (which we refer to as the sign
test and the within-family regression test). To help interpret the findings, we also
benchmark our results against predictions from a statistical framework that takes into
account factors such as estimation error and winner’s curse. Overall, the results in this
section provide additional evidence in support of the conclusion that most of the observed
increase in GWAS test statistics reflects polygenic signal. In order to make more
quantitatively precise statements, it is necessary to make assumptions about the true ratio
of within-family and GWAS parameters. For example, if we assume (i) a ratio of one and
(i1) stratification biases of the magnitude implied by our estimated LD score intercept, the
within-family effects are 40% lower than predicted by our statistical framework. We
show that assortative mating with respect to causal loci probably accounts for about one
third of this deflation. We end the section by discussing and analyzing possible causes of
the unexplained deflation. Several converging lines of suggest that much of the remaining
deflation reflects omitted-variable biases (confounding) in the GWAS estimates that arise

due to gene-by-environment correlation.

2.2. Within-Family Association Analyses

Within-Family Analyses. Our within-family association analyses were conducted in
four cohorts with sibling data: STR-Twingene (N = 2,727), STR-SALTY (N = 707), UKB
(N = 17,097), and WLS (N = 1,604). In each of the fourt cohorts, we conducted within-
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family association analyses by regressing the sibling difference in residualized EduYears,

Vi, on the sibling difference in genotype:

AY; = AgijBwr,; + Ag; 2.1)

where i indexes a sibling pair, j indexes a SNP, and A is the sibling-difference operator.
EduYears was residualized using the same set of controls as the primary analyses and the
same SNP-level and subject-level filters as in the main analyses (but in order for a sib
pair to be included in the final analyses, data on both members of the pair need to satisfy
the filters). We additionally restricted the analyses to SNPs with minor allele frequency
above 5% in each of the sibling cohorts. We subsequently meta-analyze the cohort-level
summary statistics using an inverse-variance weighting of cohort-level estimates of the
parameter By p ;. In all within-family analyses, we standardize the phenotype using the
standard deviation in the GWAS sample. The common standardization allows us to
compare the effect size estimates from the within-family association analyses to those

from the GWAS, to which we now turn.

2.3. Selection of SNPs Analyzed in Within-Family Tests

We used summary statistics from the within-family association analyses to conduct
several tests, described in detail below. All require summary statistics from a discovery
GWAS conducted in a sample independent of the sibling cohorts. We therefore reran the
primary meta-analysis using exactly the same procedures as those described in
Supplementary Section 1, but omitting the siblings included in the within-family
analyses. Specifically, we excluded the results files from STR-Twingene, STR-SALTY and
WLS from the main meta-analysis, and we reran the UKB association analyses in a
discovery sample that omitted all UKB siblings from the estimation sample. After meta-
analysis, we retained SNPs whose effects were estimated in a discovery sample of at least
700,000 individuals, whose minor allele is above 5%, and which are available in all three
sibling cohorts. These restrictions leave us with 4,649,795 SNPs.

In some of the stratification tests, we further restricted our final analyses to subsets
of approximately independent SNPs. In our sign tests (Section 2.7), we restricted our
analyses to subsets of SNPs generated using our clumping algorithm (at P-value
thresholds ranging from 5x107%, 5x107° and 5x107%). We applied the clumping algorithm
to P values calculated without any inflation adjustment, so the numbers of approximately
independent SNPs are not perfectly comparable to those we report in the full meta-
analysis. The numbers of approximately independent SNPs at the various thresholds are:
1,318 (at threshold 5x10°%), 4,594 (5x107°) and 14,670 (5x1073). For the within-family
regression test (Section 2.8), we restricted our analyses to a subset of approximately
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independent SNPs identified using PLINK’s pruning algorithm'’, —indep-pairwise, with
the following parameters: a window of 50 SNPs, a window shift of 5 SNPs, and a
pairwise 7 threshold of 0.1. This leaves us with 82,609 SNPs.

2.4. Calculating a Theoretical Benchmark for Within-Family Association Results

Here, we describe the statistical framework we use to make predictions about the
results we should expect from the two tests of within-family association reported below.
The framework always adjusts for two factors that will produce differences between
GWAS and within-family estimates: sampling variation (both in the GWAS and within-
family association analyses) and winner’s curse in GWAS effect-size estimates (for SNPs
selected on the basis of some P-value threshold). We also extend the basic framework to
adjust for coefficient differences driven by assortative mating.

2.5. Winner’s Curse Adjustment

We assume the phenotype and the genotype have both been standardized to have
mean zero and unit variance. We assume that the effect sizes of all SNPs are drawn from

the following mixture distribution:

N(0,72) with probability

Bi~ {O otherwise, 2.2)

where 72 is the variance of non-null SNPs and 7 is the fraction of non-null SNPs in our
data. By the Central Limit Theorem, we note that the estimation error of ﬁj is
approximately normally distributed. Letting n; denote the size of the discovery sample in
which the test of association for SNP j was conducted, the variance of the estimation
error is ajz ~ 1/n;.Since the estimation error and the causal effects are drawn
independently,

. N(0,7% + 1/n; with probability 7
~{ ( /m) b v 2.3)

J N(O, 1/nj) otherwise.

We estimate the parameters 72 and 7 by maximum likelihood (see Supplementary Note
p. 59 in Okbay et al.!® for further details and a derivation of the likelihood function).
Applied to the association statistics for the 4,649,795 SNPs in our meta-analysis with
sibling cohorts excluded, we obtain (£2,7) = (4.5 X 107°,0.64). Given values for 72
and 7, the posterior probability that SNP j with estimated effect size ; 1s non-null can be

calculated using Bayes’ Rule:
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where ¢ () is a standard normal pdf. The posterior distribution of the effect size of each
non-null SNP is:

(2.4)

2 2.2
(B;1B;, B; # 0)~ N< B A > (2.5)

2 472 ]'02+1'2

For derivations of these results, we again refer to the Supplementary Note in Okbay et

al.!8.

For every SNP, it is straightforward to use the above equations to calculate the
posterior probability that the SNP is non-null and its posterior effect-size distribution. To
illustrate, consider a SNP whose effect is estimated to be ﬁ’j = 0.005 (implying R? =
0.0025%) in a discovery GWAS conducted in N = 750,000 individuals. Substituting in
the maximum likelihood estimates of (£2, %) and 0]-2 ~ 1/n; into the above equation for

Dp,; yields probability ps ; = 99.9% that the SNP is non-null. And from the equation for

the posterior distribution (ﬁj|[?j, Bj # O), it is similarly straightforward to calculate the
22
posterior mean of the effect-size distribution for the SNP. In our example, ﬁ ~
]
0.75, so the GWAS effect estimate in this example would need to be shrunk by 25% to
generate a winner’s-curse-adjusted estimate of the SNP’s effect (conditional on being

non-null).

2.6. Calculating Theoretical Benchmarks

To illustrate how we use the framework to calculate theoretical benchmarks, let
Bew as,j denote the (standardized) GWAS estimate corresponding to SNP j, and let ,BAWF, j
denote the corresponding (standardized) estimate from a within-family association
analysis. We denote their variances by 645 and 035, respectively. We can decompose
the estimates into orthogonal components as follow:

Bowas,j = B; + s; + Uj (2.6)
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BWF, j = Bwr,jt+V; 2.7)

where s; is the bias due to stratification, U; and V; are sampling errors with expected
value 0, and B; and By j are the true population parameters. Our theoretical benchmarks
are always calculated for some fixed value of Var(s;), assuming that there is a single
parameter ratio Sy ;/f; common to all SNPs. For example, in the sign tests, one of our
theoretical benchmarks is calculated assuming B; = By (i.e., a ratio of one) and
Var(s;) = 0. In several of our analyses, we fix one of the two parameters (Var(s;) or
Pwr,j/Bj) and calculate what the value of the second parameter would need to be to
match our empirical findings. For example, in our sign tests, we show that if Var(s;) =
0, then By /B needs to be in the range 0.40 to 0.60 to match the realized sign

concordance.

The assumption B; = By, ; could be violated for a number of reasons, one of which
is assortative mating with respect to genotypes at causal loci. Such assortative mating has
been documented in analyses of genome-wide SNP data on spousal pairs and is
substantial at both the genetic and phenotypic level. One recent paper reports a spousal
phenotypic correlation of 0.41 for educational attainment in the UK Biobank!®. In Section
2.10 below, we show that in a stylized model of phenotypic assortment®’, it is possible to
calculate analytically the attenuation of within-family coefficients relative to GWAS
coefficients expected due to assortative mating. We show that for a trait with a large
number of causal loci, within-family coefficients are deflated by a factor of [1 — rhZ],
where 7 is the spousal phenotypic correlation and h3 is the SNP heritability in a
hypothetical base population without assortative mating. Accordingly, in several of our
analyses below, we compare GWAS effect estimates to assortative-mating-adjusted
within-family effect estimates. Specifically, we calculate the theoretical benchmark
assuming that Byp;/B; =R and Var(s;) =0, where R is an assortative-mating
adjustment parameter. In those analyses, we set R = 0.83, a ballpark estimate based on

published estimates of the relevant parameters for EduYears**°.

Several of the large cohorts which contributed to our primary meta-analysis
conducted their association analyses using mixed-linear models?!?2. In these cohorts,
listed in Supplementary Table 19, the adjustment for assortative mating is likely to be
an overcorrection because SNPs were tested for association using models that attempt to
control for the effects of all genetic variants that are in linkage equilibrium with the SNP.
At least some of the linkage disequilibrium induced by assortative mating will therefore
be controlled for in the mixed-linear-model effect estimates. We therefore interpret
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results with and without the assortative-mating correction as bounds on the true

parameter being estimated.

2.7. Sign Tests

Following Okbay et al.'® we begin with a simple, transparent test that compares the
sign concordance between the within-family (WF) estimates and GWAS estimates from a

meta-analysis that excludes sibling cohorts.

All Stratification. Under the (strong) null hypothesis that the GWAS results are
entirely driven by stratification, the sign of the WF estimates, which are immune to
stratification, should be independent of the sign of the GWAS estimates and therefore
should in expectation have a concordance of 50%. This means that among some set of M
independent SNPs, the number of SNPs that have a concordant sign, denoted C, follows a

binomial distribution:
C~Binomial(M, 0.5) 2.8)

We can thus measure the observed sign concordance and use this known distribution to
formally test the null hypothesis. We test the null hypothesis against the one-sided
alternative hypothesis that the sign concordance is greater than 50%, which is what we
would expect if at least some of the signal from the GWAS comes from true genetic
effects. We conducted this test for sets of approximately independent SNPs selected at
the P-value thresholds 5x107%, 5107 and 5x107>.

Winner’s-Curse and Assortative-Mating Adjusted GWAS. We also compare the
observed sign concordance to the sign concordance expected when we set R =1 or R =
0.83. To simulate the distribution of the number of concordant signs under these two
scenarios for a set of j = 1, 2, ..., M approximately independent SNPs, we use the
following procedure:

1. Draw a vector of true effect sizes from the posterior distributions, derived using the
empirical-Bayes framework outlined in Section 2.5.

2. For each SNP, calculate the probability of sign concordance given its simulated, true

effect size. As shown in Okbay et al.'8

ol o) ol o) e
OGwAS,j OwF,j OGwWAS,j Owr,j

, the probability of sign concordance for SNP j
is:
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where ®(-) is the standard normal cumulative distribution function and gy 45 ; and

owr,; are the standard errors of the GWAS and within-family estimates. For these
v2(1-p)
\/ Msibs, j ’

number of sibling pairs used in the test of within-family association for SNP j and p

standard errors, we use Ogwas,j = +/1/n; and oyp; = where N, ; 18 the

is the sibling phenotypic correlation. The number of sign concordances is a sum of M
independent success/failure experiments with success probabilities pq, p,, ..., py that
vary across SNPs. Hence, the total number of successes has a Poisson binomial

distribution with parameter vector p = (py, P2, -, Pm)-

3. For each simulation, we draw one realization of the total number of successes from

the Poisson binomial distribution.

We repeat steps 1-3 10,000 times, each time recording the realized number of
successes. Our final distribution assigns a probability of k successes that is equal to the
average probability of k successes across the 10,000 iterations of the simulation. The
expected sign concordance and its variance are the mean and variance of this distribution.
Treating our estimate of the expected sign concordance as the probability that an
independent SNP will have concordant sign, we conduct a one-sided binomial test where
the alternative hypothesis is that our observed sign concordance is less than what we
expect in the no-stratification case. We conducted this test for sets of approximately
independent SNPs selected at the P value thresholds 5x1078, 5x107°, and 5x107,

Results. The results from our sign tests are shown graphically in Figure 2.1 (see
Supplementary Table 20 for the underlying estimates). Across each of the P-value
cutoffs, the realized sign concordance is larger than would be expected if the results were
entirely driven by stratification but smaller than predicted by our theoretical framework.
For example, for the genome-wide significant SNPs (M = 1,318), the observed
concordance is 65.2%, 15.2 percentage points greater than the 50% we would expect if
variance in GWAS estimates were entirely due to estimation error and bias, but also 6.6
percentage points lower than the theoretical benchmark calculated assuming By r ;/f; =
0.83 and Var(s;) = 0. At cutoffs 5%x107° and 5x1073, respectively, the observed
concordance rates are 60.2% and 56.2%. Both realized concordances are approximately
6.5 percentage points lower than the theoretical benchmark. We also calculated the value
of the ratio ,BWF‘]./,BJ. needed in order for the theoretical predictions to align with our
findings under the maintained assumption that Var(s;) = 0. We found that the ratio

decreases monotonically in the P-value cutoff and ranges from 0.40 at P-value cutoff
5%1073 to 0.57 at cutoff 5x10°%.
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2.8. Within-Family Regression Test

Our next test also uses association results from a regular GWAS and a within-family
association analysis. To motivate the within-family regression test, consider the

population regression of By f ; on Bew s, j:

CoV(,[?GWAs,j,[?WF,j) _ Cov(B; + 5+ Uj, Bwr,j + V)
Var(Bowas ;) Var(B; + s; + Uj)

COV(Bj, Bwr,j)

= ) (2.10)
Var(B;) + Var(s)) + 02y 45,
where 62y 4 sj = Var(Uj) is the variance of the estimation error.
Consider now an investigator wishing to make inferences about m, = M.
Var(B})+Var(s;)

We will discuss below several special cases that clarify why this is an interesting

parameter to estimate.

Since Var(,BAGWAS’ j) = Var(ﬁj) + Var(s;) + O'GZWAS’ j» the analogy principle suggests

the following estimator:

COV(BGVI;S\,]' [?WF,J)

Var(ﬁc—;;ms, 1) - Ggm;s

Mg (2.11)
(Note that this estimator is the slope from a regression of BAWF, j on ﬁGWAs,j with an
adjustment term o2, 45 that corrects the slope for estimation error in the GWAS summary

JE—

. . . 2 L
statistics.) Our estimator for gy, 45 18:

]
02 ac = lz o2 (2.12)
Gwas = 7 GWAS,) » .
j=1

where J is the full number of SNPs in the GWAS (whereas M < ] above referred to the
number of SNPs after pruning to ensure approximate independence between the SNPs).
We have that:

R COV(.Bj'.BWF,j)
Var(,Bj) + Var(s;)

E[m.] (2.13)

as the GWAS and WF sample sizes go to infinity. Equation (2.13) shows that the
expected value of the estimator depends on the amount of stratification in the GWAS
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estimates, the covariance of GWAS and within-family effects, and the variance of GWAS
effect sizes.
To help interpret the estimator, it is instructive to begin by considering two special

cases. A first case arises when f; = By ;. In that case, Cov(ﬁj,,BWF,j) = COV(,B]-,,BJ-) =

Lﬁj): the fraction of variance in the GWAS
Var(ﬁj)+Var(sj)

estimates that is due to true signal. In the extreme case in which the GWAS estimates

Var(ﬁj). Then E[m,] converges to

capture no true signal and are entirely due to population stratification, E[m;] will
converge to zero. Under the null hypothesis that there is no stratification, E[m;] will
converge to 1. In contrast, in the presence of population stratification, the estimator will
converge to some value less than one. Thus, m, estimates can be directly compared to
estimates from LD score regression of the total amount of inflation in test statistics that is
plausibly due to bias. (If instead By j/B;j = R, then the same conclusions hold but for
R™my instead of m.) A second special case arises if Var(sj) = 0, in which case we

have:

COV(ﬁj: ﬁWF,j)
Var(ﬁ])

as the GWAS and WF sample sizes go to infinity. The expected value of the estimator is

E[m.] - (2.14)

now the slope from the population regression of the within-family coefficients on the
GWAS coefficients.

Following the convention introduced by Bulik-Sullivan et al.}, we estimate the
standard errors using a block-jackknife approach, where blocks consist of sets of
approximately 100 adjacent SNPs. More precisely, each SNP is assigned to one of 1000
equally-sized blocks, with block one consisting of the first 95 SNPs on chromosome 1,
block two consisting of the next 95 SNPs, and so on through the whole genome. Then
M, p is estimated 1,000 times, omitting a different block of SNPs each time. The standard

error of M, is then estimated to be

1

. 999 2P

SE(mc) = [mZ(mclb — mC) ] , (2-15)
b

where b indexes the blocks.

Applying this method to the within-family estimates ([?WF) derived from a meta-
analysis of the three sibling cohorts (N = 22,135 pairs) and GWAS estimates derived
from a meta-analysis with the sibling cohorts omitted (N = 1,070,751), we estimate
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Cov(Bewas, Bwr,) = 1.28 x 1075, Var(Bgyas,)) = 3.34 X 1076, and 02, .5 = 9.44 X
1077 Substituting these terms into the equation for 7, our lower-bound estimate (R =
1.0) of m, equals 0.53 and has a standard error of 0.04 (95% CI 0.46 to 0.60). Our
assortative-mating adjusted (R = 0.83) upper-bound estimate is 0.64 and has a standard
error of 0.05 (95% CI 0.55 to 0.72). Reassuringly, the cohort-level estimates are quite
similar (Supplementary Table 21 and Supplementary Figure 21).

According to the LD score regression analyses in Supplementary Section 1,
approximately 95% of the overall inflation in test statistics is due to polygenicity.
Assuming this conclusion is correct, we can use equation (2.13) and our lower-bound

estimate m, = 0.53 to estimate the ratio of within-family to GWAS parameters:

Var(B;)
Var(,Bj) + Var(s;)

COV(ﬁj: .BWF,j)
Var(B;) + Var(s;)

= 0.95, (2.16)

= 0.53. (2.17)

Cov(Bj.Bwr,j) _ 0.53
Var(ﬁj) T 095

Dividing (2.17) by (2.16) we have: = 0.56 (or 0.67 if the

assortative-mating adjustment is applied). Of course, the same exercise could be repeated
under alternative assumptions about the share of inflation in GWAS test statistics that is
due to bias.

2.9. Discussion and Additional Analyses

Summarizing the findings above, the results from both the sign tests and within-
family regression test can be explained without assuming substantial amounts of
stratification bias in GWAS estimates only if within-family parameters are ~45% smaller
than GWAS parameters. Our calculations suggest that assortative mating is likely to
cause deflation about one third as large, so assortative mating is likely to be an important
but only partial explanation of the evidence. In this section, we report the results of a
number of follow-up analyses that have two purposes: to help evaluate the robustness of
our conclusions above and to provide some suggestive evidence relevant to evaluating
possible explanations of the remaining difference between the GWAS and within-family

estimates.

A first possibility is that data limitations or simplifying assumptions underlying our
statistical model may impair the accuracy of its theoretical predictions. For example, our
main analyses are based on parameter estimates inferred from summary statistics using

analytic formulas that are subject to approximation error. Our assortative-mating
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correction is also derived assuming GWAS coefficients were estimated by OLS and is
likely to overstate the amount of inflation in GWAS parameters for cohorts that used
mixed linear models to conduct association analyses. Another concern is that the
statistical framework we use assumes a perfect genetic correlation between the GWAS
and sibling samples. Phenotypic or genetic heterogeneity could cause this assumption to

fail, in which case the theoretical benchmarks may be misleading.

In our first follow-up analysis, we performed the within-family regression test using
only data from UK Biobank. We conducted the within-family association analyses in a
sample of 17,097 pairs of siblings, and we compared the resulting estimates to estimates
from a GWAS of UK Biobank respondents that excluded the siblings. Both association
analyses were conducted using the same set of controls as in our primary GWAS of
EduYears, and parameters were estimated by ordinary least squares (OLS). The primary
goal of these analyses was to examine whether any of our main conclusions change when
a phenotypically, genetically, and environmentally homogenous estimation sample is
used. In this sample, we obtained an estimate of m, = 0.36 (SE = 0.06) before
assortative-mating adjustment and 0.43 (SE = 0.08) after assortative-mating adjustment.
Since the coefficient estimates were obtained by OLS, we do not consider the latter
estimate an upper bound. The results from this first analysis provide little reason to
believe that phenotypic, genetic, or environmental heterogeneity are major explanations

for our findings.

Having established that our main result is unlikely to be an artifact explained by
cohort heterogeneity, we designed our next analyses to provide additional insights into
possible causes of the lower-than-anticipated estimates of m.. One possibility is that
within-family parameters are deflated relative to GWAS parameters by environmental
factors that reduce differences between siblings. For example, siblings may imitate each
other, or parents may try to intervene to equalize sibling differences. A second
possibility, also addressed in some of our analyses, is that the amount of stratification

bias in GWAS estimates is greater than suggested by the LD score regression results.

In our second analysis, we repeated the UKB-only within-family regression test, but
using height as the phenotype instead of EduYears. Height provides a useful comparison
because, a priori, it seems implausible that factors such as sibling interactions or
compensatory investments by parents deflate By, ; relative to ;. Therefore, if these
factors are an important explanation for the low value of m, found in our main analyses
of EduYears, we expect a larger estimate when the methodology is applied to height. Our
estimate, M, = 0.90 (SE = 0.02), is indeed substantially larger than the corresponding
estimate for EduYears.

31



Third, we reran the first and second analyses of height and EduYears using a unified
regression framework which generates two estimates per SNP, one based on between-
family variation and one based on within-family variation (see Section 2.11 for details).
These analyses were based on an estimation sample limited to the UKB siblings and
therefore has the additional advantage that the between-family and within-family
estimates were estimated in the same set of individuals, using identical measures of the
phenotype and genotype data. For height, our estimate is m, = 0.70 (SE = 0.03), and for
EduYears, it is m, = 0.40 (SE = 0.04). Overall, the fact that these estimates are similar
to those from our main analyses suggests that our main estimates are robust to alternative

estimation strategies.

Our fourth analysis was designed to explore the possibility that 7, is low for
EduYears because of subtle stratification biases that are more effectively handled by
mixed linear association models than conventional OLS. (Our height results suggest that
in order for this explanation to be plausible, the subtle stratification biases need to be
specific to EduYears.) To test this possibility, we reran our first two analyses using
association results from BOLT-LMM?* instead of OLS. This possibility predicts that
using BOLT-LMM would increase 7, by more than would be anticipated from the

assortative-mating adjustment alone.

For height, the BOLT-LMM estimate is m, = 0.98 (SE = 0.02), compared to the
original estimates of m, = 0.70 (SE = 0.03) (from the unified regression in the sibling
sample) and m, = 0.90 (SE = 0.02) (OLS estimates in UKB with siblings omitted).
Applying our assortative-mating adjustment increases the original estimates from 0.70 to
0.84 (unified regression) and from 0.90 to 1.08 (OLS). Therefore, the estimate of m, =
0.98 based on BOLT-LMM is approximately of the magnitude expected just from the
assortative-mating adjustment. For EduYears, the BOLT-LMM estimate is m, =
0.51 (SE = 0.05), compared to the original estimates of m, = 0.40 (SE = 0.04) (unified
regression in sibling sample) and m,; = 0.36 (SE = 0.06) (OLS estimates in UKB cohort
with siblings omitted). Adjusted for assortative mating, the original estimates are 0.48
and 0.43, so the BOLT-LMM estimate of m, = 0.51 is greater than expected from just
the assortative mating adjustment, but only marginally so. Overall, these analyses suggest
that biases handled more effectively by BOLT-LMM than OLS are not likely to be a

major explanation for our lower-than-expected estimate of m..

The results from our follow-up analyses do not rule out stratification biases as a
potentially important factor but limit the set of hypotheses about the types of stratification
biases that are plausible. In particular, in order to fit the results, a plausible theory needs
to posit a confounding variable that introduces substantial stratification bias (i) in
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association analyses of EduYears but not height, (ii) that are not effectively accounted for
by mixed-linear association models (or OLS), and (iii) that evade detection by LD score

regression.

Evidence from behavior-genetic studies suggests that one unobserved variable that
may satisfy these conditions is the individual’s rearing environment in childhood and
adolescence?*?>. Adoption studies have consistently found that children adopted into
households with college-educated parents are more likely to attend college??’. For
example, a study of Korean-American adoptees finds that adoptees assigned to
households where both parents had college degrees were 16 percentage points more
likely to attend college than children assigned to families where neither parent completed
college?. By contrast, the adult height of adoptive children is unrelated to the height of
their adoptive parents®*?%, Similarly, two genetically unrelated siblings reared in the same
Swedish household are no more similar in height than two randomly chosen individuals,

whereas the correlation in their EduYears is around 0.20%5.

The evidence thus suggests that the effect of the rearing environment on EduYears is
substantial, both in absolute terms and relative to many other phenotypes, and that the
specific features of the rearing environment that matter for EduYears are likely to be
strongly correlated with the EduYears of the parents in the rearing household. This
observation, coupled with the fact that EA is heritable, implies we should expect a
positive relationship between an individual’s EA genotype and their rearing environment
in households with children raised by their biological parents. Several empirical studies
have documented this positive relationship empirically using EA polygenic scores*-*,
Thus, it is plausible that a GWAS of EduYears that fails to control for the rearing
environment will yield upward-biased estimates, whereas a similar omission in an
otherwise identical GWAS of height would be inconsequential. Intuitively, the source of
the upward bias is that GWAS coefficient estimate will reflect both the causal effect of

the SNP and its positive correlation with (the unobserved variable) rearing environment.

Though it is plausible that the magnitude of the gene-environment correlation will
vary, if the rearing environment is highly correlated with parental EA, then there will be a
systematic tendency for the correlation to be positive. This correlation will lead to a
correlation between the stratification bias and the LD score. As a result, this bias will not
be reflected in the intercept of LD score regression (see Supplementary Section 2.12).

A natural starting point for empirically testing the hypothesis proposed here would
be to conduct association analyses with and without controls for parental phenotypes
(using otherwise identical methods to those in our primary GWAS) and estimate the ratio
of the GWAS estimates with and without the parental controls. If the proposed
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explanation is correct, adding parental controls would lead to a substantially lower
estimate of the ratio m. when the dependent variable is EduYears but not when it is
height. Evidence to the contrary would suggest that the omitted-variable bias posited here

is not a quantitatively important explanation of the low m, we report for EduYears.

In one of our prediction cohorts, HRS, information is available about mothers’ and
father’s EduYears (but not height) for N = 7,571 European-ancestry respondents,
allowing some exploratory genome-wide association analyses with and without controls
for the midpoint of parental EduYears. All analyses were restricted to the SNPs used in
our within-family regression tests and included the same baseline controls used in the
cohort-level analyses for the primary GWAS meta-analysis. Let ﬁANp, j and ﬁp, j be the
estimated effects of SNP j with and without parental controls, respectively. Procedurally,
we obtained these estimates from a single regression in which each individual is entered
as two observations. To account for the resulting non-independence, standard errors are
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clustered at the level of the individual’'. The estimator is

Cov , a
i, = (ﬁzvp ] ﬁP,;) NPP (2.18)

Var(ﬁNP,]) - O-NP

where O'NP Z =1 O'GW 45, » O'NP p= Z i=1 O'NP g 0w as , 18 the squared standard error

associated w1th BNP’ j» and O'NP’ i is the covariance of the estimates 3NP_ jand ,BAP’ j- These
are straightforward to calculate (due the single-regression procedure) from the variance-
covariance matrix of the estimates at each SNP. Our point estimate is m, = 0.76, with a
standard error of 0.14 (95% CI 0.48 to 1.03). Though this effect is in the hypothesized
direction, it is not estimated precisely enough to permit any strong conclusions.
Moreover, data limitations in HRS preclude us from repeating the same analysis with
height instead of EduYears.

As this study was undergoing revisions, a paper with further corroborating evidence
became available®>. Using a large sample of genotyped parent-child pairs from Iceland,
the study documented that a polygenic score for EduYears constructed entirely from non-
transmitted parental alleles predicts a respondent’s educational attainment. A plausible
interpretation of this finding is that non-transmitted alleles are associated with EduYears
through their effects on the child’s rearing environment. The effect of a polygenic score
based on non-transmitted alleles was approximately 30% as large as the effect of a
polygenic score based on transmitted alleles. An analogous analysis of height found that
the effect of the non-transmitted-allele score was 6% as large as the effect of the

transmitted allele score.
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Overall, several converging lines of evidence suggest that in our setting, the LD
score intercept understates the share of inflation in GWAS test statistics that is due to
bias. In behavior-genetic parlance, education is partly the result of vertical transmission
of the parental phenotypes, which induces passive gene-by-environmental correlation that
is not fully accounted for in association analyses. The source of bias conjectured here
operates by amplifying a true underlying genetic effect and hence would not lead to false
discoveries*>. However, the environmental amplification implies that we should usually
expect GWAS coefficients to provide exaggerated estimates of the magnitude of causal
effects. Such exaggeration implies that one must exercise care when interpreting genetic
associations with phenotypes such as EduYears. For example, polygenic scores are
sometimes described as measures of genetic endowments. It is widely appreciated that
they can influence complex outcomes by evoking certain environments, but the
possibility that they are partly proxies for the environmental conditions under which a

person was raised is rarely considered.

2.10 Appendix: Derivation of Adjustment for Assortative Mating

One reason that within-family estimates of SNP effects may be different than
GWAS estimates based on samples of unrelated individuals is assortative mating. When
parents’ phenotypes are correlated, this will induce long-range LD across SNPs, even
between chromosomes. Here we outline a very simple framework to approximate the

difference in effect sizes we would expect to see as a result of assortative mating.

In this derivation, we make several simplifying assumptions. First, we assume that
the only source of correlation between SNPs is assortative mating. That is, in a randomly
mating population, causal SNPs would not be in LD. Second, we assume that all causal
SNPs have the same effect on the phenotype. Third, we assume that, conditional on the
genotypes of all other SNPs, the within- and between-family effect of each SNP is the
same. This rules out sibling peer effects and other environmental effects that are
endogenous to the child’s phenotype. Fourth, we make the simplifying assumption that
parents sort only based on y; and other non-heritable factors. We anticipate that relaxing
these assumptions would lead to the same substantive results. We begin with a simple

Vi = injﬁ + &

jec

model:

where y; is the measured phenotype for individual i, C is the set of (independent) causal
SNPs, x;; is that individual’s standardized genotype, f is the common effect of each

causal SNP on the phenotype, and ¢; is the residual, which we assume is independent of
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x;j. The standardized genotypes are calculated by dividing the allele count by

’Zp ]-(1 -p j), where p; is the minor allele frequency of SNP j, such that the genotype

will have variance one in the absence of assortative mating but may have variance greater

than that if there is assortative mating in the population.

Because differences in sibling genotypes are assigned randomly within a family,
within-family estimates of 5, fwr, are unbiased by assortative mating. Therefore, Sywr =
pB for all SNPs. In contrast, standard GWAS estimates are based on between-family
comparisons. Therefore, the long-range LD induced by assortative mating will bias the
estimates away from zero. Below, we derive the magnitude of this bias.

We begin by deriving the impact of assortative mating on the variance of each SNP
and the covariance of each pair of SNPs. Let X;; € {0,1,2} denote the non-standardized
genotype for individual i’s SNP j. This can be decomposed into a paternal and maternal
component: ¥;; = xP at 4 xMat Due to assortative mating, the paternal and maternal
components will be correlated. We denote this correlation by a = Corr(xP at M“t) > 0.
In fact, because we assume that all causal SNPs have the same effect size,

Pat ,.Mat

Corr(x , X ) = a for any pair of causal SNPs j and k. Because we have assumed

that parents sort only based on y; and other non-heritable factors, implying that parental

Pat Mat

i are Bernoulli

genotypes are only correlated for causal SNPs.¢ Since x[** and Xij

distributed with minor allele frequency p, we have

Var(¥;;) = Var(x[*) + Var(x/*") + 2Cov(x/*, x/]*
=2p;(1-p)) + 2p,(1 - p))a

Additionally, if we are in equilibrium after many generations of assortative mating,

we have Cov(x[*, xf) = Cov(x}®, x{*") = 4Cov(¥;;, X;.). This implies that

Cov(¥;j, %) = Cov(x/*, ) + Cov(x{%, x5 ) + Cov(x[*, x i

+ Cov(xMat xh2t

4 If we assumed otherwise, it is possible that assortative mating could inflate the Type 1 error rate slightly
since a SNP that is associated with some phenotype that determines sorting, that SNP would be in long-
range LD with all SNPs associated with the phenotypes that determine sorting. We anticipate that this
correlation would be low relative to the long-range LD between SNPs associated with the same phenotype
due to imperfect genetic correlation, but examining this issue more completely is beyond the scope of this

paper.
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1
= ECOV(fij,fik) + ZaJPj(l —p;)pi(1 = pi)

Cov(klij’%ik) = 2\/21)](1 - p])zpk(l - pk)a'

The covariance and variance of the standardized genotypes, X;;, is therefore inflated
compared to the case of random mating:
Var(xij) =1+4+a
Cov(xij,xik) = 2a.
Note that these equations only hold for causal SNPs. The second equation therefore

implies that assortative mating will induce a (potentially long-range) correlation between
a pair of SNPs if both SNPs are truly associated with the phenotype.

Crow and Kimura®* derived an expression for the size of the spousal SNP correlation
for a causal SNPs,
rh2
a= )
rhg + 2M(1 — rh})

where 7 is the phenotypic correlation between spouses, h2 is the narrow-sense heritability
under random mating, and M is the number of causal loci. Using the above results, we

show that the between-family GWAS coefficient for some causal SNP j under assortative

mating is
B Cov(xij,yi)
Berj =———F ~
Var(xij)
_ Cov(xij, Yec XuB + &)
Var(xij)
_ ﬁZkeC Cov(oxj, Xur)
Var(xij)
B 1+02M-1Da
= Bwr 1+« '

Note that if SNP j were neither causal nor in LD with a causal SNP, then
Cov(xl- j,xl-k) = 0 for all SNPs in the set C. So Bgg;j = 0. This implies that assortative
mating does not inflate the effect-size estimates for null SNPs and therefore should not

lead to inflated type-I error rates.
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Returning to the case where SNP j is causal, substituting in Crow and Kimura’s
expression for a, rearranging, and taking the limit as the number of loci goes to infinity,
the ratio of within-family and between-family parameters converges to:

lim Puwe,; =1—rh3.
M-o B j

Thus, the ratio of within- and between-family estimates is (approximately) a simple
function of the spousal correlation of the phenotype and the narrow-sense heritability
under random mating. The only remaining unknown parameter is the narrow-sense
heritability under random mating, h3. Crow and Kimura** derive the relationship between
h2 and the narrow-sense heritability under assortative mating h? as

e h? — h*r
©7 1 —hty’

We can thus obtain an estimate of h3 by plugging into this equation estimated values
for r and h? from the literature.

2.11 Appendix: Unified Regression Analyses

In these analyses, we continue to use equation (2.11) to estimate m, but this time
using coefficient estimates from the unified regression analyses. Specifically, for each
SNP j our estimating equation is:

Yir = Boj + Bowas,j Gr.j + Bwr,j(Girj — Grj) + Xipj¥j + we+ ir, ),
where i indexes an individual, f'indexes a family, y;r ;, gir ;» and x;¢ ; are the individual-
specific phenotype, genotype, and vector of controls, respectively, gy ; is the within-
family mean of the genotype, & ; is an individual-specific error term, and uy is a family-
specific error term. For each SNP, the unified regression recovers two SNP effects. The

first, Bewas. is identified solely from between-family differences, and the second, Lwr. is
identified solely from within-family variation. We restrict the estimation sample to UKB
siblings and all analyses are based on a phenotype that has been residualized on the set of
baseline covariates used in all other within-family association analyses. The estimates of
m, reported are based on a set of 247,915 approximately independent SNPs.

2.12 Appendix: LD Score Regression and Childhood Rearing Environment

Here we show that when an individual’s EA is influenced by parental EA, this will
lead to bias in GWAS estimates that is not captured by the LD score intercept. We

assume a simple model:
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Yi = z Bigij + ary! + amy" + &,
J

where y; is the standardized EA of individual i, g; ; is the standardized genotype of SNP j

for individual i, yl-f and y™ are the standardized EA of the father and mother,

respectively, and &; is the residual.

We make a number of simplifying assumptions. First, we assume that &; is
independent of g;; so that parental educational attainment is the only source of
confounding in the model. If we modeled other sources of confounding, those sources
may be reflected in the LD score regression slope if the confounding results in bias that is
proportional to the LD score (as with the example shown in this section) or in the LD
score regression intercept if the confounding generates bias that is uncorrelated with the
LD score (e.g., population stratification due to drift).

Second, we assume that the genetic factors that determine each parent’s EA are the
same as those that affect the child’s EA and that the parents’ rearing environment does

not affect their EA. More precisely, we assume
P _ P p
i = Zﬁfgi,j T,
J

where p € {f,m} identifies the father or mother, gf ; 1s the genotype of parent p of

individual i at SNP j, and sf’ is the residual. Were we to assume that a parent’s EA was
similarly affected by their rearing environment, that would lead to a simple geometric

series in the derivation below, resulting in the same qualitative results.
Third, we assume random mating, which implies that the genotypes of each parent
. 1
are uncorrelated with each other. Thus, Cov( ik gf]-) = STk where 1j, =

Cov(gi,k, gi j). Even under assortative mating, however, this equation would hold
approximately as long as the traits that determine how parents sort are polygenic. (See

section 2.10 above.)

Under these assumptions, we derive the expected value of the GWAS estimates. In
our GWAS, we regress y; on each SNP separately. Since we standardized the genotypes,
the expected GWAS estimate for SNP £ is

E(Bewask) = Cov(gir vi)

= Cov gi,k»Z B;igij + afyif +anyit t g
j
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= Cov gi‘k'z(ﬁj‘qi’j + afﬁjgi]fj + amﬁjgf}) +¢& + afeif + ap e
J
= > Blcov(gii 915) + aCov(gue 91) + amCov(gis. g13)]
J
a a
= Z,Bj (Tj,k + 7f7)',k + 7m7}',k)
J

J

From this expression, we see that the bias due to the rearing environment is
multiplicative. It follows that the GWAS effect sizes will be inflated, but the type-I error
will not be inflated, as similarly shown by Lee and Chow™.

The fact that the bias due to the rearing environment is multiplicative also implies
that LD score regression cannot disentangle this source of bias from the true causal effect
of the SNP. Indeed, it is simple to use the above expression for E(fgwask) to extend the

derivation of the LD score regression estimating equation, giving us

N ar a2
2y _ Vo . Im
EGR) =02 (14 5+ =) 6+,
where £ 1s the LD score of SNP k. So we see in this case that although the GWAS
coefficients are inflated by a factor (1 +%+a7m), this bias is not reflected in the

intercept but rather in an inflated slope.
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3. Heritability and Genetic Correlation Across Cohorts

3.1 Introduction

Genetic effects on EduYears may vary across cohorts due to, for example,
environmental differences in the requirements for and motivations to progress through
educational systems. Indeed, in Supplementary Section 1, we found that the distribution
of P values among top SNPs deviates from that expected if genetic effects on EduYears
are homogeneous across cohorts. This heterogeneity in genetic effects may reflect
differences across cohorts in the heritability of EduYears or imperfect genetic correlation
across pairs of cohorts. In this section, we estimate the amount of variation in SNP
heritability of EduYears across cohorts in our sample and the average genetic correlation
of EduYears across pairs of cohorts. In an exploratory analysis, we also assess the extent
to which we can predict variation in SNP heritability and genetic correlation of EduYears
based on several observable cohort characteristics. Hereafter in this section, for
simplicity, we refer to SNP heritability as “heritability.”

In addition to being of substantive interest, variation in heritability and imperfect
genetic correlation matters for how much predictive power we expect to obtain from a
polygenic score (PGS) as a function of the characteristics of a prediction cohort. As
partial motivation for the analysis, we therefore begin this section by briefly reviewing
how heritability and genetic correlation are theoretically expected to affect predictive

power of a PGS.

We then turn to the empirical analyses, which are the main focus of the section.
First, we estimate the amount of variation in heritability across our cohorts as well as the
mean genetic correlation of EduYears across pairs of cohorts. We estimate a standard
deviation of heritability of 0.023 (SE = 0.048), compared with a mean of 0.147 (SE =
0.009). We also find that the mean genetic correlation of EduYears estimated across pairs
of cohorts is 0.723 (SE = 0.124), which is statistically distinguishable from one (P value
=0.026).

These results motivate our remaining analyses, which explore the extent to which
the variation in heritability and the imperfect genetic correlation across cohorts can be
explained by several cohort characteristics that we examine. In a complementary set of
analyses, we study heritability and genetic correlation of EduYears using individual-level
data from a single, large cohort: the full-release UK Biobank. This analysis has the
advantage that it holds constant many potentially confounding country-level variables
that we cannot control for in the cross-cohort analysis, but it has the disadvantage that we
cannot examine cohort characteristics that vary little within the UK. To preview the
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results, the only observable cohort characteristic we examine that robustly explains
variation in heritability is the level of detail of the survey assessment of EduYears. We
also find suggestive evidence that the genetic correlation of EduYears is highest for
cohorts with the same average birth year, but this result does not replicate in the UK

Biobank analysis.

The remainder of this section is organized as follows. We begin by reviewing why
the predictive power of a PGS may vary across cohorts as a function of heritability and
genetic correlation (Section 3.2). In Section 3.3, we present our methods for and results
from estimating heritability and genetic correlation across cohorts. In Section 3.4, we
describe the cohort characteristics that we study which might influence heritability or
genetic correlation. These include the number of response options for EduYears provided
in a cohort, the average year of birth among cohort respondents, the average educational
attainment in the cohort’s country, and top income shares in the country. In Sections 3.5
and 3.6, respectively, we present our exploratory analyses of the association of these
cohort characteristics with heritability and genetic correlation of EduYears. In Section
3.7, we describe and report results from the UK Biobank analysis, in which we evaluate
whether heritability and genetic correlation of EduYears differs depending on the survey
question used to assess educational attainment or on respondents’ years of birth. We
conclude with a discussion of the implications of our results for the predictive power of
PGSs in Section 3.8.

3.2 How Population Differences Affect Cross-Cohort Prediction Accuracy

Daetwyler et al.'” introduced the following formula for the expected predictive
power of a PGS:

1
E[R*] = h?* x |——|, (3.1)

1+W

where R? is the coefficient of determination in the prediction cohort, h? is the SNP
heritability of the phenotype, and A = np/M is the ratio between the number of
individuals in the discovery cohort (np) and the effective number of SNPs evaluated in
the prediction cohort (M)®. The formula is derived under the following three key
assumptions: (1) the SNP genotypes are independent, (2) the heritability of the phenotype

¢ The value of M, which reflects the amount of independent variation in genotypes across SNPs (which is
smaller than the number of SNPs due to LD), differs depending on the set of SNPs that are used. For
example, for HapMap3 SNPs, M is likely in the range 50,000 to 70,000 33,
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in the discovery and prediction cohorts is equal, and (3) across the cohorts, there is

perfect genetic correlation of the phenotype.

De Vlaming et al.*® generalized the formula, relaxing the latter two assumptions (but
maintaining the first). That is, the more general formula applies when the discovery and
prediction cohorts have unequal heritability (h and h3, respectively) and imperfect

genetic correlation (7; < 1):

1

E[R?*] =17 X hg x | ——| (3.2)

1 —

MY
The formula implies that the expected predictive power of the PGS increases with
increasing values of h3, h3, and ry. Thus, we expect a PGS to have lower R? in a
prediction cohort to the extent that the phenotype measured in the prediction cohort is
imperfectly genetically correlated with the phenotype in the discovery cohort, has a lower

heritability in the discovery cohort, and has a lower heritability in the prediction cohort.

3.3 Variation in Heritability and Mean Genetic Correlation of EduYears Across

Cohorts

Heritability of EduYears could vary across cohorts for many reasons, including
differences in the accuracy with which the phenotype is measured and differences in the
institutional environment (e.g., social and economic circumstances) experienced by
respondents. Relatedly, EduYears may be imperfectly genetically correlated across
cohorts if the effects of genetically influenced psychological characteristics (e.g., specific
cognitive abilities or personality traits such as persistence) on EduYears differ. This could
be due to differences in the educational systems or labor markets, for example. In this
subsection, we calculate variation in heritability across cohorts and estimate the mean

genetic correlation of EduYears for pairs of cohorts in our sample.

Empirical methods

We first estimate the heritability of EduYears in each of the 71 cohorts included in

the meta-analysis using LD score regression®

, as implemented in the LDSC software with
a European reference population. LDSC filters to HapMap3 SNPs because these SNPs

are generally well imputed and because LD scores of SNPs with low minor allele
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frequencies are known to introduce substantial statistical noise into the analysis'.
Supplementary Table 22 reports the heritability estimates for each cohort.

Unfortunately, the estimated heritability of EduYears is negative for 23 of the 71

14 is undefined

cohorts, and the genetic correlation as calculated by LD score regression
when one cohort is estimated to have a negative heritability. The negative estimates
appear to be primarily due to sampling error in smaller cohorts, as standard errors for the
negative heritability estimates are generally large, and the majority of their 95%
confidence intervals contain 0. Fortunately, the 32% of cohorts with negative heritability
estimates represent only 6% of respondents. We therefore proceed with our analysis
limiting our data to the 48 cohorts (containing 1,060,743 respondents) with non-negative

heritability estimates.

We calculate the mean heritability of EduYears by taking the sample-size-weighted
mean of the estimates across our 48 cohorts. We then estimate the cross-cohort variance
in heritability. Note that we are interested in the cross-cohort variance in frue heritability.
We cannot simply estimate that quantity with the variance in our heritability estimates
because variation in the heritability estimates reflects sampling variation in addition to
true variation. Instead, to obtain our estimate of the cross-cohort variance in heritability,

we use a regression framework, explained next.

As a starting point, note that if our estimator of heritability is unbiased and its
sampling variance scales linearly with the inverse of the sample size—as is
approximately true for our LD score regression estimator—then E(fl? | h?) = hZ and
Var(h? | h?) = A/N,, where h? is the heritability for the cohort ¢, A2 is its estimate, N, is
the cohort sample size, and A is some constant that does not vary by cohort. Therefore,

using o7 = Var(h?) to denote the variance of heritability across cohorts (our parameter
of interest), we have

o1
Var(2) = — 2+ of. (3.3)
C

Our estimator for the variance of heritability is based on this equation: if we knew

E(h2), we could regress [A2 — E(hg)]2 onto N; ! and a constant, and the intercept would

be an estimate of the true variance of heritability across cohorts, 0,%. Since E(h?) is

f Additional filters were applied to the GWAS data in its quality-control stage (see Section 1.6): SNPs with
minor allele frequencies below 0.05 were excluded, as were those with imputation quality below 0.3.
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unknown, in practice, we replace it with the sample-size-weighted mean described above.
We then use weighted least squares, weighting each cohort by its sample size to obtain an

estimate, 6,%.

Turning to genetic correlation, we estimate the genetic correlation of EduYears
across all unique pairs of cohorts with non-negative heritability estimates. To do so, we
use bivariate LD score regression' implemented by the LDSC software with a European
reference population, filtered to HapMap3 SNPs. The estimated genetic correlation of
EduYears between each of our 933 pairs of cohorts is shown in Supplementary Table
23.

We obtain the mean genetic correlation by estimating the inverse-variance-weighted
mean of the estimates across pairs of cohorts in our data. The genetic correlation of
EduYears across pairs of cohorts will be correlated across all observations that share one
of their cohorts in common. Therefore, to obtain correct standard errors, we use the node-

jackknife variance estimator described by Cameron and Miller®’.

Results

The sample-size-weighted mean heritability of EduYears across cohorts is 0.147 (SE
= 0.009). We estimate the variance to be 0.00051, which implies a standard deviation
estimate of v/0.00051 ~ 0.023. The variance is quite imprecisely estimated, however,
with a standard error of 0.0023, which implies that the standard error of the standard
deviation of heritability is approximately v/0.0023 ~ 0.048. This indicates that we are
not well-powered to detect variation in heritability across cohorts.

The inverse-variance-weighted mean genetic correlation® of EduYears between pairs
of cohorts 1s 0.723 (SE = 0.124). The P value for the null hypothesis of perfect genetic
correlation is 0.026. This result reinforces the conclusion that there is some heterogeneity

in genetic effects on EduYears across the 48 cohorts studied.

3.4 Observed Cohort Characteristics

In Sections 3.5 and 3.6, we will explore empirically the extent to which we can
predict variation in heritability and genetic correlation across the cohorts in our sample
based on several observed cohort characteristics. The four cohort characteristics that we
identified reflect either the accuracy with which EduYears was measured or the

¢ For analyses of cross-cohort genetic correlation, we use inverse-variance weighting rather than sample-
size weighting. We do this because there is not a simple relationship between the sampling variance of the
genetic correlation estimate and the sample size of the two cohorts involved. Inverse-variance weights are
calculated using the standard errors of the genetic correlation estimates reported by the LD score regression
software.
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institutional environment experienced by individuals in the cohort.” Here, we describe the
rationale underlying the selection of each of the four variables and the methods for their
construction across our 48 cohorts.

Number of response options for EduYears in the cohort: This variable indicates the
number of response options that were available to respondents of a particular cohort
when reporting their educational attainment. If the question used to measure a phenotype
provides few response options, the phenotype will be measured less accurately.
Measurement error should in turn reduce the estimated heritability of the phenotype.
Therefore, we expect the estimated heritability of EduYears to be smaller within cohorts
for which fewer response options were provided. We do not expect this variable to have

any effect on genetic correlation of EduYears between cohorts.

Across the 48 cohorts we study, the granularity of the question used to measure
EduYears varies substantially: some cohorts provided just four response options, while
others provided as many as 20 (see Supplementary Table 22 and Supplementary Table
24, Panel A). The mean number of response options for reporting EduYears across

cohorts, weighted by sample size, is 7.7.

Mean birth year in the cohort: Prior research using twin studies suggests that the
heritability of EduYears is greater among people born in more recent years (e.g. Branigan
et al.>*), a trend that is hypothesized to be related to the expansion of access to education.
In accordance with this literature, we expect that the heritability of EduYears as measured
from the GWAS results (using LD score regression Bulik-Sullivan et al.®) will be higher

in cohorts with a later mean birth year.

We also expect cohorts that differ in mean birth year to evince imperfect genetic
correlation of EduYears. The effects of certain genetically influenced psychological traits
on EduYears may depend on the institutional and economic environment, which affects
the motivations for and skills required to advance through education. Changes in this
environment will result in imperfect genetic correlation of EduYears for people born in

different historical periods.

b We selected these four characteristics because (i) we believed they might plausibly matter for heritability
or genetic correlation, (ii) we were able to obtain measures of these characteristics for all cohorts, and (iii)
we confirmed that they varied substantially across cohorts. There are several additional (or alternative)
cohort characteristics that we could have assessed, but to mitigate concerns about multiple hypothesis
testing and to maximize sample size, we did not pursue these. Some of the other cohort characteristics that
we considered include the country which cohort respondents are primarily from and the cohort’s sex
composition (following Branigan et al.>*); the compulsory education laws in the cohort’s country, which
could be a constraint on the expression of genetic propensity for EA; and the proportion of the labor force
employed in manufacturing as a proxy for the availability of low-skill jobs, which might be an important
determinant of the motivations for schooling.
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As shown in Supplementary Table 22 and Supplementary Table 24, Panel A, the
mean year of birth among cohort respondents ranges from 1921 to 1979, with a sample-
size-weighted average of 1954. Note that, although there is also substantial variation in
birth years within cohorts, we are unable to exploit this variation because we do not have
access to individual-level data for most of the cohorts in the analysis. An important
exception is the UK Biobank cohort, and we do examine individual-level variation in

birth year in that cohort in Section 3.7 below.

Mean years of education in the cohort’s country: There are several channels through
which mean level of education might be related to heritability of EduYears, although the
direction of the relationship could go either way. For example, mean years of education
in a country might proxy for access to education, which could increase heritability (just
as in the argument above, where mean birth year proxied for access to education). On the
other hand, mean years of education in a country might proxy for institutions (e.g.,
compulsory schooling laws or social norms prescribing college attendance) that compel
people to attain a level of education that they otherwise would not. This might compress
variation in EduYears, thereby reducing heritability.

There may also be imperfect genetic correlation of EduYears between cohorts with
different mean years of education. For example, mean years of education might be
correlated with labor market opportunities, and the decision to continue with schooling
may be affected by different genetically influenced psychological characteristics in
different labor markets.

For every country represented by a cohort, we obtained a measure of mean years of
education among those ages 25 and above in 1950 (or the earliest available year) from a
previously published study®®. As reported in Supplementary Table 22 and
Supplementary Table 24, Panel A, mean educational attainment in a cohort’s country in
1950 ranges from 3.8 years in Greece to 8.7 years in Switzerland; the sample-size-

weighted mean across cohorts is 6.9 years.

Top 10% income share in the cohort’s country: Similar to mean educational
attainment in a country, heightened income inequality in a country may be associated
with weaker heritability of EduYears if inequality reflects constraints on educational
attainment for some parts of the population, compressing the distribution of EduYears.
On the other hand, greater income inequality may reflect steeper returns to education,
sharpening the incentives for individuals predisposed to further education to become

more educated, which could result in a greater heritability of EduYears.

In populations with different levels of income inequality, we might also expect the

genetic correlation of EduYears to be less than one. For example, in a country with
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minimal income inequality, the decision to attain a high level of education could be
driven to greater extent by genetically influenced personality traits associated with
enjoyment of schooling, whereas in a less equal society, schooling decisions might be

affected more by genetically influenced personality traits associated with status-seeking.

To measure income inequality, we use the share of income earned by the top 10% of
earners in the country. This data is obtained from the World Wealth and Incomes
Database (http://www.wid.world). When data was not available from this source, we use
information from the World Bank Development Indicators database
(http://data.worldbank.org/data-catalog/world-development-indicators). Where possible,
we use income inequality data for the mean birth year of the cohort; otherwise, we use
the available year closest to the mean birth year. Our income-inequality variable ranges
from 18% for an Estonian cohort to a high of around 45% in some cohorts from the USA
and the Netherlands; the sample-size-weighted mean is 31.4% (see Supplementary
Table 22 and Supplementary Table 24, Panel A).

As shown in Supplementary Table 24, Panel B, the sample-size-weighted Pearson
correlations between the variables across all 48 cohorts included in this analysis range
from —0.23 to 0.61. Supplementary Table 22 provides further details about each cohort,

including its country, sample size, and values for each of our four variables.

3.5 Cohort Characteristics and Heritability of EduYears

Empirical methods

To study the association of specific cohort characteristics with the heritability of
EduYears, we use weighted linear regression with sample-size weighting. The dependent
variable is the estimated heritability for each cohort (methods for estimating heritability
are described in Section 3.3). We include as independent variables the four continuous
measures of cohort characteristics described in Section 3.4, centered at their sample-size-

weighted means.!

i In a preliminary analysis before the availability of the full UK Biobank (and before the addition of a few
other cohorts), we pursued an alternative approach. The goal of this approach was to avoid excluding
cohorts with negative heritabilities from our exploratory analyses of the association of cohort
characteristics with heritability and genetic correlation. In this alternative analysis, we dichotomized each
of the cohort characteristics that we study (described in Section 3.4) at their sample-size-weighted medians,
and grouped cohorts into “profiles” depending on their values for each of these four binary variables. Nine
profiles were non-empty. We then meta-analyzed the GWAS summary statistics of all cohorts that shared
the same profile. We proceeded with the profiles as the unit of analysis rather than the individual cohorts,
estimating the heritability of EduYears in each of the 9 profiles and estimating genetic correlation of
EduYears for each of the (2) = 36 pairs of profiles. Using the dichotomized variables in regression
analyses of heritability and of genetic correlation, our results were qualitatively similar to those we find in
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Results

Supplementary Table 25, Panel A, shows the results from our regression analysis
of heritability. The intercept indicates that, for cohorts with mean values on all four
variables, the expected heritability of EduYears is 0.147 (significantly distinguishable
from zero with SE = 0.008 and P value = 3.44 x 107%2). As expected, the heritability of
EduYears is significantly higher for cohorts that provided a greater number of response
options (B = 0.006; SE = 0.002; P value = 0.009). The heritability of EduYears is
expected to increase by a little over half of a percentage point with each additional
response option provided. Results may also indicate higher heritability of EduYears in
cohorts from countries with larger top income shares ( = 0.005; SE = 0.002; P value =
0.038). For the other two variables, we cannot statistically distinguish regression
coefficients from zero (mean birth year B = 0.001, SE = 0.002, P value = 0.395; average
education in the country  =—0.009, SE = 0.011, P value = 0.407).

Together, these four cohort characteristics explain 20.7% of variation in heritability
estimates across cohorts, as indicated by the R?. Much of the residual variation in the
dependent variable is likely to be sampling error since the heritabilities are estimated,
rather than fixed, known quantities. Thus, the R? value may be considered a lower bound
on the role of these four cohort characteristics in explaining actual cross-cohort variation
in the heritability of EduYears.

3.6 Cohort Characteristics and Genetic Correlation of EduYears

Empirical methods

To explore which cohort characteristics are associated with the genetic correlation of
EduYears, we estimate a weighted linear regression model with inverse-variance
weighting. The dependent variable is the estimated genetic correlation for a cohort pair
(see Section 3.3). There are 933 observations included in the model. We include four
continuous independent variables, each of which equals the absolute value of the
difference in the corresponding cohort characteristic between the two cohorts. As we did
earlier when calculating the mean genetic correlation, we use the node-jackknife variance
estimator’” to calculate standard errors, since genetic correlation may be correlated across
all observations that share a cohort in common.

the exploratory cohort-level analyses described in Sections 3.5 and 3.6. However, when we re-did the
analysis using our larger data set, we learned that the results are highly sensitive to the cut-points used to
define the dichotomous variables. We prefer the cohort-level approach because it avoids dividing cohorts at
arbitrary cut-points. However, we caution readers that the empirical approach we take in Sections 3.5 and
3.6 was not the one we intended to conduct with our larger data set.
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Results

Supplementary Table 25, Panel B, shows results from this exploratory analysis.
The estimated intercept from this regression is 0.868 (SE = 0.228), which means that
0.868 is the expected genetic correlation of EduYears between cohorts that have identical
values (absolute value of the difference = 0) on all four measures of cohort
characteristics. This intercept is statistically distinguishable from zero (P value = 1.54 x
107%), but not from one (P value = 0.563).

The expected genetic correlation of EduYears between cohorts declines as the
difference in mean birth years of the cohorts grows (B = —0.009; SE = 0.004; P value =
0.037). That is, the genetic correlation of cohorts with similar mean birth years, such as
23andMe (mean birth year = 1961) and Geisinger (1960) is expected to be higher than
that between, for example, Add Health (1979) and either 23andMe or Geisinger. Indeed,
the estimated genetic correlation of EduYears for 23andMe and Geisinger is 0.929 (SE =
0.131), while it is lower between Add Health and 23andMe (0.751, SE = 0.089) and
between Add Health and Geisinger (0.787, SE = 0.214).

The other three variables in the regression of genetic correlation do not play
statistically significant roles in cross-cohort genetic correlation of EduYears in our data
(difference in number of response options for EduYears: p = —0.001, SE = 0.006, P value
= (0.935; difference in average education in the country: B = 0.016, SE = 0.042, P value =
0.702; difference in top income shares in the country: f = —0.012, SE = 0.014, P value =
0.368). As indicated by the R?, together, the four independent variables explain 19.0% of
variation in the genetic correlation estimates across cohorts. As with the analysis of
heritability, since much of the variation in the estimates of genetic correlation is due to
sampling variance, this should be thought of as a lower bound of the variance of the true

genetic correlation explained by our covariates.’

i Following the suggestion of a referee, we also conducted a post hoc analysis in which
we assessed whether genetic correlation differs depending on whether the cohorts are
from the same geographic region or not. We partitioned the cohorts into the following
geographic regions: Australasia, Baltic countries, Nordic countries, North America,
Southern Europe, United Kingdom, or Western Europe. Of the n = 933 genetic
correlations estimated, n = 175 (19%) are from cohorts from the same region, while n =
758 (81%) are from cohorts from different regions. We then followed a similar analytic
strategy to that used in Supplementary Section 3.6. We regressed pairwise genetic
correlations on the four main cohort characteristics as well as a dichotomous variable
coded O if the cohorts are from unmatched regions and 1 if they are from the same region,
we applied inverse-variance weighting, and we estimated standard errors and P values
using the node-jackknife estimator®®. The coefficient on the indicator for matched regions
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3.7 UK Biobank Analyses

In our final set of analyses, we again assess the relationships between cohort
characteristics and the heritability and genetic correlation of EduYears. Unlike the
analysis above, however, here we analyze individual-level data from a single cohort, the
full release of the UK Biobank, which contains data from over 400,000 respondents. This
analysis holds constant potentially confounding country-level variables that we were not
able to control for in the cross-cohort analyses described above. The cohort
characteristics we are able to explore within the UK Biobank are, however, more limited
than those assessed in the cross-cohort analysis, since the characteristics studied must
vary within the UK. Thus, in this section we assess the associations of the heritability and
genetic correlation of EduYears with two of the four characteristics we explore above: the

number of response options for EduYears and birth year.

Empirical methods

Our analytic strategy proceeds in two steps. First, we compare the heritability and
genetic correlation of EduYears estimated using the full set of response options provided
by the UK Biobank to that obtained when simulating a scenario in which fewer options
are provided. Second, we divide the UK Biobank cohort in half in order to estimate the
heritability of EduYears and the genetic correlation of EduYears between two
subsamples: one comprised of respondents born in the first half of the twentieth century,
and the other comprised of those born in later years. These methods are described in
greater detail below. We note that although the UK Biobank is one of the cohorts
included in the cross-cohort analysis above, the analysis here provides an independent

source of evidence because we are exploiting individual-level variation within the cohort.

Number of response options for EduYears: The UK Biobank’s question about
educational attainment includes seven categories for respondents to choose from. For our
“original” variable, these categories are mapped onto years of education using the ISCED
scale as follows: none of the above (no qualifications) = 7 years of education; CSEs or
equivalent = 10 years; O levels/GCSEs or equivalent = 10 years; A levels/AS levels or
equivalent = 13 years; other professional qualification = 15 years; NVQ or HNC or

equivalent = 19 years; college or university degree = 20 years of education.

The “coarsened” measure of years of education simulates a scenario in which only
three response options were provided. The first option is to report less than a high school

education (by UK standards, less than A or AS levels). For this option, we combine those

is noisily estimated and not statistically distinguishable from 0 (f = —0.094, SE = 0.100,
P value = 0.347); other results are substantively unchanged.
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who reported no qualifications, O levels/GSCEs or equivalent, and CSEs or equivalent,
and code them as having attained 10 years of education. Second, respondents could report
the equivalent of a high school degree (A levels/AS levels or equivalent), which we
coded as 13 years of education. Finally, respondents could report any post-secondary
school training. For this category, we combine those with professional qualifications,
NVQ, HNC or equivalent, or a college or university degree, and code them as having
attained 19 years of education. The categories contain 152,690, 24,214, and 265,279

individuals, respectively.

We perform GWA studies of both the original and coarsened years of education
variables, both of which include data from 442,183 respondents. We then calculate the
heritabilities of and the genetic correlation between the original and coarsened

phenotypes using LD score regression®!4,

Birth years: As outlined above, we divide the UK Biobank at the median birth year
to form two subsamples. The early birth year subsample includes the 230,362
respondents born between 1934 and 1950 (mean birth year = 1945), while the later birth
year subsample includes 211,821 respondents born between 1951 and 1970 (mean birth
year = 1958). Within each subsample, we run GWA studies of years of education. Using

8,14

LD score regression®'”, we then calculate the heritability of EduYears in each subsample

and the genetic correlation of EA between the subsamples.

For comparison, we run parallel analyses of genetic correlation for two additional
phenotypes: height and body mass index (BMI). Recall that we hypothesized that an
imperfect genetic correlation of EduYears between cohorts with differing mean birth
years would be driven by societal changes in the motivations and requirements for
schooling. We consider height a negative control because we expect recent societal shifts
to have had a much smaller effect on the genetic factors that contribute to height. Indeed,
we expect a near-perfect genetic correlation of height between the two subsamples. We
expect the genetic correlation of BMI between the subsamples to fall somewhere between
that for EduYears and that for height. BMI is influenced in part by biological factors that
are not affected by societal change, but shifts over time in access to different types of
food and in knowledge about the dangers of high BMI might lead to imperfect genetic
correlation across earlier and later birth cohorts. With data available for height, there are
229,845 individuals with below-median birth year and 211,429 individuals at or above
the median birth year. For BMI, the corresponding sample sizes are 229,580 and 211,246

individuals.

Results
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Number of response options for EduYears: Results regarding number of response
options mirror those of the cross-cohort analysis described above. We estimate
heritability of 0.137 (SE = 0.004) for the original variable (as indicated in
Supplementary Table 22) and 0.106 (SE = 0.004) for the coarsened variable. We
strongly reject the null hypothesis of equal heritability between these values (P value =
3.47 x 10°).X Thus, the estimated heritability of EduYears is lower when fewer response
options are provided. The genetic correlation between EduYears as recorded in its
original form and EduYears in its coarsened form is nearly perfect, at 0.996 (SE = 0.001).

Birth years: The estimated heritability of EduYears among those born in earlier
years is 0.157 (SE = 0.006) while that for later years is 0.134 (SE = 0.006). This is a
statistically significant difference (P value = 0.003). Note that in the cross-cohort
analysis, we found no evidence of a statistically significant difference in heritability

across birth cohorts.

The genetic correlation of EduYears between the earlier and later birth year
subsamples is nearly perfect, at 0.997 (SE = 0.018). This result does not support findings
from the cross-cohort analysis. There, we found that the estimated genetic correlation of
EduYears may be significantly lower for pairs of cohorts with different average birth

years.

Between subsamples within the UK Biobank, we also find nearly perfect genetic
correlations of BMI (0.982, SE = 0.010) and height (0.989; SE = 0.008). Thus, relative
genetic effects estimated in these two subsamples of the UK Biobank appear

approximately equal for all three phenotypes.

3.8 Concluding Discussion

In this section, we studied variation in the heritability and genetic correlation of
EduYears across cohorts. This analysis was motivated by empirical evidence of
heterogeneous effect sizes for the lead SNPs, a result that could be driven by differences
in heritability or imperfect genetic correlation across cohorts. One reason that such
heterogeneity may be of interest is that the predictive power of a polygenic score (PGS)

1.36

depends on these quantities, as shown in a derivation by de Vlaming et al.”® Specifically,

the expected predictive power of a PGS declines with the heritability of the phenotype in

K We test for equality using a standard two-sample t-test to compare differences in means (¢ = 5.908 with
442,182 degrees of freedom). This test is conservative because it assumes that the two samples are
independent. In fact however, since the two heritability estimates are based on the same sample, the two
estimates will be positively correlated, and therefore the P value we calculate is an upper bound on the true
P value.
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the prediction cohort, and it is lower when the genetic correlation of the phenotype

between the discovery and prediction cohorts is imperfect.

Across the 48 cohorts included in our analysis, we estimate a mean heritability of
0.147 (SE = 0.009) and a standard deviation of 0.023 (SE = 0.048). As indicated by the
large standard error on the standard deviation point estimate, we are not well-powered to
detect heterogeneity of SNP heritability across cohorts. Nonetheless, we view our
approach as a promising way of obtaining evidence that is complementary with earlier
twin-study-based evidence of heterogeneity in the broad-sense heritability of educational
attainment across cohorts?*. In our exploratory analyses of the association of cohort
characteristics with the heritability of EduYears, the only robust predictor of estimated
heritability is the precision of the survey measure of EduYears. Specifically, in both the
cross-cohort analysis and the within-UKB analysis, when a cohort has a measure of
EduYears with more response options, the estimated heritability of EduYears tends to be
larger in that cohort. This finding is consistent with finer measures being less prone to

measurement error.

Due to gene-by-environment interactions, the heritability of EduYears could also
differ depending on the institutional environments faced by cohort respondents. We
found some evidence of this in the cross-cohort analysis, as income inequality (measured
with top income shares) was associated with increasing heritability. We are unable to
verify this finding in the UK Biobank analysis, however. Also, in the UK Biobank
analysis, we find that the heritability of EduYears is lower in the more recent birth cohort,

a result that is not observed in the cross-cohort regression.

To our knowledge, this is the first study to systematically investigate not only
variation in SNP heritability of educational attainment, but also to systematically study
variation in the genetic correlation of educational attainment across pairs of cohorts. We
find a mean genetic correlation of 0.723 (SE = 0.124), which is substantially smaller than
one (P value = 0.026). This finding indicates that the average pair of cohorts considered
in this analysis does not have a perfect genetic correlation of EduYears, and provides

further evidence of heterogeneity in genetic effects on EduYears across cohorts.

As with heritability, genetic correlation across pairs of cohorts might depend on the
institutional environments faced by the cohorts considered. In particular, the motivations
and requirements to advance through the educational system may have shifted across the
twentieth century. As a result, the genetic correlation of EduYears may be imperfect
across pairs of cohorts with respondents born in different time periods. The cross-cohort
analysis suggests precisely this, as pairs of cohorts with very different average birth years
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evince lower genetic correlations of EduYears than cohort pairs with more similar

average years of birth.

However, this result is not supported by the UK Biobank analysis, where we find a
nearly perfect genetic correlation of EduYears across respondents born in the first and
second halves of the twentieth century. This suggests that birth year may be a proxy for
some characteristic of the cohort that is related to genetic correlation. As an illustrative
example, from Supplementary Table 24, Panel B, we see that the average birth year and
average education in the country variables have a correlation of 0.61. Suppose that
differences in mean educational attainment explains some of the attenuation in cross-
cohort genetic correlation, but that differences in birth year between cohorts are a better
proxy for the actual differences in mean cohort educational attainment than the measure
of educational attainment that we used in this analysis. Under this scenario, we would

observe the sort of patterns presented above.

Despite differences in the specific findings, both the cross-cohort and UK Biobank
analyses suggest that the predictive power of a PGS for EduYears may vary across
cohorts that differ in average birth year. Specifically, the UK Biobank results imply a
lower predictive power in later-born cohorts because the estimated heritability of
EduYears is lower for UK Biobank respondents born in the second half of the twentieth
century, compared to those born in earlier years. The cross-cohort results imply a lower
predictive power in cohorts with mean birth years that are dissimilar to that of the meta-
analysis from which the PGSs are derived. Both results may therefore be consistent with
those of Okbay et al.!, which finds that the predictive power of a PGS for EduYears was
higher among earlier-born respondents to the Swedish Twin Registry than among later-
born respondents. It may be that the heritability of EduYears is in fact lower among the
later-born respondents. It could also be the case that the genetic correlation of EduYears
with the meta-analyzed sample is lower for the later-born respondents, as that meta-
analysis relied heavily on cohorts with average years of birth in the early twentieth

century.1

Of course, cohort characteristics not studied here (or better measures of the
characteristics we study) might explain more of the variation in the heritability and
genetic correlation of EduYears. Further identifying and exploring the characteristics that

! Our findings are also consistent with those of (350)3**, which finds that the estimated heritability of
educational attainment is 40% lower assuming homogeneous genetic effects across cohorts than when
allowing effects to vary by birth year and country. After conducting simulations that rule out alternative
explanations, Tropf et al. argues that differences in genetic effects result in imperfect genetic correlation
across environments, suppressing heritability estimates in pooled data.
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explain the heterogeneity in genetic effects for educational attainment is an important

area for future research.
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4. X-Chromosome Analysis

4.1 Introduction

Our primary meta-analysis of EduYears was restricted to autosomal SNPs. In this
section, we describe the results from supplemental association analyses of SNPs on the X
chromosome that we performed in our two largest cohorts, UK Biobank and 23andMe.
The X chromosome is understudied in genome-wide association studies of complex traits.
In addition to gene and gene-variant discovery on the X chromosome, we were interested
in addressing a number of specific questions: (i) what is the total contribution of common
SNPs on the X chromosome to phenotypic variation in EduYears, (ii) what is the relative
contribution of common SNPs to phenotypic variation in EduYears in males and females,
and (iii) what is the genetic correlation of male and female EduYears due to common
SNPs on the X chromosome? (iv) how does the contribution of common SNPs on the X
chromosome compare to the contribution of common SNPs of autosomes similar in

length, or similar in terms of the effective number of loci.

We begin by establishing some notation and a framework that will be helpful for
motivating and interpreting subsequent analyses. Next, we describe quality control and
imputation of the UK Biobank data and association analyses (both mixed-sex and single-
sex) we subsequently conducted in this sample. We use the results from the sex-stratified
association analyses to estimate the amount of dosage compensation and the male-female
genetic correlation. Finally, we report the results from a meta-analysis of summary
statistics from mixed-sex association analysis conducted in 23andMe and UK Biobank

(using identical allele coding across the two datasets).

4.1 Notation and Theoretical Framework

Notation. Let y,, and y; denote the phenotype value for a male and a female,
respectively, and let x,, € {0,1} and x; € {0,1,2} denote the allele counts in males and
females. Let ¢ denote the coefficient from the population regression of y; on xg, with by

its sample analog, and define f,, and b, similarly for males. Finally, denote the minor

allele frequency by p. We have that Var(x,,) = p(1 — p) and, under Hardy-Weinberg
assumptions, Var(xf) =2p(1 —p).

Dosage Compensation. The genetic variance contributed by a SNP on the X
chromosome in females is Var(,fof) = ﬁfVar(xf) =2p(1— p)ﬁ]?, and that in males is
Var(Bpxm) = BaVar(xy,) = p(1 — p)pBr,. The relationship between the effect sizes B¢

and S,,, and between the genetic variances contributed in males and females, depends on
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the amount of sex-linked dosage compensation (X-inactivation) in females*’. Dosage
compensation can be parameterized as f,,, = dfiy, where 1 < d < 2. In the absence of
dosage compensation (d = 1), B, = By, and the variance contributed by the SNP in
males is Var(B,,x,) = B4 Var(x,,) = p(1 — p)ﬁ]?, which is half that in females. Under
full dosage compensation (d = 2), B, = 2ff, and the variance contributed by the SNP in
males is Var(Bnx,) = B Var(x,,) = 4p(1 — p)ﬁ’f, hence twice that in females.
Finally, under partial dosage compensation, the variance contributed in males is d?p(1 —
P)ByF.

Sex-Stratified Association Analyses in UK Biobank. As described in detail in the
next subsection, we conducted sex-stratified association analyses in UK Biobank. We use
the results to conduct two analyses that are informative about the amount of dosage
compensation. First, under the maintained assumption that B, = df; across all X-
chromosome SNPs with a common value of d, we can estimate d using the association

statistics. The expected mean y? statistic on the X-chromosome is:

N;h?

Elxfl=1+ T
e

4.1)
where i € {m, f} indicates males or females, hiz is the SNP heritability for the X
chromosome, N; is the GWAS sample size, and Mg is the effective number of loci
2

hin

(which is assumed to be the same in males and females). Rearranging to solve for y = o)
f

and replacing the population moments with their sample analogs yields an estimator for
the ratio of male-to-female heritability:

(m — DNy

? = A "
(X,% — DNp,

(4.2)

In what follows, we refer to y as the dosage compensation ratio. The ratio takes on a
value between 0.5 (zero dosage compensation) and 2 (full dosage compensation). Second,
we use the results from the sex-stratified analyses to test a key implication of the
assumption that f,, = dfs, namely that the male-female genetic correlation on the X
chromosome is unity. The expectation of the product of the Z-statistics from the female

and male analyses is

méf M ’
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where 7; is the male-female genetic correlation. Using equation (4.1) we have h; =

2_
—(X‘N.l)M for i =m, f. Substituting into equation (4.3), rearranging, and replacing

1

population moments by their sample analogs, we obtain an estimator for the genetic

correlation:

_——

ZonZ;

7 =
Joz% — DG - 1)

(4.4)

Standard errors are calculated using a block jackknife procedure as follows. We first
defined B = 1,000 blocks of contiguous SNPs across the X chromosome. For each block

k, we calculate an estimate rg(k)

SNPs except for those included in the k-th block. The standard error is then calculated

of the genetic correlation as in equation (4.4) using all

with the following formula:

B
B-1
SEGy) = | =5 ) Ga =1, 5)
k=1

Using equations (4.4) and (4.5), we calculate a Z-statistic and test the null hypothesis
thatry, = 1.

Joint Analyses in UK Biobank. We also performed two joint analyses in pooled
samples of males and females in UK Biobank. In both, female allele counts were coded
0/1/2. In our first joint analysis, which we will sometimes refer to below as the full-
dosage-compensation analysis, males were coded 0/2. In the second, which we refer to as
our zero-dosage-compensation analysis, males were coded 0/1. To interpret the results of
these analyses (and justify their names), it is useful to examine their statistical properties
under alternative assumptions about the true value of the dosage-compensation

parameter.

In a joint analysis of males and females, the phenotype is regressed on a genotype
variable equal to X € {0,1,2} for females and cx,, for males, with ¢ = 1 in the zero-
dosage-compensation analysis or ¢ = 2 in the full-dosage-compensation analysis. Under
the simplifying assumption that the residual variance is exactly one in both males and
females, the coefficient from the pooled analysis can be written as a weighted sum of the

regression coefficients by and by, that would have been estimated in separate analyses:
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_ Var(bp)  Var(by)

joint — c2 N 1 : (4'6)
Var(b,,) = Var(by)
Under the assumption that B, = d 5, the expectation of the estimator is:
cd 1
[ + )]
Var(by) ' Var(b)
E(bjoint) = — T br 47)

Var(5,) T Var(B,)

Thus, the estimator is unbiased when ¢ = d. Given that we set ¢ = 1 or ¢ = 2 in our
UK Biobank association analyses, the ¢ = 1 analysis is only unbiased under zero dosage
compensation, and the ¢ = 2 analysis is only unbiased under full dosage compensation.
Moreover, it can be shown that an optimally weighted meta-analysis of association
results from sex-stratified analyses will weight the sex-specific estimates as in equation
(4.6), setting ¢ = d. That is, the joint analysis with ¢ = d is optimal in the sense that the
resulting estimator has the lowest variance among the class of unbiased estimators.

Because we will use it later, we derive here the noncentrality parameter (NCP) for

the y? test of the null hypothesis Hy: f3,, = By = 0 against the alternative Hy: B, = cff #
2

bjoin —bjoin
0. Recall that this NCP is defined as | 22H=2J=2%0 | “and note that Var(bjoint) =

R Var(bjoint)

1
——— Hence,

Var(bm)+Var(bf)

cd 1 2
VarG) *var(e)!
NCP = —— L—p?. 4.8)

Var(b,) T Var(B;)

At the optimal estimator (¢ = d), the NCP is

2

Var(b,,) + Var(bf)

NCP = | )1BF. 4.9)

We note that these derivations imply that summary statistics from X-chromosome
analysis performed in males and females separately can be meta-analysed using weights
that give results that are almost identical to those that would result from a joint male-
female analysis on individual-level data using SNP coding that corresponds to any
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assumed model of dosage compensation (we verified this prediction empirically using
two alternative coding schemes, one corresponding to full dosage compensation and one
corresponding to no dosage compensation).

4.2 UK Biobank: Imputation, Quality Control and Association Analyses

Selection of UK Biobank European Sample. Ancestry assignment was performed
using the autosomal markers. UK Biobank-provided genotype probabilities were used to
hard-call the genotypes. If the genotype posterior probability was <0.9, then the genotype
was treated as missing. We then filtered the variants to retain only those which were
hard-called in >95% of individuals. All subsequent analyses were further restricted to

HapMap3 SNPs with missingness below 5% and minor allele frequency above 1%.

To identify a sample of conventionally unrelated European-ancestry respondents, we
calculated the first two principal components (PCs) from the 2,504 participants with
known ancestries from the 1000 Genomes Project. We then projected UK Biobank
respondents onto those PCs, obtaining the loadings of each UK Biobank respondent on
each PC. We then assigned each individual to one of five super-populations in the 1000
Genomes data: European, African, East Asian, South Asian and Admixed. Our algorithm
for doing so calculated, for each respondent, the probability of membership to the
European super-population conditional on their PC coordinates. The 456,426 out of the
original 487,409 respondents who had a probability of membership > 0.9 for European

were assigned to the European super-population.

Next, to obtain an estimation sample of conventionally unrelated individuals, we
estimated a genetic relatedness matrix (GRM) for individuals in the subsample of
Europeans. We iteratively dropped one member from each pair of individuals whose
estimated relatedness exceeded 0.05, until no two individuals with a relatedness above
0.05 remained in the sample. This restriction resulted in our sample of 348,580

conventionally unrelated Europeans.

In this sample, we used the software flashPCA*! to calculate PCs that we use as
controls in our association analyses. While we calculated our own PCs instead of using
the UK Biobank-provided PCs, we calculated them from the same set of genotyped
autosomal SNPs that the UK Biobank used for calculating their PCs. The SNPs in this set
have been pruned with LD threshold 7> = 0.1 and have had high LD regions removed (as
described in the supplementary material S3.3.1 and S.3.3.2 and Table S12 of Bycroft et
al.*?). To this set of SNPs, we only retained SNPs satisfying each of the following quality
control criteria: missingness < 5%, MAF > 1%, and HWE P value > 1076, These steps left
us with 137,102 SNPs for the PC calculations.

61



Imputation. Imputed genotypes for the X chromosome were not included in the data
officially released by UK Biobank. We therefore imputed the data ourselves. We imputed
3,351,438 variants in the non-pseudo-autosomal region (PAR) and 100,087 markers in
the PARI region (from the start of the X chromosome to bp 2,699,507) using the 1000
Genomes Project as our reference panel. Prior to imputation, we selected SNPs used as
X-chromosome phasing input by UK Biobank and applied a few additional quality-
control filters. We dropped respondents: (i) classified as heterozygosity or missingness
outliers, (i1) whose reported sex did not match their biological sex, (iii) with putative sex
chromosome aneuploidy (i.e., abnormal number of sex chromosomes), and (iv) excluded
from kinship inference. We then identified the set of non-PAR SNPs that satisfied the
following restrictions: (i) HWE P value > 107% in the subsample of females, (ii) MAF >
107* in males and females, and (iii) SNP call rate > 95% in males and females. These
filters left a set of 15,424 common variants that we used for genotype imputation in
455,617 European-ancestry subjects. We also imputed some markers from the PARI

region, but all analyses below are based on SNPs from the non-PAR region.

Quality Control of Imputed Markers. We performed quality-control analyses of a set
of 1,059,233 SNPs from the non-PAR region with imputation info score > 0.3 and MAF
> 0.0001. In this sample, we found substantial differences in allele frequencies of
imputed variants between males and females that were not present among the originally
genotyped SNPs. We subsequently excluded markers with HWE P value < 107 in
females, leaving a set of 1,024,430 markers. Among these markers, the allele frequencies
were much more consistently aligned across males and females. In analyses not shown
here, we found that the consistency does not improve noticeably with even tighter HWE
P value or info thresholds.

Estimation Sample. In all UK Biobank analyses, our EduYears phenotype is defined
exactly as in the autosomal analyses'. Before our final association analyses, we dropped
from our sample of 348,580 conventionally unrelated Europeans (whose construction was
described above) individuals who failed the inclusion criteria for imputation (sex/gender
mismatch, heterozygosity missingness outlier, or putative sex chromosome aneuploidy).
We also dropped participants who were not born in the UK or who had withdrawn their
consent for their data to be used. Applying all these exclusions leaves us with our final
sample of N = 329,358 conventionally unrelated respondents of European-ancestry. In
our sex-stratified association analyses, we residualize our phenotype on 10 PCs, indicator
variables for year of birth, and indicator variables for genotype-measurement batch. In
our joint association analyses described below, we additionally residualize on interactions
between these covariates and sex, as well as a main effect for sex.
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4.3 UK Biobank Association Results

In our sex-stratified analyses, we split our estimation sample into females only (N =
176,750) and males only (N = 152,608) but otherwise used identical methods; males
were coded as 0/1 as females as 0/1/2 (i.e., the SNP effects were estimated in units of per
allele). We also conducted two joint male-female analyses. In both joint analyses, female
allele counts were coded 0/1/2. In the first analysis (“Full DC”), we coded males 0/2. In
the second (“No DC”), we coded males 0/1. Our analyses were based on 1,024,430 SNPs
in the non-PAR region. Supplementary Table 26 provides a summary overview of the
results from the Males, Females, Full DC, and No DC analyses. For all SNPs with allele
frequency above 1%, 0.1% or 0.01%, and each of the four association analyses, the table
separately reports the sample size, the mean test statistic, and the maximum test statistic.

Sex-Stratified Analyses. The sex-stratified analyses yielded similar findings overall
across males and females. Using equation (4.2), it is straightforward to calculate the
implied dosage compensation ratio from the sample sizes and mean test statistics reported
in Supplementary Table 26. For SNPs with MAF > 1%, our estimate is 1.05, but
estimates based on other MAF cutoffs are very similar. Equation (4.2) shows that the
estimate of dosage compensation does not depend on the parameter Mg because the
terms in the numerator and denominator cancel. However, M is needed calculate the
standard error of 7.™ We estimated Mg by calculating the reciprocal of the variance of
the off-diagonal elements of a genetic relatedness matrix based on SNPs on the X
chromosome (see Goddard et al.** for a theoretical derivation and discussion of
identifying assumptions). We calculated the GRM for SNPs with MAF > 1% and HWE P
> 1076 in a sample of approximately unrelated females. This gave an estimate of Mg of
~1,300, which we take to be the effective number of independent markers on the X
chromosome in all that follows. For this value of M., the estimated standard error of 7 is

approximately 0.20, implying a 95% confidence interval ranging from 0.66 to 1.44.

Next, we used equation (4.4) to estimate the genetic correlation between males and
females. Reassuringly, the estimate is close to unity irrespective of the MAF cutoff used

™ Assuming that the individual test statistics are distributed as a non-central y? with
expected value given by equation (4.1) and variance 2[1 + h?N;/Mg], the variance of
the mean test statistic across the chromosome is approximately (2/Mqg)[1 + 2(%% — 1)],
52
and the variance of the dosage compensation ratio is approximately y?2 l%
2 _
Var()?j%)

(23-1)
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to determine SNP inclusion. Limiting the analysis to SNPs with MAF above 1%, the
genetic correlation estimate is r; = 1.01 (jackknife SE = 0.05).

Results from Joint Analyses. Supplementary Table 26 reports some summary
statistics from our two joint analyses. Results from the first, which is optimal under zero
dosage compensation, are shown in the row labelled Zero Dosage Compensation (0-1).
Results from the second analysis, which is optimal under full dosage, are shown in the
row labelled Full Dosage Compensation. The Zero DC analysis yielded three
approximately independent lead SNPs at genome-wide significance, whereas the Full DC
analysis yielded four. The mean inflation statistics are marginally higher for the Full
Dosage Compensation analysis at all MAF cutoffs, but the differences are small.
Evaluating equation (4.8) at d = 1.45 (SE = 0.12), we find that the noncentrality
parameter of the Zero Dosage Compensation model is marginally lower at ¢ =1
(corresponding to the Zero DC analysis) than at ¢ = 2 (corresponding to the Full DC
analysis). Both joint analyses were conducted using a value of ¢ that is quite far away
from 1.45, the value of the dosage-compensation parameter that we estimate would
maximize statistical power. However, we show below that the actual loss of efficiency
due to the inefficient weighting is small.

4.4 Association Analysis in 23andMe

We obtained summary statistics from association analyses of SNPs on the X
chromosomes conducted among research participants from 23andMe (N = 365,536
individuals). These analyses were conducted from a joint male-female analysis with male
genotypes coded 0/2. With the exception of allele coding, all other major aspects of the
analyses were identical to those described for the autosomal analyses in Supplementary
Section 1; see Supplementary Table 17 for details on the phenotype, 19 for information
about the association model used, and 18 for information about imputation.

4.5 Quality Control of UK Biobank and 23andMe Results

Both sets of association results underwent a set of quality-control filters similar to
those described in Supplementary Section 1. Association results for 239,654 SNPs in
23andMe and 284,939 SNPs in UK Biobank remained after application of these filters.
We subsequently dropped a small number of SNPs with male-female allele frequency
differences above 0.005 in UK Biobank. These restrictions leave 238,249 SNPs for meta-
analysis in 23andMe and 284,068 SNPs in UK Biobank.

4.6 Meta-Analysis of UK Biobank and 23andMe Results (N = 694,894)
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The X-chromosome results from the UK Biobank and 23andMe were meta-analyzed
using sample-size weighting in METAL®. We used association results from the UK
Biobank obtained with the same coding of males (0/2) as that used by 23andMe. Only
SNPs that were present in both results files were used. This final restriction leaves
205,865 SNPs for meta-analysis in a combined sample of N = 694,894 individuals. To

adjust the test statistics for bias, we inflated the standard errors by the LD score

regression intercept from our main autosomal analysis (v1.113), and we calculated P
values using these adjusted test statistics." Applying our clumping algorithm, we found
10 approximately independent SNPs at genome-wide significance. The mean x? test
statistic, calculated before (after) inflation adjustment, was 2.72 (2.45). For SNPs with
minor allele frequency above 1%, the analogous number is 2.86 (2.57). Supplementary

Figure 5 shows Manhattan and quantile-quantile plots from the meta-analysis.

The 10 lead SNPs we find on the X chromosome are listed in Supplementary Table
4, along with the gene closest to each SNP. Two of the SNPs are closest to the same
gene, FAM47A, so there are 9 unique genes listed in the table. It is noteworthy that 2 out
of the 9, HUWEI and GPC3, are believed to be genes in which de novo mutations cause
intellectual disability**. Although it would be of interest to test more systematically for
evidence that the lead SNPs we identify on the X chromosome are enriched for
intellectual-disability-related genes relative to the lead SNPs we identify on the
autosomes, we do not pursue such an analysis because the number of genes identified on

the X chromosome is small.

4.7 Comparison to Autosomes

To allow comparisons of the results from our X chromosome meta-analysis to those
from the autosomal meta-analysis, we began by running a new autosomal meta-analysis
restricted to 23andMe and UK Biobank. Because the autosomal GWAS in UK Biobank
was not limited to conventionally unrelated individuals, the resulting autosomal meta-
analysis was based on ~808,000 individuals, an approximately 16% larger sample size
than the one used in our X chromosome meta-analysis. As we describe below, all

comparisons are based on test statistics that are adjusted for the difference in sample size.

We compared the autosomal and X-chromosomal meta-analyses along several
dimensions, the first of which is the number of lead SNPs on each chromosome. To
adjust for sample-size differences, we first inflated all standard errors in the autosomal

" As a robustness check, we also examined the results when we inflate the standard errors by the LD score

regression intercept (v1.099) from an autosomal meta-analysis restricted to UKB and 23andMe, a sample
more comparable to our X chromosome meta-analysis sample. In that case, there is one additional lead
SNP (11 rather than 10): rs5951458.
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meta-analysis and calculated adjusted test statistics based on these inflated test statistics.
Since standard errors decline at a rate that is inversely proportional to the square root of

sample size, we used the adjustment factor of \/808,000/694,894z 1.079. We

subsequently applied our clumping algorithm to these results and calculated the number

of lead SNPs per chromosome. For the purposes of this comparison, the number of lead
SNPs on all chromosomes (X and autosomes) were always calculated without adjusting
test statistics for inflation due to stratification biases or cryptic relatedness.

The results are shown in Supplementary Table 5. The SNPs in our analysis of the
X chromosome span a total distance of 152 MegaBase Pairs (Mbps), and by this metric, it
is most similar to chromosomes 6 through 10 (mean 150, range 135 to 171). Even
adjusting for sample-size differences, the number of lead SNPs on the X-chromosomal
analysis 1s about one third as large as the number of SNPs on autosomes of similar
length: we identify 12 lead SNPs on the X chromosome, whereas on chromosomes 6
through 10, the average number of lead SNPs is 33 (range 27 to 41).

One possible factor contributing to the discrepancy is that our meta-analysis of SNPs
on the X chromosome likely used suboptimal weights. Using equations (4.8) and (4.9),
we calculated that the power of the meta-analysis we conducted in our sample of N =
694,894 was equal to an optimally weighted meta-analysis conducted in a sample of N =
709,964. The fact that this difference is small implies that the sub-optimality of our
weighting scheme contributes minimally to the observed discrepancy.

A second potentially contributing factor is that the effective number of independent
markers on the X chromosomes may be low compared to the effective number of
independent markers on autosomes of similar length. On the one hand, this would boost
the signal to detect associated loci by inflating the LD score of SNPs on the X
chromosome; at the same time, due to the large available sample and the high
polygenicity of EduYears, a lower effective number of markers will mean that each lead
SNP may tag a larger number of independently associated SNPs, leading to fewer lead
SNPs being identified by the clumping algorithm. To test which of these effects
dominates, we estimated the effective number of loci, Mg, for each chromosome, using
methods identical to those described above for the X chromosome, and compared the
number of lead SNPs to the chromosome-specific SNP heritability for each chromosome.
The resulting estimates are shown in Supplementary Table S. They indicate that the X-
chromosome results are not an outlier when compared to autosomes with a comparable
effective number of loci. For example, the average effective number of independent loci
on the X chromosome (1,309) is similar to our estimates for chromosomes 19-22, where

the mean estimate is 1,401 (range 1,148 to 1,453). On these autosomes, the number of
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lead SNPs is 8.5 (range 8 to 12) compared to our finding of 12 lead SNPs on the X

chromosome.

A third factor that is consistent with fewer identified genome-wide significant lead
SNPs on the X chromosome compared to autosomes is the combination of haploidy in
males and (partial) X-inactivation in females. Both of these lead to a smaller amount of
variance explained for a given per-allele effect size when the dosage compensation is not
too high, and power of detection is proportional to the proportion of variance explained
by a SNP. Note, however, that finding fewer genome-wide significant lead SNPs is also
consistent with a smaller per-allele effect size for SNPs on the X chromosome relative to
the autosomes, and we are unable to distinguish between these potential explanations in

our data.

In a final analysis, we compared the heritability due to common SNPs on the X
chromosome to the per-chromosome SNP heritabilities of the autosomes. In this analysis,
we used equation (4.1) to estimate SNP heritabilities. We found that relative to
autosomes similar in length, the X chromosome has a lower SNP heritability, but once
again, the X chromosome has a similar SNP heritability to that of autosomes similar in

effective number of loci.

Despite the similarity of the X chromosome to the autosomes with a similar effective
number of loci, a comparison to autosomes of a similar length may be more appropriate.
This is because, under the common assumption that all SNPs explain an equal amount of
heritability in expectation (Bulik-Sullivan et al., 2015; Yang et al., 2011; Vilhjalmsson et
al., 2015; Turley et al., forthcoming), the SNP heritability of a chromosome should scale
linearly with the number of SNPs on the chromosome. This can be seen in the short proof

below.

Standardize the phenotype to have mean zero and variance one. Let h? denote the
SNP heritability for chromosome k, x;; denote the genotype of individual i at SNP j, and
i denote the effect of SNP j on some phenotype conditional on the genotypes of all other
SNPs. We let K denote the set of SNPs on chromosome k and My denote number of SNPs
on that chromosome. Because we assume that each SNP contributes equally to the
heritability of the phenotype in expectation, Var(x;/3) is constant across SNPs. We let o7
denote this constant value. Under the assumption that effect sizes are uncorrelated across

SNPs, we calculate:

h,zc = Var quﬁj

JeK
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Thus, the SNP heritability for chromosome k is proportional to the number of SNPs

on chromosome k.

On the other hand, under the assumption that the fraction of heritability explained by
a SNP is proportional to its LD score—which is the assumption underlying LDAK
(Speed et al., 2017)—it is true that the SNP heritability would be proportional to the
effective number of SNPs on the chromosome rather than the total number of SNPs.
Given the apparent linear relationship between the SNPs’ y” statistics and their LD scores
observed in Supplementary Figure 2—consistent with the model underlying LD score
regression—we think it is unlikely that the LDAK assumption holds for EduYears. An
explanation of the reduced heritability that is more consistent with the observed data is
partial dosage compensation through X-inactivation.

Supplementary Figure 6 summarizes the results from our comparative analyses

with results from autosomal analyses.
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5. Biological Mechanisms

5.1. Introduction

In this section we describe our insights into the biological mechanisms through
which genetic variation affects EduYears. Supplementary Figure 7 provides a flowchart
detailing our analyses intended to identify enriched tissues/cell types, enriched gene sets,
causal genes, the points at which the causal genes are expressed across development, and
causal SNPs.

To preview, in broad outline the results have two main themes:

1. The setup of the brain during prenatal development and in the first years
after birth; and

2. Online neuronal communication and synaptic plasticity occurring
throughout life.

The first theme was very prominent in an earlier GWAS of EduYears in a much
smaller sample! and is even stronger here. The second theme now comes to the
foreground as well (Supplementary Figure 8).

5.2. Methods: Enriched Tissues/Cell Types, Enriched Gene Sets, Causal Genes,

BrainSpan Developmental Transcriptome

DEPICT. We used DEPICT* (downloaded February 2016 from
https://github.com/perslab/depict) to identify the tissues/cell types where the causal genes

are strongly expressed, detect enrichment of gene sets, and prioritize likely causal genes.
(A gene set is a group of genes annotated as sharing an important property, such as the
participation of their products in a common pathway.) We ran DEPICT as described

previously' with the following exceptions:

1. We used 37,427 human Affymetrix HGU133a2.0 platform microarrays to assess

whether genes in associated loci are highly expressed in any tissue/cell type®.

2. We discarded gene sets that were not well reconstituted*®. The criterion of poor
reconstitution was a failure of the original members of the binary gene set to show
reconstituted membership scores significantly different from those of all other genes
(Mann-Whitney test, P < 0.01).

3. To accommodate the much greater number of lead SNPs, we relaxed the
significance threshold for defining a matching SNP in the simulated null GWAS from
5%107* to 5x107°.
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After mergers, the 3,844 lead SNPs meeting the developer-recommended threshold
of P < 107° define 1,742 distinct loci (Supplementary Table 7). The mean locus length
is ~304 kb. The loci altogether cover more than 529 Mb, about 18 percent of the human

autosomal genome.

A gene is missing from the DEPICT inventory if it lacks high-quality Affymetrix
expression data in the Gene Expression Omnibus. We added any non-DEPICT protein-
coding gene with a status of known in GENCODE (downloaded February 26, 2015 from
https://www.gencodegenes.org/releases/26lift37.html) to Supplementary Table 8 if it

either encompasses one of the lead SNPs in a DEPICT-defined locus or has the start site
closest to such a SNP. There are some SNPs in the EduYears meta-analysis, most of them
featuring a rare allele, that are not present in the DEPICT files; we did not attempt to
provide biological annotation of any such SNPs.

We found a number of tissues/cell types and reconstituted gene sets in the DEPICT
output that are exact duplicates despite having different identifiers. We inspected every
instance of duplication in our tissue results. Because there are 10,968 gene sets in the
current version of DEPICT, we only inspected duplications of gene sets attaining
statistical significance (defined by FDR < 0.05) or those that are /east implicated by our
GWAS results (defined by having the highest possible P value, P = 1). Without exception
we found that multiple objects with the same content but different identifiers have names
with highly similar biological meanings (e.g., voltage-gated channel activity and
voltage-gated ion channel activity).

For each group of tissues/cell types with identical vectors of expression scores, we
dropped all but one from Figure 3A and Supplementary Table 6 in the following way.
If one of the MeSH terms in the group is a substring of the others, we chose its tissue/cell
type for inclusion. In the absence of such a simple relationship within the MeSH tree, we
attempted to retain the name with the most general reference (e.g., lymphatic system
over lymphoid tissue). Of the 209 tissues/cell types in the DEPICT inventory, 29 were

excluded for being a duplicate.

For each group of significant gene sets with identical vectors of membership scores,
we dropped all but one from Supplementary Table 8 in an analogous manner. We
attempted to retain the name with the most general or inclusive reference (e.g., channel
activity over passive transmembrane transporter activity), although we often could
not make this distinction and sometimes actively override the choice resulting from it.
For example, neuron spine is arguably more general than dendritic spine, but we
retained the latter because to our knowledge spines are found exclusively on dendrites.

When filtering gene sets from the InWeb database, we preferred names referring to
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gene/protein symbols over Ensembl identifiers and current Ensembl identifiers over
retired ones. Of the 1,968 reconstituted gene sets attaining statistical significance in the
unprocessed DEPICT output, 61 were excluded for being a duplicate®.

The relatively small number of duplicate gene sets cannot substantially affect the
FDR calculated by DEPICT. The tissues/cell types do raise some concern. We calculated
the FDR associated with each of the remaining unique tissues/cell types using the
DEPICT-calculated P values as input to the Benjamini-Hochberg procedure; the output
produced no conflicts with the DEPICT-calculated FDR.

Many gene sets returned by DEPICT as significant are highly correlated (e.g., the
GO, KEGG, and Reactome instances of axon guidance) and thus do not represent
independent biology. To facilitate the interpretation of the results, as is standard®, we
applied the Affinity Propagation algorithm*’ to segregate the gene sets into clusters and
name each cluster after an exemplary member. The input to the algorithm consisted of the
correlations between gene sets over just those genes prioritized by DEPICT in the sense

of achieving FDR < 0.05. We used the default settings of the apcluster function in R.

We remain interested in how the output of DEPICT’s gene-set enrichment analysis
varies as a function of the trait studied in the GWAS. We therefore updated
Supplementary Table 4.5.3 of an earlier GWAS of EduYears in a smaller sample!, to
reflect the most recent EduYears results and new results from studies of other traits,

namely migraine*®, height*’, and coronary artery disease.

In our previous work, we took the expression data from the BrainSpan
Developmental Transcriptome’' and calculated the average expression in the brain of
DEPICT-prioritized EduYears genes as a function of developmental stage (using the
stage definitions in the original paper). We found that the expression level declines as
development proceeds from the early fetal period to adulthood, supporting a predominant
role of these genes in prenatal brain development!. The number of genes significantly
prioritized by DEPICT in the current study is 1,838—a greater-than-tenfold increase.
When the mean expression in the brain of our larger collection of genes is plotted as a
function of developmental stage, the trajectory is now flat; if the outlying early
childhood stage is ignored, the mean expression in logz2(1 + RPKM) is ~3 regardless of
the developmental stage (Figure 3B). This suggests that newly significant SNPs in the
current meta-analysis of EduYears often act through causal mechanisms involving

postnatally expressed genes.

° Reconstituted gene sets that are duplicates in DEPICT are not necessarily duplicates in the most current
version of their original database. Conversely, reconstituted gene sets that are distinct in DEPICT may
currently be identical in their original database, although this case seems less likely.
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Given that some of the relevant biological mechanisms likely act at different times,
we calculated a specific trajectory for each significantly enriched gene set. We followed
all steps described in Supplementary Information section 4.7 of Okbay et al.! with the

following exceptions:

1. To facilitate comparisons across developmental stages, we only included the six
brain regions donated at all 12 developmental stages: the amygdala, hippocampus,
inferolateral temporal cortex, anterior cingulate (medial prefrontal) cortex, orbitofrontal

cortex, and ventrolateral cortex.

2. Previously, we computed the median expression level in loga(1 + RPKM) of all
DEPICT-prioritized genes for each combination of donor and brain region and then each
individual’s mean of the median expression levels. This time, for each stage, we
computed the mean expression level of a given gene over all donors who contributed a
particular brain region and then the mean of the regional means. The first procedure leads
to a measure of how abundantly a collection of genes was transcribed in a single
individual, whereas the second procedure yields a measure of how much a particular gene
was transcribed on average in a group of individuals. The first procedure simplifies
significance testing; each stage’s aggregated data represents a sample of individuals, and
we can study what might have been observed in a different such sample. In our current
applications, we are less concerned with significance testing and sometimes need to judge
whether an individual gene qualifies as “prenatal” or “postnatal.” For these reasons we
adopted the second procedure in this workP.

3. We weighted the contribution of the ith DEPICT-prioritized gene to a given stage

mean in trajectory j by —log f;.(p(x)dx, where ¢ is the density of a standard normal
ij
distribution and Zij is the membership score of gene i in gene set j.*>* Those prioritized

genes that most strongly drive the significant enrichment of the gene set were thus given

the largest weights in the determination of the trajectory.

The results of calculating the set-specific trajectories in this way are shown in
Supplementary Figure 22 and Supplementary Table 8. The weighting scheme, albeit
ad hoc, does capture a prominent dimension of variation across the enriched gene sets.
When we summarized each weighted trajectory as the mean of the prenatal stages minus
the mean of the postnatal stages, we found a correlation of 0.88 between the prenatal-
postnatal differences of the exemplary gene sets and their projections on the first

principal component computed from their correlation matrix.

P The one exception to this statement is the calculation of the trajectories and their confidence intervals in
Figure 3A. Here we reverted to our previous procedure.

72



Stratified LD Score Regression. We used stratified LD score regression to
supplement our analyses of tissues/cell types. Finucane et al. have made available
stratified LD scores based on whether a gene is highly expressed in astrocytes,
oligodendrocytes, or neurons®?. These annotations are in turn based on the expression
data gathered from postnatal mice brains by Cahoy et al.”> We will provide more details

about our use of stratified LD score regression in the next subsection.

5.3. Methods: Robustness Checks of Causal Genes and Enriched Gene Sets

MAGMA. We also employed the tool Multi-Marker Analysis of Genomic
Annotation (MAGMA)* (downloaded June 28, 2017 from
https://ctg.cncr.nl/software/magma) for the purpose of gene prioritization. We used the

“multi=snp-wise” option, which aggregates a gene-level test of mean SNP association
equivalent to VEGAS>® and a test of the single maximally associated SNP. We mapped a
SNP to a gene if it resides within the gene boundaries or 5 kb of either endpoint,
according to the coordinate file available at the MAGMA webpage. We used the
Europeans in 1000 Genomes phase 3 as the reference panel for estimating LD. We
applied the Benjamini-Hochberg procedure and declared a gene to be significant if its
joint P value falls below the threshold corresponding to FDR < 0.05.

An importance difference between the gene-prioritization functions of DEPICT and
MAGMA lies in their treatment of the relationship between SNP and gene. In brief,
DEPICT takes a local maximum of the Manhattan plot clearing the threshold P < 107°
recommended by the DEPICT developers and constructs an LD-based locus centered on
this lead SNP. Any gene overlapping this locus is prioritized if its vector of memberships
in the DEPICT reconstituted gene sets is significantly correlated with the vectors
belonging to genes near other lead SNPs. A prioritized gene is not necessarily the closest
to a lead SNP, and in fact the distance between lead SNP and prioritized gene can reach
hundreds of kilobases. MAGMA, on the other hand, tests the significance of the SNPs
falling directly within the gene boundaries or sufficiently close to one of its endpoints.
(The developers recommend using a short radius.) This difference between DEPICT and
MAGMA in the treatment of SNP-gene distance is perhaps not particularly consequential
because a SNP residing inside a gene can show strong association with the trait as a result
of LD with causal SNPs outside the gene. Nevertheless, it is an important conceptual

distinction.

PANTHER. As a robustness check of the DEPICT results, which are based on its
reconstituted gene sets, we use an enrichment analysis that employs binary gene sets (i.e.,
gene sets for which any given gene is either a member or not, as opposed to having a
quantitative measure of the amount of membership). Specifically, we used the

73


https://ctg.cncr.nl/software/magma

PANTHER binomial overrepresentation test>®>’, which has been implemented as a web-
based tool (http://www.geneontology.org). The input to this method is a discrete list of

genes supplied by the user; we used all DEPICT-prioritized genes as input. There is no
circularity in this procedure, despite the strong overlap in gene sets between DEPICT and
PANTHER, because DEPICT’s gene-prioritization algorithm relies on correlations
between rows of the gene x gene set matrix and not the labels of the matrix columns that
drive whatever significant correlations there may be. To verify this, we reran the analysis
with all genes in DEPICT-defined loci (including genes absent from the DEPICT
inventory) rather than just the prioritized genes and also all MAGMA-prioritized genes.
These three input lists produced similar results, although naturally the significant results
from the longer lists are fewer and weaker in effect size (results not shown).

The null hypothesis in the PANTHER binomial test is that the input gene list is a
random sample of all genes in the reference gene list. There are a number of reasons,
however, why rejection of this null hypothesis might not be indicative of true enrichment.
For instance, longer genes are inherently more likely to obtrude into GWAS loci, and
genes strongly expressed in the brain also tend to be longer. Hence a list of all genes
overlapping our DEPICT-defined loci might contain an above-chance number of genes
with neural functions even if our trait is not mediated by the brain at all. For this reason
we used the genes prioritized by DEPICT in the 2014 GWAS of height®® as a negative
control. (DEPICT was not used in the more recent GWAS of height* to prioritize likely

causal genes.)

Note that the versions of the binary gene sets used in our application of PANTHER
are more recent than the ones employed in the DEPICT reconstitution procedure. In fact,
PANTHER incorporates updates of Gene Ontology (GO) on a roughly monthly basis.
Also, many of the PANTHER gene sets are not in the DEPICT inventory because of the
decision to reconstitute only those gene sets with at least 10 and no more than 500
members at the time*®. Furthermore, some gene sets have been retired and new ones
created. We used the default Bonferroni correction to adjust the PANTHER P values for
each annotation dataset.

Stratified LD Score Regression. A principled form of enrichment analysis is to
partition the heritability of the trait between SNPs in or near genes that are members of a
given set and all other SNPs. This approach is not statistically powerful, however, for two
main reasons. The first is that many SNPs in or near a causal gene probably have
negligible impact on the trait, which implies that enrichment effect sizes in this type of
analysis will tend to be small. The second is that most binary gene sets have few
members and hence a relatively small number of SNPs mapping to them; the

consequence is large standard errors in a heritability partition. We took these
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considerations into account when planning our enrichment analysis with stratified LD
score regression’®. The developers of LD score regression have gathered together a
number of SNP-level annotations (https://data.broadinstitute.org/alkeseroup/LDSCORE),

but the method is not restricted to these particular annotations. We devised three types of

novel annotations in our gene-set enrichment analysis.

1. We classified a SNP as a member of a gene set if is located within the boundaries
of a gene ranking in the top 10 percent of the DEPICT reconstituted version of that set or
within 100 kb of such a gene. The values of 10 percent and 100 kb are taken from a
recent work that used the DEPICT tissue/cell type data in an analogous way and found
that these settings led to the smallest enrichment P values®’. (The largest enrichments
reported in this paper are about 1.4, bearing out our earlier point about small effect sizes.)
Since stratified LD scores are tedious to compute, we examined only the exemplary gene
sets chosen by the Affinity Propagation algorithm in the DEPICT analysis pipeline.

2. We also constructed set-specific annotations indicating whether a SNP falls
within or less than 100 kb from a member of the original binary gene set in the DEPICT
inventory. We chose original gene sets with 200 or more members at the time of the
DEPICT reconstitution and whose reconstituted versions are significantly enriched
according to the DEPICT analysis. The cutoff of 200 genes comes from a
recommendation in live tutorials given by the LD score regression developers—made
with the issue of statistical power in mind—to restrict this type of analysis to annotations
borne by at least 1 percent of all SNPs where both alleles are common in the 1000

Genomes European populations.

3. An attraction of heritability partitioning as a means of gene-set enrichment
analysis is that it provides a means of assessing whether it is prenatal or postnatal
processes that tend toward larger effect sizes. For instance, if forebrain development
shows greater enrichment than regulation of synaptic transmission, we might
tentatively conclude that early brain development has a larger genetically mediated

impact on EduYears than online neurophysiological function.

We took this notion to one possible logical endpoint by classifying all protein-
coding genes with data in the BrainSpan Developmental Transcriptome as non-brain,

4 The 10-percent cutoff is not intended to imply that a gene set defined by a protein complex such as
npBAF complex has more than a thousand cryptic subunits encoded by different genes. When a gene
becomes a high-ranking member of a gene set upon application of the DEPICT reconstitution procedure,
this simply means that the gene follows the same pattern of co-expression as the original members of the
set.
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brain/flat, brain/prenatal, and brain/postnatal in the following way. At any given
temporal stage, the median protein-coding gene has an expression in the brain of roughly
1.8 (on the scale used in Figure 3B and Supplementary Figure 22). We annotated a
gene with an average expression in the brain over all 12 stages smaller than 1.8 as non-
brain. The remaining genes were then ranked by prenatal-postnatal difference; the genes
in the top third were annotated as brain/prenatal, those in the middle third as brain/flat,
and those in the bottom third as brain/postnatal. All SNPs inside or within a 100-kb
radius of a gene bearing a given annotation inherited the annotation for purposes of this

heritability-partition analysis.

When the brain/prenatal genes were given as input to the PANTHER binomial test,
the highest-ranking GO biological processes by fold enrichment with the strings “neur”
and “brain” in their identifiers were neural tube closure and forebrain development,
respectively. The string “synap” did not appear in any of the nominally significant
results. When the brain/postnatal genes were given as input, regulation of neuronal
synaptic plasticity, regulation of synaptic vesicle transport, and regulation of
neurotransmitter secretion were three of the top four results. We interpret this pattern

as validating our use of the BrainSpan data to classify genes in this way.

In the present work, we calculated the stratified LD score of each HapMap3 SNP
(over all 1000 Genomes SNPs with European MAF > 0.0013 within the recommended 1-
cM window) with respect to the gene-set annotations. We then added each gene-set
annotation in turn to the baseline set of annotations and regressed the GWAS y? statistics
of the HapMap3 SNPs on the stratified LD scores. A key innovation since the application
of stratified LD score regression in Okbay et al.' is the addition of various baseline
annotations referring to properties such as allele age, MAF, and LD*. A potential
confounder in LD score regression is heritability per SNP, which clearly affects the y?
statistic and varies as a function of the LD score itself (Supplementary Table 31). By
taking into account LD and various related properties, the baseline annotations should
now be even more robust. As input to the determination of the regression weights, we
used the non-stratified LD scores of HapMap3 SNPs outside the HLA region
(https://github.com/bulik/ldsc/wiki/Partitioned-Heritability).

Non-Significant Gene Sets and Genes. If all of the null hypotheses in the DEPICT
testing of gene-set enrichment are correct, then we should expect roughly 100 of them to

show P = 1, the highest possible value. In our real data, however, 1,769 reconstituted
gene sets in fact reach P = 1. Thus, DEPICT-defined lead SNPs fall far away from the
high-ranking members of these gene sets more often than expected by chance. Because it
is of interest to know which biological processes are impoverished as well as enriched
with respect to EduYears lead SNPs, we clustered the P = 1 gene sets with the Affinity
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Propagation algorithm in the same way that we clustered the FDR < 0.05 gene sets of
primary concern. We employed the exemplary gene sets chosen in the clustering of the P
= 1 results to guide our interpretation of the biology that is minimally involved in the

genetic etiology of EduYears.

We also employed stratified LD score regression to estimate the EduYears
heritability accounted for by SNPs in or near genes that are high-ranking members of the
exemplary P = 1 gene sets. We used the same parameter values (top 10 percent, 100-kb
radius) as in the analogous application to the FDR < 0.05 gene sets. Genes expressed
strongly in non-CNS tissues show an average EduYears heritability enrichment factor of
almost exactly unity”?; although this result can be taken as evidence of stratified LD score
regression being well calibrated, it also suggests that analysis of impoverished gene sets
is likely to have poor statistical power. Nevertheless, we hypothesized that these gene
sets exhibiting very high P values in the primary DEPICT analysis will show an average
enrichment factor somewhat smaller than unity. We also applied this heritability-partition
technique to the original binary gene sets with at least 200 members whose reconstituted

versions reach P = 1.

5.4. Methods: Causal SNPs

Stratified LD Score Regression. We used stratified LD score regression? to estimate
which types of SNPs are most likely to have relatively large effects. We expanded upon
previous analyses by incorporating the 450 annotations gathered together by Pickrell®.
We will call these the “fgwas annotations,” and they are available at
https://github.com/joepickrell/1000-genomes". It is important to keep in mind that the

effect sizes of annotations whose instances describe relatively short, highly functional
regions of the genome (e.g., conserved or nonsynonymous) can be much greater than
those in the applications of stratified LD score regression to tissues/cell types and gene
sets described earlier because the latter types of annotations typically apply to much
longer regions of the genome that are likely to contain many SNPs with negligible impact

on the phenotype.

" Okbay et al.! used the annotations accompanying the LD score regression software that contain references
to distinct tissues. Each of these annotations, however, is formed by taking a union of SNPs associated with
assayed histone marks across a variety of cell types and developmental stages. The SNPs that bear one of
these annotations may be in fact quite heterogeneous, and thus the fgwas annotations offer the potential of
greater resolution. Many of the same data sources contribute to both the LD score regression and fgwas
annotations, and the latter can therefore be viewed to some extent as a disaggregation of the former. We
conduct stratified LD score regression rather than using the fgwas tool® itself because simulations suggest
that stratified LD score regression will usually have greater power to detect enrichment?>.
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We calculated the stratified LD scores and performed the regressions in the same

manner as described in previous subsections.

CAVIARBF. For fine mapping, we use the tool CAVIARBF®!®2, This program has a
couple of advantages over other fine-mapping methods. First, it offers a systematic
method of jointly incorporating multiple annotations. It does this by imposing a
regularization penalty on the estimated effects of the annotations. This allows
CAVIARBF to use LASSO (L), ridge (L»2), or elastic net (combination of L; and L)
penalties®® to select annotation sets for inclusion in the model. The optimal penalty
parameter can be selected using various model-selection methods (e.g., cross validation).
Second, CAVIARBF allows for more than one causal SNP per locus®.

We used annotations from several sources. We used the 74 baseline annotations
employed by stratified LD score regression®, which include the 52 functional annotations
from the original paper”>. We combined these 74 annotations with annotations from
fgwas60. We thus have 525 annotations in total, of which 8 are quantitative annotations.
We applied a MAF filter of 0.01 and a sample-size filter of 400,000. This resulted in a set
of 7,951,231 SNPs; two genome-wide significant SNPs were filtered out (due to having
MAF below 0.01).

To make it computationally tractable to allow for multiple causal SNPs within a
locus, we only considered SNPs near lead SNPs clearing the genome-wide significance
threshold P < 5x1078. As in the CAVIARBF paper®, we only used SNPs within a 100-kb
window (50-kb radius) of these lead SNPs'. After limiting ourselves to SNPs within 50 kb
of a lead SNP, we retained 332,837 SNPs, of which 331,268 have been annotated with
our set of 525 labels. The number of loci decreased from 1,269 to 1,067 because lead
SNPs with overlapping 100-kb windows were merged.

To estimate pairwise LD between the SNPs in each locus, we use the subset of
Europeans in the 1000 Genomes Phase 3 reference panel. To address potential concerns

that the small sample size of the 1000 Genomes reference panel will result in inaccurate

* The results of our gene-prioritization analyses indicate that there are many thousands of genes affecting
EduYears. Thus, the assumption underlying the tool fgwas®® that each of ~1,700 independent segments of
the genome contains at most one causal SNP seems unreasonable. When there is only one causal site in a
locus, fgwas and CAVIARBF perform similarly in simulations®?. However, when the true number of causal
sites per locus is increased, running CAVIARBF with up to three causal sites per locus demonstrates better
performance.

' One concern with this approach is that it may leave out causal SNPs that are not sufficiently close to any
GWAS hits. Based on simulations with whole-genome sequencing data, however, a recent paper by Wu et
al.’» found that 89% of the time, the causal SNP is located within 50 kb of the top GWAS hit. A caveat is
these authors simulated one causal SNP at a time, whereas actual GWAS results will involve many causal
SNPs and GWAS hits at once.
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LD estimation and thus errors in fine mapping®, we repeat our analyses using a reference
panel comprised of ~400,000 Europeans from the UK Biobank (the UKB reference
sample, as in Supplementary Section 1.9).

To compute Bayes factors for each SNP, we needed to define a prior for the variance
of effect sizes. As in prior GWAS of EduYears', we averaged over prior variances of
0.01, 0.1, and 0.5. We set the following additional parameters for CAVIARBF. The
sample size was set to the mean sample size of our EduYears meta-analysis: 1,076,358.
We computed exact Bayes factors. As suggested in®’, we added a 0.2 to the main

diagonal of the LD matrix because we used a reference panel for LD estimation".

We computed results for the case of at most two causal SNPs per block. (Because
CAVIARBF computes Bayes factors for each potential set of causal SNPs within a block,
and because each block can contain thousands of SNPs, assuming more than two causal
SNPs quickly becomes computationally intractable.) Another important assumption is
that the causal sites have indeed been included in each block. This may turn out not be
the case if the causal site has been excluded by a QC filter or is a type of polymorphism
(e.g., an indel) that has not studied in our meta-analysis.

CAVIARBF provides a number of options for handling annotations, and we used
elastic net regularization. This should be the best option when there are many annotations
of some value (Supplementary Tables 37 and 10) and when overfitting needs to be
avoided. The elastic net parameters o and A (as defined in the relevant CAVIARBF
paper62) were selected via 5-fold cross-validation, from all combinations of o € {0, 0.5,
1}and A € {272,271, ..., 219}, This procedure includes both LASSO and ridge regression
as special cases; a = 0 gives ridge regression (an L> penalty equivalent to a normal prior
on annotation effect sizes); o = 1 gives LASSO (an L; penalty equivalent to a Laplace
prior); and o = 0.5 places equal weight on the L; and L» penalties.

Results are reported as posterior inclusion probabilities (PIPs), which are defined for
each SNP considered. The PIP for a SNP gives the posterior probability that a SNP is

causal given the GWAS data, annotation data, and estimated annotation coefficients".

“ An additional concern emerges when (1) the LD matrix is estimated in a separate reference sample or (2)
the sample size differs nontrivially across SNPs (perhaps as a result of QC filters). Under these conditions,
some SNPs with slightly different Z-statistics in our meta-analysis may be in perfect LD%. When this
occurs, CAVIARBF will tend to assign a much higher posterior inclusion probability to the SNP with the
slightly higher Z-statistic, although intuitively there should not be any difference between the SNPs.

¥ We obtained a nearly identical set of SNP candidates clearing PIP > 0.9 using the topK method. For
example, the SNP rs61734410—which we highlight later because of its nonsynonymous status and
residence within a gene encoding a voltage-gated calcium channel pore-forming subunit—is prioritized by
both topK and elastic net. Interestingly, it is CAVIARBEF’s ability to allow for multiple causal SNPs in a
locus rather than the choice of annotation method that is critical to the prioritization of this SNP. The
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5.5. Results: Enriched Tissues/Cell Types

Without exception, all 23 tissue/cell types with the MeSH first-level term nervous
system were found to be statistically significant by DEPICT in the sense of FDR < 0.01
(Figure 3A and Supplementary Table 6). Under certain conditions, some tissues/cell
types in this dataset have been shown to be susceptible to false positives when analyzed
with DEPICT’?, but none of these falls under the MeSH second-level term central
nervous system.

We will discuss the top tissues/cell types in order of P-value ranking (although we
caution against taking the ranking itself too seriously). The most significant result is
hippocampus (P = 1.87x1072%), which in humans is believed to be responsible for the
formation of long-term memories. The second and fourth most significant results, brain
and central nervous system respectively, are too high in the MeSH tree to provide much
insight. The third most significant result is limbic system (P = 2.78x1072%), which refers

to a collection of functionally heterogeneous regions that includes the hippocampus.

The fifth most significant result is cerebral cortex (P = 3.92x1072%), which refers to
the layer of gray matter making up the surface of the brain. In humans, it is dominated by
the evolutionarily recent neocortex, which is the seat of higher mental functions such as
perception, thought, language, spatial visualization, and the initiation of voluntary
movement.

Some significant tissues/cell types fall outside the first-level MeSH term nervous
system. The first of these is retina (P = 2.05x10"'®), which is perhaps not anomalous; the
retina is essentially an outgrowth of the embryonic forebrain. The retina contains layers
of neurons, whose connections to the rest of the central nervous system through the optic
nerve are laid down as a result of synaptogenetic mechanisms (involving semaphorins,
ephrins, and the ROBO receptor) highlighted in previous biological annotation of
EduYears GWAS results'. The cell type neural stem cells (P = 1.71x107!°) falls under
the first-level term cells but is nonetheless obviously neural.

We note that, despite the large number of prioritized genes, many tissue/cell types
are not prioritized. In fact, 93 of the 157 non-neural tissues/cell types show P > 0.95
(Figure 3A and Supplementary Table 6).

At the level of distinct cell types, not all neural cell types are equal. Our application

of stratified LD score regression showed that whereas SNPs in or near genes highly

LocusZoom plot (Supplementary Figure 9C) and other analyses (results not shown) indicate that there is
at least one additional causal SNP in this gene driving most of the association signals.
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expressed in neurons account for a significantly enriched share of heritability (1.33-fold,
P = 2.89x107!'"), genes highly expressed in astrocytes (1.08-fold, P = 0.07) and
oligodendrocytes (1.09-fold, P = 0.06) do not show significant enrichment even with our
massive sample size (Supplementary Table 9). Moreover, the partial regression
coefficients of these two glial-cell annotations are both very close to zero (r =
—2.78x107'%, P = 0.79; = 1.64x107", P = 0.83).

To further examine results related to glial cells, we examined both the significant
and non-significant results of our primary DEPICT gene-set enrichment analysis. The
significantly enriched gene sets are listed in Supplementary Table 8. One cluster of
gene sets is named after regulation of gliogenesis. Four of this cluster’s members are
negative regulation of glial cell differentiation (P = 7.31x107%), regulation of glial cell
differentiation (P = 2.09x107%), negative regulation of gliogenesis (P = 3.04x107?), and
regulation of gliogenesis (P = 1.82x107°) itself.

In the binary version of GO, negative regulation of glial cell differentiation is a
subset of regulation of glial cell differentiation. The definition of negative regulation
of glial cell differentiation is “[a]ny process that stops, prevents, or reduces the
frequency, rate or extent of glia cell differentiation”
(http://amigo.geneontology.org/amigo/term/G0:0045686, accessed August 4, 2017).
Similarly, the binary negative regulation of gliogenesis is a subset of the binary

regulation of gliogenesis, and the definition of the former is “[a]ny process that stops,
prevents, or reduces the frequency, rate or extent of gliogenesis, the formation of mature
glia” (http://amigo.geneontology.org/amigo/term/G0O:0014014, accessed August 22,
2017).

Because neural progenitors tend to become neurons when they exit the cell cycle
earlier and glial cells when they do so later, the significance of negative regulation of
glial cell differentiation and negative regulation of gliogenesis plausibly supports the
greater relative importance of neurons over glial cells. Also, whereas both positive
regulation of neurogenesis (P = 1.56x107°) and negative regulation of neurogenesis (P
= 2.60x107°) are significant in our results, positive regulation of glial cell
differentiation is not (P = 0.58). (Positive regulation of gliogenesis is not present in the
current DEPICT inventory of gene sets.)

The pattern is similar in the case of gene sets specifically defined by one of the two
glial-cell types. None of the three gene sets with the string “astroc” in its identifier is
statistically significant at the FDR < 0.05 level (although they all satisfy P < 0.11). None
of the five gene sets with the string “oligodend” in its identifier is statistically significant
either; the closest are regulation of oligodendrocyte differentiation and negative
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regulation of oligodendrocyte differentiation (both P = 0.02). Of the eight gene sets
with the string “myelin” in its identifier, the lowest P value is 0.24, and central nervous
system myelination has P = 0.85.

It is perhaps surprising that SNPs mapping to genes highly expressed in
oligodendrocytes fail to account for a significantly enriched share of EduYears
heritability—especially in light of the fact that reaction time in simple cognitive tasks is
negatively correlated with cognitive performance ., After all, myelination renders the
action potential saltatory and thereby increases its velocity along the axon by an order of
magnitude, which might suggest the hypothesis that variation in cognitive phenotypes

across individuals might be related to genetic variation in genes related to myelination.

5.6. Results: Causal Genes and Enriched Gene Sets

Supplementary Table 7 lists all genes in the DEPICT-defined loci, regardless of
prioritization P value. A total of 1,838 genes were “significantly prioritized” by DEPICT,
as defined by having FDR < 0.05. Of the 1,742 loci, 1,068 contain at least one prioritized
gene (61 percent). Multiple genes were prioritized in 312 loci, indicating that a given
locus may contain not only multiple causal SNPs but also more than one causal gene.

MAGMA prioritized 8,171 genes according to the criterion of FDR < 0.05
(Supplementary Table 29), nearly 45 percent of all genes present in its inventory.
Reassuringly, 1,583 of the DEPICT-prioritized genes were also prioritized by MAGMA
(86 percent).

A total of 1,907 unique reconstituted gene sets are significantly enriched by
DEPICT. The Affinity Propagation algorithm grouped these sets into 143 clusters.
Supplementary Figure 22 shows a subset of the exemplary gene sets (i.e., the gene sets
for which the clusters are named) that have an enrichment factor from LD score
regression exceeding 1.25 (see Supplementary Table 35); each row of the heat map
gives the set-specific mean expression in the brain of the DEPICT-prioritized genes at
each of the BrainSpan Development Transcriptome stages. The rows are ordered by
prenatal-minus-postnatal effect size. It is striking how well this ordering reflects the
known course of brain development. For instance, npBAF complex (the prefix “np”
stands for “neural progenitor”), regulation of nervous system development (this cluster
includes many gene sets defined by progenitor proliferation and neurogenesis),
telencephalon cell migration, axon guidance (Reactome), and dendrite
morphogenesis are all positioned in the correct order relative to each other.
Supplementary Table 8 gives the trajectory of each individual gene set in numerical

form.
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To see which functional systems are least implicated by the EduYears GWAS
results, we examined the 1,769 reconstituted gene sets that reached P = 1, the highest
possible P value. These gene sets were grouped into 237 clusters (Supplementary Table
27). The biology represented by these clusters is quite diverse: enlarged spleen,
abnormal trabecular bone morphology, blood vessel development, formation of
fibrin clot (clotting cascade), cholesterol transport, telomere maintenance, and so
forth. Some of this biology has been implicated in GWAS of other traits (Supplementary
Table 28). There are several distinct clusters defined by the immune system (e.g.,
decreased T cell proliferation), and impoverishment of this biology is a recurring theme

of our analyses.

A useful feature of PANTHER is that it returns negatively enriched gene sets (< 1-
fold) as well as positively enriched ones (Supplementary Table 30). There are several
sets defined by immunity (e.g, immune response) that are barren of DEPICT-prioritized
genes. The sets that do overlap with the DEPICT-prioritized genes strongly bear out the
importance of nearly all stages of neuronal development and function. For example, the
list of significant GO biological processes is dominated until about position 100 by sets
that are not significant in the negative-control analysis of height genes and are clearly
defined by the brain (e.g., neurogenesis, neuron migration, positive regulation of
neuron differentiation, central nervous system projection neuron axonogenesis,
regulation of dendrite development, regulation of ion transmembrane transporter
activity, voltage-gated channel activity, neurotransmitter secretion, synaptic vesicle
cycle, glutamate receptor signaling pathway, regulation of long-term synaptic
potentiation). As we discuss below, some of the gene sets shared with height (e.g.,
chromatin organization) are probably not spurious but rather may owe their
significance for both traits to the importance of chromatin remodeling in early cell
development.

Earlier we discussed the relatively poor enrichment of glial cells, evident in our
analyses of both tissues/cell types and gene sets. Another aspect of neurobiology that
seems to be little enriched, if at all, is the transport along the microtubules of important
molecules between the soma and the neurite tips. The non-significant gene sets returned
by DEPICT include the following: axon cargo transport (P = 0.12), abnormal axonal
transport (P = 0.23), microtubule-based transport (P = 0.29), organelle transport
along microtubule (P = 0.37), and vesicle transport along microtubule (P = 0.41).
Four of these five gene sets are taken from GO, and none of these appears in the list of
significant results returned by PANTHER (Supplementary Table 30). In this latter
check, we ensured that the absence from the PANTHER results is not the result of the

accession number changing its name.
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As one of our robustness checks of the primary DEPICT gene-set enrichment
analysis, we now turn to the heritability-partition results obtained with stratified LD score
regression. The results obtained with the reconstituted gene sets are shown in
Supplementary Table 35, which are quite consistent with the primary results. Those
gene sets with low DEPICT P values (FDR < 0.05) show estimated enrichments greater
than unity without a single exception, and the vast majority of those sets whose DEPICT

P value is 1 (the highest possible P value) show enrichments smaller than unity.

The heritability partitions using the original binary gene sets (Supplementary
Figure 25 and Supplementary Table 36) are also consistent with the DEPICT gene-set
enrichment results. Although the larger standard errors mean that few of the P = 1 gene
sets show an enrichment factor significantly different from unity, the average factor over
these sets of 0.91 suggestively points to the reduced share of EduYears heritability
explained by these sets. Many of the P = 1 gene sets with the smallest enrichments are
defined by the immune system, even after taking into account set overlap
(Supplementary Figure 25). Most of the FDR < 0.05 sets are nominally significant (96
of the 113 such sets exhibiting positive enrichment reach P < 0.05), and their average
enrichment factor is 1.33. It is perhaps surprising that the very top results are defined by
mRNA processing, but we will discuss a plausible potential biological interpretation

below.

The Spearman correlation between the heritability-enrichment factors of the binary
gene sets in Supplementary Table 36 and the DEPICT P values of their reconstituted
counterparts in Supplementary Table 8 is —0.49. Note that the two methods being
compared here—DEPICT on the one hand, stratified LD score regression with binary
gene sets on the other—take markedly different approaches. Nevertheless, these two
methods do arrive at reasonably similar rankings of those gene sets initially found to be
significant by DEPICT. (It is also of interest that the estimated heritability-enrichment
factors of the reconstituted and binary gene sets, where both estimates are available, have
a Spearman correlation of 0.68.) Consistent with the lower statistical power of heritability
partitioning when applied to an annotation with relatively few SNPs, the mean —logio(P
value) of DEPICT exceeds that of stratified LD score regression with binary gene sets by
3.66.

In summary, our robustness checks affirm our primary DEPICT gene-set enrichment

results.

The top results by enrichment effect size in Supplementary Table 35 are a mix of
prenatal and postnatal gene sets (e.g., protein binding transcription factor activity vs.
synapse part). We can similarly characterize Supplementary Table 36 (e.g., RNA
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splicing vs. synapse part). To address whether there is a clear difference in the
contribution of processes taking place before birth rather than after, we turn to the
heritability-partition results in Supplementary Table 33. Those genes annotated by
ourselves (using the BrainSpan Developmental Transcriptome data as described above in
Section 5.3 under “Stratified LD score regression”) as brain/prenatal show a heritability
enrichment of 1.27 (P = 2.14x107'%), whereas those genes annotated as brain/postnatal
show an enrichment of 1.19 (P = 1.04x10°®). If we assume (unrealistically) no sampling
covariance between these two estimates, then this difference is not statistically
significant. Thus, we cannot say that genes that are more strongly expressed in the brain
prenatally explain a clearly greater share of EduYears heritability than genes that are
more strongly expressed postnatally. A more definitive resolution of this issue will

require an even larger sample size and perhaps an improved annotation scheme.

We organize our subsequent discussion of the likely causal genes and significantly
enriched gene sets with the aid of Supplementary Figure 22 and Supplementary Table
8, proceeding roughly from the most prenatally active gene sets at the top to the more
postnatally active ones at the bottom. We will mention several genes and their products”,
varying in the level of evidence supporting their causal role in the determination of
EduYears. We adopt a typeface convention to indicate the level of evidence. We assign

each gene a point for each of the following criteria that it meets:

1. prioritization by DEPICT in the sense of achieving a P value low enough to
satisfy FDR < 0.05;

2. prioritization by MAGMA, also in the sense of achieving FDR < 0.05; and

3. residence in a DEPICT-defined locus with at least one genome-wide significant
SNP (P < 5x107%).

The name of a gene or its product will appear in blue if it has a score of one, orange
if it has a score of two, and red if it has a score of three. When referring to a channel

complex, we will use the color corresponding to its pore-forming subunit.

Our discussion below is necessarily selective. We cannot hope to mention every
prioritized gene or significantly enriched gene set, although we tend to follow
Supplementary Figure 22 in that we focus on the sets with the largest effect sizes.

¥ Our preference for the most recent symbol adopted by the HUGO Gene Nomenclature Committee at the
time of writing sometimes means that the symbol present in our inventories is outdated, and in such cases
the reader will have to look up the old symbol in Supplementary Tables 7 and 29 in order to find more
information about the gene. We have attempted to give the old symbol in parentheses whenever there is
such a conflict.
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Early Brain Development: Chromatin Modification and Transcription. Among the
first few clusters in Supplementary Figure 22 are chromatin modification and protein
binding transcription factor activity. Similar clusters of gene sets attained significance
in an earlier GWAS of EduYears'. Our temporal analysis here suggests that they
correspond to the earliest developmental events that ultimately affect EduYears.

Mechanisms for regulating the compactness of chromatin and the accessibility of
regulatory regions to nuclear factors are represented in the group of clusters extending
very roughly from the initial rows of Supplementary Figure 22 to N-acetyltransferase
activity. The chromatin landscape in neural progenitor cells must suppress the genes
responsible for the noncommittal pluripotency of embryonic stem cells while still
promoting proliferation; it must also suppress neurogenesis until the appropriate time for
exiting the cell cycle. The landscape responsible for this state is shaped by at least two
ATP-dependent chromatin-remodeling complexes®®™. All ATP-dependent chromatin-
remodeling complexes contain an ATPase subunit and associated subunits with auxiliary
roles in modulating catalytic activity and binding to nucleosomes. The assembly of
specific isoforms of the associated subunits allows the resulting version of the complex to
be recruited to regions near genes that need to be regulated in a particular cell type. The
first chromatin-remodeling complex presented here gives its name to the cluster npBAF
complex’!"2. (The prefix “np” stands for “neural progenitor,” to distinguish the complex
from its precursor form found in embryonic stem cells and its successor found in
neurons.) The distinct forms of the BAF complex arise from combinatorial assembly of
component proteins from homologous subunit families, and nine components that can or
must occupy their respective slots specifically in the npBAF complex are encoded by our
prioritized genes (ARID2, ARIDIB, SMARCCI, SMARCA2, BCLIIA, BCLIIB, PBRMI,
PHF10, BCL7A). Once bound to a nucleosome, a chromatin-remodeling complex can
expose a regulatory region through a number of mechanisms, including sliding the DNA
along the histone octamer or even ejecting the octamer entirely’®. The npBAF complex in
particular can also bind in turn to repressive transcription factors, which physically
interact with the exposed regulatory region to inhibit the transcription of the nearby

neuronal gene.

There are many examples where perturbing a component of the npBAF complex
demonstrably or plausibly alters the proliferation of neural progenitors, including
knockdown (overexpression) of PHFI0 reducing (increasing) the number of actively
dividing progenitors in mice’!, knockout of SMARCC2 (which encodes the successor of
SMARCC1 found in the neuronal BAF complex) increasing the pool of basal progenitors
and ultimately enlarging the cerebral cortex in mice’*, and de novo mutations of
ARIDIB™ and SMARCA2™ being frequent causes of intellectual disability
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accompanied by microcephaly (reduction of head size) or macrocephaly (enlargement of
the head). The syndromes caused by mutations of ARIDI/B and SMARCAZ2, known
respectively as Coffin-Siris and Nicolaides-Baraitser syndrome, are very similar and
share many symptoms in common other than microcephaly. De novo mutations of
SOX11, which encodes a transcription factor and is itself regulated by the BAF

complex”, can also cause Coffin-Siris syndrome 808!,

Another group of ATP-dependent chromatin remodelers represented in our
prioritized genes is the CHD family (CHD2, CHD3, CHD®6, CHDS8)*. De novo mutations
of CHD?2 have been implicated in intellectual disability accompanied by epilepsy®*34, and
its knockdown in mice inhibits the regenerative proliferation of neural progenitors and
promotes the premature production of neurons®. CHDS8 has been particularly well
studied because of its role in autism spectrum disorder (ASD)®. (ASD shows a positive

1487 and is often

genetic correlation with both cognitive performance and EduYears
accompanied by macrocephaly®, although some of the enlargement may arise
postnatally®.) Perturbation of CHDS affects the expression of many genes, particularly
those that are highly expressed in early fetal development, and produces macrocephaly in

both zebrafish and mice®*°!.

Yet another chromatin remodeler represented in our list of genes is the NuRD
complex. This is the remodeler that is perhaps structurally and functionally the most
poorly understood®’. One slot in the complex must be filled by either GATAD2A or
GATAD2B; another must be filled by CODK2AP1; another can be filled by MTA2; yet
another, by CHD3. De novo mutations of GATADZ2E have been implicated in severe

intellectual disability, sometimes accompanied by microcephaly”>**,

Another mechanism of chromatin modification is the addition or removal of methyl
(CH3) or acetyl (COCH3) “marks” to the “tails” of the histones H3 and H4. Typically,
this modification neutralizes the basic charge of lysine and loosens the chromatin,
granting the transcription machinery access to the DNA sequence. In contrast, the process
corresponding to histone deacetylase complex and histone deacetylase activity (H3-K9
specific) removes acetyl groups and thereby prevents transcription. The exemplary gene
set histone methyltransferase activity is defined by the addition of methyl groups to
histones. Although histone methylation more often results in transcriptional repression, it
can activate transcription depending on the amino acid that is methylated or the
surrounding pattern of histone marks. (Methylation of DNA itself is also an important
mechanism of gene regulation. For instance, the NuRD complex can be recruited to
methylated CpG sites.) Histone marks can also affect chromatin structure by themselves
recruiting histone-marking or chromatin-remodeling complexes, which can in turn

establish or remove marks.
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KATS5 and KAT6B encode lysine acetyltransferases. KATS does not catalyze the
acetylation of histones but rather the ATM kinase, which triggers the repair of the
damaged DNA that initially recruited KATS5 to the chromatin®. This ensures the survival
of the cell and its progression through mitosis. DMAP ] encodes a protein that can serve
as a subunit or interaction partner of both histone acetyltransferases and deacetylases; in
the former role, it is a regulator of ATM®S. SSBP2 (formerly SOSS-B2) encodes a subunit
of a complex binding to single-stranded DNA that also contributes to damage repair and
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cell-cycle progression”’. KAT65 encodes a subunit of a histone acetyltransferase

complex, and de novo mutations of the gene are known to cause various syndromic forms

of intellectual disability, including some accompanied by microcephaly®® 1%,

The SAGA transcription coactivator complex can affect gene expression in multiple
ways through its functionally independent modules!®"1%  SGF29 (also known as
CCDC101) encodes a subunit of a module that functions as a histone acetyltransferase,
whereas ATXN7 and ATXN7L3 encode subunits that together work to remove ubiquitin
from histones and other substrates. (We will describe ubiquitin shortly.) 7AF5 and TAF6
encode core subunits of both SAGA and the transcription factor 1ID complex; the latter
coordinates the activities of numerous other proteins needed for the initiation of
transcription by RNA polymerase 11'%. Note that many members of the protein binding
transcription factor activity cluster (e.g., RNA polymerase II transcription cofactor

activity) are defined by some type of interaction with the basic transcriptional machinery.

Genes that encode histone methyltransferases are also represented in our results
(SETD2, SETDEI, KMT5A). Brain-specific deletion of SETDE] (formerly £SET) in mice
leads to a decrease in proliferation and an increase in cell death, particularly among basal
neural progenitor cells destined for the deeper layers of the neocortex '°. This study
observed a slight reduction of the H3K9me3 mark in the developing mouse brain, but the
mechanism may involve interaction with PRC2 (a repressor complex) to place
H3K27me3 %, EZH2 (a subunit of PRC2) and MTF2 (a transcription factor interacting
with PRC2) are also encoded by prioritized genes. KMT5A (formerly SETDS) is unique
among histone methyltransferases in that its levels oscillate during the cell cycle. It has
been implicated in DNA repair, the condensation of chromosomes before their

replication, and replication itself'?’.

PHF2IA (also known as BHCS80) encodes a component of LSDI, a histone
demethylase complex that itself binds to unmethylated H3K4 (the “null” mark
H3K4me0)!'®®. Occupancy of a promoter by LSD1 acts to repress the transcription of
neuronal genes, including SCN3A'®, and de novo mutations of PHF2IA have been

implicated in a syndromic form of intellectual disability that can be accompanied by
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microcephaly!'®'!!, Suppression of PHF2IA in zebrafish causes neuronal cell death and

a small-head phenotype!®.

Besides being part of the cytoskeleton, actin is a component of chromatin
remodelers and interaction partner of the RNA polymerases. Manufactured in the
cytoplasm by the ribosomes, actin must be rapidly shuttled into the nucleus by the import
factor encoded by /P09 in order for transcription to proceed at the maximal rate'!2. The
nucleus is not the final stop; XPO6 encodes the export factor that transports actin back to
the cytoplasm. These processes define significantly enriched gene sets such as nuclear
import and nuclear transport.

Our prioritized genes include at least eight that encode mitogen-activated protein
kinases or interacting proteins (MAPK7, MAPK9, MAPKAPI, MAPKSIP3, MAP2KI,
MAP2KS, MAP3K2, MAP3K3)*. Perturbation of MAPK7 (formerly ERK5) has been

shown to reduce the number of neurons''*113

, although the studies appear not to agree
about the decision point where the relevant branch is taken, possibly because of variation
across model organisms. MAPK7 can be phosphorylated by MAP2KS (formerly MEKS),
which in turn can be phosphorylated by MAP3K?2 (formerly MEKK?2) and MAP3K3

(formerly MEKK3)!16:117,
MAPKSs belong to a larger group of kinases called CMGC (named after the initials

of some members). One of the families in this group consists of the cyclin-dependent
kinases (CDKs), serine/threonine kinases whose activity depends on a regulatory subunit
called a cyclin!'®!"?. Our prioritized genes include several that encode CDKs (CDK?2,
CDK4, CDK5, CDKI10, CDKI2, CDKI3, CDKI4, CDKI9). Early work on the CDKs
established their role in the cell cycle, but they have undergone enormous evolutionary
specialization upon divergence and now frequently act as regulators of transcription.
CDK12 happens to forge a link between transcription and the cell cycle; its product
phosphorylates RNA polymerase II and is specifically required for the transcription of
genes involved in DNA repair'?°.

A de novo mutation of CDK/9 has been observed in one patient with mild

intellectual disability accompanied by microcephaly'?!

. This gene encodes one of the
proteins that can serve as the enzymatic component of the Mediator complex, which is

required for transcription by RNA polymerase Il and serves as a focus of regulatory

X A mitogen is any substance that promotes mitosis, and the first well-characterized members of the MAPK
family are indeed activated by mitogens and when inhibited lead to a cessation of proliferation®*®. These
proteins are involved in a variety of functions, however, even in a neural context''”37. (The exemplary
gene set MAPK targets/nuclear events mediated by MAP kinases is in fact closer to the bottom of
Supplementary Figure 22.)
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signals'??. The Mediator complex also has roles in chromatin modification, mRNA
processing, and other aspects of gene regulation. There are several prioritized genes that
encode other components of the complex (MEDI, MED13, MED 3L, MEDI19, MED2],
MED26, MED27, MED2S8, MED30). De novo mutations of MED/3[. cause a syndromic
form of intellectual disability that may be accompanied by microcephaly in a minority of

patients!?3124,

Early Brain Development: Post-Transcriptional Regulation of Gene Expression. We
now move on from the processes controlling transcription and focus on the next
checkpoint in gene expression: the regulation of mRNA once the key regions of
chromatin have been opened and the gene has been transcribed. Many of the relevant
genes are high-scoring members of the reconstituted gene sets giving their names to the
clusters mRNA splicing and regulation of nuclear mRNA splicing, via spliceosome.

Several of our prioritized genes encode recognized splicing factors (SRSF6, SRSF9,
HNRNPAI, HNRNPK, KHDRBS3, PCBP3, PCBP4, RBFOXI, NOVAI, RBM4, RBM4B,
RBM14)'?>, There are eight additional DEPICT-prioritized genes containing the canonical
RNA-binding motif (RBM5, RBM6, RBEMI2, RBMI5B, RBM23, RBM27, RBM39,
RBMS3)1?°, Despite often being among the most strongly expressed genes in the

brain’ 1?7

, many of these genes and others involved in mRNA regulation seem to have
been little studied in a neural context (perhaps because they are often ubiquitously
expressed). These genes show a range of peak expression times. We focus on those that
have received some coverage in the literature and seem to be involved mainly in early

prenatal development'?®.

SRSF6 (formerly called SRP55) has been shown to influence the splicing of HTT
transcript, producing an isoform that is more often found in the brains of Huntington’s
disease patients'?>!3%. A systematic attempt to identify the transcripts targeted by RNA-
binding proteins found that SRSF6 targets enrich GO gene sets that are among our own
significantly enriched sets (e.g., transcription factor binding, neuron
differentiation)!”. Two of our splicing factors are heterogeneous nuclear
ribonucleoproteins (HNRNPs), as are three other prioritized genes (HNRNPAIP3,
HNRNPD, HNRNPUL2)"3!132. HNRNPK forms a complex with a number of other gene
products, and its deletion in mice inhibits the proliferation of embryonic stem cells and
neural progenitors'*>. HNRNPK may bring about its effects through multiple post-
transcriptional mechanisms!**; for instance, perturbations of its complex alter the
expression of many genes, and one study found that HNRNPK and members of the
ELAVL family (including the protein encoded by ELAVL2) are mutually antagonistic

controllers of the switch from proliferation to neuronal differentiation through post-
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transcriptional regulation of CDKNIA (also known as P21)'%. This latter gene encodes
an inhibitor of CDK2 and CDK4 in the cell cycle; it is also regulated by PCBP4'3°,

Several eukaryotic translation initiation factors are encoded by our prioritized genes
(EIF4Al, EIF4E, EIF4G1, EIF4G3, EIF4ENIF1, EIF5A, EIF5B, AGO2). When the
interaction between EIFAG1 and EIF4E is disrupted, the latter factor loses much of its
affinity for proliferation-promoting transcripts with a certain 5" motif, leading to the
selective suppression of their translation!*”13¥. The activity of the mTORC1 complex
(which contains a subunit encoded by RPTOR) brings about the EIFAGI-EIF4E
association and has been shown to amplify the proliferation of neural progenitors'*®-142,
Under conditions of reduced mTORCI1 activity and arrest of the cell cycle, some
transcripts can still be connected to the translation machinery through interactions with a
complex that includes the products of AGO2, FXRI, and PARN'3. AGO2 (formerly
known as EIF2C?2) can contribute to post-transcriptional regulation both in the cytoplasm
and the nucleus; the gene is a high-ranking member of nuclear import, and it can be
shuttled to the nucleus by interacting with the navigator protein encoded by
TNRCO6AM-145,

The placement of mRNA splicing and regulation of nuclear mRNA splicing, via
spliceosome in Supplementary Figure 22 suggests that splicing regulation exerts a
relatively strong effect on brain development. However, alternative splicing—and indeed
most forms of transcriptional regulation—occur at all times, and a number of splicing
regulators (e.g., RBFOX1'5147) target the transcripts of genes expressed during synaptic

function.

Early Brain Development: Paracrine Influences on Cell Proliferation and Survival.
Using a different bioinformatics tool than we use, the most recent GWAS of intracranial
volume found enrichment of several Reactome gene sets defined by the PI3K/AKT
signaling pathway'*®. We find a similar pattern in our GWAS of EduYears: the cluster
named after GAB1 signalosome contains the additional gene sets PI3K events in
ERBB2 signaling, PI3K events in ERBB4 signaling, PI3BK/AKT activation, PIP3
activates AKT signaling, and signaling by ERBB4. The clusters downstream signal
transduction and signaling by NGF contain many of the other gene sets found to be
significantly enriched in the GWAS of intracranial volume’. Although the PI3K/AKT

Y Curiously, in contrast to the findings of the GWAS of intracranial volume, many gene sets in the DEPICT
inventory referring to the generic cell cycle (e.g., cell cycle as opposed to neural precursor cell
proliferation) are not significantly enriched in our study. On the other hand, these gene sets for the most
part do not appear in our lists of negatively enriched sets; Supplementary Table 27 contains regulation of
mitosis and negative regulation of mitosis, and the negative results in Supplementary Table 30 do not
contain sets with the strings “cell cycle” or “mitosis” in their identifiers.
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pathway seems to have been studied more intensively by cancer researchers than
neuroscientists'¥~1>!, the literature nevertheless points to many connections between the
action of this pathway and the ultimate size of the brain. The PI3K/AKT pathway may be
active at many points in development, but we emphasize its likely influences on brain
size because of its placement in Supplementary Figure 22 (between the clusters
abnormal cerebral cortex morphology and regulation of nervous system

development) and its prominence in the just-cited GWAS of intracranial volume.

The PI3K/AKT signaling pathway is activated by the binding of particular paracrine
factors to receptor tyrosine kinases, which include IGFIR (activated by the insulin-like
growth factor IGF1) and NTRK?2 (activated by the brain-derived neurotrophic factor
BDNF)!52153 The ligands activating these receptor tyrosine kinases are secreted by the
choroid plexus (a network of blood vessels in the ventricle that produces the

)154 1

cerebrospinal fluid)!>*, other blood vessels innervating the brain ', and the neural

progenitors themselves acting in autocrine fashion',

Activated receptors recruit the adaptor protein GABI1, which in turn initiates the
sequential recruitment of PI3K subunits. The PI3K enzyme has both a regulatory and a
catalytic subunit, and genes encoding both subunits are located in our DEPICT-defined
loci (PIK3RI, PIK3R2, PIK3R3, PIK3C2B, PIK3C3). PI3K enzymes fall into three
classes. PIK3R1 is the typical regulatory subunit employed in members of the well-
studied class I; PIK3C2B is the catalytic subunit of class Il members, which have been
implicated in cell migration and survival; PIK3C3 is the catalytic subunit of the sole class
Il member, which is involved in vesicular traffic, nutrient sensing, and MAPK
signaling'®!. A complex that includes PI3K facilitates the phosphorylation of AKT and
switches this kinase to its partially active form.

Partially activated AKT suffices to activate mTORCI1 by directly phorphorylating
and inactivating an inhibitory complex composed of proteins encoded by 7SC/ and
TSC2. (GAB1 signalosome and TOR signaling cascade are rather close in
Supplementary Figure 22.) AKT3 is encoded by a DEPICT-prioritized gene, as is the
AKT-interacting protein AKTIP. Recall from our earlier discussion of post-
transcriptional regulation that the activity of the mTORC1 complex ultimately increases
the synthesis of proteins promoting proliferation. TSC1/2 acts as a GTPase to convert the
mTORCI activator encoded by RHEB from its own GTP-bound state to its inactive GDP-
bound state!”’. (Like ATP, GTP is nucleoside triphosphate whose hydrolysis provides
energy to drive cellular reactions. The gene-set clusters regulation of GTP catabolic
process and GTPase regulator activity are defined by this type of reaction.)
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The kinase encoded by PRKDC (also known as DNAP5) can phosphorylate AKT at
another position and thereby switch the kinase to its fully active form!'*®, Fully active
AKT mediates numerous cellular functions, including proliferation through pathways
other than the regulation of translation initiation via mTORC]1. One target of fully active
AKT is MDM4 (also called MDMX), which AKT-mediated phosphorylation renders less

liable to degradation'®

. MDM4 binds to the anti-proliferative transcription factor TP53
(also called P53) and inhibits its activity through a variety of mechanisms: the blocking
of transcriptional co-activators, removal from the nucleus, and exposure in the cytoplasm
to degradative proteins!®*!®!, Fully active AKT can also induce the sequestration of the
cell-cycle inhibitors CDKNI1A (also called P21) and CDKN1B (also called P27) from the
nucleus; earlier we mentioned CDKN1A as a target of post-transcriptional regulation by

ELAVL2 and PCBPA4.

Another effect of PI3K/AKT signaling on the targeted cell, somewhat distinct from
the promotion of mitosis, is avoidance of apoptosis or programmed cell death. (This
process defines the gene sets in the cluster neuron apoptotic process.) The
pervasiveness of apoptosis implies that even moderate regulation of this process (e.g.,
sparing of neural progenitors) can have an impact on the ultimate size of the brain'®%.
PI3K/AKT signaling is an important means by which paracrine factors (e.g., IGF1) can
inhibit apoptosis. If phosphorylated by the fully active form of AKT, the FOXO
transcription factors are sequestered away from the nucleus and thereby prevented from
promoting the transcription of genes whose products inhibit the cell cycle (e.g.,
CDKNIB) and activate apoptosis °*!93, (While FOXO3 is a typical FOXO in this
respect, FOXO6 contains fewer phosphorylation sites and appears to fulfill other roles in
brain  development, including dendrite morphogenesis!®*1%)  AKT-mediated
phosphorylation also inhibits CASP9, a protease that plays a key role in the cascade
leading to the fragmentation of the DNA in the nucleus. APAFI encodes a component of
a complex that cleaves the precursor of CASP9 and releases its mature form. AKT-
mediated phosphorylation of BAD creates binding sites for the chaperone molecule
YWHAQ (also known as 14-3-3), which prevents BAD from performing its role in the
mitochondrial release of cytochrome c—another component of the complex including
APAFI1. There appears to be extensive cross-talk between the PI3K/AKT and NFKB
signaling pathways, such that each can upregulate the other'®®, and HIVEP2 (formerly
MIBPT) encodes a repressive transcription factor that inhibits genes involved in NFKB
signaling'®’.

Once subject to the influence of paracrine factors, one way for a cell lineage to
escape from this influence (even in the midst of ongoing ligand secretion) is for receptors

such as IGFIR that are distributed non-uniformly on the membrane of the progenitor cell
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to be distributed asymmetrically to the two daughter cells as a result of cleavage along a
plane that leaves more receptors on one side than the other'®®. (The disinherited daughter
is then freed to follow some other fate, such as leaving the cell cycle and becoming an
astrocyte.) Within the cell itself, the phosphatase encoded by PHLPP2 can
dephosphorylate AKT and thus restore it to a less active form.

There is abundant evidence that perturbations of the PI3K/AKT pathway do indeed
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affect the ultimate number of developed neurons and their lamination™®. Disruption of

either IGF1 or IGFIR lead to a retardation of brain growth in both mice and humans!”’,

Deletion of AKT3 in mice leads to a reduction of brain size!”!

, and both germline and
somatic mutations of AK73 in humans have been associated with microcephaly and
agenesis of the corpus collosum accompanied by intellectual disability!’?,
megalencephaly (enlargement of the brain)!”®, and hemimegancephaly (enlargement of
one cerebral hemisphere, accompanied by intellectual disability and epilepsy)!’*!">. De
novo mutations of P/K3R2 are thought to be the most frequent cause of a syndromic form
of megalencephaly accompanied by various other neural and bodily malformations. 7SC/
and 7SC2 are named after tuberous sclerosis complex, a syndromic disorder caused by de
novo mutations of the gene and characterized by hemimegancephaly, abnormal neuronal
migration, and intellectual disability; in mice, conditional knockout of 7SC/ in neural

176 We earlier

progenitor cells leads to an increase in mTORCI signaling and brain size
cited reports of mTORCI, the regulatory target of the TSC complex, being in turn a
regulator of progenitor proliferation and brain size. Deletion of AGAFI in mice leads to
several abnormalities that include brain overgrowth!””!7®. FOX03 was highlighted in the
most recent GWAS of intracranial volume'*; rs2022464, the sentinel SNP associated
with intracranial volume at genome-wide significance, is concordantly associated with
EduYears at a less stringent threshold (P = 4.6x107°). De novo mutations of HIVEP2
have been implicated in intellectual disability occasionally accompanied by

microcephaly! 718!,

Early Brain Development: Genesis and Exodus of Neurons. Many of the genes
involved in radial and tangential neuronal migration (the processes defining the
exemplary gene set telencephalon cell migration) appear to be shared, but some are
unique to one of these migratory modes. For example, LHX6 encodes a transcription
factor that regulates the expression of genes whose products are required by postmitotic

interneurons undertaking migration and differentiation 8183,

The ligand encoded by RELN is perhaps the best-known guidance cue regulating
neuronal migration'84. RELN is a large glycoprotein secreted by Cajal-Retzius cells in the
marginal zone, the topmost layer of the developing neocortex. The concentration of

RELN declines from the marginal zone to the ventricle, and the receptors on the
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membrane of the newborn neuron encoded by VLDLR and LRPS (also known as
APOER?) act as sensors of this gradient. When any of these genes are knocked out in
mice, the resulting phenotypes include ataxia, a reeling gait (hence the name of the
ligand), and inverted lamination of the neocortex as a result of the inability of later-born
neurons to climb past their earlier-born cousins. Unfortunately, whether RELN acts as a
“stop” or “go” signal (this is possibly location dependent!®’) and how the disruption of its
signaling leads to the observed abnormalities is still not well understood. What follows

are some hints provided by several studies!'3%!87,

The binding of RELN to its receptors induces phosphorylation of the adaptor protein
DABI by the kinases SRC and FYN. Phosphorylated DAB1 can then go on to affect
migration in any number of ways. For instance, it can interact with another adaptor
protein, CRK, which in turns recruits RAPGEF]1, the guanine nucleotide exchange factor
for the small GTPase RAPIA. This GTPase appears to increase the membrane
localization of the cell adhesion molecule encoded by CDH?2 (also called NCAD).

A cell adhesion molecule (CAM) is a surface protein that fastens the expressing cell
to another cell. Cadherins are an important family of CAMs'®®, several of which are
encoded by our prioritized genes (CDH2, CDH4, CDH6, CDH7, CDHS, CDH9, CDH 10,
CDHI2, CDHI5, CDHIS8, CDH20). The intercellular clasp formed by a given cadherin is
formed by tokens of the cadherin extending from both cell membranes; the respective
extracellular domains typically engage in homophilic binding of like extracellular
domains at the region of contact. A migrating neuron is in constant contact with the basal
process of a radial glial cell or whatever substrate it happens to be crawling on, and thus
the forming and breaking of adhesive connections is an important process to regulate. A
cell-cell junction formed by cadherins is known as an adherens junction, which has
additional components on the cytoplasmic side called catenins (some of which are
encoded by CTNNA2, CTNNBI, and CTNND?2). Adherens junctions containing CDH?2
seal together apical progenitor cells into a skin-like barrier to the cerebrospinal fluid '*
and lead to a similar tight (but transient) packing of young neurons when they arrive at
the RELN-dense layers of the developing cortex!*°. It is not yet clear how this temporary

aggregation contributes to the lamination of the cortex.

Another branch of the RELN/DABI pathway intersects with PI3K/AKT.
Phosphorylated DABI1 recruits PIK3R1; recall that dyslamination of the cortex is one of
the phenotypes that can result from perturbations of the PI3K/AKT pathway'®!. The
mechanism by which migration is affected seems to be the modulation of microtubule-
binding proteins encoded by genes such as MAPT. Microtubules, as the largest discrete
component of cytoskeleton, must be rearranged to facilitate whole-cell movement.

PI3K/AKT activation also modulates the assembly and disassembly of actin filaments,
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the smaller elements of the cytoskeleton; one pathway terminus is the actin-
depolymerizing protein encoded by CFL/. (Note that this gene and others whose
products work on the actin cytoskeleton are also involved in other processes involving
fine cytoskeletal adjustments, such as the resizing of dendritic spines in synaptic
plasticity.) Phosphorylated DABI1 interacts directly with PAFAHIB1 (also LISI),
another microtubule-associated protein. Mutations of RELN and PAFAHIBI can cause
lissencephaly—a disorder characterized by defective neuronal migration, lack of brain
gyri, and often intellectual disability!®>. PAFAH1BI is found at the centrosome, an
organelle that serves as a hub of microtubule anchoring and participates in the regulation
of nucleokinesis via centrosome-nucleus coupling. The microtubule-associated proteins
encoded by DCKLI may play similar roles. SUNI encodes a nuclear-envelope protein

that is also a part of the centrosome-nucleus coupling complex during nucleokinesis'®*.

Besides RELN, another well-studied guidance cue is NRG1. One of its receptors,
ERBB4, is strongly expressed by tangentially migrating interneurons. The corridor from
the GE to the dorsal cortex is lined by cells expressing high levels of membrane-bound
NRGI, drawing the migrating interneurons along its length. NRGI1 secreted by
neocortical cells then attracts the interneurons to the neighborhoods of their destinations.

The cyclin-dependent kinase encoded by CDK5 also phosphorylates a number of
different targets involved in neuronal migration. These include the actin regulator
encoded by PAK/, which promotes the extension of the leading process. CDK5-knockout
mice show an inversion of neocortical lamination similar to the RELN phenotype. The
kinase phosphorylates MAPT and other microtubule-associated proteins, suggesting that

CDKS5 is also a regulator of nucleokinesis.

Ephrins are a family of guidance molecules that bind to Eph receptor tyrosine
kinases. Both ephrins and Ephs can fill the role of either ligand or receptor, depending on
the context, and the interaction can result in a variety of cell movements including both
attraction and repulsion. Ephrin-Eph interactions (involving specifically the products of
EPHBI, EPHB2, EFNAS5, EFNB2, and EFNB3) mediate the mutual repulsion that leads
to the uniform distribution throughout the marginal zone of the REILN-secreting Cajal-
Retzius cells'®*. Ephrins and Ephs also regulate tangential migration. For example,
interneurons expressing £PHA4 are repulsed from the cells making up the walls of their
migration corridor by their expression of EPHAS, and this repulsion keeps them on their
journey to the neocortex. Expression of £PHA4 also repels interneurons from each other,
ensuring that separate streams of migration stay segregated.

Transcriptional regulation is required to supply a neural progenitor cell with the
gene products needed for proliferation, and it is required again to supply a newborn
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neuron with the products needed for its initial tasks of migration and adoption of a

functional identity!®>17.

Diffusible paracrine factors may instruct certain neural
progenitors to begin transcribing the genes required for a dedicated postmitotic function
even before neurogenesis. It is thus possible that the ventricular zone may be a mosaic of
progenitor cells varying in the degree of multipotency'®®. Whatever their origin may be,
gradients across the ventricular zone of NR2F1 (also known as COUPTFI1) and other
transcription factors do appear to affect postmitotic neuronal identity. For example,
conditional deletion of NR2FI in mice leads to an invasion by motor cortex of areas

ceded by sensory cortex.

The transcription factor encoded by SOX5 regulates the migration, differentiation,
and axonal projections of neurons destined for the lower layers of the neocortex.
Knockdown of this gene in mice leads to a number of aberrations, including
overexpression of the transcription factors FEZF2 and BCL11B (also known as CTIP2),
misrouting of corticothalamic axons to the hypothalamus, lack of projections to the pons
and spinal cord, and a laminar inversion of the deep layers similar to the RELN
phenotype. A revealing difference, however, is that late-born upper-layer neurons in
SOX5-deficient mice migrate normally. This suggests that transcriptionally driven
mechanisms of migration can be, after a certain point, cell autonomous—i.e., unaffected
by aspects of the extracellular environment, such as the proper lamination of earlier-born

neurons.

Another transcription factor that co-regulates multiple stages of the early neuronal
career is encoded by 7BR/. Perturbation in mice shows that 7BR/ has many functions in
deep-layer neurons that are somewhat similar to those of SOX5. The abnormalities of
neuronal migration observed in TBR/-deficient mice, however, are more complex in that
the ectopic (“lost” or “trespassing”) cells are more deeply positioned in the frontal cortex
and more superficially in the caudal cortex. 7BR/ may thus play a role in the

specification of a rostral-caudal (anterior-posterior) as well as a layer-specific identity.

The laminar positioning and identity of upper-layer neurons are controlled by
transcriptional programs that are distinct from those of their deeper-layer kin. One of the
more important transcription factors is a chromatin modifier encoded by SATB2, whose
regulated genes include CUX/, CUX2, CDHI0, RORB, AUTS2, UNC5C, EPHA4, TBRI,
and BCL/ 1B (SATB2 is in turn an interaction partner of MTA22%, a component of the
NuRD chromatin-remodeling complex discussed earlier.) When SATB2 is perturbed in

* The CUX proteins are transcription factors highly expressed in progenitors giving birth to upper-layer
neurons and in callosal projection neurons. AUTS2 is an ASD susceptibility gene with strong memberships
in central nervous system neuron differentiation and regulation of neurogenesis. UNC5C encodes a
receptor of netrin, a guidance molecule directing neuronal migration and axon guidance.
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mice, early-born neurons migrate normally to the deep layers while later-born neurons
are delayed in their arrival at the upper layers. The effect of SATB2 on the deep-layer
transcription factor BCL11B is apparently repressive; in SATB2-deficient mice, BCL/ /B
is ectopically transcribed in the upper layers. Consistent with this change in laminar
identity, cortico-cortical axons are misrouted to subcortical regions, leading to the

absence of the corpus callosum.

One way to summarize these findings (and others) is to think of the proteins encoded
by SOX5, TBR1, FZF2, BCLI 1B, and SATB2 as key nodes in a transcriptional network,
often mutually repressing one another to sharpen the boundaries between functionally
distinct neocortical layers. 7TBR1 (expressed in the neurons of one deep layer) and FEZF2
(expressed in the neurons of another deep layer) mutually repress one another; SOX5
upregulates 7BR/ but represses FEZF2; FEZF2 upregulates BCL//B but represses
SATB2 (expressed in neurons of upper layers), which returns the favor by suppressing
BCLI1B. Interestingly SATB2 may begin to turn on the expression of 7BR/ in upper-
layer neurons, particularly in the postnatal period, which suggests that refinements of

neuronal identity continue even after the individual’s birth.

The product of POU3F2 (formerly BRN2) is also a transcription factor that affects
gene expression across multiple stages (neurogenesis, migration, post-migratory
differentiation)’®?!, In contrast to TBR1, however, POU3F2 activity occurs primarily in
later-born neurons. Two important targets of POU3F2 are CDK5 and DABI, and the fact
that earlier-born neurons migrate normally in POUS3F2-knockout mice reinforces the
notion that neurons destined for different layers utilize distinct transcriptional programs
to control the expression of common signaling molecules such as DABI1. Another target
of POU3F2 is FOXP2?*, the so-called “language gene,” which encodes a transcription
factor whose precise role in the brain has been somewhat elusive but that has been
implicated in radial neuronal migration®®2%, FOXP] is the closest homolog of FOXP2,
and the two genes may participate in similar functions?®2%, Another forkhead box
transcription factor with multiple roles in brain development, including the regulation of
neuronal migration, is encoded by FOXG/?"2%  NEUROD2 encodes another
transcription factor expressed across several consecutive stages; its targets include RELN,
LRPS, and CUXI*®.

Although many subunits are degraded if unassociated with the SMARCCI
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component of the npBAF complex~", it appears that at least some can act independently

as transcription factors. For instance, apart from its role in the BAF complex*!'!, BCL11A

212

regulates neuronal migration® . De novo mutations of BCL/IA can result in intellectual

disability accompanied by microcephaly, pachygyria (a disorder of neuronal migration

similar to lissencephaly), and abnormalities of the corpus callosum?!*2!4,
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Intriguingly, note that many genes in the PI3K/AKT pathway (and others) are
oncogenes—genes that in certain circumstances, most commonly a somatic mutation,
become carcinogenic. This perhaps explains the adjacent positions of GABI1
signalosome and endometrial cancer in Supplementary Figure 22. Cancer is a disease
of dysregulated proliferation, evasion of apoptosis, and invasive migration, and one
possibility may be that the mechanisms used to the construct the brain in early life can go
awry later to produce cancer in various tissues. This possibility is of course highly

speculative but may be worthy of future investigation.

Early Brain Development: Formation of Axons, Dendrites, and Synapses. The
targets of its axonal arbor are a crucial element of a post-migratory neuron’s identity, and
many of the mechanisms driving neuronal migration and axon guidance are shared. (The
STK11/STRADA/STK25/GOLGA?2 pathway is an antagonist of RELN/DABI signaling,
and together they regulate the balance between the successive stages of migration and
axon growth!8®)) Indeed, almost every gene known to influence axon guidance at the time
of a recent review?!® has also been implicated in neuronal migration (especially tangential
migration). The chief difference is obviously the absence of nucleokinesis in axon
guidance, during which the soma is stationary. The description of axon guidance in
Okbay et al.! suffices for our coarse-grained account, and thus we do not add to it here—
except to note that the use of ROBO receptors by axonal growth cones to sense guidance
molecules, represented in the previous paper by the significantly enriched gene set
signaling by ROBO receptor, is now also represented by the individual genes ROBO1
and ROBO?2. Signaling by ROBO receptor and axonogenesis were distinct clusters in
Okbay et al.’s results, but in the current results they are merged into the axon guidance
(Reactome) cluster. Gene sets defined by axon growth are also present in the neuron

recognition and regulation of neuron projection development clusters.

We now turn to how a neuron chooses one of its budding neurites to become its
axon in the first place. The tendency of an in vivo neuron to select a process extending in
a certain direction (e.g., toward the ventricle) to become its axon suggests that extrinsic
cues bias the selection. In fact, the activation of the PI3K/AKT signaling pathway
(possibly mediated by BDNF/NTRK?2) appears to be a major mechanism of axon
specification?!2!7. SHTN] (called KIAA1598 in the DEPICT inventory) encodes a PI3K-
interacting protein; its overexpression leads to the abnormal appearance of multiple
axons, whereas its suppression inhibits axon formation. SHTN1 is likely to be selectively
transported to the nascent axon, therein regulating PI3K that has been activated by events
at the plasma membrane. Accumulation of SHTN1 in the growth cone accelerates the
extension of the proto-axon, which in turn reduces diffusion of SHTN1 back to the soma

and leads to its further accumulation in the growth cone. Upon phosphorylation, the
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ubiquitin ligase encoded by SMURFI singles out the growth-inhibiting GTPase encoded
by RHOA for degradation rather than the axon-promoting factor encoded by PARDOA.
(Actin-interacting proteins such as RHOA and AKAPY9 are involved in many different
neuronal processes requiring the movement or reshaping of the neuron, including
migration and synaptic plasticity.)

We turn now to the growth of a neuron’s dendritic arbors?!®

, the process defining the
gene-set cluster dendrite morphogenesis. (The genes mentioned below also tend to be
high-ranking members of sets in the cluster regulation of neuron projection
development.) The branches of a dendrite appear to extend from its trunk with a high
degree of stochasticity rather than being guided precisely to a distant destination. The
branches tend to avoid each other and maximize the number of different axons that can
be encountered. Self-avoidance is brought about by mutual repulsion of branches
sprouting from the same neuron. Cell adhesion molecules (CAMs) embedded in the
plasma membrane of a cell often serve as markers of personal identity for purposes of
self/other discrimination. At least two sets of genes encoding CAMs are believed to
mediate this type of discrimination in dendritic growth: the Down syndrome CAMs
(DSCAM, DSCAMILT) and the y cluster of the protocadherins (PCDHGC3, PCDHGC(C4,
PCDHGCS5). In mice where these genes are null, sibling branches overlap and thus
sample the local volume inefficiently. DSCAM and the y-protocadherins share a number
of features that underlie their utility in dendrite self-avoidance. Most importantly, they
employ complex mechanisms to produce a large number of isoforms. In the case of
DSCAM, the mechanism is alternative splicing. (DSCAM belongs to the immunoglobin
superfamily, which gets its name from the class of proteins that includes antibodies
secreted by immune cells. Other immunoglobin genes prioritized by our GWAS include
CHLI, CNTN3, CNTN4, CNTNS5, SDK1, CADM1, CADM2, and CADM3?'%%0)) The -
protocadherins are arranged in a tandem array on chromosome 13, and each gene has a
variable number of exons encoding extracellular, transmembrane, and proximal
intracellular domains®*°. Tetramerization of y-protocadherins leads to large number of
isoforms in a manner similar to alternative splicing. Each neuron may well present a
unique complement of DSCAM and y-protocadherin isoforms serving as a barcode,
although it is not yet known how homophilic contact between the extracellular domains
protruding from different sibling branches is transduced into repulsion.

Transcriptional regulation is needed to supply appropriate gene products to the

developing dendrites!%>-2!

. In fact, once the BAF complex has swapped out its
proliferative components, its chief function appears to be the upregulation of genes
whose products are employed in dendrite morphogenesis’?, including BDNF, NRNI (also

known as CPG15), GAP43, RAPIA, and NGEF (also EPHEXINI). Knockdown of SP4,
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which encodes a transcription factor, leads to the excessive branching of dendrites in
cerebellar neurons. Terminating radial migration prematurely (by expressing a dominant-
negative form of CDH2 in neurons headed for the upper layers) causes a premature
reduction in expression of the transcription factor encoded by SOX// and consequent
increase in the number and length of dendrites???; this property of SOXII (which, as
mentioned earlier, is a target of the BAF complex) again illustrates a transcriptional
switch between earlier stages (proliferation, neurogenesis, migration) and later

differentiation.

There must be some form of coordination or mutual influence to juxtapose the
axonic side of the synapse (the bouton) and the dendritic side (the spine). In certain
hippocampal pyramidal neurons, recognition molecules of the NGL/NTNG family
produce a compartmentalization of the dendritic tree by ensuring the innervation of
distinct portions of the tree by axons from correspondingly distinct sources. NTNGI and
NTNG?2 encode ligands for receptors encoded by LRRC4C (also called NGLI) and
LRRC4 (also called NGL2), respectively. These latter two genes are members of the
leucine-rich repeat family (LRRC3B, LRRC4, LRRC4C, LRRC7, LRRTM4, LRRN2,
LRRN3, LRRDI, LRFN2, LRFN4, LRFN5, LINGOI, LINGO2, SLITRKI, SLITRKS,
FLRTI, LPHN3), whose overarching function may be the exploitation of both family size
and alternative splicing to create molecular fingerprints enabling precision wiring

between neurons?!'??%0

. Incoming axons bearing NTNGI and NTNG?2 respectively
somehow find their corresponding receptors (LRRC4C, LRRC4) and thereby innervate
non-overlapping compartments on distal and proximal dendrites?!®. These leucine-rich
repeats are synaptic CAMs that transmit signals to the dendritic interior upon
transsynaptic binding, and thus their compartmental distribution may bestow varying

information-processing properties along the length of a dendritic tree.

Neurexins are another class of synaptic CAMs, expressed on the presynaptic side
(NRXNI, NRXN2, NRXN3). The vastly generative alternative splicing of a neurexin gene
allows the extracellular domain to link up with various ligands expressed on the dendritic
side, at least in vitro (NLGNI, DAGI, LRRTM4, LPHN3)*%220.223, Determining the
functions of neurexins and their ligands from knockout experiments in mice has been
difficult because of frequent lethality, their possible redundancy in some contexts, and the
variability of the neuronal phenotype. A recent study conditionally knocking out all three
neurexin genes in different neuron types found evidence of context-dependent function;
the phenotypes included disturbances in the distribution of synapses (Purkinje cells in the
cerebellum), large decreases in synapse numbers (interneurons in a deep layer), and
alterations of presynaptic spike-induced Ca** transients (interneurons in the same layer
but of a different type)>*.
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The neurotransmitter used at a mature synapse can initially function as a cue to the
genesis of the synapse itself. The release of glutamate from an axon bouton can induce de
novo growth of spines from a dendritic branch by opening NMDA-type glutamate
receptors (GRINI, GRIN2A, GRIN2B, GRIN2D, GRIN3A)**. As we discuss in more
detail later, the opening of these receptors also triggers changes in signaling strength at
the mature synapse. The internal pathways of synaptogenesis and synaptic plasticity
appear to be different, however, in that the former does not rely on the kinase CaMKII.
Perhaps surprisingly, the release of the neurotransmitter GABA can also induce the
formation of dendritic spines??. The binding of GABA to its receptors typically inhibits
the firing of the target neuron in the mature brain, but during development the
extracellular environment is such that the current flow through opened GABA receptors
can be excitatory. GABA-induced spine morphogenesis is mediated by depolarization of
voltage-gated Ca?* channels of the type encoded by CACNAID, CACNAIH, and
CACNATIL Ca** influx can also induce the formation of inhibitory synapses by recruiting

the anchor protein encoded by GFPHN.

Glycosylation 1s a post-translational protein modification, like phosphorylation and
ubiquitination. HNK-1, a glycan frequently attached to proteins in the brain, is composed
of four domains, and all three of the enzyme types catalyzing the joining of one domain
to the next are encoded by prioritized genes (CHSTI10, B3GAT3, B4AGALT2)**. One
substrate of HNK-1 is the AMPA-type glutamate receptor subunit GRIA2. Loss of HNK-
1 on GRIAZ results in weaker interaction of the subunit with CDH?2, which may be the
cause of the malformed dendritic spines lacking GRIA?2 that are also observed in the
knockout mice. A behavioral correlate of these neuronal phenotypes is impaired memory.
The enzyme-encoding genes are also high-ranking members of gene sets such as neural
precursor cell proliferation, regulation of neurogenesis, and telencephalon cell
migration, and evidence for the involvement of HNK-1 in the corresponding functions

has emerged from studies of chicks and fish.

Synaptic Communication and Plasticity: Transmembrane Transport of lons and
Other Solutes. We now turn to our narrative summary of the neurophysiological
mechanisms implicated by this GWAS of EduYears (Supplementary Figure 8). We
begin with the genes that encode products involved in the transport of ions and other
solutes across the neuronal membrane, a process corresponding to a number of gene sets
(e.g., ion transmembrane transport) that reside mostly in the gated channel activity
cluster. Gene products of this type are responsible for maintaining many of the
background conditions required for information transfer in the nervous system, including
the electrical and concentration gradients that enable current flow in and out of the

neuron.
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ATPIA2, ATPIBI, and ATPIB3 encode subunits of the Na'/K* ATP-driven
exchanger chiefly responsible for the much higher concentration of Na* in the
extracellular fluid bathing the neuron than in the neuronal interior (and, conversely, much

lower concentration of K*).

The superfamily of genes encoding solute carriers is extremely large and diverse,
and many members our prioritized in our GWAS (SLC2A13, SLC4A2, SLC4A10,
SLC6A9, SLC6A10, SLC6AI15, SLC6AI17, SLCSA3, SLCY9AS5, SLCI2AS5, SLC22A23,
SLC24A1, SLC24A2, SLC24A3, SLC25A12, SLC26A10, SLC29A4, SLC35E2, SLC35EA4,
SLC35F4, SLC38A1, SLC38A2, SLC39A10, SLC45A1). Many of these encode
transporters that also contribute to the ion concentrations found on the two sides of the
neuronal (or organelle) membrane, although usually by relying on existing concentration
gradients to drive the change (e.g., gradients set up by ATP-driven pumps). SLCS8A3
(formerly NCX3) encodes a Na*/Ca®* exchanger that typically extrudes one Ca®* ion for
every three Na* ions taken in. SLC24A1, SLC24A2, and SLC24A3 (also called NCKX1,
NCKX2, and NCKX3, respectively) encode potassium-dependent Na*/Ca** exchangers,
which typically extrude one Ca®>* ion and one K* ion for every four Na* ions taken
in??"228_ These exchangers operate in parallel with the ATP-driven Ca®>* pump, an isoform
of which is encoded by ATP2B?2.

Cytosolic increases in Ca®* can also be cleared by sequestering the ions in
intracellular organelles. There is a large potential difference across the mitochondrial
inner membrane, as a consequence of the hydrogen ion (H") concentration gradient
generated by oxidative phosphorylation. This gradient can be used to transport Ca** into
the mitochondrion through channels encoded by M/ CU/. Without necessarily entering the
mitochondrion, Ca** can also stimulate the synthesis of ATP by binding to a glutamate-

aspartate exchanger in the inner mitochondrial membrane encoded by SL.C25472%%,

SLCI2A5 (also known as KCC2) encodes the K*/CI™ cotransporter that is chiefly
responsible for the hyperpolarizing effect of CI” permeability in mature neurons, and its

product extrudes one C1~ ion outward together with one K+ ion**°,

Active transport must also be used to regulate the intracellular pH because otherwise
the neuronal interior would be rather acidic. Such regulation is probably obligatory
because of the dependence of many parameters, such as the opening probability of ion
channels, on intracellular pH. SLCY9A5 (formerly called NHES5) encodes a Na'/H*
exchanger that alkalinizes the cell by extruding H*. It may be that the action of this
particular exchanger is not a “background” activity, for it is recruited to dendritic spines

by activation of NMDA-type glutamate receptors and plays a role in spine growth?!.
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Some of the carriers appear to transport neurotransmitters or their precursors into
neurons. SLC6A15 and SLC6A 17 are amino acid transporters expressed in the brain with
a high affinity for leucine, which is used in the production of glutamate*2233, S.C2944
(formerly PMAT) encodes a reuptake transporter that clears the neurotransmitters
serotonin and dopamine from the synaptic cleft, thereby terminating whatever signals

they may be conveying?**.

SLC45A1 encodes a cerebral glucose transporter, and de novo mutations of the gene
have recently been implicated in intellectual disability accompanied by epilepsy**. This
finding draws attention to the possibly understudied role of metabolism and energetics in
cognition?3,

Whether synthesized in the cytoplasm or recycled from the synaptic cleft,
neurotransmitter must be transported into synaptic vesicles. ATP6V0OAI, ATP6VODI, and
ATP6VID encode transmembrane domain subunits of vacuolar ATPase; this complex
actively transports H* into the vesicle. Because the movement of neurotransmitter into
the vesicle is coupled to the movement of H™ along its electrochemical gradient, the
acidification of the vesicular interior ensures the filling of the vesicle with

neurotransmitter>’.

Synaptic Communication and Plasticity: Release of Neurotransmitter into the
Synaptic Cleft. Given the properly calibrated extracellular and intracellular concentrations
of the relevant ions and the presence of the required receptors, channels, and other gene
products in its dendrites and axon, a cortical neuron is capable of carrying out its
fundamental tasks of signal processing and transmission. We will begin our account of
neuronal communication with the genes expressed in the axon bouton®*®. The genes
mentioned here tend to be high-ranking members of gene sets in the clusters voltage-
gated calcium channel activity, associative learning, cytoplasmic vesicle membrane,
regulation of synaptic transmission, serotonin neurotransmitter release cycle,
regulation of neurotransmitter levels, and synapse part.

Exocytosis is the fusion of one membrane (e.g., the vesicle membrane) with a second
membrane (e.g., the plasma membrane of the cell). Exocytosis in the axon bouton occurs
at active zones consisting of a dense collection of scaffold proteins connecting the
cytoskeleton to the plasma membrane. These proteins include PCLO (piccolo), BSN
(bassoon), and many others®®. The RAB family of GTP-binding proteins regulates the
budding and fusion of all membranous vesicles, including synaptic vesicles?*’. For now
we are concerned with the RAB3 genes and RAB3GAP2, whose products participate

specifically in neurotransmitter release#! 2%,
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The RAB3 proteins (RAB3A, RAB3B, RAB3C, RAB3D) drive a GTP-dependent
cycle. When a RAB3 is bound to GTP, it spends its time anchored to the membrane of a
synaptic vesicle. The RAB3 is part of a larger complex, one slot of which can be filled by
a UNCI13 protein (e.g., UNC13C) and the remaining slot by RIMS1 or RIMS2. (RIMS3 is
also strongly expressed in the brain, but its product lacks some of the domains present in
the lower-numbered family members?*°.) The RIMS protein anchors the complex—and,
thus, the synaptic vesicle—to a voltage-gated Ca®* channel spanning the plasma
membrane. The GTPase-accelerating RAB3GAP complex (a subunit of which is encoded
by RAB3GAP2) stimulates RAB3’s intrinsic GTP-hydrolysis activity so that its bound
GTP is converted to GDP, and subsequently RAB3 dissociates from the vesicle
membrane to begin the phase of its cycle spent as a soluble protein in the cytoplasm of
the axon bouton. The suppression of this disassociation appears to inhibit the priming of
exocytosis by keeping RAB3 anchored to the vesicle’*’. Under normal conditions the
RAB3-bound GDP is exchanged for GTP in the cytoplasm, allowing the RAB3 to start
another round of the cycle by associating with another vesicle that has not yet docked at

the plasma membrane.

A docked and primed synaptic vesicle will fuse with the plasma membrane upon the
influx of Ca®" through a voltage-gated channel. A channel complex consists of the main
pore-forming subunit a1, possibly in combination with auxiliary subunits (a2, £). All of
these subunit types are represented in our prioritized genes: a1 (CACNAIA, CACNAIB,
CACNAIC, CACNAID, CACNAIE, CACNAIH, CACNAII), a2 (CACNA2DI,
CACNA2D2, CACNA2D3), and f (CACNBI, CACNB2, CACNB3, CACNB4).

CACNAIA and CACNAIB encode a1 subunits often called Cav2.1 and Cav2.2

respectively, and most synapses in the central nervous system rely on channels containing
these subunits for mediating rapid vesicular release from the axon bouton. In contrast,
complexes containing the pores encoded by CACNAI/C, CACNAID, CACNAIH, and
CACNAII—Cav1.2, Cavl.3, Cav3.2, and Cav3.3, respectively—are mostly found on
dendrites.

CACNA2DI, CACNA2D2, and CACNA2D3 encode a0 auxiliary subunits that are
widely expressed in the brain and form channel complexes with a1 subunits in the Cavl
and Cav2 subfamilies’**. The a5 subunits generally increase the expression of the ai
subunits and can also increase their rate of inactivation following a voltage-induced
opening.

The f subunit CACNB3 is the predominant but not exclusive complex partner of

Cav2.2, while CACNB4 is the predominant partner of Cav2.12*. The f subunits also

influence channel expression but have a much greater effect on physiological properties
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of the channel complex. The presence of a f subunit leads in most cases to a larger
current influx across the range of voltage where action potentials are likely and
accelerated rates of both activation and inactivation.

Once an invading action potential has opened a voltage-gated Ca** channel complex,
the influx of Ca®* brings about the fusion of the vesicle with the plasma membrane by
changing the conformation of the SNARE complex, a multi-protein structure that will
also become attached to the docked vesicle?*246, (The gene sets SNARE complex,
SNARE binding, and proteolytic cleavage of SNARE complex proteins are members
of the cluster ENSG00000179036 PPI subnetwork.) Many components of the complex
and associated proteins are encoded by prioritized genes (VAMPI, VAMP2, VAMP3,
STXIB, SNAP25, STXBPI1, STXBP6, CPLXI, SYTI, SYT6, SYT7, SYT11, SYT12, SYT17,
NSF). The VAMP genes encode synaptobrevins, the component of the SNARE complex
providing the attachment to the synaptic vesicle; most of its amino acids, however,
protrude into the cytoplasm. Syntaxin, the product of STX/B, has a similar structure but is
attached to the plasma membrane. (The gene set syntaxin-1 binding is a member of the
cluster named after serotonin neurotransmitter release cycle.) SNAP25 is also
anchored to the plasma membrane by palmityl chains.

Prior to the docking of the vesicle, the SNARE complex is not assembled. Instead
each of the components is bound to other proteins. For example, a syntaxin-binding
protein, such as STXBP1 (also known as MUNCI18-1) or STXBP6?*"**8 can prevent
syntaxin from being a part of the SNARE complex. (The regulatory function of STXBP/
is not purely negative, as it is essential for neurotransmitter release®®.) After the docking
of the synaptic vesicle within close proximity of a voltage-gated Ca®>* channel, the
SNARE components become unbound from their alternative partners and form the
complex. When the three main components (synaptobrevin, syntaxin, SNAP25) first
combine, the complex resides in the trans state, which is energetically very unfavorable.
It is the subsequent collapse of the SNARE complex into the energetically more
favorable cis state that fuses the vesicle with the plasma membrane. Given a baseline
local concentration of Ca®*, the SNARE complex is kept in the trans state by CPLX1;
this protein binds to the groove between syntaxin and synaptobrevin and prevents the

complex from collapsing into the energetically preferred cis state.

The proteins of the SNARE complex are themselves insensitive to Ca**. The protein
that detects the spike-induced Ca®* influx is synaptotagmin, which is associated with the
vesicle membrane but has two domains protruding into the cytoplasm that bind Ca**.
When this binding occurs, the synaptotagmin is thought to displace CPLX1 from the
SNARE complex, triggering its collapse into the cis state and thus the ejection of the

vesicle’s neurotransmitter contents into the synaptic cleft. SYT1 is the predominant Ca?*-
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sensing synaptotagmin used to trigger vesicular release in tight synchrony with action

250,251

potentials . Neurons sometimes release transmitter spontaneously or in loose

12, and SYT7 may be a slower-acting Ca’* sensor

synchrony with the action potentia
mediating asynchronous release®>. SYT?7 also appears to be required for facilitation, a
form of synaptic strengthening in which each subsequent action potential in a closely
spaced series evokes greater neurotransmitter release?*. STY 11 and SYT12 do not bind
Ca?* and therefore may regulate a form of vesicle exocytosis that does not depend on the

influx of this ion®*.

After exocytosis, the SNARE complex must be disassembled in order to reinitiate
the release cycle. The set of proteins responsible for the disassembly include NSF and
soluble NSF accessory proteins (SNAPs) 253.256 (Note that these SNAPs are unrelated to
SNAP25.) SNAPs wrap around the elongated SNARE complex, and several instances of
NSF assemble at one end of the resulting SNAP-SNARE complex. ATP hydrolysis
unsprings the NSF portion of the complex and in this way pries the SNARE components

apart from each other.

Once a vesicle has released its contents by fusing with the plasma membrane,
retrieval mechanisms fetch the membrane lipids of the vesicle and its associated proteins
that have become embedded in the plasma membrane. The retrieved membrane materials
can be recycled to form new vesicles, which in turn can be refilled with neurotransmitter.
An important retrieval mechanism is clathrin-mediated endocytosis, in which clathrin
proteins coat the targeted material in a chicken-wire-like cage, which is then pinched off

from the rest of the plasma membrane®’.

The first step in the synthesis of the clathrin cage is recruitment to the plasma
membrane of clathrin and adaptor proteins, which bind to the remnants of the recently
fused vesicle. This recruitment is accomplished by the phosphatidylinositol-binding
protein encoded by P/CALM (formerly CALM, which is now the symbol of an unrelated
gene family). AP2B1 encodes a subunit of an adaptor protein that targets synaptotagmins.
Binding of adaptor proteins to their targets requires the phospholipid PIP2, which is found
only in the plasma membrane. This ensures that clathrin coats do not enclose internal

organelles such as the free vesicles themselves?®,

The binding of adaptor proteins not only recruits clathrin to the membrane but also
another set of proteins that can include EPN2 and SH3GLI1, which warp the targeted
portion of the plasma membrane into a new spherical vesicle around which the clathrin
cage continues to assemble. Finally, the dynamins encoded by D/NM/ and DNM3 detach
the newly caged vesicle from its place of origin in the plasma membrane by forming and

cinching a collar around the neck of the vesicle.
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Synaptic Communication and Plasticity: lonotropic Neurotransmission. The
glutamate receptor of the AMPA type is employed at a majority of excitatory synapses in
the brain, and it bears the chief responsibility for driving the immediate depolarization of
the dendrite in response to incoming signals®’. The importance of fast excitatory
neurotransmission is supported by the exemplary gene set extracellular-glutamate-
gated ion channel activity.

Most AMPA-type glutamate receptors in the adult brain appear to be heterotetramers
assembled from four possible subunits (GRIA1, GRIA2, GRIA3, GRIA4)?%0, usually
consisting of GRIA1 and GRIA2. There is some variability in the time course of the
potential change induced by current flow through an opened AMPA-type glutamate
receptor, depending on subunit composition, alternative splicing, and the presence of
transmembrane AMPA-receptor regulatory proteins (TARPs). The depolarizing current
flowing through open AMPA-type glutamate receptors is carried mostly by Na*, but
receptors composed of GRIA1, GRIA3, and GRIA4 show some permeability to Ca** as

well. GRIA2-containing receptors are typically not permeable to Ca?*.

Our prioritized genes include several that encode TARPs (CACNG3, CACNGY,
CNIH2, SYNDIGI). CACNG3 and CACNG7 belong to a family of TARPs that are
evolutionarily related to the y subunit of the voltage-gated calcium channel complex. It
can bind to AMPA-type glutamate receptors and has been implicated in a variety of
functions: acting as a chaperone to traffic receptors to the dendritic membrane, increasing
the mean channel conductance, and reducing the rates of deactivation and
desensitization?®'2%2, CNTH?2 also has been found to increase mean channel conductance,
but its important effects on other aspects of receptor physiology appear to be quite

variable.

The NMDA-type glutamate receptors take their name from the substance that was
first shown to bind to them, the glutamate analog NMDA. Several genes encoding
subunits of these receptors are among our prioritized genes (GRINI, GRIN2A, GRIN2B,
GRIN2D, GRIN3A). The GRIN2 subunits have a binding sites for glutamate, where the
GRINI and GRIN3 subunits bind glycine (or D-serine)*®’. The receptor as a whole is a
heterotetramer, most commonly composed of two glycine-binding GRIN1 subunits and
two glutamate-binding GRIN?2 subunits.

Subunits of the typically inhibitory GABAA receptor are grouped into subfamilies

known respectively as a, f, , J, &, O, &, and p,264 the first three and last of which are
represented in our DEPICT-prioritized genes (GABRA4, GABRAG, GABRBI, GABRE2,
GABRB3, GABRGI, GABRG3, GABRRI). A complete receptor is composed of five

subunits; the GABRB3 homopentamer was recently used in the first study to obtain an X-
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ray structure of a GABA receptor®®, but a heteromeric arrangement such as GABRG2-

GABRB2-GABRAI-GABRB2-GABRAT1 (counterclockwise around the pore as viewed
from the outside of the neuron) seems to be more typical. It happens that GABRAA4,
GABRB2, and GABRB3 all take part in pentamers with evidence of abundant use in the

brain®?%, Some subunits of GABAa receptors contain regulatory sites for

phosphorylation and domains that interact with trafficking proteins such as the one
encoded by GPHN?*7. The products of GPHN and IQSEC3 interact to increase the

density of inhibitory synapses>®S.

5-HT3, the one receptor of serotonin that is a ligand-gated ion channel, is a
pentameric structural cousin of GABAA.?® Two subunits that are found in both rodents
and humans are encoded by //7R3A and HTR3B. 5-HT3 is expressed most strongly in the
brainstem, especially in areas involved in the vomiting reflex, and to a lesser degree in
forebrain areas such as the amygdala and hippocampus®’’. In the hippocampus 5-HT3 is
found in the dendrites of GABAergic interneurons?’!. Homomeric 5-HT;A mediates
rapidly activating and desensitizing inward currents, which are carried primarily by Na*
and K*. 5-HT:B subunits do not form homomeric channels on their own, but their
incorporation into heteromeric subunits with 5-HT>A leads to a complex with distinctive
properties, including reduced permeability to Ca’** and greater single-channel

conductance.

Synaptic Communication and Plasticity: Na* and K* Channels. Many of the genes
that we now discuss are high-ranking members of gene sets in the cluster named after
gated channel activity, including voltage-gated sodium channel complex and
potassium channel complex.

The depolarizing current flowing into opened ionotropic receptors (mostly by
glutamate) will trigger an output spike in the receiving neuron if the depolarization
suffices (after taking into account any inhibition) to set off a chain reaction of opening
voltage-gated Na* channels. The a subunits of all five Na* channels that are strongly
expressed in the central nervous system are encoded by our prioritized genes (SCNIA,
SCN2A, SCN3A, SCN5A, SCNSA). The a subunits of these respective channels (Navl.1,

Nav1.2, Navl.3, Navl.5, Navl.6) contain the ion-conducting pore, the selectivity filter

that prefers Na* over other ions, and the elements responsible for activation (voltage

sensing) and inactivation?’?. These channels particularly enrich the unmyelinated axon

273,274 aa ThlS

initial segment (AIS) and the nodes of Ranvier is consistent with the critical

2 More specifically, Nav1.1 enriches the AIS of interneurons in the hippocampus and cerebellum. Even on

the patch of plasma membrane bounding the AIS of cortical pyramidal neurons, Nav1.2 and Navl.6 have
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role of voltage-gated Na* channels in the initiation and propagation of action potentials.

Navl.6 is also found in the plasma membrane bounding the soma and the roots of the

dendritic trees, although their density at these locations is smaller than at the AIS?7>-276,
The density of Nav1.6 along the apical dendrite further declines with distance from the

soma, and the channel appears to be wholly absent from dendritic spines.

There are many different types of K" channels, each repolarizing the neuronal
plasma membrane after an action potential in a distinct way or carrying out some entirely
different function. Our prioritized genes include more than twenty that encode subunits of
K* channels, including voltage-gated channels (KCNC2, KCNC4, KCND3, KCNHI,
KCNH2, KCNH3, KCNH5, KCNH6, KCNH7, KCNQ5), ancillary proteins (KCNAB2,
KCNAB3, KCNIPI, KCNIP2, KCNIP4, DPP6, DPPI10, KCNE?2), modifiers that do not
form homomeric channels on their own (KCNF/, KCNGI, KCNSI), ion-activated
channels (KCNMAI, KCNMB4, KCNN2, KCNTI), and inward rectifiers (KCNJ3,
KCNJ4, KCNJ6). More work needs to be done to characterize the regional and
subcellular distributions of these channels. Below, we attempt to convey a consensus

finding whenever this seems to be justified>’’ 28!,

Four subfamilies of voltage-gated K* channels have been recognized: Shaker (Kv1),

Shab (Kv2), Shaw (Kv3), and Shal (Kv4). KCNAB2 and KCNAB3 encode auxiliary f

subunits that forms channel complexes, for the most part, with Shaker o subunits?$*2%3,

The precise pore-forming partner can depend on alternative splicing. In vitro studies have
shown that the £ subunit can affect current density and shift channel activation to more
negative voltages, but its most striking effect in these studies is the addition of rapid
inactivation where otherwise the channel does not inactivate at all. This addition can have
profound consequences on the information-processing properties of the neuron (as

discussed further below).
KCNFI, KCNGI, and KCNS1 respectively encode Kv5.1, Kv6.1, and Kv9.1, which

cannot conduct current on their own but modulate the properties of Shab channels. These
channels are found on the soma and dendrites of neurons throughout the brain. They are
classified as voltage-dependent delayed rectifiers—so called because of slow activation
upon membrane depolarization, in comparison to voltage-gated Na* channels. (This lag
ensures that Na* influx precedes Ka* efflux, allowing an action potential to fire before

repolarization sets in.)

somewhat different distributions; Nav1.2 preferentially enriches the proximal portion of the segment closer

to the soma, whereas Nav1.6 enriches the distal portion bordering the first myelin sheath®>,
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Both KCNC2 and KCNC4 encode pore-forming a subunits of Shaw channels (Kv3.2,
Kv3.4). In contrast to the delayed rectifier Kv3.2, Kv3.4 is a conduit for rapidly

inactivating A current, and it has been reported to be present on the axons of projection
neurons. Whereas delayed rectifiers are mostly responsible for the falling phase of the

action potential, A-current channels like homomeric Kv3.4 regulate the duration of the

interval between spikes in a neuron that fires repeatedly. A wealth of empirical research

has shown that delayed rectifiers (e.g., Kv3.2) and conductors of A current (e.g., Kv3.4)

can fairly be considered extremes of a continuum?’®.

By expressing different
combinations of voltage-gated K* channels, neurons can generate a spectrum of delay

times and periods governing its repetitive spiking in response to sustained input.
KCND?3 encodes the pore-forming a subunit of Kv4.3, a Shal channel that admits A

current into the soma and dendrites of interneurons in the neocortex and hippocampus.
Shal channel complexes tend to contain interacting proteins of the KCNIP and DPP
families. Co-expression of KCNIPI, KCNIP2, or KCNIP4 with KCND3 results in a
channel complex that inactivates more slowly and recovers from inactivation more
rapidly than the a subunit expressed alone?®*. In addition, KCNIP1 increases the density

of the current flowing through Kv4.3, probably by increasing the trafficking of the

channel to the plasma membrane. One study has found that deletion of one KCNIP tends
to increase expression of others in a compensatory fashion, but that simultaneous
knockdown of KCNIP2, KCNIP3, and KCNIP4 does result in a reduction of A current®®*.
The incorporation of either DPP6 or DPP10 into the complex, which can occur separately
or together with a KCNIP, also increases current density and the rate of recovery from

inactivation; the rate of inactivation, in contrast, decreases.

KCNMA T encodes the pore-forming o subunit of KCa1.1, which is notable for being

gated by Ca’* as well as by voltage. The probability of channel opening is low at negative
membrane potentials but reaches nearly 100 percent upon both an increase in potential
and the addition of Ca?**. The a subunit resembles the Shaker channel in structure; one
prominent difference is the attachment of a large structure on the cytoplasmic side with a

Ca’*-binding site?® 2%, KCal.1 channels are positioned in either close proximity or
physical contact with voltage-gated Ca®* channels (e.g., Cav2.1), and in fact this may be

the only location where the Ca** concentration can become elevated enough to trigger

KCal.l opening. When such elevation occurs in an axon bouton as a result of an action

potential, the subsequent hyperpolarization produced by the efflux of K* accelerates the
closing of the voltage-gated Ca®>* channels and may act to limit the release of

neurotransmitter.
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KCNN2 encodes a subunit of KCa2.2, another Ca**-gated K* channel. Compared to
KCal.1, KCa2.2 channels have a smaller conductance, weaker voltage dependence, and
greater Ca®* sensitivity?®®. KCa2.2 channels play a role in a variety of processes other

than hypolarization following an action potential; in many projection neurons, they reside

in the postsynaptic membrane and influence synaptic plasticity.

Inward rectifiers are defined by the property of passing K™ current more readily in
the inward direction regardless of the gradient. These channels are critical to setting the
resting potential, permitting the action potential to proceed, and returning the membrane
to rest. This basic housekeeping role is fulfilled by so-called classic inward rectifiers,
such as Kir2.3; this channel is encoded by KCNJ4. We defer discussion of the Kir3

family until we discuss metabotropic transmission.

Our prioritized genes encode all subunits of hyperpolarization-activated cyclic
nucleotide-gated (HCN) channels (//CN/, HCN2, HCN3, HCN4). One function of HCN
channels is the stabilization of the resting potential: hyperpolarization activates the
channel and leads to depolarization, while depolarization closes the channel and cuts off
its contribution. Consistent with this role, HCN1 is found on the soma and dendrites of
pyramidal neurons in the neocortex and hippocampus; in fact, its density increases with

distance from the soma®®’

. This distribution may have the effect, in this particular type of
neuron, of normalizing excitatory input so that its contribution is less dependent on
distance from the AIS. Another possible function is to generate rhythmical bursts of

action potentials. Upon depolarization, the activation of channels such as Cav3.2 may

lead to dendritically initiated spikes. The overshoot of the repolarization following the
action potential opens HCN channels, depolarizing the neuron again and leading to a

fresh spike.

Synaptic Communication and Plasticity: Metabotropic Neurotransmission. Genes
overlapping our DEPICT-defined loci encode subunits of metabotropic receptors
activated by several distinct neurotransmitters: glutamate (GRM/, GRM2, GRM3, GRMS5,
GRM7, GRMS), serotonin (HTRIA, HTRIB, HTR2A), dopamine (DRD/, DRD?2), and
acetylcholine (CHRM1, CHRM3, CHRM4). What all of these receptor types have in
common is the transduction of the signal conveyed by their ligand, via a G protein, into

further changes at the membrane or in the depths of the neuronal interior.

A heterotrimeric G protein is composed of Ga, Gf, and Gy subunits; all three
subunit types have representatives encoded by DEPICT-prioritized genes (GNAlI,
GNAI2, GNAI3, GNATI, GNBI, GNG3, GNG7)*. G protein diffuses freely in the
plasma membrane, but binding to the appropriate activated metabotropic receptor
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catalyzes the exchange of GDP for GTP at a guanine nucleotide-binding site on the Ga
subunit. The subunits of the G protein then disassociate into Ga-GTP and Gpy, both of
which can interact with effectors that bring about some change in the information-
processing properties of the neuron. One way the signal from the ligand can be
terminated is the hydrolysis of the Ga-bound GTP and reassembly of the inactive Gafy
trimer. The rate at which this hydrolysis occurs can be greatly increased by regulator of
G-protein signaling (RGS) proteins, some of which are encoded by DEPICT-prioritized
genes (RGS6, RGS7, RGS12, RGS1 7). RGS6 and RGS7 are members of an RGS family
called R7, and their proteins may be anchored to the plasma membrane by the binding
protein RGS7BP?*%,

The consequences of Ga-GTP and Gpy being transiently separate depend on a
variety of factors but touch on every aspect of neuronal function. Here we only mention a
few illustrative examples. In some cases Ga-GTP and Gpfy can directly interact with ion
channels. Muscarinic acetylcholine receptors of the type encoded by CHRMI?** are
responsible for the slowing of the heart upon stimulation by the vagus nerve. It is now
understood that this effect is attributable to the binding of Gfy to the cytosolic side of the
heteromeric channel Kir3.1/3.4.2°* This opens the channel (an inward rectifier) and
produces the observed inhibition of the cardiac cell. In the brain this type of metabotropic
inhibition is provided by homo- and heteromeric channels composed of Kir3.1 and
Kir3.2 (encoded by KCNJ3 and KCNJ6 respectively). Kir3.2 activation can also result

from the metabotropic action of the serotonin receptor 5-HT A (encoded by HTRIA)*'!.

In other cases neither Ga-GTP nor Gpy interacts with an ion channel directly but
rather employs a second messenger. For example, adenylyl cyclases, such as those
encoded by ADCY2 and ADCYS, may be stimulated by either Ga-GTP or Gpy to catalyze
the formation of the second messenger cAMP. cAMP can have fairly direct effects on
certain neuronal parts such as HCN 1, the voltage dependence of which depends on cAMP
concentration. For the most part, however, the effects of cAMP are mediated by cAMP-
dependent protein kinase (PKA), a tetramer consisting of two regulatory and two
catalytic subunits. The subunit encoded by PRKAR2A can fill one of the regulatory
slots?®. This pathway can be shut down by either phosphatases removing the phosphoryl
groups from the target proteins or enzymes known as phosphodiesterases (PDEs), which
hydrolyze cAMP to AMP (or cGMP to GMP). Seven PDEs are encoded by DEPICT-
prioritized genes (PDEIA, PDEIC, PDE2A, PDE4C, PDE7B, PDEIOA, PDET1A)*S,

The phosphorylated membrane phospholipid PIP, also plays a role in second-
messenger systems. The one class of phospholipases that can be activated by G proteins
is PLCB. PLCBE] and PLCB3 both encode PLCB enzymes. The reaction catalyzed by
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PLCB cleaves PIP; into two products, IP; and DAG. (This is the biological significance
of the cluster named after DAG and IP3 signaling, which includes the gene sets G-
protein mediated events and PLCf mediated events.) The water-soluble IP; diffuses
down into the cytoplasm and binds to receptors on the smooth endoplasmic reticulum.
This binding results in the release of Ca®* into the cytoplasm, where it can influence ion-

channel activity and a host of other functions.

Phosphatases are necessary to terminate the actions of kinases in timely fashion, and
one of the specific phosphatases whose neuronal activities have perhaps been most well
studied is PP2A (subunits of which are encoded by PPP2R2A, PPP2R2D, PPP2R5B, and
PPP2R5C)*.

Synaptic Communication and Plasticity: Multiple Spatiotemporal Scales of Synaptic
Plasticity. Glutamate receptors of both the AMPA and NMDA type are anchored to an
electron-dense band of proteins lying immediately beneath the plasma membrane of the
postsynaptic side. This band is known aptly enough as the postsynaptic density (PSD).
The exemplary gene set DLG4 PPI subnetwork, the most statistically significant result
in Supplementary Table 8 (P = 4.64x107%"), is defined by perhaps the most important
protein in the PSD; the gene set postsynaptic density is a member of the corresponding
cluster. Much remains to be learned about the formation and function of the highly
complex PSD, but one of its roles is the provision of an interface between the channels
riddling the plasma membrane and the cytoplasmic machinery that reshapes the signaling
properties of the neuron. (It is now known that hundreds of distinct proteins contribute to
the PSD. We will only highlight a handful encoded by genes that have been reasonably
well studied in this context.)

If the PSD is regarded as a laminar structure, then the top layer consists of CAMs,
neurotransmitter receptors, and TARPs?*%; the deepest layer is the interface with the
cytoskeleton. The intermediate layer consists of scaffold proteins that lack enzymatic
activity themselves but serve to fix the transmembrane proteins of the top layer in place
and connect them to their more dynamic signaling targets in the dendritic spine. The
fixing of glutamate receptors into clusters seems to be quite important: a cryptic
columnar structure spanning the synaptic cleft, with a diameter of ~80 nanometers,
encompasses both RIMS1/2-enriched active zones on the presynaptic side and receptor-
enriched clusters on the postsynaptic side?”. The main components of the intermediate
PSD layer include the MAGUK, SHANK, and AKAP families of scaffold proteins.

A typical MAGUK has three PDZ domains, an SH3 domain, and inactive guanylate

300

kinase domain™". Many synaptic transmembrane proteins (including glutamate receptors,

voltage-gated ion channels, and CAMs) contain conserved PDZ-binding motifs in their
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cytoplasmic tails that hook up with the PDZ domains of MAGUKSs. DLG4 (also known
as PSD95), probably together with DLLG2 (also known as PSD93), interacts in this way
with the GRIN2 subunits of the NMDA-type glutamate receptor. DLG1 (also known as
SAP97) interacts more indirectly with the AMPA-type glutamate receptor, using TARPs
related to CACNG3 as intermediaries. MAGI2 (also known as SSCAM) interacts with
TARPs as well**! and appears to regulate trafficking of those AMPA-type receptors that

include a GRIA?2 subunit®®?,

SHANK? and SHANKS3 encode master scaffolding proteins with domains that
interact with many other dendritic proteins, including NMDA-type glutamate receptors
(via DLG4) and the GRIA1 subunit of the AMPA-type receptor’®. SHANK3 is one of the
genes most frequently found to be mutated in ASD patients*** 3%, A recent study found
that normal sociability in SHANK3-deficient mice can be restored by inhibiting the kinase
encoded by CLK237,

AKAPs were originally defined by the anchoring of the kinase PKA to specific
cellular locations. They are now recognized for their ability to form complexes
integrating several distinct pathways. In particular, AKAP5 (formerly called AKAP79)
encodes another master scaffolding protein that links actin, MAGUKSs, cadherins,
kinases, phosphatases, glutamate receptors, and voltage-gated ion channels’®. AKAP5
anchors both the kinase PKA and the phosphatase calcineurin, potentially balancing these
antagonists against each other. The protein encoded by AKAPY (formerly AKAP450)
plays a similar co-localizing role, except that its phosphatase is PP1 rather than

calcineurin.

Long-term potentiation (LTP) is mediated by the kinase CaMKII, a 12-mer with
subunits encoded by CAMK2A, CAMK2B, and CAMK2G. This kinase is so abundant in
neurons that it accounts for roughly one percent of all protein, suggesting a structural role
in the PSD as well as an enzymatic one, and indeed CAMK2A can bind to the GRIN2B
subunit of the NMDA-type glutamate receptor. Incoming Ca®* ions admitted through
activated NMDA-type receptors bind to a gene product called calmodulin. The
Ca**/calmodulin complex, in turn, binds to the individual subunits of CaMKII and

renders the complex into an active kinase.

The first step in the accumulation of more AMPA-type glutamate receptors seems to
be the enlargement of the dendritic spine itself. CaMKII activation is the likely trigger of
the pathways responsible for the increase and rearrangement of the cytoskeletal actin in a
larger spine, although not all of the precise mechanisms have yet been elucidated. DBN/
encodes an actin-binding protein that renders its substrate resistant to depolymerization,
which may help stabilize the cytoskeleton in a newly enlarged spine. AC7TR2 encodes a
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component of the ARP2/3 complex, which is involved in the initiation of actin filament
bifurcation’”’; the extension of the cytoskeleton into the spine has a branching structure.
One study has found that knockdown of ARP2/3 in mice leads to a failure of sustained
spine enlargement and impairment of object memory’'’. One target of CaMKII is
KALRN*! a catalyst of GDP/GTP exchange on GTPases acting on the actin
cytoskeleton (e.g., RHOA). Alternative splicing of KALRN produces several isoforms,
each of which may play a distinctive role in dendritic development and rearrangement *'2,
The target of at least one isoform, RHOA, can spread into the parent dendritic shaft and
adjacent spines within ~5 micrometers®!®. Fresh instances of these proteins and others
must be supplied by the machinery of protein synthesis in the dendritic shaft, if spine
enlargement is to be prolonged, and the signal to initiate this resupply can come from
activation of the receptor tyrosine kinase NTRK?2 by BDNF of likely autocrine origin; the
release appears to be triggered by a combination of glutamate and backpropagating action
potentials®'#. This late-phase LTP can also spread to other stimulated spines on the same

dendritic branch, up till tens of micrometers away>'°.

The insertion of new receptors appears to require substantial remodeling of the PSD.
CaMKII mediates the disassembly of PSD proteins such as DLG4 and SHANK?3; other
mechanisms presumably reinsert these scaffold proteins in the new configuration.
NLGNI1 seems to be trafficked to the top layer of the PSD, where it they may be able to
interact with DLG4 to reduce the diffusion of new AMPA-type receptors in the plasma
membrane and trap them in place. It is possible that the free AMPA-type receptors are
numerous enough to constitute a pool that can be drawn upon for synapse enhancement
without waiting for new arrivals to arrive via exocytosis. Knockdown of both SY7/ and
SYT7 has recently been shown to abolish LTP, apparently by undermining a crucial step

between Ca”* influx and exocytosis of AMPA-type receptors®'®.

The processes of long-term depression (LTD) act to weaken a synapse®!’3!¥, One
pathway leading to L'TD is initiated through activation of the phosphatase calcineurin (the
catalytic subunit of which is encoded by PPP3CA) by the Ca**/calmodulin complex.
Calcineurin, in turn, dephosphorylates the product of PPPIRIB (also called
DARPP32)3° which can then no longer inhibit the phosphatase PP1 (subunits of which
are encoded by PPPICA, PPPICB, PPPICC, PPPIR9A, PPPIR21, and PPPIR35)*%,
Freed from tonic inhibition, PP1 then dephosphorylates AMPA-type glutamate receptors,
which subsequently admit less current when opened. Through mechanisms that are not
well understood, dephosphorylation also leads to the removal of AMPA-type receptors
from the dendritic spine via clathrin-mediated endocytosis and shrinkage of the spine
head itself.
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So far we have been discussing forms of LTP and LTD mediated by NMDA-type
glutamate receptors, as befits the exemplary gene set post NMDA receptor activation
events, but other forms are also operative. One form of LTD is mediated by metabotropic
glutamate receptors, the receptor type depending on the brain region. For example,
GRM1 and GRM2 mediate LTD at Purkinje synapses in the cerebellum and mossy-fiber
synapses in the hippocampus respectively. The PSD actually connects GRM5 to NMDA-
type receptors, suggesting some kind of synergistic effect on synaptic plasticity of these
two glutamate receptor types®?!'?3. Both members of the ¢ subfamily of ionontropic
glutamate receptors are encoded by DEPICT-prioritized genes (GR/D/, GRID?2). Until
recently their endogenous ligands were unknown and their functions not well understood,
but now it has been shown that a transsynaptic complex beginning with a neurexin on the
presynaptic side and ending with GRID2 on the postsynaptic side can induce LTD at
cerebellar synapses via endocytosis of AMPA-type glutamate receptors®>*. There is also
the possibility that wholesale structural changes—e.g., the extension of new spines and
the withdrawal of old ones, the corresponding swelling and subsidence of axon
boutons—play an important role’®*. It is not known, however, whether such changes
occur in the in vivo adult brain. There is much evidence, in fact, that dendritic arbors and

spines are quite stable once the individual has reached early adulthood%.

Comparison with Genes and Gene Sets Prioritized in a GWAS of Cognitive
Performance. To help put our findings in context, we compare our results to those of the
largest published GWAS of CP*% (that does not rely on a joint analysis with EduYears).
We note that our study of EduYears identifies far more genes and gene sets than this
GWAS of CP, and for that reason, we focus our discussion on the extent to which the CP
results replicate in our study. However, the GWAS of CP has extensive sample overlap
with the current study of EduYears. Therefore the agreement between the two studies

detailed below should not be interpreted as fully independent replication.

Both the CP study and the current EduYears study employed MAGMA to prioritize
likely causal genes. Of the 47 genes found by the CP study to be Bonferroni significant
after correction for 18,338 genes (P < 2.7x107%), 41 attained FDR < 0.05 in our current
GWAS of EduYears (Supplementary Table 29). The CP study considered any gene
reaching the Bonferroni threshold times 10 (P < 2.7x107 and P > 2.7x10°°) to be
suggestively significant. Of the 58 genes found by the CP study to be suggestively
significant, 53 attained FDR < 0.05 in our study of EduYears.

The CP study employed a use of MAGMA that we did not conduct in our own
GWAS of EduYears—the testing of gene-set enrichment. This MAGMA procedure falls
within a class of methods where statistical power increases very slowly with sample
327

size’”’. We will nevertheless compare the results of this study with ours, which were
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obtained by applying different tools. In the CP study, a single gene set was found to be
significantly enriched, regulation of cell development®?®. This large and heterogeneous
GO gene set overlaps with many others, and the study of CP reported that its significance
was apparently driven by regulation of nervous system development, negative
regulation of dendrite development, neuron spine, and myelin sheath®. In our
DEPICT results, regulation of cell development is highly significant (P = 1.18x107!%),
and furthermore it is a member of the cluster named after regulation of nervous system
development (Supplementary Table 8). Other members of this cluster include positive
regulation of neuroblast proliferation, abnormal neuronal precursor proliferation,
regulation of neurogenesis, regulation of neuron differentiation, and abnormal
hippocampal commissure morphology, indicating that the relevant biology involves the
progression of the neuron over time—from its infancy as a progenitor, to its maturation
into an information-processing network. Our application of the Affinity Propagation
algorithm placed the gene set dendritic spine in the cluster named after DLG4 PPI
subnetwork, and it is among the most significantly enriched gene sets in our study (P =
2.35x107'7). As mentioned previously in our discussion of glial cells, myelin sheath is
not significant in our results, but this was the gene set mentioned in the main text of

Sniekers et al.*?° that overlaps least (14 percent) with regulation of cell development.

Many of these gene sets are also significant in our robustness analyses. Regulation
of cell development was returned by PANTHER (2.19-fold enrichment, Bonferroni P =
8.78x10°"°; Supplementary Table 30), as were regulation of nervous system
development (2.36-fold enrichment, Bonferroni P = 1.9x10'®) and dendritic spine
(3.19-fold enrichment, Bonferroni P = 3.99x10°°). Regulation of nervous system
development is one of the binary gene sets showing the most enrichment according to
stratified LD score regression (1.56-fold enrichment, P = 2.54x10°%; Supplementary
Table 36), and regulation of cell development is not far behind (1.50-fold enrichment, P
= 6.16x107°).

In short, the one significantly enriched gene set reported in the largest GWAS of CP
to date is strongly implicated in our current study of EduYears. Related gene sets also
attaining significance in our study indicate that one of the biological mechanisms driving
the high genetic correlation between CP and EduYears is the cellular development of

neural progenitors and postmitotic neurons.

® In the current DEPICT inventory, negative regulation of dendrite development is absent. Neuron
spine is a duplicate of dendritic spine; we retained the latter.
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5.7. Results: Causal SNPs

Stratified LD score regression. The results of estimating the stratified LD score
regression model are given in Supplementary Table 31. The top results by heritability
enrichment refer to evolutionary conservation (conserved [GERP RS > 4], 14.2-fold
enrichment, P = 8.55x107%; conserved [Lindblah-Toh], 9.22-fold, P = 3.16x107'3). This
is a typical result of stratified LD score regression regardless of the phenotype!!3%. A
number of the significant annotations refer to histone marks, and the effects of these on
gene regulation have already been discussed in the context of the gene-set enrichment
analysis. As a whole, the baseline results show that annotations indicative of gene
regulation (transcription start site, weak enhancer) tend to increase a SNP’s effect on

EduYears.

The results of estimating the effects of the fgwas annotations, one at a time in
conjunction with the baseline model, are given in Supplementary Table 32. The nine
annotations showing the most enrichment all refer to replicates of experiments assaying
DNase I hypersensitivity in the fetal brain (Supplementary Figure 23). This finding
replicates the finding from Okbay et al’s smaller-sample GWAS of EduYears', but our
estimate of the magnitude of the enrichment is larger. The fetal brain annotation with the
greatest effect size by this measure exhibits 12.5-fold enrichment (P = 1.63x107%); that
is, whereas only about 2.5 percent of all 1000 Genomes common SNPs bear this
annotation, they account for more than 30 percent of the heritable variance in EduYears.
Moreover, all 12 instances of fetal brain exhibit at least 7.4-fold enrichment. When the
measure of effect size is the annotation’s partial regression coefficient, the top nine
annotations remain instances of fetal brain. (The fgwas annotations show a correlation of

0.94 between the enrichment and coefficient measures of effect size.)

Other tissues/cell types in which the residence of a SNP in a DNase I hypersensitive
region predicts a greater effect on EduYears include neural progenitor cells (7.0-fold, P =
3.86x107®) and the fetal spinal cord (8.3-fold, P = 1.43x107'®). The top annotations
referring to genome segmentations are defined mostly by active transcription start sites,
as in embryonic stem cells (8.7-fold, P = 2.47x107%).

CAVIARBF. The optimal parameters {a, A} were {0, 64} (selected as described in
Section 5.4), reflecting ridge regression with a cost parameter of A = 64. We recovered
127 SNPs with PIP > 0.9 in 120 unique loci. Of these SNPs, 35 have annotations related
to the fetal brain (22 with DS16302), 26 are conserved according to the Lindblah-Toh
annotation, and 14 bear annotations of both these types. This result is consistent with our

results from stratified LD score regression, discussed above. Twenty-two of the 127
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SNPs with PIP > 0.9 are coding SNPs, and eight of these are nonsynonymous. The

regularized effect sizes of the annotations are available in Supplementary Table 37.

Our results remain robust to replacing our 1000 Genomes reference panel with the
UKB reference sample. Adjusting for the smaller number of SNPs in this reference panel
(308K vs. ~331K SNPs available for CAVIARBF), the number of prioritized SNPs we
recover is very similar: 115 SNPs with PIP > 0.9 in 111 unique loci. In addition, the eight
nonsynonymous SNPs that are prioritized using 1000 Genomes are also prioritized using
the UKB reference sample. The robustness of our CAVIARBF fine mapping analysis to
differences in reference sample may be due in part to the availability of functional
annotation information, which reduces the importance of LD estimation precision by
providing additional information that the model can use to differentially prioritize SNPs

within each locus.

Several candidates for causal SNPs in Supplementary Table 10 are particularly
noteworthy. The most intriguing candidate is the nonsynonymous SNP rs61734410,
which reaches genome-wide significance in our MTAG analyses of all four traits. It also
reaches genome-wide significance in our GWAS analyses of Highest Math (P =
6.27x10°'%) and Math Ability (P = 2.97x107%). The SNP fails to reach genome-wide
significance in the GWAS analysis of CP (P = 0.01), but the sign of the effect remains
concordant. The SNP resides in CACNAIH (Supplementary Figure 9C). As mentioned
earlier, this gene encodes the pore-forming subunit of Cav3.2, which is found
predominantly on dendrites. Cav3.1 and Cav3.3 channels admit low-threshold and rapidly
inactivating Ca®* currents that promote rhythmical bursting of the neuron, but a recent
study reported that Cav3.2 differs from the other Cav3 channels in that it plays a role in
the synaptic trafficking of NMDA-type glutamate receptors; away from synapses it
appears not to be as strongly expressed in the mature rat brain as its family members*?®,
De novo nonsynonymous mutations of this gene have been implicated as causes of
childhood absence epilepsy through the mechanism of a lowered activation threshold®%.
The amino-acid substitutions induced by most of these mutations are located in a
cytoplasmic loop between transmembrane domains I and II, bearing out the importance
of this particular domain to neurophysiological function, and it happens that the

substitution induced by rs61734410 also occurs in this domain.

CACNAIH is more highly expressed in the human brain prenatally’! and is a high-
ranking member of the exemplary gene sets protein binding transcription factor
activity, partial postnatal lethality, axon guidance (Reactome), and regulation of
neuron projection development. Earlier we cited a recent study indicating that voltage-
gated channels of the Cav3 type mediate GABA-induced formation of dendritic spines®*,

a function that is perhaps consistent with these genes sets. It is thus possible that the

120



nonsynonymous SNP rs61734410 affects EduYears through perturbations of both brain

development and online neurophysiology.

One interesting trend is that several of our genes encoding transcription factors
critical for neuron differentiation and prioritized in our earlier studies (POU3F?2,
BCLI1A, TBR1)"*3* are now linked to candidates for causal SNPs (rs62422687,
rs10189857, rs11678980). These SNPs may also be particularly fruitful foci of follow-up
research, because of their relatively large effect sizes and likely effects on EduYears
through multiple mechanisms mediated by different target genes.

5.8. Omnigenicity

At the request of a referee, we have applied an analysis reported in a recent paper>!

to the current GWAS of EduYears. The authors of this work annotated each protein-
coding gene in the human genome as broadly expressed or specifically expressed in
one of several tissues. See pp. 7-9 of the Supplemental Information of their paper for the
details of how these annotations were derived from the GTEx data®*?. For purposes of
stratified LD score regression, any SNP in an exon (or within 1 kb of either the first
exon’s start or the last exon’s stop) inherited the tissue-level annotation of its
encompassing gene. The paper analyzed schizophrenia. The paper found that despite
showing less heritability enrichment than brain-expressed genes, broadly expressed genes

account for more total heritability by virtue of being more numerous.

We obtained the assignment of genes to tissues from these authors and applied their
procedure to the current EduYears summary statistics exactly as described. The results,
shown in Supplementary Figure 24 and Supplementary Table 34, are similar to those
displayed in Figure 2B of Boyle et al.>*!. In the right panel of Supplementary Figure 24,
we plot fraction of heritability rather than absolute amount of heritability because the
former is the actual output of stratified LD score regression. The absolute amount of
heritability can be computed by multiplying the proportion by the total heritability
reported in the log file, but doing so simply rescales the x axis of Supplementary Figure
24.

When the tissues are ranked by heritability enrichment, the top result is frontal
cortex (10.4-fold enrichment, P = 2.84x107°), followed by pituitary (7.65-fold
enrichment, P = 0.08) and broadly expressed (4.42-fold enrichment, P = 2.57x107%).
When the tissues are ranked by proportion of heritability, however, broadly expressed
(proportion of h* = 0.026, one-sided P = 6.25x1077) overtakes frontal cortex (proportion
of h* = 0.019, one-sided P = 1.36x10°°). If we assume (unrealistically) no sampling

covariance between these two estimates, then the difference between broadly expressed
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and frontal cortex in proportion of heritability is not significant (P = 0.30). The
remaining results combined do not account for even half as much heritability as frontal
cortex.

Since some of the key concepts used by Boyle et al.**! are not formally defined,
there is some ambiguity as to what data would be needed to falsify the “omnigenicity”
hypothesis. A possible interpretation of our results in line with the thesis of Boyle et al.
might go as follows. Causal sites acting through frontal cortex genes may have direct
and biologically interpretable effects on EduYears. The effects of frontal cortex genes,
however, are likely to be moderated by broadly expressed genes acting through complex
networks “with no direct relevance to [EduYears]” (p. 1184). And since broadly
expressed seems to account for more heritability than frontal cortex, it may be that
GWAS of high-frequency variants is no longer identifying “core genes” with
“interpretable mechanistic links to [EduYears].” Such an impasse would motivate a turn
to alternative designs, such as sequencing studies of low-frequency variants, to identify
more core genes expressed specifically in the brain. Furthermore, more research into
neuron-specific gene regulation is needed to understand how broadly expressed genes
that are only indirectly relevant can nevertheless be associated with so much heritability.

We agree with much of this interpretation. It is reasonable to posit that there will be
a point of diminishing returns, past which GWAS of a given trait will identify very few
additional core biological processes and cell compartments. It is not clear whether we
have yet reached this point with the current study of EduYears. Our results provide
pointers to a vast sweep of neurobiology, ranging from early development to online
neurophysiological function. We still lack clear evidence for the relevance of some
neurobiology (segmentation and head induction during the first month after conception,
glial function, transport of cargo through axons and dendrites), and increasing the sample
size may bring these missing pieces into the picture very slowly. It is conceivable that
sequencing studies of low-frequency variants, using aggregate tests to alleviate the lack
of statistical power, could identify some of the missing neurobiology more efficiently.
Finally, we agree that an improved understanding of gene regulation will enhance our

ability to interpret existing GWAS results.

At the same time, we do not believe that it is necessarily appropriate to label genes
that fail to qualify for the frontal cortex annotation as “indirectly relevant” or
“uninterpretable,” at least not if the purpose of the labels is to convey to readers whether
or not a given gene is a promising candidate for functional follow-up studies. For
example, CACNAIH, BCLIIA, and POU3F2 are genes mentioned in our discussion of
likely causal SNPs. None bear the frontal cortex (or the broadly expressed) annotation.

Nevertheless, it is clear from the literature that when grossly perturbed, these genes have
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substantial impacts on brain development and functioning (Supplementary Section 5.6).
Thus, while the frontal cortex annotation is certainly a reasonable factor to consider
when prioritizing candidates for functional follow-up studies, other considerations are
also reasonable to consider, such as the confidence with which the causal site responsible
for the GWAS signal can be isolated, the effect size of the putative causal site, and what
is currently known about the role of the gene in the brain (Supplementary Table 10).
We suspect that, often, such case-specific knowledge or its absence may be more
compelling than the general argument that expression in additional tissues renders a

brain-specific mechanism more elusive.
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6. Prediction

6.1 Introduction

In this section, we assess empirically how well various polygenic scores (PGS)
derived from the analyses described in Supplementary Section 1 predict a host of
phenotypes related to educational attainment, academic achievement, and cognition in
European-ancestry holdout samples. Additionally, we test the predictive power of our
main educational attainment polygenic score in a sample of African-American
individuals. We begin by describing and motivating the methodology used to generate all
polygenic scores analyzed in this section. Next, we analyze polygenic scores based on
summary statistics from our primary GWAS of EduYears. In the final subsection, we
evaluate polygenic scores based on summary statistics from our remaining association
analyses, including the joint analysis of EduYears, CP, Math Ability, and Highest Math.

6.2 Constructing Polygenic Scores

In general, a polygenic score for an individual is defined as a weighted sum of a
person’s genotypes at J SNPs,

]
gi = z XijWj. (6.1)

j=1

Methodologies for PGS construction differ primarily across two dimensions: how to

333,334 Since a

generate the weights w;, and how to determine which J SNPs to include
single study rarely contains enough data to conduct a well-powered GWAS, researchers
generally meta-analyze GWAS summary statistics across cohorts, and the meta-analyzed
cohorts serve as the discovery sample. Standard methodologies for PGS construction only
require access to GWAS summary statistics from a discovery sample, which are then

applied to the individual genotype data in a smaller, holdout (prediction) sample.

A common and simple strategy for constructing polygenic scores from summary
statistics is “pruning and thresholding” (P&T). With the P&T method, the weights are set
equal to the coefficient estimates from univariate regressions of the phenotype on each
variant j. The J SNPs are selected using a pruning algorithm that ensures the markers
included in the score are all approximately independent of each other. The purpose of
pruning is to eliminate genetic variants that are correlated with (i.e., are in linkage
disequilibrium, or LD, with) already included variants. Including highly correlated
variants would cause the PGS to “double count” the effect of a causal variant. To avoid
overfitting, weights are estimated in a training sample that is independent of the

prediction cohort. Sometimes, the set of SNPs is further restricted by omitting SNPs
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whose P value for association with the phenotype is above a certain threshold. The
purpose of this restriction is to try to boost the signal-to-noise ratio by only including
genetic variants that are most likely to be truly associated with the phenotype in the PGS.

The analyses in this section are all based on scores derived using a Bayesian
approach, LDpred estimation, that explicitly models and accounts for genetic
architecture. LDpred has generally been found to perform better than the cruder P&T
approach. We conduct a version of LDpred estimation that assumes a Gaussian prior for
the distribution of effect sizes and sets the weight for each variant equal to the mean of its
posterior distribution after accounting for LD. The theory underlying LDpred is derived
assuming the variance-covariance matrix of the genotype data in the training sample is
known. In practice, this matrix is not known, so we follow Vilhjalmsson et al.’** and
replace the training-sample variance-covariance matrix by an approximation that is
estimated using observed LD patterns in a reference sample of conventionally unrelated
individuals with European ancestry. Because long-range LD is assumed to be absent, the
approximating matrix is block diagonal. In each of our prediction cohorts, we use cohort-
specific genotype data as the reference sample (after dropping cryptically related

individuals and ancestry outliers).

All prediction analyses reported below are based on summary statistics from
association analyses conducted in independent discovery samples. We omit from the
meta-analysis the three cohorts we use for prediction—Add Health, the HRS, and the
WLS—which we discuss in more detail below. To make fairer comparisons across our
prediction cohorts, we impute the genotypic data for all three prediction cohorts and then
use only HapMap3 SNPs available in these imputed datasets to construct our scores. We
use HapMap3 SNPs because these SNPs are generally well imputed and provide good
coverage. Samples are composed of European-ancestry individuals whose genotype data
meet standard quality-control thresholds. All scores are based exclusively on HapMap3
SNPs that meet the following conditions: (i) the variant has a call rate greater than 98% in
the prediction cohort; (ii) the variant has a minor allele frequency (MAF) greater than 1%
in the prediction cohort; and (iii) the allele frequency discrepancy between the meta-

analysis and the prediction cohort does not exceed 0.15.

We calculate the posterior means using the software LDpred***. The final scores are
then obtained using PLINK*** multiplying the genotype probabilities at each SNP by the

corresponding estimated posterior mean and summing over all SNPs.

In what follows, we adopt the convention of defining each score by the source of the
association statistics, GWAS or MTAG, followed by the name of the phenotype whose
association statistics are being used. For example, GWAS-EduYears refers to a PGS
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constructed using weights from the association statistics from the primary GWAS of
EduYears, whereas MTAG-CP is a polygenic score whose weights are derived from the
MTAG association statistics for CP.

6.3 Defining Prediction Accuracy

All prediction analyses are based on ordinary least squares regressions of a
phenotype on the PGS and a set of controls. Unless otherwise noted, all regressions
include the following basic set of controls: a full set of dummy variables for year of birth,
an indicator variable for sex, a full set of interactions between sex and year of birth, and
the first 10 principal components of the variance-covariance matrix of the genetic data.
The principal components were estimated in a subset of conventionally unrelated
individuals in each prediction cohort, using HapMap3 SNPs ¢ with a minor allele

frequency greater than 0.01.

To evaluate prediction accuracy, we use a simple, two-step process. First, we regress
the phenotype on our set of controls without the PGS. Next, we rerun the same regression
but with the PGS included. For quantitative phenotypes, our measure of predictive power
is the incremental R?: the difference in R? going from the regression without the PGS to
the regression with the PGS. For binary outcomes, we proceed similarly but calculate the
incremental pseudo-R> from a Probit regression. To obtain 95% confidence intervals

(CIs) around the incremental R?’s, we perform a bootstrap with 1000 repetitions.

6.4 GWAS-EduYears Polygenic Score

The main analyses reported in this section were conducted among European-
ancestry subjects in the National Longitudinal Study of Adolescent to Adult Health (Add
Health)*®” and the Health and Retirement Study (HRS)**. (To avoid complicating the
exposition, we postpone analysis of the Wisconsin Longitudinal Study (WLS) until
Section 6.5, because the WLS has a truncated distribution of EduYears.) Both studies
provide comparable measures of completed education. Whereas Add Health offers
detailed measures of scholastic and cognitive achievement in adolescence, the HRS
contains measures of several dimensions of cognitive functioning in older individuals.
Following the suggestion of a referee, we also conducted a prediction analysis among

African-American subjects in the HRS.

In the imputed Add Health data, there are a total of 1,217,312 HapMap3 SNPs. Of
these, 1,211,662 SNPs have a call rate above 98% and 1,196,228 are available in the
meta-analysis. 26,930 SNPs with minor allele frequency less than 1% were removed,
leaving 1,169,298 SNPs that were used to construct the Add Health scores.

126



In the imputed HRS data, there are a total of 1,216,794 HapMap3 SNPs. Of these,
1,144,251 have a call rate above 98% and 1,127,758 are available in the meta-analysis.
23,077 SNPs with minor allele frequencies less than 1% were removed, leaving
1,104,681 SNPs that were used to construct the scores.

Supplementary Table 38 provides a summary overview of the results from our

prediction analyses as well as descriptive statistics for the phenotypes considered.

EduYears. We begin by examining how well the GWAS-EduYears score predicts
our primary phenotype, EduYears, available in both Add Health and HRS. The results are
shown in Supplementary Figure 13. We estimate that a one-standard-deviation increase
in the PGS is associated with 0.79 extra years of schooling in Add Health. The associated
incremental R* is 12.7%. In the HRS, we estimate a coefficient of 0.84, with an

incremental R? of 10.6%.

To gauge the impact of expanding the sample size used in the discovery sample, it is
useful to compare the results obtained here with results based on polygenic scores from
previous GWAS of educational attainment. Supplementary Figure 26 depicts how
predictive power changes as the sample size for the EduYears meta-analysis has
increased over time. To maximize comparability, all numbers reported in the figure are
based on scores constructed using identical methods (namely, the methods described
above) and a common set of SNPs (namely, all HapMap3 SNPs present in each of the
four meta-analyses). In the figure, the x axis measures the size of the discovery sample
for the meta-analysis used to construct the scores, and the y axis measures incremental R?
associated with the score. Polygenic scores derived from the first large-scale GWAS of
educational attainment (N = 126,559) explain 4.0% of the variation in EduYears for Add
Health and 2.8% of the variation in EduYears for the HRS. The predictive power
increases to 6.9% for Add Health and 5.7% for the HRS when summary statistics from
Okbay et al.’s! discovery analyses are used (N = 293,723) and further increases to 8.5%
for Add Health and 6.7% for the HRS when the weights are based on Okbay et al.’s!
combined meta-analysis of discovery and replication cohorts (N = 405,072). Our current
meta-analysis with N = 1,131,881 individuals increases prediction accuracy in both
samples, to 12.7% in Add Health and 10.6% in the HRS. Taken as a whole,
Supplementary Figure 26 confirms the strong positive relationship between the sample
size of a meta-analysis and the predictive power of a polygenic score created from a

meta-analysis.

In Supplementary Figure 10, we measure the impact of increasing the P value
inclusion threshold for the number of SNPs used to construct our EduYears polygenic
score. The x axis measures an increasing P value threshold for scores made with the
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“pruning and thresholding” (P&T) method described above. These thresholds are 5x10°8,
5x107, 5x1073, and 1 (i.e., all SNPs). We also include, as a point of comparison, the
LDpred score for our meta-analysis, constructed with HapMap3 SNPs and a fraction of
causal SNPs set equal to 1 (i.e., the LDpred software is run using the spike-and-slab
option with the fraction of causal SNPs equal to 1). The y axis measures the incremental
R? associated with each score. Polygenic scores made using only the genome-wide
significant SNPs (P value threshold 5x107%) explain 3.8% of the variance in EduYears for
Add Health and 2.5% for HRS. As the P value threshold increases to include more SNPs
in the polygenic score, the predictive power also increases. Including all SNPs results in
scores that explain 8.7% of the variance in EduYears for Add Health and 7.9% of the
variance for HRS. Finally, the LDpred scores for EduYears generate further gains in
predictive power for both Add Health and the HRS, to 12.7% and 10.6%, respectively.

Other Education Outcomes in Add Health and the HRS. In additional analyses of
both the Add Health and HRS samples, we consider three binary variables related to
educational attainment: (i) High School Completion, (ii) College Completion, and (iii)
Grade Retention (i.e., retaking a grade). In both prediction cohorts, the PGS is
significantly associated with all three outcomes. As shown in Supplementary Table 38,
in Add Health, a one-standard-deviation increase in the score is associated with a 4.7
percentage-point increase in the probability of completing high school (incremental
pseudo-R* = 6.2%), a 15.6 percentage-point increase in the probability of completing
college (incremental pseudo-R> = 9.5%), and a 7.1 percentage-point reduction in the
probability of having retaken a grade (incremental pseudo-R* = 4.0%). These effects are
substantial relative to the baseline prevalences of 93%, 33% and 18%, respectively. In the
HRS, a one-standard-deviation increase in the score is associated with approximately an
8.8 percentage-point increase in the probability of completing high school (incremental
pseudo-R> = 6.0%), a 12.6 percentage-point increase in the probability of completing
college (incremental pseudo-R> = 8.3%), and a 4.3 percentage-point reduction in the
probability of having retaken a grade (incremental pseudo-R> = 1.9%). Again, these
effects are substantial relative to the respective baseline prevalences of 82%, 25% and
14%.

In Figure 4a and Supplementary Figure 11, we show the mean frequencies of each
of our 3 binary outcomes across quintiles of our EduYears polygenic score. First, we
divide our polygenic score into five quintiles in both Add Health and HRS so that the 1%
quintile reflects the lowest polygenic scores and the 5" quintile reflects the highest
polygenic scores. Each quintile contains roughly 955 individuals in Add Health and
roughly 1,720 individuals in the HRS. Then, for high school completion, college

completion, and grade retention, we plot the mean prevalence in each quintile for both

128



Add Health and for the HRS. Using college completion as an example, depicted in Figure
4a, note that the mean prevalence increases substantially moving from the lowest quintile
(11.6% in Add Health and 9.2% in the HRS) to the highest quintile (57.0% in Add Health
and 44.7% in the HRS).® Comparing the 1*' and 5" quintiles, there is a 45.4-percentage-
point difference in college completion in Add Health and a 35.5-percentage-point
difference in the HRS.

Cognitive and Academic Achievement QOutcomes in Add Health. In additional
analyses in Add Health, we examine the relationship between the polygenic score and
several phenotypes related to cognition and academic achievement. In the first wave of
Add Health, when participants were 12-20 years old, verbal cognition was measured with
a modified version of the Peabody Picture Vocabulary Test>*. In this test, an interviewer
reads a word aloud, and a respondent selects the illustration that best fits the word’s
meaning. Eighty-seven items were included on this computer-adapted test, and scores

were age-standardized.

In the third wave of Add Health, transcripts were collected from respondents’ high
schools. From the transcripts, grade point averages (GPAs) were calculated using the
common United States 0.0 to 4.0 range, both for Overall GPA and for subject-specific
GPAs. We analyze Overall GPA, Math GPA, Science GPA, and Verbal GPA. In our
GPA analyses, we control for high school fixed effects, so the estimates should be
interpreted as measures of the extent to which within-school differences in PGSs are
predictive of within-school differences in scholastic outcomes. For each of these
cognitive and academic achievement phenotypes, we present the regression estimates,
samples sizes, and incremental R’ values in Supplementary Table 38 and
Supplementary Figure 13.

The PGS is significantly predictive of all of our cognitive and academic
achievement outcomes. In our analyses of the Peabody test scores, we find that the
incremental R? of the PGS is 7.5%. A one-standard-deviation increase in the score is
associated with an increase in Overall GPA, Math GPA, Science GPA, and Verbal GPA
of approximately 0.26, 0.27, 0.29, and 0.27, respectively. For Overall, Math, Science, and
Verbal GPA, the incremental R is respectively 9.2%, 7.1%, 8.0%, and 7.4%.

Cognitive Outcomes in the HRS. In additional analyses of the HRS sample, we
examined the relationship between the EduYears PGS and a number of cognitive

phenotypes. Our first cognitive phenotype, Total Cognition, is the sum of four cognitive

¢ The differences in high school and college completion rates across Add Health and the HRS are expected,
given demographic trends in educational attainment over time in the US. We would expect respondents in
the HRS, who were born in earlier years than respondents in Add Health, to have completed high school or
college less often than Add Health respondents (and to have completed fewer years of education overall).
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measures common across waves 3 through 10: an immediate word recall task, a delayed
word recall task, a naming task, and a counting task, with a total score ranging from 0 to
35. Our second cognitive phenotype, Verbal Cognition, measures the subject’s ability to
define five words. Each definition supplied is rated as incorrect (0), partially correct (1)
or completely correct (2), resulting in a total score ranging from 0 to 10. Third, to
evaluate changes over time, we studied wave-to-wave changes in Total Cognition and
Verbal Cognition, (x; — x;_1). Our fifth cognitive outcome, Alzheimer’s, is an indicator
variable equal to one for subjects who report having been diagnosed with Alzheimer’s
disease, and 0 otherwise. Our decision to include this variable was motivated by evidence

that EduYears and Alzheimer’s disease are modestly genetically correlated'.

Since the HRS data are longitudinal, the unit of analysis for our 4 cognitive
outcomes is a person-year. For these analyses, because individual i took the cognitive
tests at different ages, in our set of controls we replace our person-specific age variable
with age at assessment (which differs for individual i across the cognitive outcomes).
Furthermore, since the unobserved determinants of individual i’s outcome across waves

are unlikely to be independent, we cluster all standard errors at the person level>*.

For each of these cognitive phenotypes, we present the regression estimates, samples
sizes, and incremental R’ values in Supplementary Table 38. The PGS is significantly
predictive of the Total Cognition and Verbal Cognition scores (incremental R?> = 2.7%
and 4.7%, respectively). The score is not significantly associated with wave-to-wave
changes in Total Cognition or Verbal Cognition, nor is it significantly associated with our

Alzheimer’s measure.

Chromosome Length. In Supplementary Figure 27, we examine the relationship
between chromosome length and the predictive power of an EduYears polygenic score.
Each data point in the figure corresponds to a chromosome, with the x axis coordinate

h**!, and the y axis denoting the incremental R> of a PGS based

denoting its lengt
exclusively on genetic variants located on the chromosome. In both panels (Add Health
on the left and HRS on the right), the dashed line is the best fit from a regression of the
incremental R? of each score on chromosome length, with the intercept constrained to
zero. There is a strong, positive, linear relationship between the length of each
chromosome and the predictive power of the by-chromosome polygenic score. The
correlation between chromosome length and by-chromosome incremental R* is 0.83 (SE
=0.125) in Add Health and 0.87 (SE = 0.109) in the HRS. For educational attainment, the
more genetic data that a chromosome contains, the larger the predictive power of that
chromosome’s polygenic score, consistent with the idea that educational attainment is

highly polygenic. Supplementary Figure 28 shows by-chromosome incremental R?’s
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from a sample-size weighted average of the Add Health and HRS results. The correlation

between chromosome length and by-chromosome incremental R?is 0.90 (SE = 0.098).

Benchmarking the Predictive Power of the GWAS-EduYears PGS. To benchmark the
polygenic score’s predictive power, we compared the incremental R* of the polygenic
score to that of several commonly used variables: mother’s education, father’s education,
both mother’s and father’s education, verbal cognition, household income, and a binary

indicator for marital status.

We conducted two separate analyses. In the first, we compared each variable
individually to the PGS. Specifically, we calculated, for each variable, its incremental R?
using the same procedures as those described above for the PGS. The results, shown in
Panel A of Supplementary Table 39, are broadly similar in Add Health and HRS. Panel
A of Supplementary Figure 12 shows the sample-size-weighted mean across the two
cohorts.% Tn both datasets, the PGS is a better predictor of educational attainment than
marital status. The PGS is a marginally stronger predictor of EduYears than household
income (a commonly used proxy for socioeconomic status) and a marginally weaker
predictor than mother’s education, father’s education, or the respondent’s score on a test
of verbal skills. Finally, mother’s and father’s education together remain a substantially

stronger predictor of own education than the PGS.

In many potential uses of PGSs as control variables, the relevant measure of
predictive power is the incremental R? of the PGS beyond variables that have already
been measured. For example, consider an investigator performing a randomized
evaluation of an intervention designed to improve educational outcomes. Suppose that
prior to the intervention, the investigator obtained information about the demographic
characteristics in Supplementary Table 39. Controlling for a PGS would reduce
statistical uncertainty about the causal impact of the intervention, but the magnitude of
the gain in precision depends on the incremental R* of the PGS conditional on the set of
covariates that are already available to the investigators (for a formal analysis, see
Section 8 of the SOM of Rietveld et al.?).

In Panel B of Supplementary Table 39, we evaluate the incremental R*> of the
polygenic score in predicting EduYears under various assumptions about the set of
available covariates. The first row shows that the (sample-size-weighted mean) predictive
power of our EA polygenic score is 11.4% when the only available covariates are sex,
year of birth, and their interactions. Next, we control for a number of additional

demographic variables one at a time: marital status, household income, mother’s

44 Tn the last column for all analyses in Supplementary Table 39, we again use sample-size weighting to
meta-analyze the results between Add Health and HRS.
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education, and father’s education. Controlling for marital status does not attenuate the
incremental R? of the polygenic score appreciably, whereas controlling for household
income reduces its incremental predictive power to 9.3%. Controlling for mother’s or
father’s education reduces the incremental R> to 6.8% or 6.4%, respectively, and
controlling for both mother’s and father’s education reduces the incremental R* to 5.5%.
Finally, when the full set of demographic characteristics is controlled for, the incremental
R? of the PGS is 4.6%. For a graphical illustration of these results, see Panel B of
Supplementary Figure 12.

EduYears in African-American subjects in the HRS. We examined how well an
EduYears polygenic score predicts EduYears among 1,519 African-ancestry individuals
in the HRS. We constructed the score using the same LDpred weights as we used for
European-ancestry subjects, described above. In order to identify the African-ancestry
subjects, we used the list provided by the HRS, containing the family and individual
identifiers of subjects identified as genetically of African-American ancestry. In the
prediction analysis, we included the same set of age and sex controls as the European-
ancestry analysis, and the first 10 principal components of the variance-covariance matrix
of the genetic data of the African-ancestry sample. We found that the LDpred score
predicts 1.6% (95% CI: 0.7% to 3.0%) of the variance in EduYears among African-
ancestry individuals. This represents 85% attenuation in the predictive power of the score

compared to the incremental R of 10.6% in our European-ancestry sample from HRS.

To provide context for this degree of attenuation, we identified three existing papers
that examined the predictive power in an African-ancestry sample of a polygenic score
constructed using weights from a European-ancestry GWAS. Note that the results from
these papers are not entirely comparable to ours because they use different methods for
estimating weights for the polygenic score and different methods of evaluating predictive
power. One paper” examined a polygenic score estimated from the first large-scale
GWAS of EduYears* (N = 126,559). The prediction sample was Add Health. The
measure of predictive power was the squared correlation (°) between EduYears and the
polygenic score, a measure that necessarily produces larger numbers than our measure of
incremental R°. They estimated 7* = 0.032 in their European-ancestry prediction sample
(N = 8,630) but only 7* = 0.012 in their prediction sample of African Americans (N =
3,456)—an attenuation of 63%.

A second paper**? studied a binary phenotype, psychosis, using weights estimated in

a GWAS with 150,064 individuals'®. Unlike the other two papers that used U.S.-based
prediction samples, this paper examined a U.K.-based prediction sample, the Biomedical
Research Centre for Mental Health Genetics and Psychosis Study. The measure of

predictive power was incremental Nagelkerke’s R?, where the control variables were 10
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PCs and DNA origin (blood or buccal). In their European-ancestry prediction sample (N
= 405), the incremental Nagelkerke’s R*> was 9.4%, while in their African-ancestry
prediction sample (N = 3,456), it was 1.1%. This represents an attenuation of 88%.

The third paper’*® studied BMI, and weights were obtained from a GWAS in a
sample of 249,796 individuals***. The prediction sample was the Atherosclerosis Risk in
Communities Cohort. The measure of predictive power was the incremental R?, where the
baseline set of controls was a measure of educational attainment. They estimated
incremental R? of 1.5% in their European-ancestry prediction sample (N = 8,286) but
only 0.22% in their prediction sample of African Americans (N = 2,442)—an attenuation
of 85%.

We are cautious in comparing our results with these other results because of the
differences in methodology and (in two out of three cases) phenotype, and we note that
all of the attenuation estimates have uncertainty that we have not quantified. Nonetheless,
our reading of this evidence is that the attenuation we observe in our African-American

prediction sample is not out of line with what has been observed in other studies.

6.5 MTAG-Based Polygenic Scores

Next, we evaluated the predictive power of polygenic scores based on summary
statistics from other association analyses we conducted, including the MTAG analysis of
EduYears, CP, Math Ability, and Highest Math. Examining the predictive power of

MTAG-based polygenic scores is of interest because Turley et al.'®

show theoretically
that, very generally, MTAG-based scores are expected to outperform scores constructed
from the underlying GWAS results. Empirically, previous studies have generally

confirmed this expectation. For example, Turley et al.!

apply MTAG to summary
statistics from GWAS of depressive symptoms, neuroticism, and subjective well-being
and find that the incremental R?> of their MTAG-based scores outperform the
conventional scores by about 25%. A previous application of MTAG ** to educational
attainment, household income, and cognitive performance similarly reports that an
MTAG-CP PGS has an incremental R*> of 6.9%, a substantial increase over the (sample-

size weighted) mean of 2.5% 32° or 4% 3*° reported in the largest-to-date GWAS of CP.
In this subsection, we compare the predictive power of GWAS-based and MTAG-

based polygenic scores for both EduYears and CP. We then compare the gains in
predictive accuracy from MTAG to the gains that would be expected theoretically when
the MTAG assumptions are approximately accurate. Since MTAG is supposed to
generate association results that are specific to each phenotype, we conclude by
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evaluating in our application whether the “own-phenotype” MTAG-based polygenic
scores in fact have greater predictive power than the “other-phenotype” MTAG-based
polygenic scores.

We continue to use Add Health and the HRS for evaluating the predictive power of
polygenic scores for EduYears. In our analyses of CP, we used Add Health and the
Wisconsin Longitudinal Study (WLS) as prediction cohorts because, as discussed below,
both have high-quality measures of CP that are likely to have a high genetic correlation
with the phenotype used in our GWAS of CP.

EduYears. We began by rerunning some of the key analyses from the previous
subsection, but with MTAG-based scores in lieu of GWAS-based scores. In both
prediction cohorts, the incremental R* of the MTAG-based scores is approximately one-
half percentage point greater than the estimates from GWAS-based scores
(Supplementary Table 42). In Add Health, the MTAG- and GWAS-based scores have
incremental R*’s of 13% and 12.7%, respectively. In HRS, the corresponding figures are
11.2% and 10.6%.

For completeness, we also repeat the same analysis in WLS and found incremental
R*s of 6.8% (95% CI 6.2% to 7.2%) and 7.0% (95% CI 6.2% to 7.4%) for GWAS-
EduYears and MTAG-EduYears, respectively. These estimates, however, must be
interpreted in light of the fact that the original WLS study population, by design®*’, was
drawn from the most educated part of the population, consisting almost exclusively of
high school graduates (the intended sample was the set of all high school graduates from
Wisconsin born between 1938 and 1940). In our WLS estimation sample, 98% of
respondents completed high school, compared to the state-level average of 75% in the

relevant birth cohort®*®

. Adjusted for the range restriction, the WLS estimates are
consistent with the Add Health and HRS results: if we impose the same truncation in Add
Health or HRS—and limit the estimation samples to respondents who completed high
school—the predictive accuracy of the GWAS-EduYears scores fall by approximately
20%. We also calculated the theoretically expected amount of attenuation under the
assumption that the (PGS, EduYears) distribution in WLS is a truncated bivariate normal,

with EduYears truncated from below at the 25" percentile. Under these assumptions, a

correlation of 0.26 (v0.068 = 0.26) in the truncated distribution implies a correlation of

0.34 in the underlying (truncation-free) binormal distribution®*.

Hence, the restriction-
of-range adjusted estimate for the predictive power of the GWAS-EduYears PGS is R* =

0.34? = 11.6%, which is in the same ballpark as our Add Health and HRS estimates.
Cognitive Performance. Next, we examined how well MTAG-based and GWAS-

based scores for CP and EduYears predict cognitive performance. We conducted these
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analyses in two prediction cohorts: Add Health and WLS. (We omit the HRS even though
it has a high-quality measure of cognitive functioning because the test was designed to
measure risk for dementia and cognitive impairment in the elderly, and consequently a

substantial fraction of the items measure learning and memory*>°.)

In the imputed WLS data, there are a total of 1,217,039 HapMap3 SNPs. Of these,
1,211,685 SNPs have a call rate above 98% and 1,200,740 are available in the meta-
analysis. We drop the 29,981 SNPs with minor allele frequency less than 1%, leaving
1,170,759 SNPs that were used to construct the WLS scores.

In Add Health, our measure of cognitive performance is again the respondent’s age-
adjusted score on the Peabody Picture Vocabulary test. In the WLS, our measure of
cognitive performance is the respondent’s raw score on a Henmon-Nelson test of mental
ability®!. The Henmon-Nelson test is a 30-minute multiple-choice test that consists of 90
individual verbal or quantitative items. It is a psychometrically validated test whose
scores are known to correlate highly with g. It is therefore reasonable to expect that the
Henmon-Nelson test scores are highly genetically related to the COGENT and UKB
cognitive measures on which the GWAS discovery-sample results for CP are based. Test

scores are available for most WLS respondents.

In each of the two CP prediction cohorts, we compare the prediction accuracies of
four polygenic scores: MTAG-CP, GWAS-CP, MTAG-EduYears, and GWAS-EduYears.
The results are shown in Panel B of Supplementary Table 42 and in Figure 4C. In Add
Health the GWAS-EA and MTAG-EA scores outperform the GWAS-CP and MTAG-CP
scores in predicting CP. However, the MTAG-CP score is more predictive than the
GWAS-CP score, with an incremental R’ of 6.9% and a gain over the GWAS-CP score of
1.8%. In WLS, the MTAG-CP score is the most predictive of the four scores, with an
incremental R? of 9.7% and a gain over the GWAS-CP score of 2.7%.

6.6 Comparing Observed Gains in Prediction Accuracy to Theoretical Predictions

Next, we utilized a previously described framework!?, to compare the observed
prediction accuracies of the MTAG-based scores to their theoretically expected

accuracies.

In a first step, we used a well-known theoretical result’™*® to infer a SNP-based
heritability for each trait:
4
Re=—
Mg (6.2)

2 4 eff
h+N
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where R? is the predictive power of the GWAS-based PGS in the prediction sample, h? is
the SNP heritability of the phenotype in the prediction sample, N is the sample size used
to create the PGS, and M, is the effective number of independent SNPs in the sample
(assumed to be 60,000)**3. This calculation gives an estimate of each trait’s heritability

specific to each prediction sample.

Next, we calculate the expected predictive power by replacing N with a GWAS-
equivalent sample size calculated as follows:
2
-1
= NAMTAG T Z 6.3)

Nequiv - N = ’
Xewas — 1

where xZrac and xéwas are the average inflation-adjusted y? statistics. Finally, we
calculate the difference between the expected predictive power of an MTAG-based score
and a GWAS-based score and compare this difference to the one we observed
empirically.

For EduYears, these calculations suggest that, relative to the GWAS-EduYears
score, the MTAG-EduYears score will improve prediction accuracy of 0.4% in both Add
Health the HRS. The observed gains are 0.3% and 0.6%. For CP, analogous calculations
yield a theoretical prediction of 1.9% in both Add Health the WLS. The observed gains
are 1.8% and 2.7%. In all cases, the observed gains are similar in magnitude to, and never

statistically distinguishable from, those predicted by theory.

6.7 Comparing Trait-Specific Scores

In our final analysis, we compared the predictive power of the four MTAG-based
scores for EduYears, CP, and Math GPA. Under the MTAG assumptions, an MTAG-
based score constructed from own-phenotype association statistics should have greater
predictive power for that phenotype than an MTAG-based score constructed from
association statistics for one of the other phenotypes. For example, the MTAG-EduYears
score should be a better predictor of EduYears than the MTAG-CP, MTAG-Math Ability,
and MTAG-Highest Math scores. For EduYears and CP, it is straightforward to test
empirically whether the observed rank ordering is consistent with theoretical
expectations. For the two mathematics variables, we do not have comparable phenotypes
in any of our prediction cohorts. We therefore used data from Add Health about the
respondent’s high-school GPA in math, which we consider to be the best available proxy.
For the proxy, we expect the MTAG-Math Ability and MTAG-Highest Math scores to
have relatively greater predictive power.
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In Supplementary Table 43 and in Supplementary Figure 29, we report the
predictive power of each MTAG score for EduYears (both cohorts), CP (both cohorts),
and Math GPA (Add Health only). We discuss each phenotype in turn, beginning with
EduYears. In both cohorts, the MTAG-EduYears score is the best predictor of EduYears,
followed by MTAG-Highest Math, MTAG-CP, and MTAG-Math Ability scores (though
not shown, we observed an identical rank ordering in HRS). In WLS, the MTAG-CP
score is the best predictor of Henmon-Nelson 1Q, followed by the MTAG-EduYears,
MTAG-Highest Math, and MTAG-Math Ability scores. In Add Health, the results are
similar, albeit with the MTAG-EduYears and MTAG-CP scores having very similar

predictive accuracies.

We also find that the MTAG-EduYears and MTAG-Highest Math scores are the best
predictors of Math GPA, followed by MTAG-CP and MTAG-Math Ability. The MTAG-
Highest Math, and MTAG-Math Ability scores are relatively better predictors of our
proxy. The final columns of Supplementary Table 43 report the results from additional
analyses of Verbal GPA and Science GPA. For these variables, the predictive power of
the MTAG-Math Ability and MTAG-Highest Math scores are lower, both in an absolute
sense and relative to the MTAG-EduYears and MTAG-CP scores.

Overall, phenotype-specific MTAG scores are the best predictors of CP and
EduYears. While we cannot make definitive statements about the two 23andMe math
phenotypes, we find that MTAG scores based on them perform relatively better when the
target phenotype is Math GPA, the best available proxy available to us.
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7.2 Cohort Contributions
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Supplementary Figure 1. Quantile-quantile Plots from Meta-analysis of EduYears (N
= 1,131,881 individuals).

(a) All SNPs. (b) SNPs grouped by minor allele frequency (MAF); rare (< 1%), low-
frequency (1-5%) and common (> 5%).
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Supplementary Figure 2. LD Score Plot from Meta-analysis of EduYears (N =
1,131,881 individuals).

Each point represents an LD score quantile. The x and y coordinates of the point are the
mean LD score and the mean y° statistic of SNPs in that quantile. The fact that the
intercept is close to one and that y? statistics increase linearly with the LD scores of the
SNPs suggests that the bulk of the inflation in the j? statistics is due to true polygenic

signal.
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Supplementary Figure 3. Replication of EA2 Lead SNPs

We examined the out-of-sample replicability of the lead SNPs identified at genome-wide
significance in the combined-stage sample (N = 405,073 individuals) of a published
GWAS meta-analysis of EduYears'. The x axis is the winner’s-curse-adjusted estimate of
the SNP’s effect size in the previous study (calculated using shrinkage parameters
estimated using summary statistics from the previous study). The y axis is the SNP’s
effect size estimated from the subsample of our data (N = 726,808 individuals) that did
not contribute to the previous study’s meta-analysis. All effect sizes are from a regression
where phenotype and genotype have been standardized to have unit variance. The
reference allele is chosen to be the allele estimated to increase EA in the previous study;
therefore, all points above the dotted line have matching signs in the replication sample.
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Supplementary Figure 4. Testing for Heterogeneous Effects of Lead SNPs.

For each SNP included in the meta-analysis, we used Cochran’s Q test of heterogeneity’
to test for effect-size heterogeneity across cohorts. The figure above shows the quantiles
of the observed distribution of heterogeneity P values for our 1,271 lead SNPs against the
distribution under the null hypothesis of homogeneous SNP effects across cohorts. The
gray shaded areas in the Q—Q plots represent the 95% confidence intervals under the null

hypothesis. See Supplementary Table 2 for underlying data.
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Supplementary Figure 5. Meta-Analysis of X-Chromosomal SNPs (N = 694,894
individuals).

The meta-analysis was conducted by combining summary statistics from (sex-pooled)
association analyses conducted in UK Biobank (N = 329,538 individuals) and
23andMe (N = 365,356 individuals); see Supplementary Section 4.6 for additional
details. In (a), the P values plotted are based on summary statistics adjusted for
inflation using the same LD score intercept used in the autosomal analyses. The solid
line indicates the threshold for genome-wide significance (P = 5x107%). The P values in
(b) are based on P values from unadjusted test statistics.
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Supplementary Figure 6. Comparison of Autosomal and X-Chromosomal
Association Results.

“Chromosome length” is calculated as the difference between the minimum and
maximum base-pair position SNPs on the chromosome. “Effective number of loci (M)
is calculated from the M SNPs using data from the UK Biobank (N = 329,358
individuals). For each chromosome, “by-chromosome SNP heritability” is calculated as

xX2-1)M — . . = .
h? = w, where y2 is the mean y? test statistic for that chromosome and N is the

average GWAS sample size. “Number of lead SNPs” is calculated by applying our
clumping algorithm (see Supplementary Section 1.8) to the set of genome-wide
significant SNPs; to account for the larger GWAS sample size available for the
autosomes relative to the X chromosome, we inflate the standard errors for the autosomal

GWAS results by [2220

~ 1.079. The dashed line is the best fit from a regression of

the points in the plot with the intercept constrained to zero. The value 72 is the squared
correlation coefficient of the points in each plot. (a) Chromosome length vs. heritability,
(b) Effective number of loci vs. heritability, (¢) Chromosome length vs. number of lead
SNPs, (d) Effective number of loci vs. number of lead SNPs.
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Supplementary Figure 7. Flowchart of Biological Annotation.

Our various biological analyses are grouped into five broad classes: (1) identification of
enriched tissues/cell types, (2) identification of enriched gene sets, (3) prioritization of
likely causal genes, (4) use of the BrainSpan Developmental Transcriptome to analyze
when the causal genes are expressed, and (5) prioritization of likely causal SNPs. These
broad classes are represented by the red boxes. Each gray box corresponds to a particular
analysis and is placed under the broad class of analyses (red box) to which it belongs.
Some analyses use the output of other analyses as input; such a relationship is represented
by a brown arrow. The label of an arrow describes how the output of the prior analysis was
filtered to produce input for later analyses. EA2, prioritized by DEPICT in Okbay et al.!
and in the current study; EA3, prioritized by DEPICT in the current study but not in Okbay
etal.'.
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Supplementary Figure 8. Roles of Selected Newly Prioritized Genes in Neuronal
Communication.

The 59 genes listed in the figure were selected as follows. We began with the 30 gene-set
clusters in Supplementary Figure 22 and dropped those that include gene sets that were
implicated in a previous study of EduYears (Supplementary Table 4.5.1 of Okbay et al.
1. Of the 8 clusters that remained, we retained the 4 related to neuronal communication
(DAG and IPs3 signaling, associative learning, post NMDA receptor activation
events, regulation of neurotransmitter levels). We identified the 460 DEPICT-
prioritized genes belonging to the exemplary gene sets representing these clusters
(membership Z score > 2). Of these, the figure shows the 59 genes that appear in a figure

or table of Fain*?; these are genes whose functions are considered important for neuronal

physiology.
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Supplementary Figure 9. Regional Association plots for Four Likely Causal SNPs

Identified using CAVIARBF.

We show the top four SNPs, as assessed by posterior inclusion probability, that are both

nonsynonymous and located in a DEPICT-prioritized gene. Results are based on the full
GWAS summary statistics (N = 1,131,881 individuals).
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Supplementary Figure 10. Predictive Power of Polygenic Score as a Function of
Pruning at Different P Value Thresholds.

Each PGS is based on a set of approximately independent SNPs identified using the
clumping algorithm defined in Supplementary Section 1.8. For HRS (N = 8,609
individuals) and Add Health (N = 4,775 individuals) respectively, the number of SNPs
included in the PGS is (with P value threshold in parentheses): 1,235 and 1,043 (5x107%);
5,152 and 4,432 (5x107°); 23,659 and 21,473 (5x107°); 262,908 and 244,603 (All SNPs);
1,104,681 and 1,169,298 (All SNPs, LDpred). Error bars show 95% confidence intervals
for the R?, bootstrapped with 1000 iterations each.
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Supplementary Figure 11. Mean Prevalence of Schooling Outcomes by EduYears PGS Quintile.

Each quintile contains approximately 1,600 respondents in HRS and 900 in Add Health. Total sample sizes for these two phenotypes for each of
these prediction cohorts can be found in Supplementary Table 38. Quintile 1 contains the lowest PGS values; Quintile 5, the highest. Error bars show
95% confidence intervals for the mean. (a) High school completion, (b) Grade retention.
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Supplementary Figure 12. Predictive Power of GWAS-EduYears Polygenic Score
Compared to Other Variables (top) and as Attenuated by Additional Controls
(bottom).

The outcome variable for all analyses is EduYears. (a) Incremental R? values are
calculated for each listed variable (or variables, in the case of both parents’ education)
and can be compared to the incremental R’ of the EduYears PGS, shown in dark red. All
analyses in the top panel include the baseline control variables: sex, birth year, the
interaction between sex and birth year, and the first ten principal components (PCs) of the
genetic relatedness matrix. (b) The left-most bar (“Baseline”) is the same as the dark red
bar from the top panel. Each of the other bars is the incremental R? of the EduYears PGS,
after controlling for the variables listed underneath the bar. Each bar corresponds to a
sample-size weighted meta-analysis of the incremental R* in both the Add Health and
HRS cohorts, for a combined prediction sample size of 13,384. Error bars show 95%

confidence intervals for the R?, bootstrapped with 1000 iterations each.
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Supplementary Figure 13. Polygenic Score Prediction in Add Health and HRS.
Predictive power of the polygenic score constructed from the current EduYears GWAS
results in two independent prediction cohorts: Add Health (N = 4,775 individuals) and
HRS (N = 8,609 individuals). (a) Results for education phenotypes available in both
datasets. (b) Results for cognitive and academic achievement phenotypes available in
either Add Health or HRS. Error bars show 95% confidence intervals for the R?,
bootstrapped with 1000 iterations each. The number of individuals in the prediction
sample for each regression represented above can be found in Supplementary Table 38.
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Supplementary Figure 14. Manhattan Plot for Cognitive Performance (N = 257,841 individuals).

7.!'19!21
18 20 22

SNPs are plotted on the x axis according to their position on each chromosome, and significance of association with the phenotype is

on the y axis [shown as —logio (P value)]. The solid line indicates the threshold for genome-wide significance (P = 5x10°%). All P

values are derived from test statistics inflated by the estimated intercept from an LD score regression.
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Supplementary Figure 15. Manhattan Plot for Self-Rated Math Ability (N = 564,698 individuals).

SNPs are plotted on the x axis according to their position on each chromosome, and significance of association with the phenotype is
on the y axis [shown as —logio (P value)]. The solid line indicates the threshold for genome-wide significance (P = 5x10°%). All P
values are derived from test statistics inflated by the estimated intercept from an LD score regression.
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Supplementary Figure 16. Manhattan Plot for Highest Math (N = 430,445 individuals).

SNPs are plotted on the x axis according to their position on each chromosome, and significance of association with the phenotype is
on the y axis [as —logio (P value)]. The solid line indicates the threshold for genome-wide significance (P = 5x10°%). All P values are
derived from test statistics inflated by the estimated intercept from an LD score regression.
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Supplementary Figure 17. Inverted Manhattan Plot of GWAS and MTAG results for EduYears.
To facilitate comparisons, the GWAS and MTAG results are shown for the set of ~7M SNPs that passed MTAG filters. The average

x? statistic reported is calculated based on adjusted test statistics. The —logio (P value) is truncated at +30. GWAS summary statistics
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are based on a sample of 1,131,881 individuals. MTAG summary statistics combine these summary statistics with those of Cognitive
Performance (N = 257,841 individuals), Math Ability (N = 564,698 individuals), and Highest Math (N = 430,445 individuals).
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Supplementary Figure 18. Inverted Manhattan Plot of GWAS and MTAG Results for Cognitive Performance.
To facilitate comparisons, the GWAS and MTAG results are shown for the set of ~7M SNPs that passed MTAG filters. The average

x? statistic reported is calculated based on adjusted test statistics. The —logio (P value) is truncated at +30. GWAS summary statistics
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are based on a sample of 257,841 individuals. MTAG summary statistics combine these summary statistics with those of EduYears (N
= 1,131,881 individuals), Math Ability (N = 564,698 individuals), and Highest Math (N = 430,445 individuals).
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Supplementary Figure 19. Inverted Manhattan Plot of GWAS and MTAG Results for Math Ability.
To facilitate comparisons, the GWAS and MTAG results are shown for the set of ~7M SNPs that passed MTAG filters. The average

x? statistic reported is calculated based on adjusted test statistics. The —logio (P value) is truncated at +30. GWAS summary statistics
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are based on a sample of 564,698 individuals. MTAG summary statistics combine these summary statistics with those of EduYears (N
= 1,131,881 individuals), Cognitive Performance (N = 257,841 individuals), and Highest Math (N = 430,445 individuals).
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Supplementary Figure 20. Inverted Manhattan Plot of GWAS and MTAG Results for Highest Math.

To facilitate comparisons, the GWAS and MTAG results are shown for the set of ~7M SNPs that passed MTAG filters. The average
x? statistic reported is calculated based on adjusted test statistics. The —logio (P value) is truncated at +30. GWAS summary statistics
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are based on a sample of 430,445 individuals. MTAG summary statistics combine these summary statistics with those of EduYears (N
= 1,131,881 individuals), Cognitive Performance (N = 257,841 individuals), and Math Ability (N = 564,698 individuals).
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Supplementary Figure 21. Summary Overview of m. Estimates in Sibling Cohorts.

Each estimate of m, was calculated by comparing EduYears summary statistics from a
between-family GWAS with those from a within-family analysis. The between-family
estimates were calculated in an identical way to the main GWAS results but excluding
siblings and their relatives. Cohorts are ordered by size of the sibling sample (smallest to
largest), with “Overall” using within-family summary statistics from an inverse-variance-
weighted meta-analysis of the four cohorts. The sample sizes for the discovery and
within-family cohorts for each estimate represented above are in Supplementary Table
21. Error bars show 95% confidence intervals, calculated using the block jackknife with
1000 iterations.
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Supplementary Figure 22. Brain-Specific Expression of Significantly Enriched Gene
Sets across Development.

Each row is a non-PPI gene set prioritized by DEPICT (FDR < 0.05) and chosen as the
exemplary member of its cluster by the Affinity Propagation algorithm, based on the
results of the autosomal GWAS of EduYears (N = 1,131,881 individuals). The colors
represent the expression of the gene set in the BrainSpan Developmental Transcriptome
as a function of developmental stage. Expression of the gene set is calculated as the
weighted mean of the expression of all DEPICT-prioritized genes (FDR < 0.05), with
each gene’s weight derived from its membership score. The gene sets are ordered by the
difference between the mean prenatal and postnatal expression. We show only those sets
with a heritability enrichment greater than 1.25 according to stratified LD score
regression; complete results can be found in Supplementary Table 8. (Note that the
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early childhood stage appears to be an outlier, with uniformly low expression across

gene sets.)
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Supplementary Figure 23. DNase I Hypersensitivity in Fetal Tissues/Cell Types as a

Predictor of SNP Effects on EduYears.
23
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We applied stratified LD score regression?, using SNP-level annotations from Pickrell®°.
The enrichment factor for a given SNP-level annotation is the ratio of two quantities: (1)
the numerators is the fraction of the EduYears heritability explained by SNPs qualifying
for this annotation, and (2) the denominator is the fraction of SNPs that qualify for the
annotation. Results are based on the full GWAS summary statistics (N = 1,131,881

individuals). We display the top 50 estimated enrichment factors and associated 95%
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confidence intervals for the estimates of annotations referring to DNase I hypersensitivity
in a fetal tissue/cell type. Complete results can be found in Supplementary Table 32.
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Supplementary Figure 24. Heritability Enrichment of Genes That Are Broadly or Specifically Expressed.

The enrichment factor for a given tissue annotation is the ratio of two quantities: (1) the numerator is the fraction of the EduYears

heritability explained by SNPs in the exons of genes highly expressed in the named tissue(s), and (2) the denominator is the fraction of

SNPs mapping to those exons. Genes with brain-specific expression show the strongest enrichment of EduYears heritability (left), but

genes broadly expressed across many tissues contribute more to total heritability due to their greater number (right). We used stratified
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LD score regression®® to partition the heritable variation. Results are based on the complete GWAS summary statistics (N = 1,131,881
individuals). Error bars represent 95% confidence intervals of the estimate. For comparability with Boyle et al.*>*! we display the top
11 tissues in each panel. Complete results can be found in Supplementary Table 34.
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Supplementary Figure 25. Binary Gene Sets with Strongest and Weakest
Heritability Enrichment (15 of Each).

The gene sets are the original, binary (not reconstituted) gene sets. The enrichment factor
for a given gene set is the ratio of two quantities: (1) the numerator is the fraction of the
EduYears heritability explained by SNPs mapping to genes that are members of the set,
and (2) the denominator is the fraction of SNPs that map to those genes. We selected
those (original, binary) non-PPI gene sets with reconstituted versions found by DEPICT
to be significantly enriched (FDR < 0.05) or impoverished (P value = 1) and with at least
200 original members. We used stratified LD score regression” to partition the heritable
variation. Results are based on the complete GWAS summary statistics (N = 1,131,881
individuals). Error bars represent +1 standard error. We show the 15 enriched gene sets
with the largest enrichment factors (red), subject to the constraint that each lower-ranking
result comes from a different cluster in Supplementary Table 8 than all higher-ranking
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results. We also show the 15 impoverished sets with the smallest factors (green), subject
to an analogous constraint. Complete results can be found in Supplementary Table 36.
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Supplementary Figure 26. Predictive Power of Polygenic Score as a Function of the
Size of the EduYears GWAS Discovery Sample.

All PGSs constructed using the software LDpred*** assuming a normal prior for SNP
effect sizes. Prediction samples are European-ancestry individuals in the National
Longitudinal Study of Adolescent to Adult Health (Add Health, N = 4,775 individuals)
and the Health and Retirement Study (HRS, N = 8,609 individuals). Incremental R? is the
difference between the R? from a regression of EduYears on the PGS and the controls
(sex, age, their interaction, and 10 PCs) and the R? from a regression of EduYears on just
the controls. All PGSs are constructed from EduYears GW AS results that exclude Add
Health and HRS.
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Supplementary Figure 27. Predictive Power of Chromosome-Specific EduYears
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polygenic score’s incremental R? on chromosome length, with the intercept constrained to

zero. The prediction sample sizes for the Add Health and HRS cohorts are 4,775 and

8,609 individuals, respectively.
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Supplementary Figure 28. Predictive Power of Chromosome-Specific EduYears
Polygenic Scores in Sample-Size Weighted Meta-Analysis of Add Health and HRS.

The dashed line depicts the best fit from a regression of the chromosome-specific
polygenic score’s incremental R? on chromosome length, with the intercept constrained to
zero. The combined prediction sample size of the two cohorts is 13,384 individuals.
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Supplementary Figure 29. Comparison MTAG PGSs Based on Trait-Specific MTAG Association Statistics and MTAG
Association Statistics for Other Traits.

Each colored bar corresponds to the incremental R? for some PGS, phenotype, and cohort. In both prediction cohorts, the MTAG-
EduYears score is the best predictor of EduYears, and MTAG-CP is the best predictor of cognitive performance. In Add Health,
cognitive performance is the respondent’s age-standardized score on a test of verbal cognition. In WLS, cognitive performance is
defined as the respondent’s score on a Henmon-Nelson test of mental ability®>!. Math GPA is a proxy for Math Ability and Highest
Math. Error bars show 95% confidence intervals for the R?, bootstrapped with 1,000 iterations each. The number of individuals in the
prediction sample for each regression represented above can be found in Supplementary Table 43.
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