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Selection Under Inbreeding

Either inbreeding or selection, never both at the same time — R. A. Fisher

Draft Version 26 May 2013

Why inbreeding and selection? One may have little choice. For many species, such as the
autogamous crops that provide much of our food, the extra work required to insure outcross-
ing is considerable. Second, in many cases, creative use of inbreeding can increase selection
response. Finally, many natural populations are highly inbred. Inbreeding redistributes the
genetic variance in a population, reducing or removing it within an inbred line and increas-
ing it between a collection of lines (Chapter 10). Inbreeding also (generally) increases the
covariance between relatives, as relatives become increasingly more genetically similar un-
der inbreeding (Chapter 10). As we will see, all these actions have important consequences
for selection response.

When inbreeding occurs and nonadditive genetic action (dominance and/or epistasis) is
present, the standard genetic variance components (σ2

A, σ2
D, σ2

AA, etc.) are no longer sufficient
to predict response because even the simplest covariances between relatives depend on addi-
tional parameters. As discussed in Chapter 10, at least three additional components (ι∗, σ2

DI ,
and σADI ) are required to describe the covariance between inbred relatives when dominance
is present (Table 10.1), and hence to specify short-term response. A further complication is
inbreeding depression (LW Chapter 10), which changes the mean even in the absence of
selection. Unless otherwise mentioned, we assume throughout gametic-phase equilibrium
and no epistasis, genotype× environment interactions or correlations. The complications
these introduce for selection response with inbreeding remain largely unexplored.

Our examination of response under inbreeding begins with a general
overview of the machinery and concepts of joint inbreeding and selection. This is followed
by a discussion of family selection when the parents and/or tested progeny are inbred, ex-
tending the results of Chapter 21. These first two sections form the basics of inbreeding and
selection response. The remainder of the chapter examines a number of special (but impor-
tant) cases in more detail, such as selfing and partial selfing. Additional aspects of selection
and inbreeding are covered in other chapters, with the interaction and selection and drift
examined in Chapter 26 and the generation and selection among pure lines (briefly covered
here) examined more extensively in Chapter 30.

BASIC ISSUES IN RESPONSE UNDER INBREEDING

Before we delve into the gory details for particular systems of inbreeding, a number of general
comments on the response under inbreeding are in order for several reasons. First, for many
readers, the discussion in this section may be sufficient unless/until they need specific details
for a particular scheme. Second, there are a number of issues common to selection response
any system of inbreeding. With the basic concepts and machinery in hand, one can skip from
this section directly to the details for a particular system of interest without having to work
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through a number of other system that may be of less interest.

Accounting for Inbreeding Depression

Even in the absence of selection, changes in the population level of inbreeding can cause
changes in the mean due to inbreeding depression (LW Chapter 10). Let ∆I denote the change
in mean from inbreeding depression. If dominance is the only nonadditive genetic effect,
then the change from inbreeding at time t, ∆It = bft, is a linear function of the inbreeding
coefficient. Here b is the difference in character value between a completely inbred (f = 1)
and outbred (f = 1) population. If epistasis is present, ∆I = bf + cf 2 + · · ·, the order of
polynomial in f depends on the type of epistatic interactions (LW Chapter 10). To distinguish
between the change due to inbreeding depression and the additional change due to selection,
we decompose the total change in the population mean after t generations as

∆µ(t) = µt − µ0 = R(t) + ∆It (23.1a)

with a component due to the response from selection R(t) and one due to inbreeding depres-
sion ∆It. When computing the response to selection, we ignore the change from inbreeding
depression, so that

R(t) = ∆µ(t) − ∆It (23.1b)

If the population is randomly-mated, the inbreeding depression term becomes zero, exposing
the true genetic response.

Response Under Small Amounts of Inbreeding

When the amount of inbreeding is small enough that changes in the covariances between
relatives are negligible, its main effect is inbreeding depression. Consider a population of
modest size undergoing random mating, where the amount of inbreeding generated by
genetic drift at generation t is ft ≃ t/(2Ne), provided t << Ne and f(0) = 0. If no epistatis
is present,

∆It =
b t

2Ne
(23.2a)

giving the expected response with a small amount of inbreeding (Nordskog and Hardiman
1980, Hill 1986) as approximately

R(t) ≃ t · ı · h2 · σz −
b t

2Ne
= t · ı ·

(
h2σz −

b

2Ne · ı

)
(23.2b)

This not an unreasonable approximation for small amounts of inbreeding (say f < 0.05 –
0.1). For larger amounts (i.e., f = t/(2Ne) > 0.1), the genetic variances change from their
base population value and this must be taken into account. Chapter 26 examines long-term
response in finite populations.

There is a rich literature on maximizing selection response under either constrained
levels of inbreeding or under the minimization of inbreeding (Quinton et al. 1992; Quniton
and Smith 1995; Grundy et al. 1994, 1998, 2000; Villanueva et al. 1994; Brisbane and Gibson
1995; Luo et al. 1995; Meuwissne 1997; Meuwissne and Sonesson 1998; Meszaros et al. 1999;
Sonesson et al. 2000), and this is covered in Volume 3.

Using Ancestral Regressions to Predict Response

The simplicity of Equation 23.2 follows from the assumption that a small amount of inbreed-
ing does not greatly change genetic variances. With larger amounts of inbreeding, variances
and covariances can change each generation. Fortunately, with regular systems of inbreeding
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the change in genetic variances (and hence the covariances between relatives) in the absence
of selection is usually rather predictable. Motivated by this, we make the key assumption
throughout the chapter that selection does not substantially alter these variances and covari-
ances from their expected values in the absence of selection. Provided this assumption holds
and that all regressions are linear and homoscedastic, the method of ancestral regressions
(Chapter 15) offers a powerful approach for predicting short-term response.

Recall that under ancestral regression, the cumulative response is expressed as a series
of regression coefficients (covariance divided by variance) of the contribution to the current
total response from selection in a previous generation t, giving the expected response after
T generations of selection and inbreeding as

R(T ) =

T−1∑

t=0

St
σG(T, t )

σ2(zt)
=

T−1∑

t=0

ıt
σG(T, t )

σ(zt)
(23.3)

Here σG( T, t ) is the covariance between a relative in generation t and one in the current gen-
eration T ≥ t, while σ2(zt) is the phenotypic variance of relatives in generation t. Note that
this is just the regression of zT on zt, which has slope σz( T, t )/σ2(zt) = σG( T, t )/σ2(zt) in
the absence of environmental correlations between generations T and t. Under complicated
systems of inbreeding, a number of relatives with different degrees of inbreeding must be
simultaneously followed, leading to additional indices in the covariance, such as σG(T, τ, t)
or σG(T, τ, t, k).

Throughout this chapter, the convention is that generation zero is the first generation of
inbreeding from a random mating population. Selection in generation zero thus implies that
parents from an outbred base population are selected and then inbred. If our first selection
is on the first inbred progeny, then selection starts in generation one.

Equation 23.3 is based on the infinitesimal model, since it assumes selection-induced
changes in allele frequencies are negligible. While genotypic frequencies change due to in-
breeding (homozygotes increasing, heterozygotes decreasing), we assume that within the
population allele frequencies do not significantly change. Hence, if pi is the frequency of allele
Ai in the base population, the frequency of lines eventually fixed for the AiAi genotype is
assumed to essentially remain pi, despite selection. Formally, it is changed to pi + ǫi, where
ǫi is a very small amount. With a very large number of loci all those very small values of
ǫi can add up to a considerable change in the mean, while still resulting in little change in
genetic variances (Chapter 24)

Since the covariance function also gives the genetic variance in generation t, as σ2
G( t ) =

σG( t, t ), with the covariance function for our particular system of inbreeding in hand, we
can immediately write the response as

R(T ) =

T−1∑

t=0

St
σG( T, t )

σG( t, t ) + σ2
e

=

T−1∑

t=0

ıt
σG( T, t )√

σG( t, t ) + σ2
e

(23.4)

For example, the response after two generations of inbreeding and selection is

R(2) = ı0
σG( 2, 0 )

σ(z0)
+ ı1

σG( 2, 1 )

σ(z1)
(23.5a)

The first term represents the response that carries over to the second generation from selection
in generation zero, while the second term is the response to selection from generation one. If
we stop selection after two generations, but continue to inbred the population to complete
homozygosity, the permanent response (after correcting for any inbreeding depression) is

R(2) = ı0
σG(∞, 0 )

σ(z0)
+ ı1

σG(∞, 1 )

σ(z1)
(23.5b)
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Inspection of Equation 23.5a and 23.5b points out a key feature of response with inbreeding. In
most cases, these covariances change, so that it is generally the case that σG( i, t ) 6= σG( j, t ).
The relative contribution to response from selection in any particular generation t can thus
change over time, so that there is both a transient and permanent component to response.
The permanent response for our simple example of selection in the first two generations of
inbreeding is given by Equation 23.5b.

The Covariance Between Inbred Relatives

To apply ancestral regressions, we must obtain the covariance between relatives under the
particular scheme of inbreeding of interest. These covariances were discussed in detail in
Chapter 3, and here we just reminder the reader of a few of the key concepts. Recalling
Equation 3.14, which gives the genetic covariance between individuals x and y under general
inbreeding, but assuming no linkage effects or epistasis, as

σG(x, y) = 2Θxyσ2
A + ∆xy,7σ

2
D + ∆xy,1σ

2
DI

+ (4∆xy,1 + ∆xy,3 + ∆xy,5)σADI + (∆xy,2 − fxfy)ι∗ (23.6a)

where

2Θxy = 2∆xy,1 + ∆xy,3 + ∆xy,5 + ∆xy,7 +
1

2
∆xy,8 (23.6b)

For reading ease, we henceforth suppress the xy subscript on ∆ for those cases where the
two relatives being considered are obvious.

The nine possible ∆i coefficients of relatedness between two (diploid) individuals are
defined in Figure 2 of LW Chapter 7, while the composite genetic parameters (the familiar
additive and dominance variances σ2

A and σ2
D and the less-familiar quadratic components

σ2
DI , ι∗, and the covariance σADI ) are defined from the standpoint of the non-inbred base

population. While σ2
DI and ι2 are non-negative (by construction), σADI is a covariance and

hence can be positive or negative.

Example 23.1. Consider a population with a single locus with genotypic values of G1 G1 =
0, G1G2 = 1.67, and G2G2 =2. What are the quadratic components when p = freq(G1) = 0.8?
We first find that the standard random-mating parameters are

α1 α2 δ11 δ22 σ2
A σ2

D

−0.2804 1.1216 −0.0536 −0.8576 0.628993 0.045967

Since there are only two alleles, ι∗ = σ2
D (Cockerham and Matzinger 1985), and this is

confirmed as

ι∗ = (p1 δ11 + p2 δ22)
2 = [ 0.8 (−0.0536) + 0.2 (−0.8576) ]2 = 0.045967 = σ2

D

As for the other two components,

σ2
DI = p1 δ2

11 + p2 δ2
22 − ι∗

= 0.8 (−0.0536)2 + 0.2 (−0.8576)2 − 0.045967

= 0.103427

σADI = 2(p1 α1 δ11 + p2 α2 δ22)

= 2
[
0.8 (−0.2804) (−0.0536) + 0.2 (1.1216) (−0.8576)

]

= −0.360707

The variance components for other allele frequencies are graphed below.
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The nature of the identity by descent (ibd) measures ∆i provide some insight into
which components contribute to the transient, as opposed to the permanent, component to
response. If we inbred to complete homozygosity, then both alleles in an individual y in this
generation are identical by descent. Only four of the ∆i measures are this state (∆1, ∆2, ∆5,
and ∆6). In such cases, σ2

DI and σ2
ADI can contribute to the permanent response, while σ2

D

cannot. Likewise note that if ∆1 = ∆3 = ∆5 and ∆2 = fxfy , then σ2
A and σ2

D are sufficient to
describe the covariance between relatives. Finally, as one reads the literature, no consistent
notation is found for these additional genetic components required under inbreeding (Table
23.1).

Table 23.1. Some of the alternative notations used for the quadratic genetic components required un-
der inbreeding. Gallis = Goldringer et al. (1996), Cornelius= Cornelius (1975), Van Sanford = Cornelius
and Van Sanford (1988), Jinks = Mather and Jinks. Modified from Goldringer et al. (1996).

Our Gallais Cornelius Cockerham Van Sanford Jinks

σ2
A σ2

A σ2
A σ2

A σ2
A D/2

σ2
D σ2

D σ2
D σ2

D σ2
D H/4

σADI σADO C − 2σ2
A 2D1

Qyy−Qxx

2 − σ2
A

σ2
DI σ2

Do σ2
∞

− 2C + 2σ2
A D∗

2 Qxx

ι∗
∑

Do2 µ∞ H∗ Qyy+Qxx

2 − Qxy − σ2
A

For full-sib mating, the coefficients required for Equation 23.6 can be obtained by iter-
ation of the Cockerham (1971) transition matrix given by Equation 10.18. These can then be
used in conjunction with Equation 23.3 to predict response. Cornelius and Dudley (1975)
present numerical tables for these coefficients for the first eight generations for both full-sib
and uncle (aunt) – niece (nephew) systems of inbreeding.

Limitations

The major limitation with the ancestral regression approach is the assumption that selection
does not significantly alter the covariances between relatives over what is expected under the
system of inbreeding (in the absence of selection). Clearly, if there are major alleles, selection
will chose individuals carrying these, further increasing the amount of inbreeding in the
population. Thus, this general approach is best thought of as a weak selection approximation
if there are alleles present of even modest effect. Even in the absence of major alleles, the
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effect of selection is to generally make individuals more inbred that expected by the particular
system of inbreeding. In such cases, the covariances between relatives are also affected.

FAMILY SELECTION WITH INBREEDING AND RANDOM MATING

A widespread use of inbreeding in selection is in conjunction with random mating in any
number of family-based selection schemes. As detailed in Chapter 8, the approach of family-
based selection is to use the family mean to provide a better estimate of the breeding value
of the parents for the next cycle of selection. This section extends some of the results from
Chapter 8 to families with inbred parents and/or sibs. In the terminology introduced in
Chapter 8, the selection unit we will use throughout this section is the mean of the sibs,
while the recombination unit will either be a sib or the parent of the measured sibs.

Two minor complications commonly arise in family-based selection that account for
some of the variety of response equations found in the literature. First, if strict family selection
is used, then a measured sib with also be a parent for the next generation. In this case, the
covariance between the sib mean z and an offspring y starting the next cycle of selection has
two components. If z1 denotes the measured sib used as a parent of y, then with n measured
sibs in a family,

σ( z, y) =
1

n

n∑

i=1

σ(zi, y) =

(
1

n

)
σ(z1, y) +

(
1 − 1

n

)
σ(z2, y) (23.7)

The first covariance, σ(z1, y), is between parent and offspring, while the second, σ(z2, y), is
that between an individual z2 and the offspring y of its sib z1. When sib selection occurs,
(such as through the use of remnant seed), the sib used in the recombination is not one of
the sibs measured for the selection unit, and σ(z, y) = σ(z, y). To simplify our results, we
assume only sib or parental selection (progeny testing, where parents are chosen based on
the performance of their offspring). For moderate to large family size, the difference between
sib and family selection is expected to be very small.

The second issue relates to the variance of the recombination unit, σ2( z ). From ANOVA
theory, the variance in observed family means is the between-group variance σ2

b plus the error
in estimating the true mean µi from zi, which is σ2

w/n. Here σ2
w = σ2

T −σ2
b is the within-group

variance, the difference between the total and between-group variances. Hence,

σ2( z ) = σ2
b + σ2

w/n

= σz(sibs) +
σ2

z − σz(sibs)

n

=

(
1 − 1

n

)
σz(sibs) +

σ2( z )

n

=

(
1 − 1

n

) (
σG(sibs) + σ2

E(wf)

)
+

σ2( z )

n
(23.8)

where σ2
E(wf) is the within-family environmental variance and σ2

E the total environmental

variance. It is often assumed that n is sufficiently large that the second term can be ignored (as
we do in this chapter), leaving the variance of selection units as the covariance between sibs
plus and within-family environmental variance. Replication of family members provides a
fair amount of control over the error variance. We ignore this error structure here, but it is
examined in detail in Chapters 19 and <CHECK >.

Family Selection Using Inbred Parents
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One scheme for increasing the response to family selection is to inbred one (or both) parents,
and then score the resulting half- or full-sib progeny as the family unit. This has two effects
on response, one positive (increasing the covariance between relatives) and one negative
(increasing the variance of the selection unit).

The genetic covariance among half-sibs where the common parent is inbred (to amount
f ) is

σG(HS) =

(
1 + f

4

)
σ2

A +

(
1 + f

4

)2

σ2
AA + · · ·

(
1 + f

4

)k

σ2
Ak (23.9a)

For full sibs, if f = (f1 + f2)/2 is the average inbreeding coefficient for the parents, then

σG(FS) =

(
1 + f

2

)
σ2

A +

(
(1 + f1)(1 + f2)

4

)
σ2

D +

(
1 + f

2

)2

σ2
AA + · · · (23.9b)

This inflation of the between-sib covariances relative to random mating increases the variance
of the selection unit. For the reader wondering why the inbreeding components (σADI , σ

2
DI ,

etc.) do not appear in Equation 23.9, its because the parents of the sibs, while being inbred,
are unrelated. Hence, alleles within the sibs are not identical by descent, and this implies ∆1

to ∆6 are zero. This also applies to the selection unit-offspring covariances (Equation 23.10).

Table 23.2. The response to family selection when parents are inbred. σ2
E(HS) and σ2

E(FS) are the

environmental variances within half- and full-sib families, respectively. Half- vs. full-sibs refer to
the family unit being measured, while the parents for the next generation are either remnant seed
(sib selection) or the parent of the selection unit itself (progeny testing). For comparison purposes,
selection on both parents is assumed. Response is halved if only a single parent has been chosen
by family selection. The effects of epistatis are ignored. Additive × additive epistasis inflates the
immediate response, but its contribution decays with recombination. Epistasis inflates the selection
unit variance over the values given here, reducing response.

Selection Scheme R/(σ2
A ı )

Half-sibs, remnant seed
(1 + f)/4

σ( zHS,f )
=

(1/2)
√

1 + f√
σ2

A + 4σ2
E(HS)/(1 + f)

Half-sibs, Parental
(1 + f)/2

σ( zHS,f )
=

√
1 + f√

σ2
A + 4σ2

E(HS)/(1 + f)

Full-sibs, remnant seed
(1 + f)/2

σ( zFS,f )
=

√
(1 + f)/2√

σ2
A + (1 + f)σ2

D/2 + 2σ2
E(FS)/(1 + f)

Turning to the selection unit-offspring covariances, we will ignore the effects of ad-
ditive epistasis, as this contributes to the transient, rather than permanent, component of
response (as random mating breaks up linkage associations). Here the covariances between
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the selection unit and a single parent R of y are

σG(x, y |R = P of x ) =

(
1 + f

4

)
σ2

A (23.10a)

σG(x, y |R = HS of x ) =

(
1 + f

8

)
σ2

A (23.10b)

σG(x, y |R = FS of x ) =

(
1 + f

4

)
σ2

A (23.10c)

with P , HS, and FS implying that the parent R of y is related to the measured sibs as either
a parent, a half-sib, or a full-sib (respectively). Substitution of these results into Equation
21.1 gives the response to a single cycle of selection under various schemes, and these are
summarized in Table 23.2.

As Table 23.2 shows, for half-sibs the response under inbreeding is greater than under
random mating. This is also generally true for full-sibs, but random mating can give a larger
response if the dominance variance is sufficiently large.

Example 23.2. Consider a population with σ2
A = 50, σ2

D = 25, and σ2
E = 50. The response

to half-sib, full-sib, and parental selection for various values of parent inbreeding f are given
below as a fraction of the response for f = 0. The values in the f = 0 column are R/ı, while
the values for f > 0 represent the ratio of response for that f value relative to the response
under random-mating.

Fraction of random-mating response

Selection f=0 f= 1/8 f=1/4 f=1/2 f= 3/4 f= 1

Half-sib
reminant seed 1.581 1.111 1.220 1.430 1.632 1.826
Parental 3.162 1.111 1.220 1.430 1.632 1.826

Full-sib 2.774 1.093 1.181 1.342 1.485 1.612

Progeny Testing Using Inbred Offspring

Toro (1993) proposes that sire progeny testing be performed using inbred offspring (by
crossing the sire to full-sib or half-sib sisters to generate the family), with superior sires then
outcrossed (Figure 23.1). This suggestion takes advantage of improved accuracy for testing
using inbred sibs while still having an outcrossed population. To quantify the advantage
of testing inbred progeny, consider a sire crossed to full-sibs. The selection unit -offspring
covariance is that of an outcrossed sib from the sire and an inbred sib from the sire. The
probability that the sire allele in the inbred and outcrossed offspring is identical by descent
(ibd) is 1/2. This sire allele can also be transmitted through the dam to the inbred offspring,
generating a ∆3 ibd state (both copies of an allele in x are ibd, and these are also ibd with
the sire allele in y). If the sire and dam are full-sibs, the probability of the dam transmitting
this allele is 1/4, while if the sire and dam are half-sibs, the probability is 1/8. Hence, when
the sire and dams are full-sibs (SDFS),

∆3 = (1/2)(1/4) = 1/8, ∆8 = (1/2)(1 − 1/4) = 3/8 (23.11a)
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Here state ∆8 corresponds to a single allele in x and y being ibd. For half-sib sire and dam
(SDHS),

∆3 = (1/2)(1/8) = 1/16, ∆8 = (1/2)(1 − 1/8) = 7/16 (23.11b)

Substituting into Equation 23.6 gives the resulting covariance between inbred and outcrossed
sibs for full-sib sire and dam as

σG(I,O |SDFS) = (5/16)σ2
A + (1/8)σADI (23.12a)

while for half-sib sire and dam,

σG(I,O |SDHS) = (9/32) σ2
A + (1/16)σADI (23.12b)

By comparison, if the dam and sire are unrelated, the covariance is just that between half-
sibs, (1/4)σ2

A. Thus, in the absence of dominance, the covariance under SDFS is 125% that of
half-sibs, and for SDHS the covariance is 112% of half-sibs.

Figure for Progeny testing with inbred test offspring

Figure 23.1. Progeny testing with inbred offspring in test unit

S1, S2, and Si, j Family Selection

Another scheme for family selection using inbreeding is S1 family selection, where an or-
ganism (usually, but not restricted to, a plant) is selfed, and the family mean of the selfed
progeny used for selection decisions. Remnant seed for the initial selfing is used for out-
crossing and starting the next cycle of selection. This scheme takes two generations — the
selfed seed must be grown for scoring families and then in the next generation the S1 seeds
from superior families grown and crossed. Note that S1 family selection is different from S1

seed selection, discussed in Chapter 21. While seed selection also use remnant S1 seeds as the
recombination unit, the tested family is a half-sib, rather than an S1.

Selection can also be based on S2 families. Under classical S2 family selection, an in-
dividual is selfed to form an S1, a single plant of which is then selfed again to form the S2

family for testing. Remnant seed from the S1 is used as the recombination unit, with seed
from superior families grown and crossed at random to start the next cycle of selection. There
is the potential for ambiguity with S2 selection, as one could use remnant seed from the S0

instead of the S1. Because of this ambiguity, we use a modification of the notation suggested
by Wricke and Weber (1986), and consider Si,j family selection (Wricke and Weber use Ii,j).
Here, the Sj family is tested, while remnant seed is used from a parent in generation Si, where
i < j. Hence, S1 family selection becomes S0,1 selection, classical S2 is S1,2, while the variant
of keeping S0 seed but testing S2 families is S0,2 selection, or bulk S2 family selection.

Expressions for the response to S1 selection in the literature (e.g., Hallauer and Miranda
1981, Choo and Kannenberg 1981, Bradshaw 1983) are based on the derivation by Empig et
al (1972), which gives the covariance between an individual x in the selection unit and the
offspring y of its selfed sib as

σ(x, y) = σ2
A + β1 where β =

∑
2pq(p − 1/2)d[a + (q − p)d]

Similar expressions exist for the response to S1,2 selection (Hallauer and Miranda 1981) and
for S0,j selection (Wricke and Weber 1986). However, it is fairly easily to obtain a variance-
components expression for response to general Si,j family selection. Since a member of the
recombination unitR is outbred, it passes on only single alleles to its offspring. This situation
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excludes all of the identity states except for ∆3 (both alleles in x are ibd, and one is passed on
to the offspring y through R), ∆8 (the alleles in x are unrelated and one is passed onto y via
R), and ∆9 (the alleles in x are unrelated to those in y). As a result, Equation 23.6 implies that
the selection unit-offspring covariance only depends on σ2

A and σADI . As shown in Example
23.3 (which can be skipped by the causal reader), these can be obtained by some simple
book-keeping, and are

∆3 = fi + (1 − fi)

(
1 − 2−(j−i)

2

)
= 1 − 1

2

(
1

2i
+

1

2j

)
(23.13a)

∆8 = (1 − fi)2
−(j−i) = 2−j (23.13b)

giving

2Θxy = ∆3 + ∆8/2 = 1 − 1

2i+1
(23.13c)

Example 23.3. To compute the probabilities of the ibd states ∆3, ∆8, and ∆9, first recall the
various relatives involved. P is the parent that has undergone i generations of selfing and it
generates both remant seedR (that with be grown and crossed with an unrelated individual
to form the offspring y) and a collection of Sj families that will be scored.

Consider a random locus. If the alleles at this locus are ibd in P (which occurs with probability
fi) , then the only ibd state between x and y is ∆3, as both alleles in x are ibd and this allele is
also passed ontoR and hence to y. Otherwise (with probability 1− fi) a locus in P is not ibd,
and we denote the two alleles as A and a (these states are only for the purpose of following
ibd alleles, and in fact the two alleles can in reality be identical in state). There are then three
possible genotypes for x, AA Aa, and aa, while y can receive either A or a from R. The ibd
states for these different combinations are as follows:

allele in y forR
Genotype of x A a

AA ∆3 ∆9

Aa ∆8 ∆8

aa ∆9 ∆3

Hence, the probability of ∆8 equals the probability that a locus in P is not ibd (1− fi) times
the probability that the locus is still not ibd by generation j (i.e., it is in state Aa). Since the
probability a locus is not converted to an ibd state is 1/2 for each generation of selfing,

Pr(∆8) = (1 − fi) 2−(j−i)

The probability of state ∆3 is the probability that P is ibd times twice the probability x is
genotype AA and y gets allele A. The factor of two arises because of symmetry, as the case of
aa and a has equal probability. The probability y gets A fromR is just 1/2, while the probability
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x is AA (given it was not ibd in generation i) is (1−2−(j−i))(1/2), the probability of the locus
becoming ibd (i.e., not staying as non-ibd) times (1/2) for randomly fixing allele A . Hence

Pr(∆3) = fi + 2 [ (1 − fi)(1/2)(1 − 2−(j−i)) ] (1/2)

= fi + (1 − fi)(1/2)(1 − 2−(j−i))

Since both parents of y come from superior families, we double the covariance to give
the total (i.e., accounting for both parents of y) selection unit-offspring covariance under Si,j

family selection as

2σG( x, y ) = 4 θx,yσ2
A + 2 ∆3σADI

= 2σ2
A

(
1 − 1

2i+1

)
+ 2σADI

[
1 − 1

2(i+1)
− 1

2(j+1)

]
(23.14)

Numerical values for these coefficients are given in Table 23.3.

Table 23.3. Coefficients for Equation 23.14, the selection unit-offspring covariance under Si,j family

selection. The column under σ2
A gives the coefficient for the additive variance (which is a function only

of i), while the σADI coefficient is also a function of j and is given in the remaining columns.

Coefficent on σADI for j =

i σ2
A i + 1 i + 2 i + 3 i + 4 i + 5 ∞

0 1.00 0.50 0.75 0.88 0.94 0.97 1.00
1 1.50 1.25 1.38 1.44 1.47 1.48 1.50
2 1.75 1.63 1.69 1.72 1.73 1.74 1.75
3 1.88 1.81 1.84 1.86 1.87 1.87 1.88
4 1.94 1.91 1.92 1.93 1.93 1.94 1.94
5 1.97 1.95 1.96 1.96 1.97 1.97 1.97
6 1.98 1.98 1.98 1.98 1.98 1.98 1.98
7 1.99 1.99 1.99 1.99 1.99 1.99 1.99
8 2.00 1.99 2.00 2.00 2.00 2.00 2.00

Finally, from (?? CHECK) Example 23.8, the genetic variance between Si,j families is

σ2
G(Si,j) = (2 − 2i )σ2

A + 2−(2j−i)σ2
D + (2 − 2−i − 2−j)σ2

ADI

+
(
1 + 2−(2j+1−i) − 2−j − 2−(i+1)

)
σ2

DI + 2−(2j−i)
(
1 − 2−i

)
ι∗ (23.15)

Thus, the general expression for response to Si,j family selection is

RSi,j
= ı

2σ2
A(1 − 2−(i+1)) + 2σADI(1 − 2−(i+1) − 2−(j+1))√

σ2
G(Si,j) + σ2

E(Si,j)

(23.16)

In particular, the response to S1 family selection is

RS0,1
= ı

σ2
A + (1/2)σADI√

σ2
A + (1/4)σ2

D + σADI/2 + (1/8)σ2
DI + σ2

E(S0,1)

(23.17a)
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The response to “classic” S2 family selection is

RS1,2
= ı

(3/2)σ2
A + (5/4)σADI√

(3/2)σ2
A + (1/8)σ2

D + (5/4)σADI + (9/16)σ2
DI + (1/16)ι∗ + σ2

E(S1,2)

(23.17b)

while the response to bulk S2 family selection is

RS0,2
= ı

σ2
A + (3/4)σADI√

σ2
A + (1/16)σ2

D + (3/4)σADI + (9/32)σ2
DI + σ2

E(S0,2)

(23.17c)

Finally, for a population with two equally frequent alleles (such as occurs with a pure-line
cross), we saw in Chapter 10 that σ2

DI = σADI = 0 and ι∗ = σ2
D. In this case, the response

reduces to

RS1
= ı

2σ2
A(1 − 2−(i+1))√

(2 − 2i )σ2
A + 2−(2j−i−1)(1 − 2−(i+1))σ2

D + σ2
E(S1)

(23.18)

How do the various schemes using selfed families compare with other types of between-
family selection? If one assumes that most of the between-family variance is due to non-
genetic effects (i.e., the error variance dominates), then an appropriate comparison of dif-
ferent family-based schemes is to examine the response divided by the standard deviation
of family mean as (to a first approximation) the error variances will be roughly similar.
Further, since different schemes take different number of generations, the scaled response
ratio, R/[ ı σ2

A σ( z ) ] should be expressed in terms of response per generation. We also need
to adjust for whether one or both parents have been chosen from superior families. Table
23.4 gives the response per cycle accounting for all these factors under the assumption of no
dominance.

Table 23.4. Comparison of different types of family-based selection, under the assumption of no
dominance. R∗ = R/[σ2

A ı σ( z ) ] is the scaled selection response per cycle per selected parent (using
the contribution to the selection unit-offspring covariance from a single parent), g is the number of
generations per cycle , and c is the number of parents under selection. The response per generation is
given by the final column, c tR∗/g.

Type R∗ g c cR∗/g

S1 1/2 2 2 1/2
S1,2 3/4 3 2 1/2
S0,2 1/2 3 2 1/3
Full Sibs 1/4 2 2 1/4
HS, S1 seed 1/4 2 2 1/4
HS, remant seed 1/8 2 2 1/8
HS, Parent 1/4 2 1 1/8

Table 23.4 shows that S1 and S1,2 selection are superior to other approaches (under
the assumption of no dominance and roughly equal family variances). While we have not
included comparisons with methods using inbred parents, these are easily obtained by
multiplying the scaled response per generation by 1+ f (see Table 23.2). While S1,2 selection
gives a larger response per cycle, this is countered by increased cycle time. Note that S2

bulk family selection (S0,2) is not as efficient as S1 or S1,2. For other types of Si,j selection,
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the tradeoff between an increase in additive variance 2(1 − 2−(i+1)) versus the increase in
generation time is such that the scaled response per generation is under 1/2 for i > 2 and
hence not as efficient as either S1 or S1,2 selection.

Choo and Kannenberg (1979a,b) compared (via computer simulations allowing for dom-
inance) the relative efficiencies of S1 family, mass, and modified (Lonnquist) ear-to-row
selection (Chapter 21). S1 selection was found to be superior, with the largest advantage
occurring at low heritabilities. Similar conclusions were offered by Eberhart (1972). Favor-
able allele frequencies changed most rapidly under S1, but the loss of genetic variance was
also fastest under this method. Both of these are likely consequences of the smaller effective
population size associated with S1 selection (which is about 1/3 of a comparable mass or
ear-to-row scheme), and indeed Choo and Kannenberg (1979b) observed that this method
had the highest loss of favorable alleles, as did Bradshaw (1984), while this was not seen by
Wright (1980), who used higher starting allele frequencies. Choo and Kannenberg also noted
that linkage can slow down S1 response, as recombination occurs only every other year (as
opposed to every year under mass and ear-to-row selection)

Consistent with these theoretical predictions, several workers have demonstrated that
S1 recurrent selection is better than testcross (half-sib) selection for increased yield in maize
(Duclos and Crane 1968, Burton et al. 1971, Carangal et al. 1971, Geneter 1973, Moll and
Smith 1981, Tanner and Smith 1987) and Sorghum (Doggett 1972). Likewise, Moll and Smith
(1981) reported that S1 selection for yield in maize gave a roughly 50% greater response than
full-sib selection. S1 lines, however, do show an increased loss of genetic variation (Mulamba
et al. 1983, Tanner and Smith 1987).

However, S1 lines can show greater genotype × environment interaction (Lonnquist
and Lindsay 1964, Wricke 1976, Jan-orn et al. 1976). Caution is thus in order for the general
superior of S1 or S1,2 selection over other family-based approaches. The results in Table
23.4 made two major assumptions: no dominance and equal between-family variance. For
the later, both between-family genetic differences as well as G × E and other error terms
need be considered. One can easily imagine situations where the difference in error variance
more than compensates for the difference in covariances. For example, half-sib selection may
generate far more family members for testing than an S1, greatly reducing the error variance.
Likewise, σADI can be negative, reducing the expected advantage of S1 and S1,2 selection.
Indeed, Jan-orn et al. (1976) estimated that (σ2

A + β)/σ2
A = 1 + σADI/σ2

A was in the range of
0.5-0.55 for many traits in sorghum, suggesting that σADI is both negative and substantial.

Other family selection schemes involving inbreeding have been proposed, such as the
selfed half-sib and selfed full-sib families (SHS and SFS) methods of Burton and Carver
(1993). Here, progeny from either a half- or full-sib family are selfed and it is the selfed
progeny that is used as the family mean for selection decisions. The advantage of this ap-
proach is a large increase in the amount of seed (and hence the ability to more greatly replicate
a family, reducing the error variance) — if there are M initial sibs, each of which is crossed
to obtain N selfed offspring, there are a total of MN offspring per family. Burton and Carver
suggest that this approach can be at least as efficient as S1 family selection, largely due to
the decreased variance in the selection unit compared to S1 families. Another variant is joint
half-sib, S1 family selection, proposed by Goulas and Lonnquist (1976) for maize. On pro-
lific (multiple eared) plants, the lower ear if selfed, the upper ear open pollinated. Both the
HS and S1 progenies are jointly evaluated and the best families chosen, using the remnant HS
seed. Dhillon (1991b) proposes a scheme of alternate recurrent selection of S1 and half-sib
families, involving alternate cycles of S1 selection and either ear-to-row or half-sib selection.
The idea is to take advantage of breeding situations that involve a trail field season and a
winter nursery for creating and/or recombining new families. Under the right settings, this
approach can exceed the per-generation response of S1 selection.
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Cycles of Inbreeding and Outcrossing

Dickerson (1973) and Dickerson and Lindhé (1977) have suggested that in some cases the
response to selection with random mating alternating every other generation with full-sib
mating enhances short-term response. Their logic is that a generation (or two) of inbreeding
increases the between-group variance and this can be exploited by selection. However, given
the extra generations used for inbreeding (instead of selection), the conditions for such a
cyclic inbreeding-selection system to give a larger response than mass selection are stringent.
Dickerson and Lindhé show that the ratio of response under cyclic inbreeding (RI ) versus
mass selection (Rm) is approximately

RI

Rm
≃

(
ım gI

ıI gm

) √
(1 + f)rf

h2
(23.19)

where g is the generation time per cycle (typically gm = 1, gI = 2) and rf is the genetic
correlation among the inbred line members. For example, if one crosses full-sibs and then
crosses and selects on inbred families in alternate years, f = 0.25, rf = 0.6, and gI/gm = 1/2,
implying

RI

Rm
≃

(
ım
ıI

) √
0.1875

h2

or (under equal selection intensities) that h2 < 0.1875 for cyclic inbreeding to exceed mass
selection (Dickerson and Lindhé 1977).

Example 23.4. MacNeil et al. (1984) examined two populations of Japanese Quail (Coturnix
coturnix japonica) subjected to alternative cycles of full-sib and random mating, selecting on
an index of total egg mass divided by female weight. The results for two replicated popula-
tions are given below. While both populations ultimately responsed to selection, there was
significant inbreeding depression, especially in population one (open squares). The cyclic
mating scheme produced inbred individuals every odd generation, resulting in population
one showing dramatic shifts between positive selection response and significant inbreeding
depression countering any positive response. While population two also showed negative
response during some of the inbred generations, the effect was not nearly as dramatic.

While random mating did have a slightly higher response than cyclic mating, this was largely
due to reduced selection differentials in the cyclically-selected lines. The realized heritabilities
were similiar.
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Given these stringent conditions, it is perhaps not surprising that experimental support
for the advantage of cyclic inbreeding is lacking. Dion and Minvielle (1985) used 15 gener-
ations of cyclic full-sib / random mating to select for increased pupal weight in Tribolium
castaneum, finding no differences in the response or realized heritabilities relative to random
mating. Similar results were observed in Japanese Quail (Example 23.4). While López-Fanjul
and Villaverde (1989) observed that one generation of full-sib mating resulted in a four-fold
increase in the realized heritability of egg to pupal viability in Drosophila melanogaster, this
was more than offset by inbreeding depression.

Another cyclic scheme, S1 mass selection, was proposed by Dhillon (1991a). Here,
individuals are crossed and the resulting offspring selfed. The S1 are then evaluated by indi-
vidual selection, and superior individuals outcrossed to start the cycle again. The covariance
between an S1 and its outbred offspring is obtained as follows. With probability one, an S1

individual passes on a single allele to its outbred offspring, so ∆3 +∆8 = 1. With probability
1/2, the S1 individual has both alleles ibd at a locus (due to the generation of selfing), giving
∆3 = ∆8 = 1/2. More generally, if k generations of selfing are used before random mating,
then ∆3 = fk = 1 − 2k, ∆8 = 1 − fk = 2−k, 2θ = ∆3 + ∆8/2 = (1/2)(2 − 2−k), and the Sk -
offspring covariance becomes

σ( Sk, y ) = (1/2)(2 − 2−k )σ2
A + (1 − 2−k )σADI (23.20a)

Assuming selection on both parents, the response per generation is then

RSK
=

(
ı

k + 1

)
(2 − 2−k )σ2

A + 2(1 − 2−k )σADI√
σ2

g(Sk) + σ2
E(Sk)

(23.20b)

The factor of 1/(k + 1) arises because there are k generations of selfing for each single
generation of selection. The genetic variance σ2

g(Sk) among Sk individuals can be obtained
from Equation 23.23, and σ2

E(Sk) is the error variance for single Sk individuals, which is
expected to be considerably larger than the error variance for families as no replication is
involved. For strict additivity, the ratio of per generation response under Sk mass selection
relative to mass selection is

RSk

RM
=

(
2 − 2−k

k + 1

) √
σ2

A + σ2
E(M)

(2 − 2−k)σ2
A + σ2

E(Sk)
(23.20c)

Note that RSk
< RM for all values of k (assuming the error variances are roughly equal).

Dhillon assumes that a greenhouse can be used for the S1, giving one cycle per field genera-
tion. In such cases, the ratio is roughly RSk

/RM = 3/2 (assuming error variances dominate
the term in the square root and are roughly equal). However, a major biological limitation
in the assumptions behind obtaining this ratio is that the selected traits must be expressed
before reproduction. For traits expressed during or after reproduction, only a single sex has
been selected upon (as presumably the S1 is outcrossed to random individuals). In such cases
the response ratio is reduced to (1/2)(3/2) = 3/4 of mass selection.

INDIVIDUAL SELECTION UNDER PURE SELFING

Under pure selfing, one starts with a collection of individuals and continually selfs each to
form a series of inbred lines. Let Sk denote such a line after k generations of selfing, with the
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S0 being the collection of individuals that are initially selfed to start the lines, and the S∞

the completely inbred lines. A variety of options exist for generating the initial collection of
lines. The simplest is to use a random sample of individuals from an outbred population.
Another common situation is the pure line cross, where one crosses two completely inbred
(pure) lines, and continually selfs starting with the F1. In this case, the initial cross produces
a number of F1 individuals, and even though these are selfed to create a series of F2 lines,
the first generation of selfing is formally defined as the F2. The reason is that all the F1s in
this case are genetically identical, being heterozygous at every loci at which the two lines
differ. Such a population of only heterozygotes is not in Hardy-Weinberg equilibrium, but
the F2 are (for diploid autosomal loci). Hence, it is the F2 that we take as the base for starting
to count generations of selfing, so that S0 = F2, S1 = F3, etc. If loci are unlinked, then linkage
disequilibrium (which is maximal in the F1) is zero in the F2’s. If loci are linked, it may
take several rounds of random mating to mitigate the effects of the F1 disequilibrium on
tightly-linked loci.

Several other line-cross situations may also form the foundation population from which
individuals are drawn for selfing. If one intermates a collection of lines, the first generation
will also not be in Hardy-Weinberg equilibrium unless allele frequencies are the same in each
line. However, for diploid autosomal loci Hardy-Weinberg is reached with an additional
generation of random mating (sex-linked loci and polyploids take several generations, see
LW Chapter 4). Linkage disequilibrium is also created in such a cross, due to differences
in the gamete frequencies across lines. Unlike the case for crossing two pure lines, the F2

from a multiple-line cross is not necessarily in linkage equilibrium, even for unlinked loci. In
this case, the disequilibrium decays as (1/2)r where r is the number of generations that the
F1s are randomly mated. For linked loci, the decay is (1 − c)r where c is the recombination
frequency. The instant achievement of linkage equilibrium in the F2 from a pure line cross
arises because all F1 individuals are genetically identical and heterozygous at all segregating
loci, which is not the situation for crosses of three (or more) lines. Other common types of line
crosses involving pure (or otherwise) lines are three-way hybrids, (L1×L2)×L3 (the F1 from
an L1 ×L2 crossed to L3), and double-crosses (or four-way hybrids) (L1 ×L2)× (L3 ×L4)
which commonly arise in maize breeding. Again, it is often advisable to instead take such
crosses through at least one additional round of random mating to achieve Hardy-Weinberg
(so that our expressions for response are valid) and approach linkage equilibrium before
starting inbreeding .

Response Under Pure Selfing

Suppose we indeed have a collection of individuals that are in Hardy-Weinberg and linkage
equilibrium and we commence selfing. After all lines have become completely inbred, there
is no response to selection within a line as there is no within-line genetic variation (in the
absence of mutation). However, the response between lines involves the entire genotypic
variance as selection is essentially between clones.

We first consider one extreme, inbreeding each line entirely to fixation and them selecting
among the lines. At this point, a parent and its (selfed) offspring are genetically identical, and
the resulting parent-offspring covariance equals the total genetic variance in the population.
Inbreeding alters the total genetic variation from its random-mating value of σ2

A+σ2
D to a new

value σ̃2
G over the entire collection of pure lines. The resulting parent-offspring covariance

among these lines is

σ(zp, zo) = σ̃2
G = 2σ2

A + 2σADI + σ2
DI (23.21)

When kth order additive epistasis is present, 2kσ2
Ak is added (e.g., 4σ2

AA, 8σ2
AAA, etc.). As-

suming linearity, the response to a generation of selection among these inbred lines produces
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an expected response of

R = S
σ̃ 2

G

σ̃2
G + σ2

ǫ

(23.22)

Even if selection is moderate, a single generation is likely to significantly alter the distribution
of remaining genotypes (and hence change the genetic variance), and thus the validity of
Equation 23.22 over more than a few generations is very doubtful. There are a number of
subtleties with trying to select the best pure line from a collection, which are examined in
Chapter 30.

Instead of waiting for inbreeding to be complete, suppose that we select among indi-
viduals while inbreeding is still occurring. The response in generation T from selection in
generation t is then a function of the cross-generation covariance σG( T, t ). For strict selfing,
Equation 10.16 gives the covariance between a relative and generation T and its ancestor in
generation t < T , as

σG( T, t ) = (1 + ft)σ
2
A + (1 − fT )(σ2

D + ftι
∗) +

fT + 3ft

2
σADI + ft σ2

DI (23.23)

where ft = 1−
(

1
2

)t
is the amount of inbreeding in generation t. The phenotypic variance

in generation t is σ2(zt) = σG( t, t ) + σ2
e , where σG( t, t ) is obtained from Equation 23.23

by setting T = t. Equation 23.21 also follows, as f∞ = 1. Recall (LW Chapter 6) that in
some cases, the environmental variance σ2

e may increase with inbreeding, and thus we may
need to account for this as well. Cockerham and Matzinger (1985) extend Equation 23.23
to include additive by additive epistasis (but still assuming gametic-phase equilibrium). If
additive epistasis up to order k is present, extra terms are added to the covariance given by
Equation 23.23,

(1 + ft)
2σ2

AA + · · · (1 + ft)
kσ2

Ak

When all possible types of pairwise epistasis (e.g., A × A, A × D, D × D) occur, 12 variance
components are required to describe σG( T, t ) under selfing (Wright 1987, 1988), but we will
ignore this level of complication.

Substitution of Equation 23.23 into Equation 23.4 gives the response to selection while
the line is being inbred. For complete additivity, σG( T, t ) = (1+ft)σ

2
A = (2−2−t)σ2

A, giving
the response as

R(T ) =
T−1∑

t=0

St
(2 − 2−t)σ2

A

(2 − 2−t)σ2
A + σ2

e

(23.24)

as obtained by Brim and Cockerham (1961) and under much more general conditions by
Pederson (1969a). If dominance is present, the selection response under selfing has both
a transient and a permanent component. When selection is relaxed, the mean potentially
changes as the transient component decays. The expected total change in the mean after n
generations, the first T of which were under selection (generations 0 to T − 1), is given by

R( n |T ) =

T−1∑

t=0

St
σG( n, t )

σG( t, t ) + σ2
e

=
T−1∑

t=0

ıt
σG( n, t )√

σG( t, t ) + σ2
e

(23.25)

The permanent response to T generations of selection, R̃(T ), is given by

R̃(T ) = R(∞|T ) =

T−1∑

t=0

St
σG(∞, t )

σG( t, t ) + σ2
e

=
T−1∑

t=0

ıt
σG(∞, t )√
σG( t, t ) + σ2

e

(23.26)
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Since f∞ = 1, Equation 23.23 (extended for additive × additive epistasis) gives the co-
variance between an individual in generation t and a completely inbred (F∞) line descended
from it as

σG(∞ , t ) =

(
2 − 1

2t

)
σ2

A +

(
2 − 3

2t+1

)
σADI +

(
1 − 1

2t

)
σ2

DI (23.27)

which is essentially σ̃2
G for t > 5. Additive variance contributes to the permanent response,

while σ2
D and ι∗ contribute to the transient, but not the permanent, response. However,

dominance does make a contribution to the permanent response through σ2
DI and σ2

ADI . To
see why, consider the case when inbreeding is complete. Here the only genotypes are of the
form AiAi and have genotypic decomposition 2αi + δii. The frequency of such genotypes
(in the collection of completely inbred lines) is pi, assuming no change in the population
allele frequencies. The resulting genetic variance between lines is thus

σ̃2
G = σ2(2αi + δii) = 4σ2(αi) + 2 × 2σ(αi, δii) + σ2(δii) = 2σ2

A + 2σAD + σ2
DI

The contribution from standard dominance variance, σ2
D = σ2(δij), decays as AiAj het-

erozygotes are lost due to inbreeding.

Example 23.5. Using the genetic parameter values from Example 23.1, what fraction of the
response from various generations of selection is ultimately passed on to the completely
inbred line? We assume σ2

e = 1 (which corresponds to a random-mating heritability of h2 =
σ2

A/(σ2
A + σ2

D + σ2
e) = 0.38). For selection in various generations (t), the fifth column gives

the expected single-generation response, the fourth column gives the eventual contribution,
while the final column gives the percentage of the response from a particular generation that
is translated into the final response.

t σG(∞ , t ) σ2
G( t , t )

σG(∞ , t )

σ2
G( t , t )

σG( t + 1 , t )

σ2
G( t , t )

%

0 0.449 0.675 0.268 0.363 73.82
1 0.544 0.669 0.326 0.377 86.45
2 0.592 0.657 0.357 0.384 93.07
3 0.616 0.649 0.374 0.387 96.49
4 0.628 0.645 0.382 0.389 98.23
5 0.634 0.642 0.386 0.389 99.11
7 0.639 0.641 0.389 0.390 99.78

The largest reduction came in the first generation of selection, where selected individuals
are selfed for the first time. As selfing progressed, the genotypic values between ancestors
and descendants become much more similar, and hence they retain almost all of their initial
response. While more dramatic changes are expected under some particular values of σADI ,
σ2

DI , and ι∗, after the first six generations, inbreeding is largely completely, with offspring
being almost genetically identical to their parents.

It is important to again stress that these results for expected response are based on
infinitesimal model approximations. Clearly, selection with a small number of loci can change
allele frequencies, violating the assumptions leading to Equations 23.24-23.27. Likewise, with
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a small number of lines and/or strong selection, these results are also biased. Another, more
subtle, violation of this basic model occurs if some lines are disproportionately chosen over
other (as one might expect). In such cases, the covariances that are now appropriate are not
for the population as a whole, but rather those for within particular sublines. The unstated
assumption of Equation 23.23 is that when individuals are being compared for selection,
they most recent ancestors are those drawn from the base population. If their most recent
ancestor is more current, then the covariances are incorrect, and the estimated response is
biased.

Response When Inbreeding Pure Line Crosses

Considerable simplification occurs when two pure lines are crossed. In this case, each locus
has only two alleles segregating (one from each line) each with frequency 1/2, and as a result
ι∗ = σ2

D and σ2
DI = σADI = 0. Equation 23.23 reduces to

σG(T, t) = ct σ2
A + 2−T ct σ2

D + c2
t σ2

AA + · · · ck
t σ2

Ak , where ct = 2 − 1

2t
(23.28)

Starting selection on the F2’s and denoting this as generation 0, Equation 23.25 simplifies
(Pederson 1969a) to

R( n |T ) =

T−1∑

t=0

ıt
( 2 − 2−t ) (σ2

A + 2−nσ2
D )√

( 2 − 2−t ) (σ2
A + 2−tσ2

D ) + σ2
e

(23.29)

Example 23.6. Suppose a cross between two inbred lines is subjected to truncation selection
for the uppermost 20% in the first two generations of selfing. What is the cumulative response
to selection at the nth generation of selfing? Here ı = 1.402 and we assume the (random
mating) variance components of σ2

A = 50, σ2
D = 25, and σ2

E = 50 (giving a random-mating
heritability of 0.4). The total phenotypic variance in the first two generations is σ2

z(0) =
σ2

G(0) + σe = 125 and σ2
z(1) = σ2

G(1) + σe = 93.75. Letting r(n, t) denote the response
to selection in generation t that is present at generation n and R(n) denote the cumulative
response from selection present at generation n, we find that

n t σG(n, t) r(n, t) R(n)

1 0 62.5 7.837 7.837

2 0 56.3 7.054

2 1 84.4 9.866 16.920

3 0 53.1 6.662

3 1 79.7 9.318 15.980

4 0 51.6 6.466

4 1 77.3 9.044 15.510

5 0 50.8 6.368

5 1 76.2 8.907 15.275

10 0 50.0 6.273

10 1 75.0 8.774 15.047

∞ 0 50 6.270

∞ 1 75 8.770 15.040
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The Bulmer Effect Under Selfing

The effect of linkage and number of loci has been examined for completely additive models
(no dominance or epistasis) in small-scale simulation studies by Bliss and Gates (1968) and
Stam (1977). Linkage reduces the rate of response, while (for fixed σ2

A) the per generation
response increases as the number of loci decreases.

The first theoretical investigation of the magnitude of Bulmer effect (reduction in the
genetic variance from selection-induced negative gametic disequilibrium) during selfing
was by Cornish (1990a, b). In Cornish’s model, a single generation of selection occurs in
the F2 and the effect on the final (F∞) lines was examined. It was found that the genetic
variance in the offspring of the selected parents is reduced (relative to that under pure
inbreeding) by h2 ı ( ı − z )σ2

A. This is very reminiscent of the reduction in additive variance
in an outbred population due to selection under the infinitesimal model (Chapters 5, 15), with
ı being the selection intensity and z the corresponding unit normal for the fraction selected
(see Chapter 5 for details). Truncation selection on a normal distribution of phenotypes
reduces the phenotypic variance of selected parents by ı ( ı − z )σ2

z , and only a fraction of
this is passed onto the offspring. In a random mating population, the reduction in variance
rapidly approaches an equilibrium value (depending on the strength of selection ı and the
heritability h2). In a selfing population, since there is no random mating to recover variation,
the reduction in variance over that under pure inbreeding is permanent. By constant, upon
relaxation of selection under random mating, the variance eventually returns to its pre-
selection value under the infinitesimal model. Thus, while inbreeding in a random mating
population reduces the rate of response, with selection in a selfing population, it not only
reduces the rate, but also the final selection limit.

A far more detailed investigation of the Bulmer effect under the infinitesimal model was
given by Hayashi and Ukai (1994). The authors assumed that the effect of any given locus
scaled as n−1/2 (standard for an infinitesimal model, see Chapter 15). Using this assumption,
they produce recursion equations for the changes in variance and covariance for a pure line
cross. They assumed truncation selection starts F2 generation and remains constant for t
generations.

If only additive variance is present, Hayashi and Ukai find that

σ2
A(t + 1) = σ2

Ao(t + 1) − σ2
Ao(t) +

(
1 − ı(ı − z)

2σ2
A(t)

2σ2
A(t) + σ2

e

)
σ2

A(t) (23.30)

where σ2
Ao(t) = (2 − 2t) σ2

A is the additive variance in the population of lines under strict
selfing and t is the generation of selfing. Here σ2

Ao(t+1)−σ2
Ao(t) can be regarded as the within-

family variance, which is unaffected by selection. The remaining component in Equation
23.30 represent the change in the between-family variance (the variance in progeny means),
which is reduced by selection.

If both additive and dominance effects are present, they have correlated changes and the
recursion equation is a little more complex. Letting σo

G(T, t) denote the cross-generational
covariance under pure selfing, Hayashi and Ukai show that

σG(T, t) = σo
G(T, t) − ı(ı − z)

t−1∑

k=0

σG(t, k) σG(T, k)

σG(k, k) + σ2
e

(23.31a)

where
σo

G(T, t) =
(
2 − 2t

) (
σ2

A + 2−T σ2
D

)
(23.31b)

This equation is solved by iteration, starting with

σG(T, 0) = σo
G(T, 0) = σ2

A + 2−T σ2
D (23.31c)
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Example 23.7. As an application of the Hayashi-Ukai variance correction, let us reconsider
Example 23.6. Here z = 0.84 (Example 2 in Chapter 5), so that ı(ı − z) = 0.788. From
Equation 23.31c, the genetic covariance between a selected F2 individual (generation t = 0)
and a relative after T generations of selfing

σG(T, 0) = σo
G(T, 0) = σ2

A + 2−T σ2
D = 50 + 25/2T

Note that this covariance is the same as with pure-selfing. The covariance between an individ-
ual selected in the next generation and its relative in generation T of selfing does, however,
show a reduction, with

σG(T, 1) = σo
G(T, 1) − ı ( ı − z)

σG(1, 0) σG(T, 0)

σG(0, 0) + σ2
E

The first term is the pure-selfing covariance, the second the reduction due to selection. To obtain
the value of the latter, first note that σG(1, 0) = 50+25/2 = 62.5, while σG(0, 0)+σ2

E = 125
and σo

G(T, 1) = (3/2)(50 + 25/2T ), giving

σG(T, 1) = (3/2)
(
50 + 25/2T

)
− 0.788

62.5 · (50 + 25/2T )

125

=
(
50 + 25/2T

) (
3/2 − 0.788

62.5

125

)

Since the first quantity is proportional to σo
G(T, 1), the ratio σG(T, 1)/σo

G(T, 1) = 0.737 is a
constant independent of T . Similarly, the genetic variance in generation one becomes

σG(1, 1) = σo
G(1, 1) − ı(ı − z)

σG(1, 0)σG(1, 0)

σG(0, 0) + σ2
E

= (3/2) (50 + 25/2) − 0.788
(62.5)

2

125
= 69.125

Again, the first quantity is the pure-inbreeding value, the second the correction for linkage
disequilibrium. In this case, the correct genetic variance is only 0.737 of the pure-inbreeding
value. Since neither the genetic variance or covariance for generation 0 are effected by selec-
tion (σG(0, 0) = σo

G(0), and σG(T, 0) = σo
G(T, 0) ), the response to selection in generation

0 is unaffected by linkage disequilibrium (this is also the case for a random mating popula-
tion, see Chapter 5). The response in generation two, however, is effected by selection. Since
both the covariance and genetic variance are reduced by the same fraction (0.737) relative to
strict inbreeding, the ratio of response at generation T from selection in generation one to its
predicted value ignoring disequilibrium is

r(T, 1)

r0(T, 1)
=

(
σG(T, 1)

σo
G(T, 1)

) (√
σo

G(1, 1)√
σG(1, 1)

)
=

0.737√
0.737

= 0.859

The presence of gametic disequilibrium thus reduces response by 14%.

FAMILY SELECTION UNDER PURE SELFING
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Predicting response to family selection — using the selfed offspring (perhaps several gen-
erations worth) to choose lines — requires first a consideration of the hierarchical structure
among the selfed lines in a population (Figure 23.2). The collection of lines descended from
a parent at time τ (which we can think of as this individual’s extended family) are expected
to show less within-line variation than a collection of lines from an early ancestor of τ at
time t < τ . With family selection, our goal is to predict the response given that we select
individuals from generation t on the basis of the performance of their offspring in generation
τ > t. We may then wish to know what fraction of this response is around at some future
generation T > τ . For example, we may select the best lines in generation t based on the
performance of their selfed offspring, using remnant seed from the selected parents to form
the next generation. In this case, τ = t + 1 (see Figure 23.3). If individual plants do not pro-
duce sufficient seed for family testing, two generations of selfing may be used to generate
sufficiently large family, in which case τ = t + 2.

Figure 23.2. The hierarchical structuring of selfed populations. A: (Left) Often we select using
a parent in generation t by scoring its offspring in generation τ , and we wish to covariance
between τ and some future generation T , given that both shared that common parent in
generation t. Here, the individual at τ is a subline of t , while T is a subline of τ , and hence
a sub-subline of t. B (Right): Another level of hierarchical structuring of selfed populations.
When selecting within a substructure of the selfing pedigree, we may be interested in the
response using parents in generation t whose offspring are scored in generation τ and the
response is across those families in the pedigree sharing the deeper common parent k.

The Covariance Between Relatives in a Structured Selfing Population

Given the need to account for the structure in a selfing population, Cockerham (1983) and
Cockerham and Martzinger (1985), building on concepts from Horner (1952) and Gates et
al. (1957), generalized the covariance given by Equation 23.23 to σG( T, τ, t ), the covariance
between a relative in generation T and another relative in generation τ ≤ T when the last
common relative is in generation t ≤ τ . This is given by

σG( T,τ, t ) = (1 + ft)σ
2
A +

(
(1 − fT )(1 − fτ )

1 − ft

)
σ2

D +

(
ft +

fT + fτ

2

)
σADI

+

(
ft +

(fT − ft)(fτ − ft)

2(1 − ft)

)
σ2

DI +

(
ft(1 − fT )(1 − fτ )

1 − ft

)
ι∗

+ (1 + ft)
2σ2

AA + (1 + ft)
3σ2

AAA + · · · (1 + ft)
kσ2

Ak (23.32)

Notice that Equation 23.32 reduces to Equation 23.23 when τ = t (parents are the selection
unit), as σG( T, t, t ) = σG( T, t ). The epistatic terms are often ignored, and the model does
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not account for non-additive epistatic terms and also assumes linkage equilibrium. For cross-
generational covariances indexed by two or more relatives, such as σG( T, t ) and σG( T, τ, t ),
we use the indexing convention that the right-most index (t in this cases) references the oldest
(earliest generation) individual, while the leftmost (T in this case) references the youngest
(latest generation). Thus as one proceeds right-to-left in the index, more recent relatives are
being considered.

For the special case of a pure line cross, Equation 23.32 reduces considerably to

σG(T, τ, t ) = (1 + ft)σ
2
A +

(
(1 + ft)(1 − fT )(1 − fτ )

1 − ft

)
σ2

D + (1 + ft)
2σ2

AA + · · ·

=

(
2 − 1

2t

) (
σ2

A +
σ2

D

2T+τ−t
+

(
2 − 1

2t

)
σ2

AA + · · ·
)

(23.33)

The permanent selection response is given by the covariance between a completely
inbred F∞ line (T = ∞) and a relative (for example, from the selection unit) in generation τ
if they last both shared a relative in generation t (as would occur if remnant seed from t is
used to form the new lines). Here, Equation 23.32 reduces to

σG(∞, τ, t) = (1 + ft)σ
2
A +

1 + 2ft + fτ

2
σADI +

ft + fτ

2
σ2

DI

+ (1 + ft)
2σ2

AA + (1 + ft)
3σ2

AAA + · · · (1 + ft)
kσ2

Ak (23.34)

Similarly, the covariance between a parent in generation t and an offspring in generation T
follows by noting that here t = τ , and Equation 23.32 reduces to Equation 23.23.

Some of the most useful cases of Equation 23.32 relate to genetic variances. For the
sake of a clearer exposition, we will ignore additive epistasis in what follows (although its
inclusion is trivial). First, the total genetic variance in generation T is given by

σG( T, T, T ) = (1 + fT )σ2
A + (1 − fT )σ2

D + 2fT σADI + fT σ2
DI + fT (1 − fT )ι∗ (23.35)

This is the genetic variance across the entire population (across all the lines present in gener-
ation T ). We also require the genetic variance in generation T among the subset of lines that
descend from a single individual in generation t. Here, τ = T and the variance becomes

σG( T, T, t ) = (1 + ft)σ
2
A +

(1 − fT )2

1 − ft
σ2

D + (ft + fT ) σADI

+

(
ft +

(fT − ft)
2

2(1 − ft)

)
σ2

DI +
ft(1 − fT )2

1 − ft
ι∗ (23.36)

An example of this would be the genetic variance across the collection of F3 or F4 bulk
families from a single F2 parent. For an F3 family this is σG( 1, 1, 0 ), as the F2 represents
generation zero of selfing, while across the entire collection of F4 families that trace back to
this F2 individual has variance σG( 2, 2, 0 ).

Example 23.8. What is the between-family genetic variance for Si,j families, the bulk collec-

tion of Sj families from a single individual in generation i? From Equation 23.36, σ2
G(Si,j) =

σG( j, j, i ). Substitution of ft = 1 − 2−t and simplifying gives

σ2
G(j, i) = (2 − 2i )σ2

A + 2−(2j−i)σ2
D + (2 − 2−i − 2−j)σ2

ADI
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+
(
1 + 2−(2j+1−i) − 2−j − 2−(i+1)

)
σ2

DI + 2−(2j−i)
(
1 − 2−i

)
ι∗

Some particular values of interest are

σG(S0,1) = σ2
A + (1/4)σ2

D + σADI/2 + (1/8)σ2
DI

σG(S0,2) = σ2
A + (1/16)σ2

D + (3/4)σADI + (9/32)σ2
DI

σG(S1,2) = (3/2)σ2
A + (1/8)σ2

D + (5/4)σADI + (9/16)σ2
DI + (1/16)ι∗

Finally, it will prove useful to decompose the total genetic covariance σG(T, t) into a
within- and between-family covariance, σGw(T, t) and σGb(T, t), where

σG(T, t) = σGw(T, t) + σGb(T, t) (23.37a)

The between family covariance in generation t is the covariance between sibs from a parent
in generation t − 1,

σGb(T, t) = σG(T, t, t − 1) (23.37b)

The within-family genetic covariance follows as

σGw(T, t) = σG(T, t) − σGb(T, t)

= σG(T, t, t) − σG(T, t, t − 1) (23.37c)

For more general families, t − 1 is replaced by t − j when the last common ancestor to the
family was j generations before the collection of families is scored. Note that the within-
and between-family genetic variances in generation t are given by σGw(t, t) and σGb(t, t),
respectively. Recalling Equation 23.8, this implies a phenotypic variance for the between-
family means of

σz(t, t) = σGb(t, t) + Ew +
σGw(t, t) + E − EW

n

=

(
1 − 1

n

)
(σG(t, t, t − 1) + Ew) +

σG(t, t, t) + E

n
(23.37d)

when n sibs are examined.

Example 23.9. Consider the within and between family genetic variances for an Sj−1,j family
(the offspring from a single Sj−1 individual). Here T = τ = j and t = j − 1, and from
Equation 23.37b, the between-family genetic variance is

σGb(j, j) = σG(j, j, j − 1)

For a pure line cross, Equation 23.33 (ignoring epistasis) gives

σGb(j, j) = σG(j, j, j − 1) =

(
2 − 1

2j−1

) (
σ2

A +
σ2

D

2j+1

)
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The within-family variance is, from Equation 23.37c,

σ2
Gw(j, j) = σG(j, j, j) − σG(j, j, j − 1)

For a pure-line cross, the genetic variation (ignoring epistasis) in the population is

σG(j, j, j) =

(
2 − 1

2j

) (
σ2

A +
σ2

D

2j

)

giving the within-family variance as

σGw(Sj) = σG(j, j, j) − σG(j, j, j − 1) =

(
1

2j

)
σ2

A +

(
3 − 2j+1

4j

)
σ2

D

As Figure 23.2B illustrates, we can consider yet ever-deeper hierarchical levels of popu-
lation structure with selfing. Suppose we are interested in the response in generation T due
to selection among parents in generation t chosen on the basis of their relatives in generation
τ , but that we are considering only the response among the subpopulation that descended
from a common ancestor in generation k. For example, among all the descendants from a
particular S3, what is the response to selection on their S4’s if we base selection on the S6 fam-
ily means? Here T is the generation of interest for the response (T = ∞ for the permanent
response), k = 3, t = 4, and τ = 6.

Defining σG(T, τ, t, k) as the covariance between T and τ given they shared an ancestor
in generation t from subpopulation k, Wright and Cockerham (1986), following Gates (1954),
show that

σG(T, τ, t, k) = σG(T, τ, t) − σG(T, τ, k) for t > k (23.38)

Hence, Equation 23.32 can be used to compute these covariances.

Example 23.10. As an example of the difference between σG(T, τ, t, k) and
σG(T, τ, t), consider the following situation. Suppose we randomly chose F2s from a pure line
cross and self a large collection of these, generating a total of 1000 lines. We have a number of
options for advancing the lines, the two extremes are to advance single lines from each of the
original F2’s or to advance 1000 lines from a single F2. Lacking any other information on the
lines, it is obvious that keeping all the original lines is likely the better strategy (indeed, this
was proposed by Compton 1968), but just how much better is it? For both situations, consider
the contribution to response in a completely inbred individual (T = ∞) from an individual
in generation t chosen by evaluation of relatives in generation τ ≥ t.

Since within each line there are only two alleles, the covariances simplify (Wright and Cock-
erham 1986), and we are left for the first strategy with

σG(∞, τ, t) =

(
1 − 1

2t+1

)
(2σ2

A + 2σADI + σ2
DI) +

(
1

2τ+1

)
(σADI + σ2

DI)

If selection is delayed until at least the fifth generation of selfing, this is essentially 2σ2
A +

2σADI + σ2
DI .
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Conversely, the covariance for the second strategy (advancing all the lines from a single F2) is
given by σG(∞, τ, t, 0), as all individuals trace back to a single individual in generation zero
. Here

σG(∞, τ, t, 0) = σG(∞, τ, t) − σG(∞, τ, 0)

=

(
1 − 1

2t+1

)
(2σ2

A + 2σADI + σ2
DI) +

(
1

2τ+1

)
(σADI + σ2

DI)

−
[(

1 − 1

2

)
(2σ2

A + 2σADI + σ2
DI) +

(
1

2τ+1

)
(σADI + σ2

DI)

]

=

(
1

2
− 1

2t+1

)
(2σ2

A + 2σADI + σ2
DI)

If selection is not started until rather late, this is one half the covariance as that for using the
entire collection of lines. Considering only the additive variance, this makes sense, as under the
infinitesimal model, in an outbred population (such as the collection of F2s), half the additive
variance is between individuals and half is generated by segregation within individuals. The
first covariance, σG(∞, τ, t), considers only not the variance within a particular line, but also
the variance among the initial line founders, while the second focuses solely on the variance
within a particular line.

Response to Family Selection

Our earlier discussions of selection with selfing (Equations 23.23-23.28) assumed that the
selection unit was the parent (individual selection), so that τ = t. More generally, consider a
parent in generation t where we save selfed seed from this individual for the recombination
unit, and test the parent using the mean of its bulked selfed offspring in generation τ , an
St,τ family (Figure 23.3). For such cases, the response in generation T from selection among
parents in generation t is

r(T, τ, t) = ı
σG(T, τ, t)√

σG(τ, τ, t) + σ2
e

(23.39)

This follows since the genetic variance of the selection unit is σG(τ, τ, t), while the covari-
ance between the selection unit (τ ) and an offspring of the recombination unit measured in
generation T have their last common parent in generation t (Figure 23.3).

For the cases in Figure 23.3, where families are selected and remnant seed from those
families used to form the next generation, then for selection based on St,t+1 families,

σG(∞, t + 1, t) = (1 + ft)σ
2
A +

3 + 5ft

4
σADI +

1 + 3ft

4
σ2

DI + (1 + ft)
2σ2

AA (23.40a)

while for selection based on St,t+2 families,

σG(∞, t + 2, t) = (1 + ft)σ
2
A +

7 + 9ft

8
σADI +

3 + 5ft

8
σ2

DI + (1 + ft)
2σ2

AA (23.40b)

As pointed out by Cockerham and Matzinger (1985), the long-term response under these two
schemes differs only in the dominance-related terms, σ2

DI and σADI . If instead of remnant
seed, families are chosen and then one chooses one (or more) members from the selected
families for selfing (strict family selection, as opposed to sib, = remnant seed, selection, the
expressions become a little more complex. If n family members are scored, the appropriate
covariance for selected based upon families from one generation of selfing is

1

n
σG(∞, t + 1, t + 1) +

n − 1

n
σG(∞, t + 1, t) (23.41a)
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This arises by recalling Equation 23.7. Since selection is based on the family mean, 1/n is the
weight on the individual in the family that is also the recombination unit (hence, the common
ancestor is just this individual, which is in generation t + 1) and the remainder (1− 1/n) are
sibs of this individual (and the common ancestor is the previous generation back). Similarly,
if family selection is based on two generations of selfing, then the appropriate covariance
becomes

1

n2
σG(∞, t + 2, t + 2) +

n − 1

n2
σG(∞, t + 2, t + 1) +

n − 1

n
σG(∞, t + 2, t) (23.41b)

If the number n of family members tested is large, the corrections given by Equation 23.41
can be ignored and the simpler version (Equation 23.40) used instead.

Figure 23.3. Examples of family selection in selfed lines. Top: The selection unit here is the
selfed offspring of a parent, and the recombination unit is a remnant seed from this parent,
so that selection is based on St,t+1 families. Here, the covariance of interest is between an
individual in the selection unit (generation τ = t+1) and a descendant of the recombination
unit (measured in generation T ), which have a common parent in generation t. Bottom: In
species with low seed set, a single plant may not generate sufficient seed for family testing.
In this case, additional seed can be generated by another round of selfing. If selection is
based upon such St,t+2 families and we use a remnant (selfed) seed from the parent as the
recombination unit, the common parent is two generations removed from the selection unit
(τ = t + 2).

Within Family Selection Under Selfing

Our results for selfing thus far have only been concerned with selection between (or among)
lines. If selection is practiced entirely within a single selfed lineage (e.g., within the progeny
of a single selfed individual), genetic variation is quickly removed and the selection response
rapidly ceases. Pederson (1969b) gives the response remaining in generation T from within-
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family selection in generation t as

rw(T, n) = ıt
σGw(T, t)√

σGw(t, t) + σ2
Ew

(23.42a)

Applying Equation 23.37c, this becomes

rw(T, n) = ıt
σG(T, t, t) − σG(T, t, t − 1)√

σG(t, t, t) − σG(t, t, t − 1) + σ2
Ew

(23.42b)

Recalling Equation 23.34, for a pure line cross, we have

σG(T, t, t) − σG(T, t, t − 1) =

2−t σ2
A + 2−T σ2

D +
∑

k=2

((
2 − 1

2t

)k

−
(

2 − 1

2t

)k−1
)

σ2
Ak

Ignoring epistasis, the cumulative response to k generations of selection at generation T > k
is

R( T | k ) =

k∑

t=1

ıt
2−t σ2

A + 2−n σ2
D√

2−t (σ2
A + σ2

D) + σ2
e

(23.43)

(Pederson 1969b). Note that the sum here starts at selfing generation one, as selection starts
within the S1 inbred family. Since any within-family genetic variation rapidly decays, after
a few generations the response essentially stops, with the amount of permanent response
due to selection in generation t depending on σ2

A / 2t. Since

σ2
e ≤ 2−t (σ2

A + σ2
D) + σ2

e ≤ σ2
z

it follows that

ı
σ2

A

σE

∞∑

t=1

2−t ≤ ı σ2
A

∞∑

t=1

2−t

√
2−t (σ2

A + σ2
D) + σ2

e

≤ ı
σ2

A

σz

∞∑

t=1

2−t

Since the power series sums to one, the total permanent response R(∞|∞ ) under continued
within-family selection (ignoring new mutation) is

ı σ2
A/σE ≤ R(∞|∞ ) ≤ ı h σA

which is no better that twice the response of the first generation (ı h σA/2).

Combined Selection

Suppose n2 F2 individuals are collected and selfed to create F3 families of size n3 for each
of the F2 founding lines. In trying to chose the best F3 line, we might consider combined
selection, using both its individual value zij and also the average value of the entire F2

family from which it derives,

zi· =
1

n3

n3∑

k=1

zij

By analogy with the family index (Chapter 8), we can select lines using the index

Iij = b zi· + zij (23.44)
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As with the standard family index, a large b value places more weight on family average, a
small b places more weight on the individual line value. Lines chosen are selfed to complete
fixation. The expected response in generation T of selfing follows from a slight modification
the generalized Breeders’ equation (8.3) and is

Ry(T ) = ı
σ(Iij , yT )

σI
(23.45)

where yT is a direct descent of the line zij in generation T of selfing. The permanent response
is given by considering T = ∞.

It will be useful at this point to introduce two variance components that will (somewhat)
simplify our results. First define

σ2
c (T ) = σG(T, 1, 0) (23.46a)

as the variance between crosses (the different F2s) and

σ2
l (T ) = σG(T, 1, 1) − σG(T, 1, 0) (23.46b)

as the variance in lines within crosses (the variance in deviations from the mean cross effect).
For a pure line cross, these variances are

σ2
c (T ) = σ2

A + 2−(T+1)σ2
D + σ2

AA + · · ·σ2
Ak (23.47a)

σ2
l (T ) = (1/2) σ2

A + 2−T σ2
D + (5/4) σ2

AA + · · · +
((

3

2

)k

− 1

)
σ2

Ak (23.47b)

With these variance components in hand, consider the numerator of Equation 23.45. First
note that

σ(Iij , yT ) = bσ( zi·, yT ) + σ( zij , yT )

Since yT is a direct descendant of line ij, τ = t = 1, hence

σ( zij , yT ) = σG(T, 1, 1) (23.48a)

Likewise,

σ( zi·, yT ) =
1

n3

n3∑

k=1

σ( zij , yT ) =
σ( zij , yT )

n3
+

(
1 − 1

n3

)
σ( zik, yT )

The first term is given by Equation 23.48a, while the second is the covariance between a sib
zik of line ij. Here, the common parent between line ik and y is the F2, so that t = 0, τ = 1,
and this covariance is σG(T, 1, 0). Putting these together,

σ( zi·, yT ) = σG(T, 1, 0) +
σG(T, 1, 1) − σG(T, 1, 0)

n3
= σ2

c (T ) +
σ2

l (T )

n3
(23.48b)

The numerator covariance in Equation 23.45 thus becomes

σ(Iij , yT ) = b

(
σ2

c (T ) +
σ2

l (T )

n3

)
+ σ2

c (T ) + σ2
l (T ) (23.49)
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Now turning to the variance of the selection index,

σ2(Iij) = σ2 (b zi· + zij) = b2σ2 ( zi· ) + σ2 ( zij) + 2bσ ( zi·, zij) (23.50a)

First, consider the variance of a random F3 line,

σ2 ( zij) = σG(1, 1, 1) + σ2
ǫ = σ2

c (1) + σ2
l (1) + σ2

ǫ (23.50b)

where σ2
ǫ is the within-line error variance. Next, note that

σ2 ( zi· ) =
n3 σ2( zij )

n2
3

+
n3(n3 − 1) σ( zij , zik )

n2
3

=
σ2( zij )

n3
+

(
1 − 1

n3

)
σ( zij , zik )

The first covariance is given by Equation 23.50b, while the second is the covariance between
sibs, σ(1, 1, 0), giving

σ2 ( zi· ) =
σ(1, 1, 1) + σ2

ǫ

n3
+

(
1 − 1

n3

)
σ(1, 1, 0) = σ2

c (1) +
σ2

l (1) + σ2
ǫ

n3
(23.50c)

Finally, we can show that σ ( zi·, zij) = σ2 ( zi· ). Putting all these together gives

σ2(Iij) = b(b + 2)

(
σ2

c (1) +
σ2

l (1) + σ2
ǫ

n3

)
+

(
σ2

c (1) + σ2
l (1) + σ2

ǫ

)
(23.51)

Substitution of Equations 23.49 and 23.51 into 23.45 gives the expected response for arbitrary
b and T > 1.

An obvious question is what value of b maximizes response? Taking the derivative of
Equation 23.45 with respect to b and solving for zero gives the optimal value as

b =
n3

[
σ2

c (T ) σ2
E − σ2

c (1)σ2
l (1) + σ2

c (T ) σ2
l (1)

]

σ2
l (T ) ( n3 σ2

c (1) + σ2
l (1) + σ2

E )
(23.52)

As with family index selection, the selection intensity is reduced by the fact that F3 lines
from the same F2 are related and hence correlated, and we must correct for this correlation.
Letting ρ be the correlation between the index scores from lines in the same cross, then if we
chose the best K from N = n2n3 total lines (n3 lines from each of n2 F2’s), then Equation
8.54b gives the selection intensity as

ın2n3,K(ρ) = ıp − 1 − p

2 ıp p( n2n3(1 − ρ) + n2ρ + 1 )
(23.53)

where p = K/N is the fraction saved and ıp the infinite-population size selection intensity.
To compute the correlation ρ between index scores, first note that

σ(Iij , Iik) = σ (b zi· + zij , b zi· + zik)

= b2σ2( zi·) + 2b σ( zi·, zij) + σ( zij , zik)

=
[
b2σ2( zi·) + 2b σ( zi·, zij) + σ2(zij)

]
− σ2(zij) + σ( zij , zik)

= σ2(Iij) −
(
σ2

c + σ2
l + σ2

ǫ

)
+ σ2

c

= σ2(Iij) −
(
σ2

l + σ2
ǫ

)
(23.54a)
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The third step follows upon recalling Equation 23.50a. The correlation between index scores
among individuals from the same line thus becomes

ρ =
σ(Iij , Iik)

σ2(I)
=

σ2(Iij) −
(
σ2

l + σ2
ǫ

)

σ2(Iij)
= 1 − σ2

l + σ2
ǫ

σ2(Iij)
(23.54b)

Substitution of this value into Equation 23.53 gives the appropriate selection intensity, cor-
rected for both finite population size and correlation between lines.

For a fixed total number of lines to examine, there is a tradeoff between selection intensity
and accuracy. The optimal design for known (or estimated) genetic variances can be obtained
by numerically trying different combinations of the n2/n3 ratio (for fixed N ) in Equation
23.45 (and its associated components, Equations 23.49 and 23.51-53). (Equation 23.52). Weber
(1982, 1984, Wricke and Weber 1986) has extensively examined index selection under selfing,
including both optimal design (in the absence of dominance) and the extension to additional
generations of selfing. For example, Weber (1982) considers the more general situation where
each F2 family consists of n3 F3 families, each F3 family consisting of n4 F4 families and so
on to Fj families. In this case, the full index is

I = b2 (z2 − z ) + b3( z3 − z ) + · · · + bj( zj − zj−1 ) (23.55a)

The weights bk are chosen to maximize the correlation between the index I and the final
genetic value of the completely inbred lines (which we denote g∞), which (Weber 1982)
implies

bk =
σ( zk − zk−1, g∞ )

σ2( zk − zk−1 )
(23.55b)

Consult Weber for further details.

RESPONSE UNDER PARTIAL SELFING

One of the most widespread systems of inbreeding is partial selfing, where each individual
can either self or outcross. If η is the probability of selfing, then the population approaches a
mean inbreeding value of f = η/(2−η), but there is a distribution of inbreeding values among
individuals within the population. In particular, the probability an individual is inbred to
level fi = 1 − 2−i is (1 − η)ηi . This lack of uniformity in f greatly complicates the pre-
diction of selection response. In particular, nonlinear parent-offspring regressions can occur
(Wright and Cockerham 1985, Kelly 1999a). Our treatment of this difficult area first presents
approximate results using covariances. We then consider a more careful treatment due to
Kelly (1999a,b) that considers response within each group with a given level of inbreeding
(i.e., all group members have the same f value).

An Approximate Treatment Using Covariances

Partial selfing has been examined by Wright and Cockerham (1985, 1986) and Wright (1988),
who obtain the appropriate cross-generation covariances and predict response using the
method on ancestral regression. They assume that the population is at the equilibrium mean
inbreeding value, and that each individual has the same probability η of selfing (i.e., no
genetic variation in selfing vs. outcrossing rates). Since a parent can either self or outcross,
the parent-offspring needs to take this into account. Further, because of selfing, the covari-
ances for selection before and after reproduction are slightly different. For selection before
reproduction (BR), the single-generation response is given by

RBR = ı
σG(BR)(t + 1, t)√

σ2
G + σ2

e

(23.56a)
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with
σG(BR)(t + 1, t) = 2(1 − η)σGO

(P,O) + η σGS
(P,O) (23.56b)

where σG(O)(P,O) is the parent-offspring covariance under outcrossing and
σG(S)(P,O) the parent-offspring covariance under selfing. Since the population is assumed
to be at its inbreeding equilibrium, the parent-offspring covariances and total genetic vari-
ation (σ2

G) are assumed to constants, independent of t. Table 23.5 gives the coefficients for
these covariances, as well as for σ2

G. Note that an additional quadratic component, ι2−ι∗, also
appears in the covariance between relatives. As we will see, there is a significant transient
component to the immediate response. For selection after reproduction (AR), an outcrossed
individual has only one parent under selection (the pollen parent not being under selection),
and the covariance in the numerator of Equation 23.56a is replaced by

σG(AR)(t + 1, t) = (1 − η)σGO
(P,O) + η σGS

(P,O) (23.56c)

Table 23.5. Covariances required to predict response under partial selfing using Equation 23.56. The
probability of selfing is η, and f = η/(2 − η). After Wright and Cockerham (1985).

Cov σ2
A σ2

D σADI σ2
DI ι∗ ι2 − ι∗

σGO
(P,O) 1+f

2 0 f
2 0 0 0

σGS
(P,O) 1 + f 1−f

2
1+7f

4 f f(1−f)
2(2+f)

f(1−f2)
2(2+f)

σG(AR)
1+3f

2
f(1−f)

1+f
2f(1+3f)
2(1+f)

2f2

1+f
f2(1−f)

(1+f)(2+f)
f2(1−f2)

(1+f)(2+f)

σG(BR) 1 + f f(1−f)
1+f

f(3+5f)
2(1+f)

2f2

1+f
f2(1−f)

(1+f)(2+f)
f2(1−f2)

(1+f)(2+f)

σ2
G 1 + f 1 − f 2f f f(1−f)

2+f
f(1−f2)

2+f

The permanent response to selection is given by replacing the numerator covariance in
Equation 23.56a with σG(∞, t). For selection before reproduction, Wright and Cockerham
show this equals

σG(BR)(∞, t) =

(
2

2 − η

)
σ2

A +

(
η(3 − η)

(2 − s)2

)
σADI +

(
η2

(2 − η)2

)
σ2

DI (23.57a)

Further, the before and after covariances are related by

σG(AR)(∞, t) =

(
1 + η

2

)
σG(BR)(∞, t) (23.57b)

While the coefficient on σ2
A is unchanged, all the other quadratic components have rather

different coefficients relative to their single-generation values. Thus, the transient component
of response is expected to be considerable. Wright and Cockerham find that

σG(BR)(t + T, t) = σG(BR)(∞, t) +

(
σ2

G − σG(BR)(∞, t)

) (η

2

)T

(23.58)

with a similar expression for the covariance for selection after reproduction. Hence, the
transient component decays rather rapidly (as the rate of decay is no slower than 2−T ).
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Wright and Cockerham also show that the final change in the mean from a generation of
selection can be predicted from the response in the first two generations after selection, with

z∞ =
2z2 − η z1

2 − η
(23.59)

where zi is the mean i generations after a generation of selection.
Family selection is examined by Wright and Cockerham (1986). With partial-selfing,

there are a number of potential families that one can consider for the selection unit: out-
crossed half- and full-sibs, selfed, or naturally pollinated (a mixture of selfed and outcrossed
progeny). Consult their paper for details on response under these different systems.

A major caveat with the covariance approach is that selected individuals may not be
a random sample of the inbreeding classes. For example, with inbreeding depression, less
inbred individuals are expected to be chosen by selection more often. This has the effect of
creating a nonlinear parent-offspring regression (Figure 23.4). If the nonlinearity is signifi-
cant, the covariance approach is inappropriate.

Figure 23.4. When inbreeding depression is present, the parent-offspring regression under
partial selfing can be nonlinear. Suppose we have just two groups: f = 0 (outcrossed) and
f = 1 (fully inbred). Within each group, parent-offspring regressions are linear. However, for
the population as a whole (i.e., we examine individuals without knowledge of which group
they belong too), the regression is non-linear. Here b denotes the inbreeding depression (the
change in mean, the open squares, between the outcrossed and fully-inbred populations).
After Kelly (1999a.)

A More Careful Treatment: Kelly’s Structured Linear Model

Kelly (1999a,b) proposed an alternative approach for examining the selection response with
partial selfing. By analogy with a geographically structured population, Kelly suggested that
the basis for a more careful approach to partial selfing is to consider the population as a set
of cohorts within which all individuals have the same level of inbreeding. Cohort zero are
all individuals that arose through random mating in the previous generation, cohort one are
those individual that arose from selfing in the previous generation, cohort i those individuals
that have undergone i rounds of selfing since they last enjoyed random mating. He terms
this approach a structure linear model (or nbf SLM), as within each cohort, it is assumed
that standard linear regressions hold. The response under selfing is then predicted by speci-
fying both the within-cohort variances and covariances and the between-cohort transitions.
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Besides properly accounting for the structured nature of partly selfing populations, Kelly’s
treatment also accommodates the effects of linkage disequilibrium (under the infinitesimal
model assumptions).

Before examining the SLM approach, results from simulations reported in Kelly (1999a)
reveal several important observations that we discuss first. If directional dominance is
present (which implies inbreeding depression occurs), the distribution of the cohorts does
not follow the geometric distribution predicted from the strict (i.e, no selection) partial selfing
model. Rather, selection greatly skews this distribution. For example, when advantageous
alleles are recessive, inbred individuals will be over-represented, while when advantageous
alleles are dominant, inbreds are under-represented. In either setting, the covariance ap-
proach will given incorrect answers as it assumes the geometric distribution of inbreeding
values. The deviation from this distribution caused selection can be quite striking. For ex-
ample, after 10 generations of selection when beneficial recessives are present, the cohort
distribution is strongly bimodal, with peaks at 0 (outbreeding) and 10 (selfing for all ten gen-
erations). A second feature from the simulations was that linkage disequilibrium generated
significant changes in the variances and covariances. Changes in f for the population directly
effects the usable level of additive variance and selfing reduces the chance for recombina-
tion to break down non-random associations generated by selection. Such selection-induces
changes in the covariances from their strict (i.e., no selection) partial selfing values also
compromises the results from the covariance approach.

Turning now to the details of Kelly’s approach, define cohort i as the collection of
individuals that have undergone i generations of selfing since their last outcrossing. Let
πi(t) denote the frequency of cohort i in generation t, under strict partial selfing πi(t) =
(1 − η)ηi). Kelly assumes selection acts before reproduction. The transition probabilities
between cohorts are as follows. With probability 1 − η, an individual outcrosses, so that

π0(t + 1) = 1 − η (23.60a)

For an individual to enter cohort i + 1, it must have been a member of cohort i in the
previous generation and it must self. Further, Kelly allows for selection against cohorts (for
example, highly inbred individuals may have lower fitness). If W (t) and Wi(t) denote the
average fitness of a random individual from the population and from cohort i (respectively)
in generation t, then the fraction of the population that is in cohort i after selection (but before
reproduction) is πi(t) Wi(t)/W (t). Putting all these together, the fraction of the population
in cohort i + 1 in the next generation is

πi+1(t + 1) = η πi(t)
Wi(t)

W (t)
(23.60b)

Now consider the dynamics of the mean. Since a member of cohort i has f = 1 − 2−i,
the mean value of inbreeding for the population is

F (t) =
∑

πi fi =
∑

πi

(
1 − 2−i

)
(23.61)

Define the weighted sum of average effects as a and the weighted sum of homozygous
dominance deviations by b, so that

a =
∑

ij

αij pij , b =
∑

ij

δijj pij (23.62)

where αij is the average effect for allele j from locus i, pij the allele frequency and δijj the
dominance deviations for homozygotes. If A(t) and B(t) denote the average values of a and
b at generation t, then the mean population phenotype is

z(t) = µ + A(t) + F (t)B(t) (23.63a)
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Letting Ai(t) and Bi(t) denote the average value of a and b in cohort i in generation t, it also
follows that

A(t) =
∑

πi Ai(t), and B(t) =
∑

πi Bi(t) (23.63b)

Kelly assumes that within each cohort, the parent-offspring regressions are linear, so
that the value A′ of A after selection in cohort i is

A′

i(t) = Ai(t) +
σaz,i(t)

σ2
z,i(t)

Si(t) (23.64a)

Since the mean additive value of selfed offspring equals that of their parents,

Ai+1(t + 1) = A′

i(t) = Ai(t) +
σaz,i(t)

σ2
z,i(t)

Si(t) (23.64b)

Likewise, the mean additive value of outcrossed offspring equals the average additive values
of their parents,

A0(t + 1) =
∑

i

πi(t) A′

i(t) = A(t) +
∑

i

πi(t)
σaz,i(t)

σ2
z,i(t)

Si(t) (23.64c)

Under linkage equilibrium, the covariance functions are given by

σaz,i(t) = σ2
A + fi(σ

2
A + 2σADI) (23.65a)

Similar expressions exist for Bi(t), with B replacing A and (under linkage equilibrium)

σbz,i(t) = σADI + fi(σADI + 2σ2
DI) (23.65b)

Finally, again under linkage equilbrium, the phenotypic variance in cohort i is given by

σ2
i (t) = σ2

G(i, i) + σ2
E,i (23.65c)

where σ2
G(i, i), the genetic variance after i generations of selfing, is given by Equation 23.23.

Iteration of Equations 23.60, 23.61, and 23.64 and 23.65 gives the evolution of the Ai(t) and
Bi(t) values, from which the population mean in generation t can be obtained by use of
Equation 23.63b and c.

Kelly’ simulations showed that selection-induced linkage disequilibrium can have a
rather dramatic effect on the covariances, and suggested an iterative approach (along the
lines of our results for random mating and of Hayashi and Ukai’s results for pure selfing)
for computing all the required covariances. As we did in Chapter 5, let

κi(t) = 1 −
σ2 ∗

z,i(t)

σ2
z,i(t)

(23.66)

denote the reduction in the phenotypic variance (here in cohort i) caused by selection, where
σ2 ∗

z,i(t) is the phenotypic variance after selection. Further, define the covariances

σ∗

az,i(t) = σ2
a,i(t) + (1 − 2−i) σab,i(t) (23.67a)

σ∗

bz,i(t) = σab,i(t) + (1 − 2−i) σ2
b,i(t) (23.67b)
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Kelly shows that, under infinitesimal model assumptions that the recursion equations for
the variances and covariances in the inbred cohorts (i > /ge1) become

σ2
a,i+1(t + 1) = σ2

A,i(t) − κi(t)
( σ∗

az,i(t) )2

σ2
z,i(t)

+ 2−(i+1)σ2
A (23.68a)

σab,i+1(t + 1) = σab,i(t) − κi(t)
σ∗

az,i(t) σ∗

bz,i(t) σ2
b,i(t))

σ2
z,i(t)

+ 2−(i+1)σADI (23.68b)

σ2
b,i+1(t + 1) = σ2

b,i(t) − κi(t)
(σ∗

bz,i(t))
2

σ2
z,i(t)

+ 2−(i+2)σ2
DI (23.68c)

For all of these expressions, the first term is the variance (covariance) before selection, the
second term the reduction from selection, and the final term the contribution from segrega-
tion. The recursion equations for the outbred cohort are a little more involved, as parents
are inbred to differing degrees. Letting F ′(t) denote the average value of inbreeding among
selected parents,

σ2
A,o(t + 1) =

1

2

(
σ2

a′(t) + [ 1 − f ′(t) ]σ2
A

)
(23.69a)

σab,o(t + 1) =
1

2
(σab′(t) + [ 1 − f ′(t) ]σADI) (23.69b)

σ2
b,o(t + 1) =

1

2

(
σ2

b′(t) + [ 1 − f ′(t) ]σ2
DI

)
(23.69c)

Where the variances (and covariances) are the population averages in the selected parents.
Iteration of these equations accounts for the disequilibrium generated by selection.


