
30

Selection and Development of Pure Lines
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When dealing with autogamous species, plant breeders have used two broad approaches
towards developing new strains. For most species (cereals, soybeans, and many vegetable
crops), breeders have been concerned with the creation of pure line cultivars that are adapted
to a specific set of environments and optimized for yield and other desirable characteristics.
An important exception is maize, where (for both biological and historical reasons) the goal
of breeders has generally been the construction of collections of pure lines whose hybrid
seed is the commercial product. Chapter 31 examines selection under such cross-breeding
schemes.

There are two broad issues when considering selection involving pure lines: choosing
the best lines from a large collection and the optimal construction of such lines following
the initial hybridization, and we consider these in turn. There is an enormous plant breed-
ing literature dealing with these concerns and we will only introduce the basic issues and
give a general overview of the methods and problems. For further treatment, see Allard
(1960), Williams (1964), Simmonds (1979), Hallauer and Miranda (1981), Mayo (1987), and
in particular Wricke and Weber (1986) and Stoskopf et al. (1993).

Suppose we have a collection of pure-breeding lines, either because each is completely
homozygous or each is asexually (clonally) propagated, and we wish to select the best fraction
p. Under this setting, offspring are genetically identical to their parents (ignoring mutation),
and between-line selection has the advantage that elite genotypes are propagated intact
across generations. Thus, it would appear that between-line selection is very straightforward.
This is far from the truth, as there are a number of very subtle, yet critical, issues that needed to
be considered. First, exact propagation of chosen genotypes actually has a key disadvantage
relative to selection in segregating populations. If we choose inferior lines, we cannot recover
more elite genotypes unless we cross these back to other lines. Hence, attempting to chose
the best pure line (or lines) carries with it the risk that we will not improve the population or
(more likely) not pick the best genotypes present in the collection of lines. The second broad
issue is the actual formation of the lines, which entails two components: when to apply
selection when advancing the collection of lines derived from the hybrid cross towards
complete inbreeding and the choice of parents to start the lines.

We start by examining issues of selecting the best line from among a collection of lines in
this section. The various approaches for selection during segregating lines (the advancement
of generations) are discussed next, followed by issues in the choice of parents.

RESPONSE TO BETWEEN-LINE SELECTION: BASIC ISSUES

Recall from the generalized breeders’ Equation 13.10) that the response in the offspringy from
selection on parentsx isRy = ıx σ(x, y)/σx. Since we are using pure-breeding lines, the parent
and offpsring have the same genotype, and σ(x, y) = σ( pi, gi) = σ2

G, the correlation between
the mean phenotypic value of the line p and its genotypic value g. Here σ( pi, gi) = σ2

G, the
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between-line genetic variance. As mentioned above, lines are scored by their mean values
over a particular experimental design. If the sampling variance of the pheotypic mean of a
line about its genotypic value is σ2

ǫ , then σ2
x = σ2( p ) = σ2

G + σ2
ǫ , and the response becomes

R =
σ2

G

σ( p )
ı =

σ2
G

√

σ2
G + σ2

ǫ

ı (30.1)

As we discuss below, considerbale control over σ2
ǫ can be exercised by the choice of experi-

mental design (see Equations 30.3 and 30.4).

Multistage Selection: Finney’s Rule

Lines are often measured over two (or more) growing seasons before selection, with the
mean value of the line over seasons used for final selection. This approach partly accounts
for genotype × year interactions, which can have a considerable effect of σ2

ǫ (see Example
30.2 below). Equation 30.1 gives the expected response for such a single cycle of selection.
Alternatively, a breeder may choose to use several cycles, rather than a single cycle, of
selection to choose the elite lines. The logic behind such multistage selection is that the
initial cycle can cull out many of the inferior lines, allowing for greater replications (and hence
higher precision) to discriminate among the remaining lines. How is multistage selection best
carried out and what is the resulting response? We address the first question here, leaving
the expected response until Chapter 38, as it requires some details from the theory of index
selection.

The question to be answered for the optimal design is as follows: starting with g geno-
types, what is the optimal way to select for a fraction α of these if we have the resources to
measure a total of N plots over a total of s stages (cycles) of selection? Note that if αi is the
fraction selected in stage i,

α =

s
∏

i=1

αi (30.2a)

The optimal design reduces to the optimal choice of the αi, and a simple approximate solution
was suggested by Finney (1958): Select the same fraction each generation, with

αi = α1/s (30.2b)

The amount of replication is stage i is set by N/gi, the total number of plots available in that
cycle (N ) divided by the number of remaining genotypes (gi).

Example 30.1. Suppose we have funds allocated to score a total of 1500 plots over three
generations, and we wish to select the best 4 genotypes from an intial sample of 500. Here
α = 4/500 = 0.008, and Finney’s rule gives:

αi = (0.0.008)1/3 = 0.2 and Ni =
1500

3
= 500

Thus in the first stage, each genotype is replicated once, and the 100 best ( 500 · 0.2) are chosen.
In the second stage, each genotype is now replicated 5 times (500/100), and the best 20 (100
· 0.2) are chosen. Finally, in the third stage of selection, each genotype is replicated 25 times,
with the best four chosen. Summarizing:
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Stage Genotypes Replications/Genotype αi No. of Selected Genotypes

1 g0 = 500 N/g0 = 1 0.2 α1g0 = 100

2 g1 = 100 N/g1 = 5 0.2 α2g1 = 20

3 g2 = 20 N/g2 = 25 0.2 α3g2 = 4

As mentioned, the exact solution for the expected response under multistate stage selec-
tion requires concepts from multivariate selection and index selection, and we defer further
discussion until Chapter 38.

CONTROLLING THE RESIDUAL VARIANCE

A major advantage of either pure or clonal lines is that one can replicate identical genotypes,
replacing individual measurements with group measurements, such as the yield in a plot.
Further, individuals can be replicated over environments, such as different locations and/or
different seasons/years. The use of replication at several levels (multiple individuals within
a plot, plots within a major environment, plots or blocks of plots across major environments)
reduces the error variance σ2

ǫ in estimating the genotypic value of a line from its phenotypic
mean. Reducing σ2

ǫ increases the response to selection (Equation 30.1), and increases the
probability of choosing the best genotypes in the sample of lines being tested. A second
route for reducing the error variance is the use of appropriate plot designs within a given
major environment to more fully account for the variance generated by both within- and
between-plot microenvironmental values. The final route is by using appropriate statistical
methodology to account for as much of the structure in genotype× environment interactions
as possible. Using an appropriate model is often akin to a factor of 2-4 fold extra replications.
We examine these three topics in turn.

Replication

Akin to our treatment in Chapter <check 8> with replication we can decompose the error
variance σ2

ǫ on the performance measurement of the genotype over the entire experimental
design into variance components associated with different sources of error. By suitable al-
location within a particular design, we can reduce the error variance There is an extensive
literature on this subject and we only cover some of the key areas here. Reviews of gen-
eral agricultural experimental design can be found in Little and Hillis (1978), Pearce (1983),
Gomez and Gomez (1984), Pearce et al. (1988), and Petersen (1994).

Since lines are typically scored as plot averages, rather individual values, the sampling
variance is often expressed in terms of the plot variance σ2

w(p), the variance among line

members within a plot. If σ2
e is the within-plot variance for an individual plant about its

line’s genotypic value in that plot, then the variance for a plot scoring n individuals is
σ2

w(p) = σ2
e/n. If we replicate members of a pure line over r plots (of size n) in each of e

distinct environments, then

σ2
ǫ =

σ2
G×E

e
+

σ2
p

e r
+

σ2
e

e r n
=

σ2
G×E

e
+

σ2
p + σ2

w(p)

e r
(30.3)

where σ2
G×E is the line × environment interaction (genotype × environment) variance and

σ2
p the between-plot environmental variance. This error variance decomposition allows us

to intelligently design experiments to minimize the error variance for a particular set of
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constraints. For example, if one has a total of N = r e plots per line, σ2
ǫ is minimized by

using one replicate per environment, as the weighting on σ2
p + σ2

w(p) remains unchanged,

while that on σ2
G×E decreases with increasing e. Increasing the number n of plants per plot

decreases the plot variance σ2
w(p) but does not reduce the effects of either the between-plot or

line× environment variances. As mentioned in Chapter < check 8 >, the line× environment
is often further decomposed into location (ℓ), year (y), and location×year effects. If y years
and ℓ locations are used,

σ2
ǫ =

σ2
G×ℓ

ℓ
+

σ2
G×y

y
+

σ2
G×ℓ×y

y ℓ
+

σ2
p + σ2

w(p)

y ℓ r
(30.4)

The genotype × year interaction is a measure of yield dependability (the yield stability of
a particular genotype over time), while G × ℓ is a measure of its wide adaptability (or lack
thereof). These useful descriptors of crop performance only make sense in the context of low
to moderate G × ℓ × y interactions.

It is often observed that the year effects are much larger than the location effects, and
that G× ℓ× y interactions are larger still (e.g., Rasmusson and Lambert 1961, Patterson et al.
1977, Talbot 1984). The relative impacts from interactions involving locations can be reduced
by increasing the number of locations, which decreases the weighting on both σ2

G×ℓ and
σ2

G×ℓ×y . Decreasing the impact from genotype by year interaction is more difficult, as this
requires increasing the number of years a trail is run. Such an increase, however, is often
quite advantageous. Talbot (1984), in a summary of 100 trails of over a dozens crops in the
UK, found that two years of trails at six locations gives greater precision than a single year
trail over 12 locations.

Example 30.2. Patterson et al. (1977) estimated the components of error variation associated
with a large number of barley trails in the UK as follows:

σ2
G×ℓ σ2

G×y σ2
G×ℓ y σ2

p + σ2
w(p)

Actual 0.0084 0.0322 0.0561 0.1101
Percentage 4.06 15.57 27.13 53.24

A 90-plot design with ℓ = 10 locations, y = 3 years and r = 3 replications has an error
variance of

σ2
ǫ =

0.0084

10
+

0.0322

3
+

0.0561

30
+

0.1101

90
= 0.0147

and relative contribution from these sources of error on the total error variance σ2
ǫ becomes

G × ℓ G × y G × ℓ × y Plot variance

Percentage 5.73 73.18 12.75 8.34

Because of the few associated degrees of freedom, the effect of G×y is greatly magnified, and
in this case accounts for almost 3/4 of the total error variance. If the number of years tested is
increased to 4, and the number of locations reduced to 7 (giving a total of 84 plots), the error
variance is reduced to 0.0126, 85.7% of the original error variance. With 5 years and 6 locations,
and 6 years and 5 locations (both having 90 total plots, the variance is reduced to 0.0109 and
0.0101 (respectively) or 74% and 69% of the error variance under the original design.
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Field Plot Designs

One source of error over which the investigator has considerable control is the plot variance
(both within- and between-plots). Excellent reviews of plot design theory can be found in
LeClerg et al. (1962) and LeClerg (1966). While appropriate field preparation can reduce some
of this variation (for example by the use of mechanical seeding devices to ensure uniformity
of planting or laser-guided plowing for a field of uniform height), other sources of variation,
especially soil heterogeneity are generally beyond the direct control of the experimenter.
The larger the plot size, the greater than chance that individuals within the plot experience
significant soil heterogeneity. Historically, the trend has been a move to smaller and smaller
plots. In the early 1900’s, plot sizes for field crops in the United States ranged from 2 acres
to 1/40 of an acre, with an average size around 1/10 of an acre (Taylor 1908). The work of
Mercer and Hall (1911) lead to usage of much smaller plots (1/40 of an acre), while Woods
and Stratton (1910) strongly prompted replication of smaller plots in place of a single measure
on a larger plot. The rod-row plot, which involves rows of rod length (roughly 16 feet or 5
meters) as the basic unit of replication, appears frequently in the plant breeding literature.
Rod-row and field plots show generally good agreement (LeClerg 1966). Even smaller plots
can be used, such as hill plots (Bonnett and Bever 1947) which involve only a few seeds
(typically 2-3 to 30-50, depending on the species being examined). A literature review by
Weber (1984) finds a good correlation between yield estimating using hill and row plots.
While the results in the literature are somewhat mixed, the majority point to an advantage of
oblong plots over square plots (LeClerg 1966), consistent with the prediction (on theoretical
grounds) of Dendrinos (1931) that under patchy soil heterogeneity, oblong plots generally
have lower variation than square plots.

Figure 30.1. Experimental designs for treating a series of lines (here A through E) replicated
in a single location. Under a completely randomized design, lines are assigned at random over
the entire gird. Under a randomized block design, the growing area is first partitioned into a
series of blocks, and the position of lines within each block is assigned at random. Examples
of using either rows or columns as blocks are given. Removal of the block effect decreases the
residual error variance. Under a Latin square design, each line appears only once in each row
and column, allowing for row and column plot effects to be estimated, further reducing the
residual error variance.
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When plots are replicated within a given macroenvironment, a number of experimental
designs can be used to account for plot-to-plot variation. A few standard designs are given
in Figure 30.1. Suppose the lines to be tested in a particular location are replicated as a series
of plots over a grid. While one can plant individuals in a completely randomized design
(where plots are assigned at random over the entire grid), this design typically results in
higher variances associated with the line means over the entire replicate as plot-to-plot
variation is not accounted for, and thus appears in the error variance for the line means. The
use of a randomized block design, wherein the growing area is first assigned into blocks
and then lines are randomized within blocks, partly accommodates between-plot variation
by inclusion of a block effect (in a complete block design, each line is tested in each block.)

Removal of some of the between-plot variance decreases the residual error variance.
Figure 30.1 shows examples of using rows as the blocks (and hence randomizing lines within
each row) or conversely using columns as blocks. Other shapes can also be used for blocks as
well. Under the Latin square design, each line appears only once in each row and column,
allowing a further partition of plot variation into row and column effects (also giving rise
to the the popular game of Sudoku). Latin squares are more efficient, with complete block
design being only 65-75% as efficient (Yates 1935, Garner and Well 1939, Ma and Harrington
1948). Since the number of replicates under a Latin square must equal the number of lines (or
more generally be an integer multiple of the number of lines), this is not an efficient design
when the number of lines exceed six to eight.

When a large number of lines are being tested, incomplete block designs (where not
all lines appear in all blocks) are typically used, such as various lattice designs. The major
complication with lattice designs is that they impose certain constraints on the number of
lines that can be bested. For example, for a simple lattice design there must be

√
n plots per

block, implying only perfect square number of lines can be tested (i.e., 25, 36, 49, 64, 81, etc.),
and the number of replicates must be a multiple of two. For a triple lattice design, again
the number of tested lines must be a perfect square, but now the number of replicates are
multiples of three. Details can be found in LeClerg et al (1962), Cochran and Cox (1957), or
any standard experimental design text. In a review of over 80 lattice experiments, Ma and
Harrington (1948) found that the double and triple lattice designs had relative efficiencies
of 128% and 160% (respectively) over the comparable complete block designs.

Finally, a more recent approach to error control in field plot design is the use of spatial
statistics to analyze neighboring plots in an attempt to control for local soil variation. Reviews
can be found in Bartlett (1978), Wilkinson et al (1983), and Besag and Kempton (1986).

Accounting for G × E

Another major source of error variation is genotype × environment interaction, which can
occur in both obvious (across locations and years), and more subtle, forms. Examples of the
later are differences in the seed density used, for example space planting to allow individual
plants to be scored is rather different from using normal seed density. Likewise, a plot
consisting of a single genotype has a very different competitive environment that a plot
consisting of a mixture of genotypes. When multiple lines are being simultaneously tested,
guard rows between strains are often included. While these are discarded from the analysis,
they serve as a barrier to between-line competition which can alter yield and other traits.
Likewise, a plot often consists of 3-5 rows, with the border rows also being excluded from
the analysis.

On a larger scale, major differences in the environment can occur between locations and
between years (or seasons) at the same locations. The final testing of lines generally involves
multiregional yield trails, testing lines over multiple locations (often different countries),
and over several years. Clearly, in such tests there is the strong potential for G×E interactions.
If yijk denotes the average for the kth replicate of line i grown in environment j, then the
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standard model for G×E is yijk = µ+Gi+Ej +Iij +eijk, where Iij represents the interaction
term (this is also denoted by GEij). Obviously, the more accurately we can estimate Iij , the
more precise our estimates of the average value of a line across environments becomes. A
variety of linear model and regression-based approaches for approximating Iij have been
proposed (most of which are discussed in more detail in LW Chapter 22). The simplest is
the treatments model, where we estimate all the Iij ’s individually by ANOVA. Assuming g
genotypes and e environments (such as specific location-year combinations), the treatment
model requires g ·e−1 degrees of freedom. Given the large number of parameters to estimate,
the individual accuracy suffers. A reduction in the number of parameters to estimate occurs
if we use a regression estimator for Iij , such as the Finlay-Wilkinson (or joint) regression
of interaction on mean environment value, Iij = βiEj + ǫij . In its most general form, this
regression can be written as

Iij = βiEj + αjGi + κGiEj + ǫij

In theory, one (or more) of these regression-based estimators could be used to fit data from
a series of trials, and the model showing the smallest residual variance used for further
analysis.

A different, and very promising, alternative to either the straight ANOVA or the regres-
sion estimators is the AMMI, or Additive Main effects, Multiplicative Interactions, model.
In the literature this is also referred to as the biplot model Gabriel 1971) and (more rarely) as
Factor Analysis of Variation, or FANOVA, (Gollob 1968). The basic foundations are due to
Gollob (1968), Mandel (1971), Gabriel (1971), Bradu and Gabriel (1978), and Kempton (1984).
Its application to yield-testing is largely due to Gauch (1988), Zobel et al. (1988) and Gauch
and Zobel (1989). Additional reviews of AMMI can be found in Gauch (1992), Crossa (1990),
and Cooper and DeLacy (1994). Guach and Zobel (1990) used the Expectation-Maximization
(EM) algorithm (LW Appendix 4) to allow for missing data, referring to this as EM-AMMI.
Chapter 43 examines these, and other powerful methods, for dealing with G × E,so we only
offer a few brief comments here.

Under AMMI, the main effects (G, E) are assumed to be additive, while a multiplicate
approach is used to estimate Iij . Suppose there are g genotypes replicated r times each over e
environments. Under a standard ANOVA, only the r replicates for each particular G×E are
used to estimate the interaction. Under AMMI, all the data (g ·e·r points) are used to estimate
each interaction, as information from all other genotypes and environments influences the
estimate of each particular interaction. To apply AMMI, the main effects are first estimated
from a standard additive (i.e., no interaction) ANOVA. The residual is then fitted used a
principal components analysis (Appendix 5), which attempts to find the series of orthogonal
axis of a covariance matrix that explain the most variation. In particular, for the AMMIn
model, n terms are used to predict the interaction term,

Iij =
n

∑

k=1

λkγGkδEk + ǫij (30.5)

where λk is the eigenvalue associated with the k-th axis from a principal component analysis
(PCA), and γGk and δEk are the genotypic and phenotypic scores on PC axis k (these are
related to the eigenvectors associated with λk). The first PC axis accounts for the largest
variation, the second the largest of the remaining variation, and so on. Both the additive
ANOVA and joint regression approaches are special cases of AMMI, specifically AMMI0
and AMMI1 (Gollob 1968, Madel 1971, Gabriel 1978, Bradu and Gabriel 1978, Kempton
1984, Zobel et al 1988).

A resolution on deciding of the order of the AMMI model (the number n of PCAs chosen)
was offered by Gauch (1988) and Gauch and Zobel (1988). Two approaches can be used assess
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model fit, predictive and postdictive. Under a predictive approach, one randomly partitions
the data into a model fitting part and a model evaluation (or cross validation) part. A series
of alternative models (AMMI of different order) are then fit and assessed by their ability to
predict the model evaluation data. Under a postdictive approach, the model giving the best
fit to the overall data is chosen, typically by adding additional components and using F-tests
to judge whether the addition significantly improves model fit. As Gauch and Zobel point
out, the postdictive fitting approach tends to overfit the data, capturing both model signal
as well as any structure in the noise. Thus, they recommend a predictive approach to fitting
AMMI. Gollub (1968), Gauch (1988) and Zobel et al. (1988) assign the appropriate degrees
of freedom associated with the kth term in Equation 30.5 as

dfk = g + e − 1 − 2k (30.6)

An important caveat to cross validation schemes was made by Piepho (1994). Under a com-
pletely randomized design, individual observations can be assigned to either the model
fitting and cross validation data sets. However, if the data are in a randomized complete
block design, care must be taken not to split observations from blocks into the two data sets.
If observations from blocks are kept intact when assigning observations to the model-testing
and model-fitting data sets, any block effects are simply added to the additive environmental
effect. When observations from blocks are split, error is added to the interaction term, so
that AMMI is examining bj(i) + Iij + eij instead of Iij + eij , where bj(i) is the mean block
effect for the ith genotype in the j environment.

Cornelius et al (1992) and Cornelius (1993), motivated by the work of Goodman and
Haberman (1990), developed an alternative approach to fitting the correct number of PC
axes. Their FGH1 and FGH2 tests (based on the Wishart distribution, see their papers for
details) tend to include more PC axes than the cross validation approach, which tends to
underfit the model. They suggest if a cross validation scheme is used, that only one replicate
for each G × E treatment be maintained for the model-testing data set, and the rest used
in the model-fitting data set. They also show that the postdictive approach based on the F
value significance of the PCs (which they refer to as the Gollob test) has a very high type I
error and should be avoided.

Example 30.3. A series of regional soybean yield trails in upstate New York were analyzed by
Zobel et al. (1988) and Gauch and Zobel (1988). The data examined involved 7 genotypes grown
in 40 environments (certain combinations of 9 years and 9 sites), most with 4 replications per
trail (average 3.73 replications). The resulting ANOVA for the treatments model is as follows:

Source df SS MS F

Total 1043 245,722,327
Treatment 279 165,694,661 593,888 5.67

Environment 39 129,469,970 3,319,743 31.69
Genotype 6 9,722,960 1,620,493 15.47
G × E 234 26,501,731 113,255 1.08

PC 1 44 18,632,502 423,446 4.04
Residual 190 7,869,229 41,417 0.40

Error 764 80,027,666 104,748

The treatment consists of three sources: additive genotypic effects, additive environment
effects, and G × E interactions. One immediately troubling feature is that the F statistic
for the interaction term is not significant, yet the interaction sum of squares (SS) is almost
three times the genotype SS. However, due to the large number of degrees of freedom, the



PURE LINE SELECTION 463

resulting G×E mean square (MS) is over a magnitude smaller than the genotype MS, which
is highly significant. However, when the first principal component (PC 1) is extracted from
the interaction terms, it accounts for 70% of the interaction SS while using only 44 df , and
has a significant F statistic. The principal analysis in this case was very effective in capturing
structure in the interaction terms.

Gauch (1988) found that a first-order (AMMI1) model provided the best predictive fit, while
the first three PCs where significant in a postdictive analysis. Gauch and Zobel (1988) found
that the AMMI1 model with two replicates was equal in prediction accuracy to a standard
ANOVA with interactions with five replicates. Hence, simply by using an AMMI analysis
resulted in a huge improvement, and a resulting decreased in the overall error variance.

As the above example points out, simply by using an AMMI analysis, one (for this case)
receives an advantage equivalent to increasing the number of replicates by a factor of 2.5. In
an analysis of international maize trials, Crossa et al. (1990) found that AMMI results in an
increase of 4.3 in one trail and 2.6 in the other, and in an international wheat yield trail it had
an increase of 3.7 (Nachit et al. 1992, Crossa et al. 1991). Thus, simply by using an alternative
statistical analysis of already collected data, one can reduce the error variance considerably.
This not only results in an increase in selection accuracy (Gauch and Zobel 1989, Crossa et al.
1990), but also has important implications for the efficiency of experimental designs to find
the best line. Using the New York regional soybean trial data, Guach and Zobel note that for
a hypothetical multistage selection of the best line from 1,000 candidates, AMMI analysis
reduces the required number of plots from 2,440 to 1,400 and the time from three years to
two years.

Finally, mixed model approaches (such as BLUP) have also been suggested for treating
G × E, and again are more fully discussed in Chapter 43. Building on the work of Hill
and Rosenberger (1985) and Stroup and Multize (1991) who examined BLUP for estimating
the additive effects for yield trails, Piepho (1994) considered BLUP estimates of interaction
(G × E) effects as well. Piepho’s approach is treat the genotypes as random (as opposed to
fixed) effects, so that G ∼ N(0, σ2

G), I ∼ N(0, σ2
GE), and e ∼ N(0, σ2

e). Environments are
treated as fixed effects. In this case, Piepho shows that the BLUP estimate for µ + Gi + Iij ,
the mean of genotype i in environment j, less the main effect of that environment, is

BLUP(µ + Gi + Iij) = h2
g( z·i − z·· ) + h2

ge(zij − z·i − zj· + z··) (30.7a)

where for ne enviroments,

h2
g =

σ2
GE + neσ

2
G

σ2
GE + σ2

e + neσ2
G

(30.7b)

is the repeatability of estimated genetic effects, and

h2
ge =

σ2
GE

σ2
G + σ2

e

(30.7c)

is the repeatability of estimation interaction. An analysis of a German faba bean registration
data showed that BLUP method outperformed AMMI in four of the five data sets.

CHOOSING THE BEST GENOTYPES

Selecting for the single best line from a collection of pure lines brings with it the risk that the
best genotype is actually not the one choosen. We examine several issues here related to this
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risk. First, what statistical method should be used to pick the ”best” lines from a collection of
lines. Second, we review the types of statistical errors that can be made. For choosing the best
line, our major concern is controlling type III errors (picking inferior lines). We conclude by
examining the tradeoff between adding new lines versus increasing the number of replicates
per line.

Least Significant Difference (LSD) Tests

A problem that arises in selection among pure lines is determining which lines, from a po-
tentially large number of comparisons, are significantly different from each other. A number
of multiple comparison tests, such as Fisher’s least significant difference (LSD), Tukey’s sig-
nificant difference, and Duncan’s multiple range (to name a few), have been proposed to
deal with this issue. Simulation studies by Carmer and Swanson (1971, 1973) find that a
simple modification of Fisher’s LSD test is at least as good as any other tested procedure
and is the simplest to implement. Fisher’s original LSD test compares the absolute value of
the difference for the pair of means under consideration with the test statistic

LSD = tα,df sd

where tα,df is the student’s t distribution cutoff for the (two-sided) significance level α chosen
and df is the degrees of freedom associated with the standard error sd of the difference
between the two means being compared. The concern is that Fisher’s original test does
not given an overall (experiment-wise) test at level α due to multiple comparisons being
made. To correct for this, a preliminary F test for a significant treatment effect (based on the
treatment mean squares divided by the error mean squares) is first performed. If this is not
significant, there is no need at looking at all the pairwise comparisons. If it is significant,
then pairs are tested using LSD as defined above.

Type I, II, and III Errors

Recall that a type I error occurs when we declare one line to be significantly better than
another when in fact both are equivalent, and a type II error occurs when the lines are in fact
different, but we lack the statistical power to distinguish between them (i.e. failure to reject
the hypothesis that they are equal). Carmer (1973) notes that type I errors have no economic
consequences (as the lines are identical), while some type II errors result in inferior lines
being chosen. If two lines are not statistically significantly different from each other (but
their true values are indeed different), then if we simply chose one at random, half the time
we will chose the inferior line. If we instead simply chose the line with the largest value, the
inferior lines are chosen less than half the time when we make a type II error. A type III error
is judged to be the most serious, where an inferior line is chosen over a superior line. A type
II error has an indirect component (choosing an inferior line when a type II error occurs)
and a direct component (the inferior line is found to be significantly better than the superior
line). Carmer (1973) argues that type III errors are really the ones of most concern, a point
reiterated by Johnson et al. (1992) who suggests that fear of type III errors are a major barrier
to the more widespread use of improved strains by farmers in developing countries. The
probability γ of a type III error has two components: an indirect component (which Johnson
et al. refer to as implied γ) from those type II errors were we chose the less superior line, and
a direct component (referred to as pure γ) when the less superior line is judged significantly
better than a superior line. If δ is the absolute value of the true difference in means, and σd

is the standard error, then the (large-sample) probability β of a type II error is

β = Pr

(

− [ tα,df + δ/σd ] < t < tα,df − δ/σd

)

(30.8a)
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where t is a student’s t random variable with df degrees of freedom. If a line is chosen at
random when there is no statistical difference between then, the implied γ is β/2. The ”pure”
γ is

Pr

(

t > tα,df + δ/σd

)

(30.8b)

The type III error is thus

γ =
1

2
Pr

(

− [ tα,df + δ/σd ] < t < tα,df − δ/σd

)

+ Pr

(

t > tα,df + δ/σd

)

(30.8c)

For control of Type II errors, Carmer (1976) suggests using LSD with a significance (type I
error) of α = 0.2 to 0.4. While this will generate a larger number of type I errors, as mentioned
it is really type III errors that are generally more critical to control in the choice of a best line.

Example 30.4. Suppose δ/σd = 1 and we assume that the number of degrees of freedom is
sufficiently large that we can approximate a t distribution with a unit normal z. In this case,
for a LSD test with a type I error of α = 0.05, the matching normal cutoff for a two sided test
is z = 1.96. The resulting type II error is Pr(−2.96 < z < 0.96) = 0.830, while the ”pure”
type III error is Pr(z > 2.960) = 0.002, giving a total type III error of (1/2) 0.830 + 0.002 =
0.417. Of this, 99.6% is from type II errors. In a similar fashion, for α values of 0.1, 0.2, and
0.4, the total type III error is 37.2%, 31.3%, and 20.8% (respectively), which is still largely from
Type II errors (98.8%, 96.4%, and 86%).

Probability of Choosing the Best Genotypes

Since lines are scored based on their phenotypes, rather than genotypes, sampling variance
can result in a less than optimal line still having the largest phenotypic value. There is a
tradeoff between replications per line and number of lines tested. The greater the number
of replications, the more precise the estimate of the genotypic mean, reducing the risk of
choosing a genotypically-inferior line. However, this also reduces the number of lines to be
tested, and hence the selection intensity. We examine the optimal design given this tradeoff
in the next section. A related issue we examine first is the important point stressed by Gauch
and Zobel (1989, 1996) that adding new genotypes is not all good. Suppose there is a two
percent chance of adding a superior genotype. An increase in 50 lines will (roughly) introduce
one superior line, which is good. It will also introduce (on average) 49 inferior genotypes,
which is bad, as these contribute noise from which the signal (the superior genotype) needs
to be extracted.

To see how the addition of interior genotypes causes problems for selection, suppose we
have 30 lines in a yield trail, all with true yields of (say) 1000 and the experimental design is
such that the standard error for any particular mean from its true value is 150. The expected
maximum value and range can be obtained from standard order statistics theory. Guach and
Zobel (1989) give the following expected maximum value and expected range of values for
N draws from a unit normal:

N 2 4 10 30 100 500 3000 20,000

E[Max] 0.56 1.03 1.53 2.04 2.51 3.04 3.54 4.02
E[Range] 1.12 2.06 3.06 4.08 5.02 6.08 7.08 8.04
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Hence, we expect that the largest observed mean for these 30 identical lines has an expected
value of 1000+2.04·150 = 1306, while the expected range is 612, from 694 to 1306. In such a
setting, it would be difficult to select for a genotype with a true mean of (say) 1250, which is
a 25% increase over the inferior lines. Indeed, we would chose the superior line in this case
only 37.1% of the time.

This particular setting, where one line is superior and the other N lines are inferior by
the same amount R (which we will scale in standard deviations), is called the generalized
least favorable (or GLF) configuration, and represents the most difficult selection problem
(Gibbons et al. 1977). The probability of selecting the superior line under the GLF configu-
ration is a function of R and N , and representative values are plotting in Figure 30.2. In the
example above, R = 250/150 = 1.67, and the probability of success (37.1%) was obtained
from extrapolating from the table given in Gauch and Zobel (1989).

Figure 30.2. Probability of picking the best line under the GLF model (one superior line,
N equally inferior lines). The difference between the superior and inferior lines, measured
in standard deviations, is R. Data plotted from a more extensive table in Gauch and Zobel
(1989).

Accuracy vs. Intensity in Selecting the Best Lines

As mentioned, with a fixed number of plots to be scored, there is a tradeoff between increasing
the accuracy (by increasing the number of replications/line) and increasing the selection
intensity. If we are restricted to a total of N plots and our goal is to select the best n lines,
what is the optimal number of replications per line? This question has been examine by a
number of workers (England 1977, Bos 1983, Gauch and Zobel 1996).

We can solve this problem as follows. Recall from Equation 30.1 that for an set series
of lines, the between-line variance σ2

G is fixed, and response is maximized by maximizing
ı/σ( p ), both of which change with the experimental design. For example, assume only a
single environment is of interest and each line is replicated in r plots,

σ2( p ) = σ2
G +

σ2
p + σ2

w(p)

r
= σ2

z

(

H2 +
1 − H2

r

)

where the broad-sense heritability H2 is defined using single plots as the reference design
(H2 = σ2

G/(σ2
G +σ2

p +σ2
w(p)). If r replicates are used, then the fraction saved is p = n/(N/r) =

nr/N , where N/r is the number of distinct genotypes measured. The expected response
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becomes

R(p, r) = ıN/r,n
σ2

G

σz

√

H2 + (1 − H2)/r
= ıN/r,n σG

√

H2

H2 + (1 − H2)/r
(30.9a)

Using Burrow’s approximation (Equation 14.4b) to correct the selection intensity for finite
sampling effects gives

R(p, r) =

(

ıp −
[

1 − p

2p(N/r + 1)

]

1

ıp

)

σG

√

H2

H2 + (1 − H2)/r
(30.9b)

We can further simplify calculations by recalling the approximation given by Equation 14.3b
for the (infinite-population) selection intensity given a fraction p saved,

ıp ≃ 0.8 + 0.41 ln(1/p − 1) = 0.8 + 0.41 ln(N/nr − 1)

For fixed total plots N and final number of lines to be saved n, one can numerically compute
the expected response for different replicate sizes to obtain the optimal value. More generally,
suppose genotypes are examined over a total of e distinct environments, with r replicate
plots/environment. Recalling Equation 30.3, Equation 30.9a becomes

R(p, r) =

(

ıp −
[

1 − p

2p(N/r + 1)

]

1

ıp

)

σ2
G

√

σ2
G +

σ2
G×E

e
+

σ2
p + σ2

w(p)

N

(30.9c)

With estimates of the appropriate variance components in hand, one can numerically find
the values of e and r that maximize ı /σ( p ), and hence maximize response.

Example 30.5. Suppose H2 = 0.2 and we wish to select the best ten genotypes (n = 10)
from a total of N = 200 plots. Applying Equation 30.9b for different values of r gives

r p ı σG/σ( p ) R/σG R/Rmax

1 0.05 1.29 0.447 0.576 0.806
2 0.10 1.15 0.577 0.666 0.932
4 0.20 1.01 0.707 0.714 0.998
5 0.25 0.96 0.745 0.715 1.000
8 0.40 0.84 0.816 0.685 0.958
10 0.50 0.77 0.845 0.651 0.910

Under these values of H2, N , and n, the optimal number of replications/line is 5, resulting
in 40 lines being tested. If each line is tested in only a single plot (so that 100 lines are tested),
the expected response is only 81% of the optimal.

Another way to look at the efficiency of a particular design is to examine what fraction of
the total plots is required under the optimal design to give the same response. Suppose we
measured 100 lines, each with two replicate plots. The expected response in this case is 0.666σG.
The same expected response can also be obtained using only 148 total plots, by examining 37
genotypes each with four replicate plots. Using the optimal design requires only 74% of the
number of plots for the original (suboptimal) design.
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Increasing the number of replicates always increases the accuracy of selection, bringing
the expected response closer to the maximal possible response, Rmax = ı σG (which occurs
when all genotypes are measured without error). However, even using the optimal number
of replications imposed by N , the response is less that the maximal possible if all genotypes
could be clearly distinguished. To see this, again consider the simple case of a line replicated
as r plots in a single environment, implying Equation 30.1 can be expressed as

R =
σ2

G
√

σ2
G + σe/r

ı =
1

√

1 + (Ar)−1
σG ı (30.10a)

A = σ2
G/σ2

e = H2/(1 − H2) can be considered as a signal (genotypic variance) to noise
(environmental variance) ratio (Gauch and Zobel 1996). For the same selection intensity, the
ratio of the expected response to the maximal possible response is

R

Rmax
=

1
√

1 + (1/Ar)
(30.10b)

which is plotted in Figure 30.3.

Figure 30.3. Percent of maximal selection response as a function of the number of replicates
r and the signal/noise ratio A = σ2

G/σ2
e . When σ2

e is the environmental variance within a
plot, then A = H2/(1 − H2).

Example 30.6. Suppose the trait of interest has a broad-sense heritability of H2 = 0.2 (when
measured in a single plot of defined size), giving A = 0.11. If there is no replication (r = 1),
Equation 30.10b shows that the expected response is only 31% of the possible response if we
could indeed chose the elite genotypes. With 2, 5, and 10 replicate plots, these percentages
increase to 42%, 60%, and 72%. To achieve 90, 95, and 99% of the possible response requires
39, 84, and 450 plots.

ADVANCEMENT OF GENERATIONS
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A key issue in the development of pure lines is how to advance the derived lines from a
cross to complete homozygosity and in particular at what stage should selection be practiced.
Historically, plant breeders have employed at least some selection during the segregating
generations following a hybridization, but for low heritability traits (such as yield), such
selection was usually not very effective. Pedigree and bulk selection (see below) are examples
of such schemes that use either artificial or natural selection to cull undesirable genotypes as
the lines are moving towards fixation. The effectiveness of such early generations selection
is often questionable, leading to advancement of generations approaches that attempt to
minimize selection during inbreding to fixation (such as single seed descent and doubled
haploids, DH), practicing selection only once the resulting lines are very close to completely
inbred.

Outcrossing Hybrids Before Selfing

While most selection schemes start by immediately allowing the F1s to self (or otherwise
inbreed such as by DH), the alternative is to allow one or a few generations of intermating
before selfing. Such interbreeding schemes are generally not done, as intermating takes time
and (above all) effort, as pollinations must be carefully controlled and is often done by hand.
The potential advantage of intermating is that is allows recombination to break up favorable
alleles tightly linked in repulsion (Baker 1968, Pederson 1974, Bos 1977, Stam 1977, Sneep
1977). Such was the situation for two studies with cotton. Miller and Rawlings (1967) found
a negative genetic correlation between yield and fiber strength, and this correlation was
reduced by several generations of intermating. Similar results were reported by Meredith and
Bridge (1971). Conversely, if there are favorable alleles tightly linked in coupling, intermating
would reduce the potential response relative to immediate selfing.

Pedigree Selection

The idea of pedigree selection to handle the segregating generations of an autogamous
species as the lines inbred to complete homozygosity has its roots at the very beginning of
modern plant breeding (e.g., Nilsson-Ehle 1910, Love 1927). It represents a compromise at
trying to move self-pollinating lines along towards complete homozygosity while still allow-
ing some selection to occur. Under pedigree selection, as individuals become more inbred,
selection decisions move from individual plants (during the F2 and perhaps F3 generations)
to family-based decisions and finally to extensive yield trails (with extensive replication) in
later generations (the F6 or higher) when resulting lines are sufficiently inbred. There are
any number of variants of pedigree selection (e.g., Lupton and Whitehouse 1957, Riggs et
al. 1981). One popular example is the F2 progeny design introduced by Lupton and White-
house (1957), illustrated in Figure 30.4. Pedigree selection has been historically preferred over
mass selection by breeders of autogamous crops as selection can be shifted towards family,
rather than individual, performance, increasing the efficiency for low heritability traits. This
scheme attempts to balance between being able to locate superior genotypes during early
generations of selection while still maintaining sufficient genetic variation for selection in
later generations.

Individual selection in early generations requires that plants are grown under space-
planted conditions so that individuals can be scored (as opposed to the spacing used in many
crops where individual scoring is essentially impossible). Family selection, on the other
hand, often involves planting family members in a bulk, with the entire plot (as opposed to
single individuals) being scored. Given its increased accuracy, one would like to start family
selection as early as possible. For many crops, however, there is simply not sufficient seed
from individual F2 plants for family selection, and instead family selection starts by taking
seed from F3 plants from each selected F2 plant. When plants produce sufficient seed, F2
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families can be tested, and pure lines selected from the superior families. Given replication
and the generally large number of families to be tested, identification of superior F2 families
often requires considerable resources. One pedigree scheme turns this testing on its head —
under the pure-line family method (or PLF) of Ivers and Fehr (1978), pure lines are used
to identify the superior families. Here, individual F2 plants are harvested and bulk progeny
from each plant are selfed for several generations (typically the F4 or F5). A pure line is then
extracted from each of these bulks and yield tested. For superior lines, additional members
from the original F2 family are chosen for yield testing.

Figure 30.4. The F2 progeny method of pedigree selection, proposed by Lupton and White-
house (1957). Single circles represent individual plants (usually space-planted). Each line rep-
resents a plot (such as a rod-row) of the progeny from a single parent. Families are replicated
over several plots for trails, and are chosen from the average over a three generation period
(e.g., F4 to F6). All reproduction is by strict selfing, and arrows indicate where selection has
occurred.

Given the goal of developing pure lines that perform well over a number of environ-
ments, pedigree selection can involve sequential selection, where the different generations
are cycled through a series of different environments to minimize the effects of G X E. (e.g.,
Branch et al. 1991). An interesting example of the effects of selection in different environ-
ments is the work of St-Pierre et al. (1967), who examined selection of yield in barley on
F2 to F5 plants in a different series of environments. Starting with the same F1, lines were
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grown and selected over all possible yearly combinations involving two sites, Macdonald
college in Montreal and La Pocatière (about 250 miles NE). This was done for 27 different F1

families for each combination of environments, and the resulting F7 and F8 lines were yield-
tested at both sites. Figure 30.5 summaries their results. Notice that the top six performing
lines were all selected at La Pocatière in the F4, while the six lowest performing lines were
selected at Macdonald in the F4. The authors suggest that the stressed environment at La
Pocatière during the year differentiates barley strains better than a lower stress (Macdonald)
environment.

Figure 30.5. Results of the segregants of the same F1 when grown under different environ-
ments. Seeds from selected barely plants each year were grown in two different locations, M
= Macdonald college and P = La Pocatière. Thus MMPM implies that the resulting seed were
selected in the F2 and F3 at Macdonald, the F4 at La Pocatière, and the F5 back at Macdonald.
In the F7 and F8, strains were yield-tested at both sites. The measure “percent adaptability”
for a specific selection pathway (e.g., MMPP) is the percentage of times that plants selected
by that pathway had a yield exceeding the mean yield of all progeny from their original F1

family. After St-Pierre et al. (1967).

While pedigree selection schemes have historically been widely used for a number of
autogamous crops, there are two major concerns with this approach — the effectiveness of
individual selection and the effectiveness of early-generation selection.

Because individual selection for low heritability traits (such as yield) is very inefficient,
one modification of pedigree selection is to focus on only highly heritability traits (such as
height or disease resistance) in the early generations, postponing selection on other traits
until later generations. For lower heritability traits, several approaches have been suggested
to improve the effectiveness of individual selection. One is improved planting designs to
reduce the error variance associated with soil heterogeneity, such as stratified mass selection
(Gardner 1961), introduced in Chapter 13. Another approach is the honeycomb design of
Fasoulas (1973), where individuals are planted in a honeycomb fashion and compared with
their six equidistant neighbors. Wide spacing (e.g., 60cm in wheat) is used to avoid the effects
of competition and the neighborhood comparison will reduce the effect of soil heterogeneity.
Mitchell et al. (1982) used this design for early generation selection in Durum wheat yield.
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While they found a slight improvement under this design (compared with standard mass
selection), it was not deemed sufficiently large to be worth the additional resources. A second
approach is to select on component characters which have higher heritabilities than the trait
of interest. For example, Valentine (1979) examined yield and its components in Spring Barley.
While the broad-sense heritability (for single plants) for yield was 5.3%, heritability was at
least twice as high in several components (20.2% for grain weight, 12.9% for grains/plant,
21.2% for grains/tiller). Another approach is to asexually propagate individuals and then
use replication to obtain much more precise estimates of their genotypic values. However,
asexual propagation is not usually justifiable given the considerable investment in both time
and resources.

Finally, a confounding factor is that individuals are often chosen via visual selection,
where in the breeders makes a selection decision by a simple visual assessment as opposed
to basing selection on detailed measurements. This is often not unreasonable, given the large
amount of material that must be sorted. Visual selection of individuals for yield is not very
accurate, and has been found to be only appropriate for rejecting the poorest lines (Hanson et
al. 1962, Kwon and Torrie 1964 for soybeans; Atkins 1964 for Barley; Briggs and Shebeski 1970
for wheat). Indeed, Anderson and Howard (1981) found considerable differences between
potato lines developed under pedigree selection when individual plants were chosen by
different selectors. While Luedders et al. (1973) found that visual selection for soybean yield
as accurate as F4 or F5 tests, this may be more a reflection on the low heritability of yield.

Even if we can alleviate the concerns of individual selection, a second and perhaps
more serious problem with pedigree selection is that we are interested in the performance
of completely inbred (F∞) lines, and F2 or F3 lines are often very poor predictors of the fi-
nal line performance. Thus, early-generation selection, whether individual- or family-based,
may simply not be efficient. Because of both potential differences in planting designs (space-
planting versus more seeding densities) and in the composition of the population, high
yielding genotypes in early generations may not be high yielding under normal cropping
conditions. In early generations, individual performance is scored in heterogeneous popula-
tions (mixtures of different genotypes), but for cropping conditions we seek the best perfor-
mance in a monoculture. Thus early generations select for performance under allogenotypic
competition, while crop conditions require performance under autogenotypic competition.
Pedigree selection tends to select for lines that can do well in both mixed and pure cultures,
because successive lines must survive both early generations selection and yield testing in
later generations. It is thus unclear if lines with the highest performance in pure cultures are
those that are also most favored by pedigree selection. We examine the effectiveness of early
generation selection in more detail shortly.

While the pedigree approach has been very widely applied, one sobering appraisal of
its success is offered by Kulshrestha (1989), who examined 630 wheat strains developed
using pedigree selection by the Indian government’s National Wheat Program. These lines
were tested at a total of 271 locations from 1983 to 1987, and involved tests in nine agro-
climatic zones. Checks (elite cultivars grown as controls) were also used and results reported
compared to the best check. The results (summarized in Table 30.1) was that only 4.4 % (27
of 630) of the lines were significantly better than the best check, and only 14.8% (93 of 630)
where numerically (but not significantly) superior. Fully 81% of all lines either no better or
inferior to the best check.

Table 30.1. The success (and lack thereof) of the pedigree method of selection as applied to wheat in
Indian. From Kulshrestha (1989).

No. cultivars compared to best check
No. of No. of Significantly Numerically Equal or
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Zone locations cultivars superior superior inferior

Northern Hills 30 50 —- 16 34
Northern Plains 49 115 —- 9 106
NW Plains 31 76 4 11 61
NE Plains 44 79 4 9 66
Far Eastern 18 73 —- 11 62
Southeastern 10 55 5 13 37
Central 40 64 —- —- 64
Pennisular 45 72 6 12 54
Southern Hills 4 46 8 12 26

Totals 271 630 27 93 510

Bulk Selection

Pedigree selection requires consider effort on the part of the breeder in tracking individual
lines. An alternative approach is bulk selection, which involves growing selfed lines in bulk
(all seeds are planted in a plot under normal seeding densities) and simply collecting and
planting the resulting seed for several generations. Under this scheme, the resulting lines
have survived natural selection for both competitive ability and yield. In modern planting
breeding, this approach was apparently first used Nilsson-Ehle in 1908 to screen winter
wheat. Suneson (1956), motivated by the work of Harlan and Martini (1929, 1938), brought
this approach to prominence.

While considerably easier to implement than pedigree selection, bulk selection also
potentially suffers the problem of early generation selection — the genotypes that compete
the best in mixed stands may not be those that give the highest yields in pure mixtures.
Further, in a segregating population, genotypes change over time and the advantage of
one genotype may not be fully passed onto its offspring. Empig and Fehr (1971) note that
segregation supplies new weak competitors (until the inbreeding becomes sufficiently high
that little further segregation occurs), hence the population can change rather slowly over
time unless there is strong selection for competition. Suneson (1956) notes that significant
shifts in the mean may not occur until Generation 15 (Figure 30.6).

Figure 30.6. The yields of four different bulked composite lines of barley against a check
(Atlas 64) as a function of generations of bulk selection. Composite cross II (CC II) results
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from the complete intercross of 28 varieties, with bulk selection starting on 378 separate F1

families. CC V results from 31 varieties, CC XII from 26 varieties, and CC XIV resulted from
9 varieties of California-adapted varieties. While CCs II, V, and XII almost entirely selfed,
CC XIV contains a male sterile gene to facilitate outcrossing. Bulk selection was successful in
producing yields equal to the value of Atlas 64, but required at least ten or more generations.
After Suneson (1956).

A second problem (not suffered by pedigree selection) is that bulk selection does not
directly select on yield per se, and high yielding lines may actually be selected against. For
example, in certain crops, tall plants seem to have a competitive advance over short plants
(Bal et al. 1959 for barley, Jennings and Herrara 1968 for rice, Khalifa and Qualset 1975 for
wheat). In many cases, however, short-statured plants have a greater yield potential (Briggle
and Vogel 1968, Athwal 1971). Sunsen (1949) examined the competition between four pure
lines, finding that the dominant strain out-competes the strain with the best agricultural
features (Figure 30.7).

Figure 30.7. Suneson (1949) followed the frequencies of four barley varieties grown (and
hence selected) in bulk over a 16 year period (1933 to 1948). As the following figure shows, the
Atlas variety wins, but the Vaughn variety is superior from an agricultural standpoint, with
a higher yield (107% of Atlas), and earlier heading date, and much better disease resistance.

Despite these potential concerns, bulk selection has shown some success (Figure 30.6). It
certainly seems a reasonable approach to screen for lines than can survive extreme conditions
for certain growing regions. Ikehashi and Fujimaki (1980) report that 21 of 33 rice cultivars
released by the Japanese government in 1977 were developed by bulk selection. Likewise,
(as of 1980) lines accounted for 44% of the total rice area in Japan were developed using Bulk
selection. Bulk and pedigree methods resulted in the same increase in yield in Soybeans
(Raeber and Weber 1953), while Torrie (1958) found that bulk and pedigree methods gave
the same yield in 4 of 6 lines, with bulk breeding having a higher yield in the other two
tested F6 lines.

Hamblin and Rowell (1975) tried to quantify the effects of competition on the decision
of bulk vs. pedigree selection. If β is the slope of the regression of yield in mixed cultures
vs. yield in a pure culture, then if β < −1, bulk selection can lose high-yielding lines, and
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pedigree selection is appropriate. If β > −1 then bulk selection is reasonable.

Is Early Generation Selection Effective?

Two issues: correlation of genotypes over generations (e.g., does F3 well-predict F∞?, re-
sulting G x E issues

A major motivation for early generation selection is to avoid the loss of desirable alleles
that occurs in the absence of such selection. As inbreeding progresses, individuals carrying
favorable alleles at a large number of loci become increasingly infrequent (Van Der Kley
1955, Sneep 1977, Snape and Simpson 1984). To see this, consider the probability that a
locus carries a favorable allele. We assume that where alleles differ between the pure lines
being crossed, alleles either have an equivalent effect on the character of interest (and hence
are ignored) or one is more favorable than the other. Overdomiance obviously does not fit
into this pattern, but since we are breeding lines to fixation such loci are not considered
here (Chapter 31 discusses cross-breeding schemes for such loci in inbred lines). In the
F1 all individuals are identical, being completely heterozygous for all loci at which the
lines differ. Because of this, no selection is practiced at this stage unless we are considering
a collection of lines from different crosses (in which case the F1s differ over crosses). In
the F2 and subsequent generations, the probability that an individual carries at least one
favorable allele at a particular locus is the frequency of heterozygotes plus the frequency of
favorable homozygotes. In the absence of selection, this is a standard Hardy-Weinburg under
inbreeding (LW Table 10.1), with the frequency of the favorable allele being 1/2. Hence, the
probability π that an individual carries at least one favorable allele at a particular locus is

πt = Freq(Aa) + Freq(AA) = (1 − ft) ·
1

2
+

[

(1 − ft) ·
1

4
+ ft ·

1

2

]

=
3 − ft

4
=

1

2

(

1 +

(

1

2

)t+1
)

(30.11)

where ft = 1 − (1/2)t is the inbreeding coefficient and t number of generations of selecting
This ranges from 3/4 in the F2 (t = 0, f = 0) to 1/2 in the F∞ (f = 1). If the trait of interest
is governed by 10 favorable loci, then (assuming loci are unlinked) the probability that an
individual contains at least one favorable allele at each locus is 5.6% in the F2, but only 0.098%
in the F∞. On average, one out of every 18 F2 individuals contains favorable alleles at all loci,
while only one out of every 1,024 F∞ individuals does. More generally, if loci are unlinked,
then the probability that an individual contains at least k out of n loci with favorable alleles
follows from the binomial distribution with success parameter πt and sample size n.

Hence, in the absence of selection, if the trait of interest is controlled by even a modest
number of loci that differ between the lines, unless a very large collection of F∞ lines is
maintained, it is highly unlikely that the best possible genotypes will be included in the
sample to be yield-tested. Thus, despite all of the concerns addressed about early generation
selection, the situation may be more dire without such selection.

The literature reports mixed results on the effectiveness of early-generations selection.
Traits with high heritabilities seem to respond better than traits with lower heritabilities
(such as yield). For example, McKenzie and Lambert (1961) and Hanson et al. (1979) found
that early generation selection was of little value for yield in Barley, while Frey (1954) found
that F2 performance was good indicator of F3 performance for yield. Jinks and Pooni (1981a)
found early generation selection in tobacco (Nicotiana rustica) was not useful.

As mentioned, a major concern with early-generation testing is that dramatic envi-
ronmental differences can occur year-to-year even in the same location, and genotype ×
environment interaction can pose serious problems in such cases. For example, Mahumd
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and Kramer (1951) found little association for yield between F3 and their selected F4 de-
scents in soybeans when different plant spacing and seasons were involved. Conversely, the
F3 and F4 showed good associations when grown (using remnant seed) in the same location
and year. For yield in Dry Beans (Phaseolus vulgaris), Hamblin and Evans (1976) found that
there was little effect of generation on the correlation, provided both lines were grown at crop
densities. Generations using more space-planted densities were much poorer predictors.

Perhaps the most detailed study was that of Whan et al. (1982), who examined the
increase in yield in wheat, summarized in Table 30.2. When lines are tested in the same
year and site, early generations selection for yield was clearly effective, with mean response
of selected lines being 120-130% of unselected lines. When tested in the same year, but
different sites, early generations selection was still effective, with responses of 110-120%.
When derived lines were tested in different years (but the same sites) as their ancestors, the
response was essentially the same as for unselected lines.

Table 30.2. Results from a multi-generational wheat yield study by Whan et al (1982). Starting with
56 F2 families (the total for the two crosses followed), the authors advanced lines by randomly selected
one line per family each generation, with the pedigree data carefully tracked. By retroactively using
this pedigree data, the authors could simulate the results for selection response at various generations
by asking about the performance of descendant lines from the top 10% of lines. Selection was either
simulated using individual value (Fk-derived lines) or lines chosen based on their family value, Fk

(based on Fk+1 family) lines. Using remnant seed allowed lines from different generations to be grown
in the same location and same year in some of the experiments.

Percent of Mean Response
Type of Selection F3-derived lines F4-derived lines F5-derived lines

Same year, site
F2-derived lines 125 111 113
F2 (based on F3 family) — 119 135
F3-derived lines — 123 134
F3 (based on F4 family) — — 132
F4-derived lines — — 128

Same year, different site
F2-derived lines 117 120 126
F2 (based on mean of F3 lines) 112 117 123

Same site, different years
F2-derived lines 106 104 101
F2 (based on mean of F3 lines) 101 91 111

Table 30.3 summaries the between-generation correlations in yield for a number of
crops (grown in different years except where noted). While correlations were positive and
significant, a number of authors have questioned whether they are sufficiently high to justify
the considerable increase in effort required forearly generations yield testing (EGYT). For
example, even with a correlation as high at 0.60, Knott (1972) and Knott and Kumar (1975)
questioned whether EGYT was worth the increased effort.

Table 30.3. Between-generation correlations in yield. Where reported, level of significance in indi-
cated by ** = 0.01, *** = 0.001.

Winter wheat (Triticum aestivum em. Thell.)

F4- F5 correlation of 0.555*** Lupton and Whitehouse (1957)
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Spring wheat

F3 - F5 correlation of 0.847** Shebeski (1967)
F3 - F5 correlation of 0.83** Briggs and Shebeski (1971)

Wheat

F3 - F4 correlation of 0.59** De Pauw and Shebeski (1973)
F3 - F5 correlation of 0.56** De Pauw and Shebeski (1973)
F4 - F5 correlation of 0.75** Busch et al. i (1974)
F3 - F5 correlations of 0.29** and 0.14** Knott and Kumar (1975)
F2 - F5 correlation of 0.81** (grown in same year) Cregan and Busch (1977)

Barley (Hordeum vulgare)

F3 - F6 correlations of 0.543*** and 0.313** McKenzie and Lambert (1961)

Soybeans (Glygine max )

F2 - F3 correlation of 0.85 Leffel and Hanson (1961)

Another issue, noted by Sneep (1984), relating to early generation testing is that for
certain small grains (such as barley and wheat), the number of seeds per plant is too small
to provide sufficient power for yield-testing of their progeny (especially when considerable
G X E exists, which can only be mitigated by extensive replication across environments).
Hence, an F3 test is not that efficient, and instead the F3 should be used to create a larger F4

family for yields testing.

Single Seed Descent (SSD) Selection

The motivation behind the single seed descent (SSD) is that since in many cases early-
generations selection can be misleading, the simplest approach is to inbred the lines in (as
much as possible) the absence of selection. One way to do this is to propagate a single seed
from each selfed plant. This is done under space planted conditions (to reduce competition)
until the F5 or F6 generation, at which point the resulting lines are expanded and yield-tested.
This approach was initially suggested by Goulden (1939), and later by Grafius (1965), Brim
(1966, who called this approach the modified pedigree method), and Kaufman (1971, who
referred to this as the random method). The term single seed descent is due to Empig and
Fehr (1971).

One subtle, but important, advantage of SSD is that it allows populations to be grown
in environments quite different from those in which the final cultivar will be grown, with-
out being unduly influenced by selection. Hence, lines can be advanced towards complete
inbreeding in a greenhouse and/or in winter nurseries experiencing a very different envi-
ronment than the final cultivar. SSD has been used on a number of crops – most cereals,
soybeans, tomato, lettuce, and safflower to name a few (Stoskopf et al. 1993). SSD requires
more work than bulk selection, as single seeds must be harvested from each plant, but this
is far less work than pedigree selection.

When starting a set of lines for SSD, the F1 population should be as large as possible.
The number of lines limits the possible range of genotypes that will be recovered (we discuss
this further below in the context of selection limits). Further, the population size is expected
decline over time, as some plants will die out or not seed. Roy (1976) found in wheat that
SSD lines are impacted by competition but not to the extent of bulk selection. He suggests
growing plants under conditions of relatively uniform plant survival to mitigate the effects
of competition on the development of SSD lines.

In the absence of selection, SSD and pedigree inbreeding are expected to generate the
same F∞ distribution of lines. This expectation was indeed observed by Jinks and Pooni
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(1984), who found no differences in phenotypic and genotypic distributions of seven quan-
titative traits in Nicotiana rustica lines developed from SSD and pedigree inbreeding.

Modifications of the standard SSD design have been proposed. Casali and Tigchelaar
(1975a) suggest pedigree selection in the F2 and F3 and then use SSD to advance to the F6 for
yield traits. Compton (1968) suggested that instead of propagating lines from a collection
of F1 individuals from a single cross, that instead a large number of crosses be made, and
a single F1 line is propagated from each cross. This exploits both between-line as well as
within-line selection, increasing response.

Doubled Haploid (DH) Selection

In a number of plants, cytological techniques can allow one to directly create completely
homozygous line by producing doubled haploids (Kermicle 1969, Nitzsche and Wenzel
1977, Choo 1981). As with SSD, the motivation for DH is to sample a collection of completely
inbred lines that have undergone as little selection as possible. The advantage of DH over
SSD is that a single generation takes a line to complete homozygosity, as opposed to selfing
for 5-6 generations (which only takes a line to, respectively, 96.9% and 98.4 % homozygosity).
This advantage is partially offset by the additional effort required to haploidize a line. In
the absence of selection, SSD, and DH produce an identical distribution of pure lines, except
when linkage is present (Jinks and Pooni 1981). Since DH lines typically undergo only a
single round of meiosis (with gametes from the F1’s being haploidized), the resulting DH
lines can be strongly influenced by parental linkage phase, even for moderately linked loci.
Favorable genes in repulsion in parents tend to remain so, reducing the joint probability of
fixation relative to SSD. Conversely, favorable genes in coupling have a higher change of
being jointly fixed than under SSD. Powell et al. (1986) found no evidence of such linkage
effects for yield in spring barley, where SSD and DH lines showed the same performance.
If linkage is a concern, its effect can be reduced by allowing several generations of meiosis
before haploization.

Comparison of the Different Methods

The breeder is faced with several options for advancing generations: active selection (pedi-
gree), passive selection (bulk), or random selection (SSD, DH). The general consensus is that
early generation selection (usually referred to as EGT, for early generation testing) is cer-
tainly appropriate for simply-inherited characters, or for traits with high heritabilities. For
low heritability traits, it is not clear if the additional effort required for EGT is worthwhile,
and several workers have used computer simulations in an attempt to examine the relative
efficiencies of the different methods. Casali and Tigchelaar (1975b) compared SSD, bulk and
pedigree selection. At heritabilities above 0.5, pedigree selection was most efficient, while
at heritability of 0.25, mass selection was most efficient, while all methods were roughly
equivalent at low heritabilities (0.10). SSD was the most efficient approach when multiple
characters were under selection. Yonezawa et al. (1987) showed that, relative to pedigree se-
lection, DH had an advantage provided the trait is influenced by a relatively small number of
loci, favorable alleles are recessive, and genes are not strong linked. Van Oeveren and Stam
(1992) compare selection starting in the F3 with selection in the F6 following SSD (a scheme
they called early selection, or ES). The ES F6 lines were compared with the F7 from SSD.
ES has a significant advantage over SSD when heritability is high. When less than 100 F2

plants are used, the results from SSD are poor. The number of loci (of equal effect) underlying
the trait is also important, with both methods giving a larger response when fewer loci are
involved, while the difference between methods diminishes as the number of loci becomes
smaller. When more than one cross is involved, SSD outperformed ES, especially under low
heritabilities.
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While simulation studies can be used to examine various genetic models, they do not
fully accommodate important concerns, such as the role of genotype × environment interac-
tion (e.g., year, local and competition effects). A number of workers have directly compared
various methods in the field, and their results (summarized in Table 30.4) find that no single
method is clearly superior (or inferior) to the others. Given this, early-generation traits for
yield and other low heritability traits are generally not an efficient use of effort, and a pas-
sive (Bulk) or random (SSD, DH) selection approach is favored because they do not require
expensive yield testing (until later generations) while still allowing for a rapid generation
advance.

Table 30.4. Comparison of response under different generation advancement methods. A * indicates
experiments where one (or more) methods were found to be superior to others tested. SSD = single-
seed-decent selection, PS = pedigree selection (various schemes), BS = bulk selection, EGYT = early-
generation yield testing (various schemes), DH = doubled haploid selection, SPS = single plant (mass)
selection.

Soybeans (Glygine max )

No consistent F6 differences between PS, BS Raeber and Weber (1953)
No consistent F6/F7 differences

between EGYT (F4, F5), PS, SSD Luedders et al. (1973)
No consistent F8 differences between EGYT, PS, SSD Boerma and Copper (1975)
SSD, BS showed no consistent differences Empig and Frey (1971)
BS, PS equal in 4 of 6 crosses Toorie (1958)
SSD, PS equivalent Byron and Orf (1991)

* BS significantly greater than PS equal in 2 of 6 crosses Toorie (1958)
* EGYT (F4) superior to BS, PS Voigt and Weber (1960)

Wheat (Triticum aestivum)

*SSD, SPS equivalent; both superior to BS Srivastave et al. (1989)
BS, SSD methods give identical results Tee and Qualset (1975)

Barley (Hordeum vulgare )

BS, PS equally effective Harlan et al. (1940)
DH, SSD, PS equally effective Park et al. (1976),

Powell et al. (1986)

Chickpea (Cicer arietinum )

*SPS on seed size gave greater yield than SSD, Bisenn et al. (1985)
which gave greater yield than SPS on yield itself

Greengram (Vigna radiata ) CHECK

*SPS gave greater response than F3 SSD lines Dahiya and Singh (1986)

Long Bean (Vigna sesquipedalis )

PS, SPS, BS gave similar results Yap et al. (1977)

Tomato

*PS slightly better than SSD Peirce (1977)

Early generations testing seems to be most efficient in culling the lowest performing
strains. For example, Knott and Kumar (1975) examined yield in both yield-tested, YT (i.e.,
early generation selection) and SSD lines. Although the mean yield was higher for YT lines,
this was entirely due to the exclusion of low-performance strains. The best performing (upper
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20%) of SSD lines were at least as good as the YT lines. Similar findings were see for barley
yield by Park et al (1976), who examined pedigree-selected, SSD, and DH lines. Mean grain
yield in superior lines was similar in all three methods, while the lower limit of yield was
higher in the pedigree-selected lines than in SSD or DH lines.

One reason for little discrimination between the various methods for low heritability
traits may be that SSD and DH lines are expected to retain more genetic variance than
lines subjected to early selection, which lowers the effective population size. Thus, a slight
advantage from early generations selection can be offset by the increase in genetic variance
in DH/SSD lines. In barley, Park et al (1976) indeed observed that pedigree-selected lines
showed lower genetic variance across lines than did SSD or DH lines. However, Boerma and
Copper (1975) found that pedigree-selected soybean lines appeared to retain more genetic
variance in yield than did SSD lines.

SAMPLING OF GENOTYPES AND SELECTION LIMITS

One concern with SSD and DH lines, which holds for pedigree selection on low heritability
traits as well, is that only a very small subset of the possible genotypes are represented in the
final collection of lines to be tested. If the number of final lines is too small, the chances of
recovering favorable genotypes are greatly diminished. Likewise, the selection limit imposed
by choosing the best genotype in our sample is also greatly affected by the sample size.

Suppose we wish to recover at least r lines with a particular genotype (which occurs
with probability q). How many lines must to sampled so have probability p that at least r
such lines are included? This is a binomial sampling problem, with success parameter q,
sampling from N lines. The solution is given by the smallest N satisfying

N
∑

j=r

(N − j)! j!

N !
qj (1 − q)N−j ≥ p (30.12a)

This is usually more easily computed by considering the complementary event,

1 −
r−1
∑

j=0

N − j)! j!

N !
qj (1 − q)N−j ≥ p (30.12b)

One quick approximation (which is usually a conservative overestimate) is to take

N ≥ r
ln(1 − p)

ln(1 − q)
(30.13)

This is simply r times the exact solution for r = 1. While better approximations are presented
by Sedcole (1977), t Equation 30.12b can quickly be solved by trail and error using the N
from Equation 30.13 for an initial starting point.

Example 30.7. Suppose we are interested in ultimately recovering an SSD (or DH) line that
is homozygous for five particular (unlinked) loci. Here, q = (1/2)5. How many SSD or DH
lines must be examined to have a 95% chance of seeing at least 5 such lines? Equation 30.13
gives

N ≥ 5 ·
ln(1 − 0.95)

ln(1 − 0.55)
= 471.8
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Trail and error using Equation 30.12b gives N = 427.

A related problem is find the sample size required to ensure a certain number of lines
that contains at least k loci homozygous for favorable alleles (England 1981, Jansen and
Jansen 1990, Jansen 1992). Suppose the two pure lines to be crossed differ at n loci with
favorable alleles for the trait of interest. In the inbreeding limit (assuming unlinked loci), the
probability of any particular homozygote at a locus is just 1/2. Thus, the probability q that
any single line contains at least k of n of the loci homozygous for the favored allele as

q =

n
∑

i=k

(n − i)! i!

n!
(1/2)i (1 − 1/2)n−i

= (1/2)n
n

∑

i=k

(n − i)! i!

n!
(30.14)

This value of q is substituted into Equations 30.12a and b. More generally, under SSD (or other
selfing schemes), many generations are required for a random loci to reach homozygosity.
Recalling LW Table 10.1 for the frequencies of genotypes under inbreeding, the probability
of a particular homozygote after t generations of selfing (i.e, the St+2 for a pure line cross,
as the S0 is the F2) is

π
(t)
Hom = (1/4)(1/2)t + (1/2)(1 − 2−t ) =

1

2

(

1 −
1

2t+1

)

(30.15)

Thus, the probability in the Ft (which has undergone t − 2 generations of selfing) that an
SSD line contains at least k loci homozygous for favorable alleles is

q(t) =
n

∑

i=k

(n − i)! i!

n!

(

π
(t)
Hom

)i (

1 − π
(t)
Hom

)n−i

=

(

1

2

)n

·
n

∑

i=k

(n − i)! i!

n!

(

1 −
1

2t−1

)i (

1 +
1

2t−1

)n−i

(30.16)

Likewise, recall that we had previously (Equation 30.11) computed the probability that a
locus contains a favorable allele. Substituting this result gives the probability an individual
contains favorable alleles at k or more loci in the Ft+2 under SSD (or selfing in the absence
of selection) is

q =

(

1

2

)n

·
nl
∑

i=k

(n − i)! i!

n!

(

1 +
1

2t−1

)i (

1 −
1

2t−1

)n−i

(30.17)

Expressions when loci are linked can be found in Jansen and Jansen (1990) and Jansen (1992).
As was pointed out by England (1981), the expected number of SSD lines required is usually
larger (1.2 to over 3-fold larger) than DH lines when the SSD lines are not completely inbred
(for example, using the typical F6 lines).

Both SSD and DH capture only a very small subset of the possible genotypes that can
segregate from an F1. For example, if there are 10 favorable loci between the two strains, then
210 = 1024 different homozygous lines can be produced, while for 25 loci, there are roughly
3.4 million different possible homozygous genotypes. This has obvious consequences for the
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selection limit, and a number of authors have investigated the effect of the number of lines
on the final limit (Bliss and Gates 1968, Bailey and Comstock 1976, Bailey 1980, England
1981, Schwarzbach 1981).

The most useful starting point is the simulations of Schwarzback (1981), who obtained
the theoretical maximum response to selection on inbred lines when N lines are maintained.
Schwarzback assumed in the F2 that the individual with the highest percentage of favorable
alleles is chosen to form the next generation. In the F3 again the individual with the highest
fraction of favorable alleles is chosen and so on to fixation of a pure line. This admittedly
unrealistic scheme gives the maximum possible response under any selection scheme in-
volving pure selfing, and in fact most selection schemes are far, far less efficient. Figure 30.8
summarized Schwarzbach’s results. Bailey and Comstock (1976) and Bailey (1980) examine
the consequences of linkage. As mentioned, linkage effects are most serious with DH lines, as
these are typically formed after only a single round of recombination, as opposed to multiple
rounds of recombination during SSD towards the formation of a pure line.

Figure 30.8. The theoretical maximum response to selection on inbred lines given n loci and
N lines. From the (more extensive) tables in Schwarzbach (1981).

Bliss and Gates (1968) showed for n loci of equal effect, that the fraction of the maximal
possible response given selection among a population of pure lines is

ı

√

H2

n
(30.18)

This result assumes an infinite number of lines and corrects for the strength of selection and
number of loci, but ignores the sampling consequences of a finite number of lines. Thus, it
also provides an upper bound for the response, but one based on number of loci as opposed
to number of lines.

As is the case for mass selection in an outbred population (Chapter 26), there is an
optimal selection intensity for maximum response. Under the simulation conditions assumed
by Schwarzbach (1981), the optimal intensity was between 12 and 25 percent selection and



PURE LINE SELECTION 483

the response curve (as a function of intensity) was rather flat in this region. The lowest total
response occurred under the highest selection intensity.

CHOICE OF PARENTS

The final issue for breeding an optimal pure line is the choice of parents. In particular, what
is the best approach to predict parental prepotency — finding the parents whose inbred
hybrid offspring will yield the best lines. The principal difficulty is that our interest in the
completely-inbred (F∞) lines, and these take a number of generations to realize. Further,
since our goal is extracting the best lines, the mean of the F∞ lines from a particular cross
may be below average, but this cross may also segregate out the most exceptional lines.

Often parental lines are chosen become we wish to combine favorable features of each
in the derived lines, such as crossing one parent with strong yield with a second with better
disease resistance, or crossing a line with high yield in one location with a line that has high
yield in a different location. In such cases, the choice of parents can be relatively obvious,
especially if the traits of interest have a simple (few loci) genetic basis. For more genetically
complex traits, the choice of parents even in this case is not necessarily obvious.

A more difficult issue is how to chose parents such that the resulting lines show trans-
gressive segregation for the trait of interest — with some of the derived hybrid lines exceed-
ing the values of either parent. Such is usually the case for yield, where we wish to extract
lines with higher yield that either parent. The idea is that each line contains favorable alleles
that the other lacks. Recombination generates lines containing more favorable alleles that
either parent, and hence a more extreme character value.

Ideally, one could use just phenotypic information from parental lines (avoiding the
cost and time for line crosses), and we examine such strategies first. The other approach is
to actually cross at least certain lines and use this information to increase our predictable
ability. One obvious approach is to pick those lines with the best mean values over the
first few generations of inbreeding. While a number of workers suggested that using a bulk
(measuring all descendent lines in a single batch) was sufficient for predicting the crosses
that will generate a high proportion of high-yield lines (Harlan et al 1940, Immer 1941, and
Smith and Lambert 1968 for barley; Harrington 1940, Lupton 1961, Busch et al. 1974, and
Cregan and Busch 1977 for wheat; Leffel and Hanson 1961 for soybeans), others questioned
the predictive value of these bulks (Fowler and Heyne 1955 for wheat; Weiss et al. 1947 and
Kalton 1948 for soybeans; Atkins and Murphy 1949 for oats; Grafius et al. 1952 for barley).
Two other strategies (diallel analysis and generations-means analysis) using information
from crosses have been proposed for predicting the best parents and we examine these in
detail below.

Using Only Parental Phenotypic Information

As mentioned, when we wish to combine desirable features, such as performance in particu-
lar traits or over particular environments, the choice of parental lines can be rather obvious.
At a minimum, it is often clear that certain lines should be avoided as parents, and this limits
the combinations we may wish to further test. Conversely, there is no general consensus on
the best approach for choosing parents to achieve transgenic segregation. Langham (1961)
proposed the high-low method, suggesting that transgressive segregation would generate
lines with larger yields (on average) from such crosses as opposed to high-high or low-low
cross. The support for this view is mixed. In maize, Johnson and Hayes (1940) found that
high× low and high× high crosses gave the same proportion of high-yielding hybrids (with
the most extreme lines coming for the H X L crosses), while Green (1948) found that high
× high crosses were best, as did Lonnquist (1968). In wheat, Busch et al. (1974) found that
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while the highest performing line came from a high × low cross, the high × high cross gave
the highest frequency of superior lines. On theoretical grounds, Bailey and Comstock (1976)
and Bailey (1980) suggest that when one of the parental lines is significantly superior to the
other, then any given derived line is less likely to contain more favorable alleles than the
original superior parent. Example 30.8 illustrates their logic.

Example 30.8. Suppose the two strains being crossed differ at 60 unlinked loci of identical
effects. By first computing the probability of fixation π for a single locus and then using this
as the success parameter in a binomial distribution with parameters n = 60 and π, Bailey
and Comstock (1976) found the probability of more than k favorable alleles in a line were as
follows:

10% selection intensity

k No selection h2 = 0.25 h2 = 0.5

30 0.4487 0.8660 0.9534
33 0.1831 0.6293 0.8157
36 0.4627 0.3248 0.5443
39 0.0067 0.1057 0.2455
42 0.0005 0.0196 0.0660
45 — 0.0019 0.0094
48 — — 0.0006

Thus, if the two strains each have 30 favorable loci, then there is a significant probability (87%
and 95% under h2 = 0.25 and h2 = 0.5, respectively) that a resulting pure line derived from
this cross exceeds either parent. Conversely, suppose one of the strains contains 42 favorable
alleles. The resulting probabilities of a line exceeding the best parent are 2% (for h2 = 0.25)
and 6.6% (for h2 = 0.5). The average number of favorable alleles is the average other both
parents. If one parent far exceeds this average, only a small fraction of the resulting F∞ lines
will equal or exceed this parent.

In an attempt to provide a more quantitative approach to choosing parents solely on
their phenotypes, Bhatt (1970, 1973) suggested a multivariate method that does not require
crossing (but does require lines are replicated so that genetic and environmental variances
can be estimated). Bhatt’s idea is to cross those parents that are genetically most distinct,
and these extreme parents are chosen as follows: First, we measure a number of potentially
informative characters for the trait of interest (for example, for yield, related components
such as tiller number, seed weight, and number are also measured). The idea here is that a
particular component may have a much higher heritability than the full trait of interest and
hence respond better to selection. Next, one computes the genetic variances and covariances
for these traits in a sample of pure lines, and the Mahalanobi’s D2 statistic, a multivariate
measure of distance (see Appendix 5), is then used to pick those parents that are the farthest
from each other (the most distant in the geometry defined by the genetic variance-covariance
structure).

Example 30.9. Bhatt (1973) measured yield per acre and several related yield components
(days to ear emergence, height, number of tillers, yield per plant, and kernel weight) in 40
genotypes of bread wheat (Triticum aestivum L.) from different regions of Australia. For a
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data set consisting of 11 crosses, the correlation between genetic distance between parents
(measured by Mahalanobi’s D2 statistic) and the genetic variation seen among 27 measured
derived F5 lines (from each cross) was highly significant (Spearman’s rank correlation of 0.864).
Likewise, the four lines with the largest D2 values had the most derived lines exceeding their
parents, and again the correlation between number of transgenic lines and D2 was striking.
Both data sets are plotted below.

Using Information from Crosses: Diallels and DHs

While one expects that information from crossing parental lines is far more predictive than
simply using the phenotypic values of the parents, this is not always the case. For example,
while the hybrid potential of a particular cross can be immediately assessed from the F1,
our concern is the inbreeding potential of the resulting lines (the F∞), and these may be
poorly correlated with the F1.

The most straightforward solution is to use doubled-haploid lines when these can be
generated. DH lines immediately represent the completely inbred offspring from a hybrid.
There is the minor complication that linkage can result in a different distribution of lines than
F∞ lines produced by inbreeding. However, in most cases, a set of DH lines from a hybrid
provides a quick assessment of parental potential. Reinbergs et al. (1976) used 100 DH lines
per cross, but by random elimination of the data, they found that 20 lines gave essentially
the same amount of signal in predicting the most superior crosses.

An alternative suggestion is to use a diallel analysis (all pairwise crosses of parents, see
LW Chapter 20). Using this approach, Whitehouse et al. (1958) and Lupton (1961) recommend
a strategy that amounts to crossing the two parents with the largest general combining
abilities (GCAs), as (everything else being equal) these contain the most additive factors.
Major limitations of a diallel design is that it requires n(n− 1)/2 crosses for n tested parents,
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and just how efficient diallels are at predicting F∞ lines remains unclear. Another difficulty
is that when epistasis is present, estimates of GCAs are biased (Matzinger and Kempthorne
1956, Baker 1978).

Example 30.10. Thurling and Ratinam (1987) compared three methods of parent selection
for yield improvement in the cowpea (Vigna unguiculata) in western Australia. These were:
selection based simply on parental yield, selection based on the estimated GCA of the parents
(requiring parental and F1 data), and selection based on the F2 lines. A total of 10 potential
parents were tested, resulting in a total of 45 crosses. Seven of the 45 F2 lines had a higher yield
that the best of the 10 original parents, while 12 had yields below the worst parent. The F2

yield from the cross between the lines (G and C) with the two largest GCAs was exceeded by
10 of the other F2 lines. Indeed, C and G had a rather significant negative interaction, with 6 of
the other 8 F2’s involving C having higher values than the C × G cross (only one of the other
F2’s involving G had a higher value). Hence, GCA was a poor predictor of F2 yield. When F3

bulks (selfed collections of the F2s planted in bulk) were examined, yield was higher for bulks
whose parents were chosen by their F2 values than by their GCA values (10.75 gr/plot vs.
8.78 gr/plot), but the difference was not significant. Both the GCA and F2 selection schemes
gave larger F3 bulk yields than the cross chosen simply from parental yield (6.44 gr/plot).

Using Information from Crosses: The Jinks-Pooni Method

A different approach to estimating the expected distribution of the F∞ is based on joint-
scaling tests (also called generations-means analysis). The basis of such tests (reviewed in
LW Chapter 9; also see our Chapter 17) are to use a series of crosses to estimate both composite
genetic effects underlying the difference between two lines (such as additive and additive
× additive contributions) as well as the genetic variances generated in a cross of such lines.
The initial suggestion was by Jinks and Perkins (1972) for predicting the expected range of
the distribution, with a much more complete treatment suggested by Jinks and Pooni (1976).

Let αc
1 and αc

2 denote the composite additive and additive × additive effects, defined
with respect to the parental lines being crossed, see LW Chapter 9. (A brief notational aside.
We use the notation in LW Chapter 9 (the Edinburgh school, e.g., Falconer 1989), while most
of the literature discussing this test uses the Birmingham school notation (e. g., Mather and
Jinks 1982), where [ d ] and [ i ] denote the additive and additive × additive effects, and D/2
the additive genetic variance. )

If no genotype-environment interaction is present and epistasis is negligible, then Jinks
and Pooni (1976) show that the probability that any given F∞ line exceeds either parent (i.e.,
shows transgressive segregation) is given by the two-tailed unit normal probability value
corresponding to αc

1/(
√

2 σA). In particular, if the mean of P1 >P2, then

Pr(F∞ > P1) = Pr(F∞ < P2) = Pr

(

U >
αc

1√
2 σA

)

(30.19)

where U is a unit normal. This assumes an approximate normal distribution of the F∞ lines
and that each is measured with sufficient accuracy that we can ignore any sampling error
(i.e., σ2

e is small). In such cases, the between-line variance is 2σ2
A (assuming σ2

D and σADI can
be ignored, as is the case for a pure-line cross). Under strict additivity, equal percentages of
lines are expected to exceed the best parents and under perform the worst parent. If there is
heterosis (F1 > P1, P2) then

Pr(F∞ > F1) = Pr

(

U >
δc
1√

2 σA

)

(30.20)
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where δc
1 is the dominance composite effect ([h ] in the Birmingham notation). Finally, if there

epistasis, this introduces skew in the distribution of F∞ lines (Snape and Riggs 1975), but an
approximate solution (assuming only additive × additive epistasis) is given by

Pr(F∞ > P1) = Pr

(

U >
αc

1 + αc
2

√

2σ2
A + 4σ2

AA

)

(30.21a)

and

Pr(F∞ < P2) =

(

U <
−αc

1 + αc
2

√

2σ2
A + 4σ2

AA

)

(30.21b)

Thus, with epistasis, these probabilities differ. Although these expressions formally involve
σ2

AA, in principal they are applied using only the estimate for σ2
A. Complications and exten-

sions examined by Pooni et al. (1977), Pooni and Jinks (1978, 1979,1981) and Jinks and Pooni
(1982).

To apply these expressions, a joint-scaling (= generations mean) test is applied to both
estimate the composite effects (αc

1, etc.) and test the model fit ( Example 30.11). This is done
using a set of crosses (all grown in the same environment, i.e., the same location and year)
and then using least-squares to fit successfully more complete models (additive, additive +
dominance, additive + dominance + additive × additive epistasis, etc.) until the addition of
a new parameter does not significantly improve model fit (see LW Example 9.2). The basic
set of crosses used are both parents, F1, F2, and both backcrosses (B1 = F1 × P1 and B2 = F1

× P2).
A more difficult issue is to obtain a clean estimate of σ2

A. While can be done using the F2

and backcross generations alone, the TTC design using the three F2 triple test crosses (L1 =
P1× F2, L2 = P2× F2, and L3 =F1× F2) provides a cleaner estimate of σ2

A (Keasery and Jinks
1968, Jinks and Perkins 1970, Pooni et al 1978, Pooni and Jinks 1979). Jinks and Pooni (1980)
also suggest that a quick and dirty approach is to use F3s to estimate the additive variance
by twice the variance of F3 family means. This includes a contribution from the dominance
variance (σ2

D/8), but the bias is often expected to be small. Indeed, Tapsell and Thomas (1981)
found similar results for yield in Barley when estimating the additive variance by the TTC
and F3 designs. It must be stressed that all generations in the design need be grown in the
same year. Caligari et al (1985) found (for Barley) that a TTC analysis performed in one year
was a very poor predictor of another year’s performance.

Example 30.11. Snape (1982) examined yield and four related components in two crosses
of wheat. Through the use of stored seed, both parents, the first three filial generations, both
backcrosses, and the three triple test crosses involving the F2 were all grown at the same time.
The data for yield and spikelet number for one of the crosses (Hobbit sib × Sava ) is given
below.

Yield (gm/plant)

P1 P2 F1 F2 F3 B1 B2 L1 L2 L3

20.26 19.60 28.82 27.30 24.75 24.82 27.56 27.70 28.87 27.94

Spikelet number/ear

P1 P2 F1 F2 F3 B1 B2 L1 L2 L3

20.54 21.34 23.22 21.63 22.32 22.06 22.40 22.41 22.19 22.52

Joint-scaling tests (LW Chapter 9) were applied, and the additive + dominance model provided
an adequate fit for yield, while no model (including those with epistatis) provided a suitable
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fit for spikelet number (the residual sums of squares exceeded the critical χ2 value). The
estimates for composite effects of interest were:

Yield (gm/plant) Spikelet number/ear

αc
1 δc

1 αc
1 δc

1 αc
2

0.67 13.98 0.38 3.07 0.14

An ANOVA using the triple test data was used to estimate twice the additive variance, giving
values of 22.79 and 3.485 for yield and spikelet number (respectively). Thus, for yield the
expected probability of an F∞ exceeding the best parent is

Pr(F∞ > P1) = Pr(U > 0.67/
√

22.79) = Pr(U > 0.140) = 0.44

Likewise, there is a 44.0% chance of being below the inferior parent. A total of 116 lines
were scored, and 64 exceeded the best parent while 40 were under the poorer parent. This
difference is not significantly different from the exceeded number of 51 for each class. Similarly,
the probability that a random F∞ line from this cross exceeds the F1 is

Pr(F∞ > F1) = Pr(U > 13.98/
√

22.79) = Pr(U > 2.93) = 0.002

Thus, to have a 95% probability of obtaining an F∞ line that outperforms the F1, recall Equation
30.13, we need to score at least ln(1-0.95)/ln(1-0.002) = 1496 lines!

Turning to spikelet number, we must account for epistasis. The expected frequencies of trans-
gressive segregants thus become

Pr(F∞ > P1) = Pr

(

U >
0.38 + 0.14
√

3.458

)

= Pr (U > 0.280) = 0.39

and

Pr(F∞ < P2) =

(

U <
−0.38 + 0.14

√
3.458

)

= Pr (U < −0.129) = 0.45

Again testing 116 lines, we would expect 45 lines larger than P1 and 53 smaller than P2. What
was observed were 71 larger and 28 smaller, a significant difference (at the 5% level). Snape
suggests that this discrepancy is not unexpected, given that no composite model from the joint
scaling test fully fitted the data.

Number of Crosses vs. Number of Lines per Cross

There are two areas of risk when trying to chose elite genotypes: not choosing the best crosses
and not choosing the best lines within a cross. What is the optimal strategy for balancing
these? If a total of N lines are to be used, the breeder must weight the number of crosses
m against the number of lines n from each cross (with N = mn). In the absence of any trait
information, how should the breeder chosen m and n so as to minimize the risk that no elite
genotypes exist in the lines being examined? This question has been examined by Yonezama
and Yamagata (1978), Weber (1979), and (most generally) Wricke and Weber (1986). Wricke
and Weber (1986) show that, in the absence of any phenotypic information on the crosses, the
risk is minimized by maximizing the number of crosses (taking m = N and hence n = 1).
There is also a tradeoff between the within and between cross variance. Widecrosses are
expected to have somewhat intermediate performance but a high within-cross segregation
variance, while crosses between closely-related lines may have higher mean cross values
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but also smaller within-cross variance, reflecting fewer genetic differences than between the
parents of wide-species crosses.

RECURRENT SELECTION

Silvela and Diez-Barra (1985) compared recurrent selection to self-pollinating schemes, find-
ing a clear superiority of RS over selfers when negative disequilibrium is present (favorable
alleles in replusion) and/or epistasis.
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