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Despite the elegance of the multivariate breeder’s equation, most artificial selection on mul-
tiple traits occurs via a selection index and many problems in evolutionary biology can
similarly be best handle through the use of an index. The next several chapters more fully
develop specific applications of index selection. Chapter 35 reviews BLUP selection, essen-
tially a very powerful extension of index selection to any known pedigree of individuals,
while Chapter 36 examines marker-assisted and genomic selection (the use of an index of
molecular markers to aid in breeding). Chapter 37 extends the results from Chapters 11
(maternal effects) and 18 (associative effects, such as group-defined traits) to multiple traits
and develops the related topic of multi-level selection. Chapters 38 and 39 concludes by
examining selection in the presence of genotype-environment interactions, which can also
be treated as a multiple-trait problem. The focus of this chapter is a bit of a mix, covering
several different topics, largely related by simply being multiple-trait problems.

The first topic, which consists of the bulk of this chapter, is using index selection to
improve a single trait. One can have a number of measures of the same trait in either relatives
of a focal individual or as multiple measures of the same trait in a single individual, or both.
How does one best use this information? We start by developing the general theory for
using an index to improve the response in a single trait (which follows as a simplification of
the Smith-Hazel index). We then apply these results to several important cases — a general
analysis when either phenotypic or genotypic correlations are zero, improving response
using repeated measurements of a characters over time, and using information from relatives
to improve response with a special focus on combined selection (the optimal weighting of
individual and family information, proving many of the details first presented in Chapter 17).
As we will see in Chapter 35, the mixed-model power of BLUP provides a better solution
to many of these problems, but index selection is both historically important as well as
providing clean analytic results.

In contrast to the first topic, the final three are essentially independent of each other
and we try to presen them as such (so that the reader can simply turn the the section of
interest without regard to previous material in this chapter). They include selection on a
ratio, selection on sex-specific and sexually-dimorphic traits, and finally selection on the
environmental variance σ2

E when it shows heritable variation (expanding upon results from
Chapter 13).

IMPROVING THE RESPONSE OF A SINGLE CHARACTER

Recall that the basis of selection in a random-mating population typically revolves around
identifying those individuals with the largest breeding values (Chapter 10). Under standard
mass selection, the only information used to predict response (which is formally equivalent to
predicting breeding value under the standard assumptions leading to the breeder’s equation,
e.g., Table 10.1) is an individual’s phenotypic value. Often considerably more information
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relevant to that character is available, such as repeated measures of that trait over time,
correlated characters in the same individual, or values from relatives. Incorporating this
information into a Smith-Hazel index improves the response over that of simple univariate
selection on the character, as suggested by Hazel (1943) and further developed by numerous
authors such as Lush (1944, 1947), Rendel (1954), Osborne (1957a,b,c), Jardie (1958), Le
Roy (1985), Skjervold and Ødegard (1959), Purser (1960), Young (1961), Searle (1965), and
Gjedrem (1967a,b), to name a few. The power of the matrix formulation of index selection
theory (Chapter 33) is that all of the results of these authors for particular cases are easily
obtainable given we know the appropriate covariances and, more importantly, are easily
extendible to more general (essentially arbitrary) cases. All of this is a prelude to BLUP
selection (Chapter 35), which easily allows incorporation of any arbitrary set of relative and
(estimable) fixed effects.

Turner and Young (1969) coin the useful term of aids to selection to describe situations
where mass selection (predicting breeding value from a single record per individual) can
considerably benefit from incorporating addition information. They highlight three common
reasons for using such aids. The first is when greater accuracy is required. If trait heritability
is high, the accuracy in predicting an individual’s breeding value given a single observation
of their phenotype is often sufficient for our needs. However, when the accuracy is low, it can
potentially be improved upon by considering other traits within the individual, trait values
in relatives, or even repeated observations (records) from the same individual (or, of course,
some combination of all of these). The second is to achieve early selection – selection earlier
in the life cycle than would be possible with simple mass selection. In an age-structured
population, early-generation selection can reduce the generation interval, which in turn
increases the response per unit of time (Chapters 10, 23). There can also be considerable
economic savings by being able to score traits early. Undesirable individuals can be culled
early, allowing more resources to be expended on those surviving individuals. This can allow
for a greater selection intensity and/or a greater economic rate of return. Finally, in many
cases mass selection is simply impractical. Examples include carcass trait where individuals
must be sacrificed to score the trait as well as sex-limited traits. It is difficult to select a male
for milk or egg production on the basis of his phenotype alone!

General Theory

All the results of the Smith-Hazel index (Chapter 33) apply, but when our interest is the
response of only a single character considerable simplification occurs in many of the results.
Let z1 be the character of interest (the primary character) and z2, · · · , zn be n − 1 other
secondary characters that potentially provide information on the primary character. Since
the only response of the primary character is of interest, the vector of economic weights a

has a1 = 1 and all other elements zero. Writing the additive-genetic variance-covariance
matrix as G = (g1,g2, ·,gn) where gT

i = (g1i, g2i, · · · , gni) is the vector of additive genetic
covariances between character i and all other characters, we have

Ga = (g1,g2, ·,gn)




1
0
...
0


 = g1

where g1 is the vector of additive genetic covariances of the primary character with all other
characters being considered. For notational ease, we drop the subscript and simply use g and
likewise use g for the additive genetic value of the focal trait (character one). Note that H = g,
namely the merit function we are attempting to maximize is just the breeding value of trait
one. Applying Equation 33.18a, the vector of weights for the Smith-Hazel index simplifies
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to
bs = P−1Ga = P−1g (34.1a)

giving the index as

Is = bT
s z = gT P−1z (34.1b)

Substituting Ga = g into Equation 33.19 gives the response as

R = ı ·
√

gT P−1g (34.1c)

Under univariate selection, R = ı · h2
1 σz1

= ı · h1 σg , giving the increase in response using
index selection as √

gT P−1g

h1 σg
(34.1d)

An alternative way to quantify the advantages of an index over univariate selection
is to consider how much variation in g is accounted for by the index. Since the correla-
tion between an individual’s phenotypic and additive-genetic (breeding) values is ρg,z1

=
σg,z1

/σgσz1
= σ2

g/σgσz1
= h1, the squared accuracy (the fraction of variation in the breeding

value accounted for by the index) of using only z1 to predict g is ρ2
g,z1

= h2
1. Since

σH,Is
= σ(g,bT

s z) = bT
s σ(g, z) = bT

s g,

the accuracy of the index given by Equation 34.1b in predicting H = g is

ρH,Is
=

√
σ2

H,Is

σ2
H · σ2

Is

=

√
(bT

s g)2

σ2
g · bT

s Pbs

=

√
gT P−1g

σ2
g

(34.2a)

The last step follows by noting that bT
s Pbs = gT P−1g. Hence, the improvement in accuracy

by using an index over mass selection is

ρg,Is

ρg,z1

=

√
gT P−1g

h2
1 · σ2

g

(34.2b)

Equations 34.1 and 34.2 give the general expressions for improving response in a single
character using selection indices and can be applied to a very wide variety of situations.

Example 34.1. Robinson et al. (1951) estimated the genotypic and phenotypic covariances
between yield and several other characters in maize. Using their estimates, construct the
optimal index to improve yield (z1, measured as pounds of yield per plant) using plant height
(z2) and ears per plant (z3) as secondary characters. The estimated phenotypic covariance
matrix for these characters is

P̂ =




0.0069 0.0968 0.0132
0.0968 28.8796 0.2313
0.0132 0.2313 0.0526




while the vector of estimated additive genotypic covariances between yield and other char-
acters is

ĝ =




0.0028
0.0964
0.0075




For yield, σ2
g = 0.0028 and h2

1 = 0.0028/0.0069≃ 0.41, giving h1σg =
√

0.0028 · 0.41 ≃ 0.0339,
and an expected response to selection solely on yield as R = 0.0339 ·ı. Robinson et al. note that
with the type of plant spacing assumed in their study, pounds of yield per plant is converted
into bushels per acre by multiplying yield by 118.3, for a response of 4.01 ·ı bushels per acre.
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The optimal index incorporating both yield and the two secondary characters is

Is = ĝ
T
P̂

−1
z = 0.23 · z1 + 0.002 · z2 + 0.075 · z3

which has expected response

ı

√
gT P−1g = ı

√
0.00141 = ı · 0.0375

This converts to 4.44 ·ı bushels/acre, an 11 percent increase relative to selection on yield only.
The squared accuracy of this index is

gT P−1g/σ2
g = 0.00141/0.0028 ≃ 0.504

so that Is accounts for 50.4 percent of the additive genetic variance in yield, while the pheno-
type of yield alone accounts for only h2 = 0.41, or 41 percent. Increasing yield is a common
use of an indirect index. However, experiments reviewed by Pritchard et al. (1973) shows that
usually the index is only slightly better than direct selection and often can be worse (likely
due to sampling errors giving the estimated index incorrect weights). Index selection is most
superior when environmental effects overwhelm genetic differences.

A key concern in constructing an index is which secondary characters to include. If g and
P are estimated without error, addition of any correlated (genetic or phenotypic) character
always increases the accuracy of the index. However, genetic parameters are estimated with
error and the inclusion of characters that are actually uncorrelated, but show a estimated
correlation due to sampling effects, reduces the efficiency of the index. Sales and Hill (1976)
find that the greatest errors occur when the primary character has low heritability, but this
is exactly the case where a selection index is potentially the most useful (Gjedrem 1967a).
Bouchez and Goffinet (1990) suggest a robust procedure for evaluating which secondary
characters to exclude.

More Detailed Analysis of Two Special Cases

First suppose there are no phenotypic correlations between the characters so that P (and
hence P−1) is diagonal. In this case, the ith diagonal element of P−1 is 1/Pii = 1/σ2

zi
, giving

gT P−1g =
n∑

j=1

[σ(g, gj)]
2

σ2
zj

=

(
σ4

g

σ2
z1

)
1 +

n∑

j=2

[σ(g, gj)]
2 σ2

z1

σ4
g σ2

zj




Using σ(g, gj) = ρjσgσgj
where ρj is the correlation between additive genetic values of char-

acter j and the primary character, Equation 34.1c shows that the response can be expressed
as

R = ı h1 σg

√√√√1 +
1

h2
1

n∑

j=2

ρ2
j h2

j (34.3a)

Hence the increase in response in z1 using an index is

√√√√1 +
1

h2
1

n∑

j=2

ρ2
j h2

j (34.3b)
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This is strictly greater than one unless z1 is genetically uncorrelated with all the other con-
sidered characters in which case it equals one. The advantage of index selection increases as
either the heritabilities of correlated characters increase or as the heritability of z1 decreases.
Thus, when the heritability of z1 is low using an index can result in a significantly increased
response.

A second special case is when none of the secondary characters are genetically correlated
with the primary character. Rendel (1954) considered this as a means of using a second
character to increase the heritability of the first. Rendel’s idea is that a second phenotypically
correlated character potentially provides information on the environmental value of the
primary character, reducing uncertainly as to its genotypic value and as a consequence
increasing heritability (also see Purser 1960). Here g = σ2

g(1, 0, · · · , 0)T implying

gT P−1g = σ4
g ( 1 0 · · · 0 )P−1




1
0
...
0


 = σ4

gP−1
11

where P−1
11 denotes the 1, 1 element of P−1. Substituting into Equation 34.1c gives the re-

sponse as

R = ı σ2
g

√
P−1

11 = ı h1σg

√
σ2

z1
P−1

11 (34.4)

and hence the increase in response using an index is
√

σ2
z1

P−1
11 . To see that this expression

is greater than or equal to one, we first digress on a useful identity from matrix algebra.
Partitioning the phenotypic variance-covariance matrix as

P =

(
P11 pT

p Q

)
where p =




P12
...

P1n


 and Q =




P22 · · · P2n
...

. . .
...

Pn2 · · · Pnn




following Cunningham (1969), it can be shown that

P−1
11 =

(
P11 − pT Q−1p

)−1
= σ−2

z1

(
1 − pT Q−1p

σ2
z1

)−1

(34.5)

giving the response as

R = ı h1σg

(
1 − pT Q−1p

σ2
z1

)−1/2

(34.6a)

showing that increase in response using an index is

(
1 − pT Q−1p

σ2
z1

)−1/2

(34.6b)

which is greater than one if the quadratic product term is positive. Since Q is itself a covari-
ance matrix, it is positive-definite (unless det(Q)=0, namely one of the secondary characters
can be expressed as a linear combination of the others, in which case it is nonnegative defi-
nite). Recall from Appendix 4 that if Q is positive definite, so is Q−1 and hence the quadratic
product pT Q−1p > 0 unless p = 0. This later case occurs when z1 is phenotypically uncor-
related with all secondary characters being considered, in which case index selection gives
the same response as univariate selection.
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Wright (1984) suggests that this sort of index can not only correct for environmental
effects, but may also account for at least some non-additive genetic effects that might bias
estimates of breeding values. For example, if a plant population is a mixture of outcrossing
and selfed individuals, then an individual’s phenotypic value as a predictor of its breeding
value is biased by its amount of inbreeding when non-additive genetic variance is present.
Using a second trait, known to be genetically uncorrelated to the focal trait but which displays
heterosis (and hence serves as a potential marker for inbreeding), can partial correct for the
differential effects of inbreeding among sampled individuals. While intriguing, there appears
to be no formal theory on this otherwise interesting suggestion.

Repeated Measures of a Character

Suppose a single character is measured at n different times to give a vector of observa-
tions (z1, · · · , zn) for each individual. Under what conditions does the use of such repeated
measures improve response? The idea is that if some of the environmental effects change
from one measurement to the next, multiple measurements average out these effects. The
simplest model of environmental effects is that the jth measurement can be decomposed as
zj = g + ep + ǫj where ep the permanent environmental effects (which also includes non-
additive genetic terms if they are present) and ǫj is the transient part of the environment
which is assumed to be uncorrelated from one measurement to the next. Thus

σ(zk, zj) = σ(g + ep + ǫk, g + ep + ǫj) =





σ2
z for k = j

σ2
g + σ2

ep
= r · σ2

z for k 6= j

where r = (σ2
g + σ2

ep
)/σ2

z is the squared correlation between measurements, the repeata-
bility of the character (LW Chapter 6). The covariance in additive genetic values between
measurements is σ(gi, gj) = σ(g, g) = σ2

g . Hence,

g = σ2
g




1
...
1


 and P = σ2

z




1 r · · · r
r 1 · · · r
...

...
. . .

...
r r · · · 1




To compute the vector of weights bs, first note the following identity: for the m×m matrix

A =




1 a · · · a
a 1 · · · a
...

...
. . .

...
a a · · · 1


 , then A−1

ij =





1 + (m − 2)a

1 + (m − 2)a − (m − 1)a2
for i = j

−a

1 + (m − 2)a − (m − 1)a2
for i 6= j

(34.7)

Using this identity, a little algebra gives

bs = P−1g =
h2

1 + r(n − 1)




1
...
1


 (34.8)

Noting that Is = bT
s z = c · z, the index can be rescaled to simply zi (the average of all

measurements for an individual). Since

gT P−1g = gT bs =

(
h2 σ2

g

1 + r(n − 1)

)
( 1 · · · 1 )




1
...
1


 = h2 σ2

g

(
n

1 + r(n − 1)

)
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the squared accuracy of this index in predicting additive-genetic values is

ρ2
I,g =

gT P−1g

σ2
g

= h2 ·
(

n

1 + r(n − 1)

)
(34.9a)

with resulting response to selection

R = ı · h1σg

√
n

1 + r(n − 1)
(34.9b)

as obtained by Berge (1934). The ratio of response under the index to response using a single
measurement approaches r−1/2 for large n, so that for repeatabilities of r = 0.1, 0.25, 0.5, and
0.75, it approaches 3.2, 2, 1.4, and 1.2. Significant gain in response can occur if repeatability is
low, while there is little advantage when repeatability is high. Balancing any potential gain
in response is an increase in cost and potentially longer breeding time (Turner and Young
1969). More generally, repeated measures can be modified to allow for correlations between
transient environment effects by suitably modifying P. In such cases, the index may weight
separate measurements differentially so that the index can be significantly different from the
simple average value of repeated measures.

USING INFORMATION FROM RELATIVES

Often measurements of the character of interest exist for relatives and this information can
easily be incorporating into a selection index to both improve response and increase the accu-
racy of predicted breeding values. We mention in passing here that although our discussion
is restricted to the case where the character of interest is the one measured in relatives, other
measured characters in relatives could also be incorporated using standard index theory. The
basic theory presented here very generally extends to arbitrary sets of relatives, although
more powerful methods for estimating breeding values exist (BLUP and REML, reviewed
in LW Chapters 26, 26 and in Chapters 16 and 35). We start by reviewing the general theory
and then examining family selection in detail.

General Theory

Since our interest is response in a single character, we build upon the simplifications of
the Smith-Hazel index developed in the previous section. One significant difference with
using relatives to construct an index is that far fewer parameters have to be estimated. A
general index with n secondary characters has (n + 1)(n + 4)/2 parameters to estimate —
(n+1)(n+2)/2 phenotypic covariances and n+1 additive-genetic covariances. If, however,
the index uses measures (of the primary trait) from known relatives then only the significant
variance components for the character need be estimated, as the elements ofG andP can then
be constructed from the theory of correlation between relatives (LW Table 7.2). For example,
if non-additive genetic variance is not significant and genotype-environment interactions
and maternal effects can be ignored, only σ2

z and h2 need be estimated regardless of how
many relatives are measured.

Let z1 denote the character value measured in the individual of interest and z2, · · · , zn+1

be measurements of this character in n of its relatives. Since we are only interested in the
response in z1 (i.e., predicting an individual’s breeding value for trait one), then (similar to
the previous section) only the vector of additive genetic covariances g between the individual
of interest and each of its relatives is required. Under the assumption that the character has
the same phenotypic and additive genetic variance in all relatives, it is useful to work with
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correlations, rather than covariances. Denote by Pρ the matrix of phenotypic correlations
between characters, with

P =




σ(z1, z1) · · · σ(z1, zn+1)
...

. . .
...

σ(zn+1, z1) · · · σ(zn+1, zn+1)


 = σ2

z ·




1 · · · ρz1,zn+1

...
. . .

...
ρzn+1,z1

· · · 1


 = σ2

z · Pρ

(34.10a)
Likewise, let gρ denote the vector of additive-genetic correlations between the individual of
interest and its relatives, with

g =




σ(g, g)
σ(g, g2)

...
σ(g, gn+1)


 = h2σ2

z ·




1
ρg,g2

...
ρg,gn+1


 = h2σ2

z · gρ (34.10b)

From Equation 34.1a the resulting Smith-Hazel index weights are

bs = P−1g = h2 · P−1
ρ gρ (34.11a)

giving (from Equation 34.2a) the best linear predictor of the breeding value for the individual
of interest as

bT
s (z − µ) = h2 · gT

ρ P−1
ρ (z − µ) (34.11b)

From Equation 34.2b the squared accuracy of this index in predicting breeding value is

ρ2
g,I =

gT P−1g

σ2
g

= h2 · gT
ρ P−1

ρ gρ (34.11c)

Since the accuracy in predicting breeding value from a single measure of an individual’s
phenotype is h, the increase in accuracy using information from relatives is given by the

quadratic product
√

gT
ρ P−1

ρ gρ. Finally, from Equation 34.1c the expected response to selec-

tion on this index is
R

ı
=

√
gT P−1g = hσg ·

√
gT

ρ P−1
ρ gρ (34.11d)

Information From a Single Relative

As our first application, consider the simplest case of a single measurement from an indi-
vidual z1 and a single relative z2. Letting ρp and ρg be the phenotypic and additive-genetic
correlations between the individual and this relative, we have

gρ =

(
1
ρg

)
, Pρ =

(
1 ρz

ρz 1

)
hence P−1

ρ = (1 − ρ2)−1

(
1 −ρz

−ρz 1

)

Applying 34.11a, and rescaling the index so that the weight on z1 is one gives the Smith-Hazel
index for this situation as

Is = z1 +

(
ρg − ρz

1 − ρzρg

)
z2 (34.12a)

Similarly,

gT P−1g = h2 σ2
g gT

ρ P−1
ρ gρ = h2 σ2

g

(
1 +

(ρg − ρz)
2

1 − ρ2
z

)
(34.12b)
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so that the increase in response over simple mass selection on the trait is

√
gT P−1g

h · σg
=

√
1 +

(ρg − ρz)2

1 − ρ2
z

(34.12c)

Example 34.2. As an example of the application of Equation 34.12, consider the selection
response with an optimal index based on an individual and its father. For an individual and its
parent, ρg = 1/2. If we ignored any shared environmental effects, ρz = h2/2. From Equation
34.12a, the index weight on the parent (setting the weight on the individual at one) becomes

ρg − ρz

1 − ρzρg
=

(1/2)(1 − h2)

1 − h2/4
=

2(1 − h2)

4 − h2

From Equation 34.10c, the increase in response relative to simply selecting using only the
phenotype of the individual is

√
1 +

(ρg − ρz)2

1 − ρ2
z

=

√
1 +

(1/4)(1 − h2)2

1 − h4/4
=

√
1 +

(1 − h2)2

4 − h4

Hence,
h2 0.05 0.1 0.25 0.5 0.75

Index weight on father 0.481 0.462 0.400 0.286 0.154
Relative response 1.107 1.097 1.069 1.033 1.009

Thus, as h2 decreases, the weight on the parent increases (to a limit of 0.5). Likewise, the

increase in response also increases, reaching a limit of
√

1 + 1/4 ∼ 1.118.

Constructing Selection Indices When the Individual Itself is Not Measured

An important class of applications is the construction of indices to predict breeding value
when the individual is not (or cannot be) measured. For example, consider a female-limited
character. Selection on males would increase response but the character cannot be scored.
Information from females relatives can be used to construct an index to predict breeding value
in males, and hence allow for selection in males. Another example is when an individual
must to sacrificed to measure the character, such selection on internal organs. In such cases
information from scored sibs can be used to predict breeding value.

Indirect indices wherein the primary character is not measured in the focal individual
are computed using the previous results by now letting z1, · · · , zn denote the value of the
character in n scored relatives and using

Pρ =




1 · · · ρz1,zn

...
. . .

...
ρzn,z1

· · · 1


 (34.13a)

and

gρ =




ρg0,g1

...
ρg0,gn


 (34.13b)
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where the jth element in g is the the additive genetic correlation between the (unmeasured)
individual of interest and its jth relative (1 ≤ j ≤ n). The results from Equations 34.11a -d
apply using these definitions.

Finally note that a selection index not including our focal trait is the natural general-
ization of our discussion in Chapter 30 on conditions under which a larger response in a
focal trait can be achieved via a correlated response on some other trait, as opposed to direct
selection on the trait itself. From Equation 34.11c, we require gT

ρ P−1
ρ gρ > 1 in order to have

a larger response using an index not containing the trait as opposed to direct mass selection
on the focal trait itself (assuming the same selection intensity). Such multiple trait indirect
selection indices can indeed result in a larger response, and Gallais (1984) reviews several
such examples from plant breeding.

Example 34.3. What is the index for predicting the breeding value in clutch size for a male
give his mother’s (z1) and grandmother’s (z2) clutch size? From LW Table 6.3, ρg0,g = 1/2
and ρg0,g = 1/4. Assuming no epistasis and that shared environmental effects can be ignored,

the phenotypic correlation between mother and grandmother is h2/2. Thus

Pρ =

(
1 h2/2

h2/2 1

)
and gρ =

(
1/2
1/4

)

giving

bs = h2P−1
ρ gρ =

(
h2

2(4 − h4)

)
·
(

4 − h2

1 − h2

)
and gT

ρ P−1
ρ gρ =

5 + 2h2

16

The increase in accuracy by using this index, (gT
ρ P−1

ρ gρ)
1/2, ranges from a low of 0.56 when

h2 ≃ 0 to a high of 0.66 when h2 ≃ 1, so that (recalling Equation 34.11d) using the values
from the mother and grandmother to construct an index is about 60 percent as efficient as
knowing an individuals phenotypic value.

Example 34.4. Consider the response under sib selection. Here n sibs are measured and
based on the mean value of these individuals, the family is either accepted or rejected. If the
family is accepted, other (unmeasured) sibs are used as parents to form the next generation.
This is a model for selection when an individual must be sacrificed in order to reliably measure
character value. Let r denote the additive-genetic correlation between sibs (r = 1/4 for half-
sibs, 1/2 for full-sibs) and t = rh2 + c2 be the phenotypic correlation between sibs (the
intraclass correlation coefficient). The c2 term accounts for any shared environmental family
effects and dominance (Equation 34.17a). Under this design,

Pρ =




1 t · · · t
t 1 · · · t
...

...
. . .

...

t t · · · 1


 and gρ = r




1
1
...

1


 (34.14a)

Using Equation 34.7 to obtain P−1
ρ gives (after a little algebra) the index for predicting the

breeding value from an individual from the ith family as

I =
h2 r

1 + (n − 1)t

n∑

j=1

( zij − µz ) =
r n

1 + (n − 1)t
( zi − µz ) (34.14b)
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where zij is the value of the jth sib in the ith family and zi = n−1
∑

zij is the average value
of the measured sibs for this family. Likewise, the increase in accuracy becomes

√
gT

ρ P−1
ρ gρ =

√
n r2

1 + (n − 1)t
= r

√
n

1 + (n − 1)t
(34.14c)

which for large n approaches r/
√

t. Hence, the response to selecting individuals based entirely
on the mean of their sibs is

ı σg h r

√
n

1 + (n − 1)t
(34.14d)

as obtained by Robertson (1955) using a different approach. Note for large family size that
both sib and between-family selection (Chapter 17 and next section) give essentially the same
response. Sib and between-family selection differ only in that in the latter the individual is also
measured. Thus for large family size, little is lost by not being able to measure an individual.

Example 34.5. We have frequently mentioned the progeny test, where the breeding value of
a sire is estimated from the mean of n of his half-sibs. We can directly use results from Equation
34.4 to examine the effectiveness of this approach. Here, Pρ and gρ are given by Equation

34.14a, where t = h2/4 is the phenotypic covariance among the half-sibs (assuming common
environmental effects can be ignored), and r = 1/2 for the genetic covariance between a
parent and its offspring. Equations 34.11c and 34.14c gives the accuracy of progeny testing as

h
√

gT
ρ P−1

ρ gρ = (h/2)

√
n

1 + (n − 1)(h2/4)
=

√
n

n + a
(34.15a)

where

a =
4 − h2

h2
.

Finally, from Equation 34.14c the response is

ı σg

√
n

n + a
(34.15b)

as was found in Example 10.4 by other means. The progeny test has a long history in ani-
mal breeding, especially in dairy and (more recently) beef cattle. Lush (1931) considered the
number of daugthers (progeny) needed to “prove” a sire, while Robertson (1957) obtained
expressions for the optimal allocation of resources when the total number of sibs that can be
reared is fixed because of economic or logistical constraints. The tradeoff is that when more
sibs per sire are measured, we obtain a greater accuracy. However, more sibs per sire mean
fewer sires are examined, and hence the selection intensity is decreased. James (1979) and Mi-
raei Ashtiani and James (1993) extend these results to allow for prior information or a tested
population that contains multiple strains (or lines).

WITHIN- AND BETWEEN-FAMILY SELECTION

A particularly common set of relatives to consider are the family members of an individual
and often selection is practiced using both individual and family values. For examine, Chap-
ter 17 considers within-in family selection (individuals selected solely on their deviations
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from their family mean) and between-family selection (whole families are either saved or
culled depending solely on their mean). A number of other family-based selection schemes
have been proposed, such as sib selection (Example 34.4) and progeny testing (Example
34.5). Turner and Young (1969) review applications of these in animal breeding, while Wricke
and Weber (1986) review the special types of family selection possible in plants and other
organisms with asexual reproduction and/or selfing.

Our concern here is with combined selection, which incorporates both within- and
between-family information by selecting on the index

I = b1 · (z − zf ) + b2 · zf (34.16a)

where zf is the individual’s family mean. Since b1 weights the within-family deviation and
b2 weights the family mean, (b1, b2) = (1, 0) corresponds to strict within-family selection,
(b1, b2) = (0, 1) to strict between-family selection, and (b1, b2) = (1, 1) to individual selection.
This index can equivalently be expressed as

I = b1 · z + (b2 − b1) · zf (34.16b)

showing that within- and between-family selection can be simply related to an index com-
bining individual and between-family selection.

Lush’s Index

Lush (1947) applied the Smith-Hazel index to obtain the optimal weighs for combined se-
lection. To obtain his solution, consider the indirect index that optimizes the response in z
given selection on the correlated characters z1 = z − zf (the within-family deviation) and
z2 = zf (the family mean). To avoid separate expressions for half- and full-sib families, we
express results in the notation of Chapter 17. Let t and rA denote the phenotypic and additive
genetic correlations (respectively) between sibs in an infinite population. These are related
(LW Chapters 7, 18) by

t = rAh2 + c2 with
c2

σ2
z

=





σ2
Ec(HS) for half-sibs

σ2
D/4 + σ2

Ec(FS) for full-sibs

(34.17a)

where Ec(HS) and Ec(FS) denote environmental effects common to half-sibs and full-sib
families (respectively) and rA = 1/4 for half sibs and 1/2 for full sibs. In most cases half-
sib families are formed by having a common father so that c2 is expected to be negligible.
Conversely, with full-sibs maternal effects can be quite important and hence c2 considerable.
Finally note that c2 < 1−h2 so that c2 is significant only when heritability is low. For a family
of n sibs, the phenotypic and additive genetic correlations have to be corrected slightly to
account for finite population size, and we use a slight modification of the notation introduced
in Chapter 17,

tn = t +
1 − t

n
and rA,n = rA +

1 − rA

n
(34.17b)

The modification is that (in Chapter 17) rA and rA,n were indicated as r and rn. Here we
attach the additona A subscript to stress that the correlation is among breeding values. To
obtain the covariances required to construct the Smith-Hazel index, first note that σz1,z2

= 0
as deviations from the mean and the mean itself are independent. For the index, let the
“trait”z1 denote the within-family deviation z − zf , while z2 denotes the family mean zf .
Recalling Equations 17.9a and 17.10b, σ2

z2
= tn σ2

z and σ2
z1

= (1−tn) σ2
z giving the phenotypic

correlation matrix as

Pρ =

(
1 − tn 0

0 tn

)
(34.18a)
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Similarly, the vector of genetic correlations of (z1, z2)
T with z are

gρ =

(
1 − rA,n

rA,n

)
(34.18b)

Applying Equation 34.11a gives the vector of index weights as

P−1
ρ gρ =




1 − r

1 − t

1 + n(1 − r)

1 + n(1 − t)


 =




1 − r

1 − t
rA,n

tn


 (34.18c)

giving the Lush index that optimally weights the within- and between-family effects as

I = (z − zf ) +

(
rA,n

tn

) (
1 − t

1 − r

)
zf (34.19)

We have rescaled the index to emphasize the relative weighting of within-family deviation
versus family mean.

Figure 34.1. The relative weights under the Lush index of family means to within-family
deviation (b2/b1) as a function of number of sibs n and correlation between sibs t. When
b2/b1 > 1, more weight is placed on family mean (or equivalently, on between-family devi-
ations), while more weight is placed on within-family deviations when b2/b1 < 1. Note that
b1 = b2 corresponds to individual selection.

Figure 34.1 plots how these relative weights change as a function of t and n. If family size
is infinite, within-family deviations and family means receive equal weight, and the Lush
index reduces to individual selection (as I = (z − zf ) + zf = z). For finite n, more weight is
placed on within-family deviations when t > rA (phenotypic similarity between sibs exceeds
their additive-genetic similarity) while family means receive more weight when rA > t
(additive-genetic similarity exceeds phenotypic similarity). Significant family environmental
effects are required for t = rAh2 + c2 > rA, so that within-family deviations receive more
weight only if shared-family environmental effects are very important.

The Lush index can be rearranged to assign weights to individual and family mean
values,

I = z +

(
rA − t

(1 − rA)[ 1 + n(1 − t) ]

)
· zf (34.20)
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implying that family mean receives negative weight when t > rA, as occurs when common
environmental effects are very large. In such cases, much of the between-family differences
are environmental rather than genetic and between-family differences are discounted in
favor of within-family deviations.

Figure 34.2. Expected single generation response in an infinite population of individual (I),
strict within-family (W), and strict between-family (B) selection relative to that of the Lush
index (whose response is scaled to give a value of one) for half-sibs as a function of number
of sibs n and correlation between sibs t. For half-sibs, it is generally expected that t = h2/4
so that values of t > 1/4 occur only in highly usual situations.

To obtain the expected response to selection on the Lush index, note first that

gT
ρ P−1

ρ gρ = 1 +
(n − 1)(t − rA)2

(1 − t)[ 1 + t(n − 1) ]
(34.21a)

Applying Equation 34.11d gives the response in z as

Rz

ı
= h σg

√
1 +

(n − 1)(t − rA)2

(1 − t)[ 1 + t(n − 1) ]
(34.21b)
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More generally, consider the response to selection on the index I = b1(z − z) + b2 · zf for
arbitrary b1 and b2. Taking the vector of characters as z = (z, z − zf , zf )T and substituting
a = (1, 0, 0)T and b = (0, b1, b2)

T into Equation 33.6 gives the response in z as

Rz

ı
= h σg

b1 (1 − rA,n) + b2 rA,n√
b2
1 (1 − tn) + b2

2 tn
(34.22)

Figures 34.2 (half-sibs) and 34.3 (full-sibs) plots of responses of individual (b1 = b2),
strict within-family (b1 = 1, b2 = 0) and strict between-family section (b1 = 0, b2 = 1)
relative to the response under the Lush index. Note that rA must be significantly different
from t (additive-genetic similarity is much different from phenotypic similarity) for the index
to be significantly superior to individual selection.

Figure 34.3. Expected single generation response in an infinite population of individual (I),
strict within-family (W), and strict between-family (B) selection relative to that of the Lush
index for full-sibs as a function of number of sibs n and correlation between sibs t.

One must be cautious of these comparisons of the relative efficiency of the Lush index as
they are potentially misleading for several reasons (Chapter 17). First, they assume selection
intensities are the same in all comparisons, as one might (naively) expect if the same fraction
of individuals is culled for each method. We have seen that finite population size results
in overestimation the expected selection intensity (Chapter 10). A second (and more sub-
tle) source of overestimation is correlations between individuals, as occurs when multiple
individuals from the same family are selected. Hill (1976, 1977) and Rawlings (1976) exam-
ined this problem, with Hill providing tables of exact values and approximate expressions
(which depend on n, t, and the number of families) for the expected selection intensities
when individuals are correlated. Meuwissen (1991) extends these results to nested full-half
sib family structures. When a small number of families is used, the selection intensity of
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the Lush index can be significantly below the value predicted by ignoring within-family
correlations. Hence, proper comparisons must first correct for potential differences in the
expected selection intensity (Chapter 17).

A second concern is that these comparisons are correct for only a single generation
of selection from an unselected base population. Selection generates gametic-phase dise-
quilibrium (Chapters 13, 31) and increases inbreeding (Chapter 26), both of which have a
larger effect on between-family selection (Robertson 1961, Burrows 1984, Toro et al. 1988).
Gametic-phase disequilibrium reduces between-family additive genetic variance while leav-
ing within-family additive variance unchanged (Chapter 13), while selection entirely within
a family results in less inbreeding (and hence less reduction in additive variance) than selec-
tion entirely between families (Chapter 26). As selection proceeds both these forces increase
the importance of within-family effects relative to between-family effects, so that individual
value becomes weighted more and family mean less. Wray and Hill (1989) note that while
the relative efficiency of combined selection over individual selection may be greatly dimin-
ished by gametic-phase disequilibrium, the relative rankings of the methods still hold. Given
that inbreeding is greater when more weight is placed on between-family differences, there
has been interest in the “optimal” family weights to maximize response while minimizing
inbreeding (e.g., Lindgren et al. 1993, Wei 1995). This is an important topic which is examined
in detail in Chapter 35.

A final concern is that, as with any index, population parameters have to be correctly
estimated or the index constructed from these estimates has incorrect weights and is less than
optimal. Fortunately, for the Lush index only the intraclass correlation t must be estimated,
and Sales and Hill (1976) have shown that the efficiency of combined selection is quite robust
to estimation errors in t (as initially suggested by Lush 1947).

Based on these concerns, it is not surprising that experimental verification of the advan-
tage of the Lush index over individual or family selection is mixed. McBride and Robertson
(1963) and Avalos and Hill (1981) found that combined selection gave a larger response than
individual selection for abdominal bristles in Drosophila melanogaster. More conclusive results
for selection on the same character were those of James (cited in Frankham 1982), who found
that the observed increase in response under combined selection was 133 ± 9.7% and 111 ±
7% in two replicates, very consistent with the expected increase of 121%. Experiments using
egg production in poultry was less conclusive, with Kinney et al. (1970) finding that indi-
vidual selection gave a larger (but not significant) response than combined selection, while
Garwood and Lowe (1981) found that combined selection gave a larger response (again not
significant) that family selection. Larval and pupal weight in Tribolium showed similar mixed
results, with Wilson (1974) finding that individual selection gave the largest response, while
Campo and Tagarro (1977) did not find any significant differences (combined selection gave
a larger response in a replicate with large family size, while individual selection showed the
larger response in a replicate with small family size).

Osborne’s Index

Finally, a more general combined index was considered by Osborne (1957b, c) which in-
corporates information from both full- and half-sib families. Osborne assumed the classic
full-/ half-sib hierarchical design (LW Chapter 18) wherein a sire is mated to d dams, each of
which has n sibs. Under this design each of the d families consists of n full sibs which are also
half-sibs with respect to offspring from the other dams mated to the same sire. The resulting
index to maximize response in z is constructed by considered three correlated characters:
z1 = z − zFS (the deviation within full-sib families), z2 = zFS − zHS (the deviation between
different full sib families from the same size) and z3 = zHS where zFS is the mean of that
individual’s full-sib family (all offspring from the same dam) and zHS the half-sib mean
of the individual (the mean of all offspring from that individual’s sire). Denoting the intr-
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aclass correlation between half- and full-sibs by tH and tF , respectively, the corresponding
phenotypic correlation matrix is diagonal with

(n d) · (Pρ)ii =





d(n − 1)(1 − tH − tF ) for i = 1

(d − 1)[ 1 − tH + (n − 1)tF ] for i = 2

1 − (n − 1)tF + (nd − 1)tH for i = 3

(34.23a)

and the vector of additive genetic correlations with z becomes

gρ = (4nd)−1




2d(n − 1)
(d − 1)(n + 2)

2 + d + dn


 (34.23b)

Upon rescaling (to give full-sib family deviation weight one), the resulting index becomes

( z − zFS ) +
(2 + n)(1 − tF − tH)

2(1 + tF (n − 1) − tH)
( zFS − zHS ) +

[ 2 + d(1 + n) ] [ 1 − tF − tH ]

2[ 1 + tF (1 − n) + tH(dn − 1) ]
zFS

(34.24a)
A bit of algebra shows that gT

ρ P−1
ρ gρ equals

n − 1

4n(1 − tF − tH)
+

(d − 1)(2 + n)2

16dn(1 + tF (n − 1) − tH)
+

(2 + d + dn)2

16dn[ 1 − tF (n − 1) + tH(dn − 1) ]
(34.24b)

Substituting into Equation 34.11d gives the expected response under this index. Osborne
(1957b) presents graphs for the relative weights, but under the restrictive assumption of t =
rA h2 (no dominance or common familial environmental effects). To construct the Osborne
index only two parameters, tF and tH , must be estimated. Sales and Hill (1976) show that
although the index is more sensitive to poor estimates of tH than of tF , it (like the Lush
index) is rather robust to errors in either estimated parameter.

The various selection indices developed in this chapter assume defined sets of relatives
under balanced samples (i.e., the same number of sibs in each family). This is clearly an
idealization of the real world with its highly unbalanced designs and much more diverse
sets of relatives. Fortunately, the concept of a selection index can be extended to predict the
breeding values for any collection of relatives with a known pedigree (i.e., the relationship
matrix A among the individuals in question). This is the notion of BLUP (Chapter 16; LW
Chapters 26, 27) and selection using BLUPs is the subject of the next chapter.

SELECTION ON A RATIO

Occasionally, it is desirable to select on the ratio of two measured characters. Feed efficiency,
defined as the ratio of feed intake to growth rate, is a classic example from animal breeding
(Lin 1980). There is typically negative selection on this ratio, as the breeder attempts to
extract greater growth from smaller feed intake. There are also numerous examples of ratios
in plant breeding. One is the performance index (Sullivan and Kannenberg 1987), the ratio
of grain yield to percent of grain moisture, which is under positive selection to increase yield
while decreasing seed moisture. Other plant breeding examples include the leaf-to-stem ratio
(Buxton et al. 1987), the ratio of seed weight to biomass which is also known as the harvest
index (Sharma and Smith 1986), and nitrogen and water-use efficiency indices (Youngquist
et al. 1992, Ehdaie and Waines 1993).

Let r = z1/z2 be the desired ratio based on characters z1 and z2. One approach would
simply be to treat this as a new trait and apply the standard machinery of the univariate
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breeder’s equation (e.g., Chapter 10). The problems with this approach are two-fold. First,
this machinery makes assumptions of normality that are not appropriate for a ratio. If both
z1 and z2 are normally-distributed, their ratio is not, rather it is the dreaded Cauchy, a
pathological distribution with no defined mean and an infinite variance. The bounded (i.e.,
finite) range of biological systems avoids some of the more unpleasant aspects of the Cauchy,
but the result is still a very heavy-tailed distribution. Computer simulations by Rowe (1995,
1996) show that using standard machinery underestimates the expected gain when selecting
to increase the ratio and overestimates the gain when selecting to decrease it.

The second issue is that if we know the individual components that comprise the ratio,
we can do better by selecting on them than we can by directly selecting on the ratio, as
direct selection on r is less efficient than selection on an index based on z1 and z2 (Gunsett
1984, 1986, 1987; Mather et al. 1988; Campo and Rodrı́guez 1990). Given these issues, three
general approaches have been suggested selecting on a ratio. First, Turner (1959) suggested
taking logs to give the linear index I = y1 − y2 using the new characters y1 and y2 where
yi = ln(zi) and gives expressions for the heritability of a ratio in this case. The downside to
this approach it that it requires obtaining estimates of the phenotypic and additive-genetic
covariance matrices for the transformed vector y. Further note that I is really the merit
function, and hence not the optimal weights on which to select, which are given by the
Smith-Hazel index expressed in terms of the genetic and phenotypic covariance matrices of
y and with weights aT = (1,−1). The second class of approaches are either linear selection
indices or combinations of linear indices, while the final approach is selecting on the ratio
directly, but predicting response by following the changes in component means. We examine
each of these in turn.

Since the merit function is nonlinear, several of the concerns raised in Chapter 33 need
to be addressed before proceeding. First, how does the function change as a result of changes
in the means of the components? The expected value of r can be expressed as

E[r] = E

[
z1

z2

]
=

E[z1]

E[z2]
− σ(z1/z2, z2)

E[z2]
, (34.25a)

as given by Lin (1980). This immediately follows, upon rearrangement, from the definition
of the covariance between z1/z2 and z2,

σ(z1/z2, z2) = E[(z1/z2) · z2] − E[z1/z2] · E[z2]

= E[z1] − E[z1/z2] · E[z2] (34.25b)

Hence, the expected value of the ratio is only equal to the ratio of expected values when the
second term in Equation 34.25a is negligible. Note that even if z1 and z2 are uncorrelated at
the start of selection, LD generated by selection can cause them to become correlated during
selection, which in turn changes the value of σ(z1/z2, z2). When this second term is small,
the expected change in the merit function can be approximated by considering the expected
change in the ratio given the changes in breeding values,

∆H = ∆

(
g1

g2

)
≃ E[z1 + ∆g1]

E[z2 + ∆g2]
− E[z1]

E[z2]
=

µ1 + ∆g1

µ2 + ∆g2
− µ1

µ2
(34.25c)

Approximate Linear Indices for Ratio Selection

Chapter 33 noted that while an appropriate linear index usually outperforms a nonlinear
index, the issue is how to construct the optimal linear index. When Equation 34.25c is a good
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approximation, then again following Lin (1980), the expected change in the merit function
can be approximated as

∆H =
µ1 + ∆g1

µ2 + ∆g2
− µ1

µ2
=

µ2∆g1 − µ1∆g2

µ2(µ2 + ∆g1)

=
µ2

µ2(µ2 + ∆g1)

(
∆g1 −

µ1

µ2
∆g2

)
(34.26a)

Since only the relative weights matter in an index, we can ignore the common term in the
last line of Equation 34.26a, giving the linearized merit function as

H ≃ g1 −
µ1

µ2
g2 (34.26b)

where µi is the current mean of character i, so that the economic weights change each
generation to reflect changes in character means. The Smith-Hazel index each generation
is constructed by using either aT = (1,−µ1/µ2) or (equivalently) aT = (µ2,−µ1). An ad-
vantage of putting this problem into a Smith-Hazel framework is that we can use existing
theory to predict the response (e.g., Equation 33.19). Gunsett (1984) also obtained these same
weights through a different route, namely by finding the (linear) index of z1, z2 that max-
imizes the correlation with the ratio of breeding values g1/g2. Finally, these weights also
follow by approximating H by a first-order Taylor series (Equation A5.6), as suggested in
Chapter 33. Since

∂z1/z2

∂z1

∣∣∣∣
z1=µ1

=
1

µ2
, and

∂z1/z2

∂z2

∣∣∣∣
z2=µ2

=
−µ1

µ2
2

the vector of economic weights again becomes

µ2 · a =

(
1

−µ1/µ2

)

Example 34.6 Consider the ratio of z1/z2, where

µ =

(
2000
850

)
, P =

(
40000 7200
7200 6400

)
, G =

(
16000 2560
2560 2560

)

From Equation 34.26b, the resulting vector of weights becomes

a =

(
1

−2000/850

)
=

(
1.000

−2.353

)

Suppose the lower 5% of the population is selected (as would occur when selecting to decrease
a ratio, such as feed efficiency), so that ı = −2.06. From Equation 33.20, the response in the
two components is given by

R = ı · GP−1Ga√
aT GP−1Ga

=

(
−100.08

35.32

)
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Approximating the mean of the ratio E[r] by the ratio of the means (Equation 34.25c), the
response in the ratio under this index becomes

∆r ≃ 2000 − 100.08

850 + 35.32
− 2000

850
= 2.146 − 2.353 = −0.207

Other Linear-based Indicies for Ratio Selection

An alternative approach considered by Famula (1990) and Campo and Rodrı́guez (1990) is
motivated by Equation 34.25c. The idea is to construct a nonlinear index Ir consisting of the
ratio of two linear indices,

Ir =
I1

I2
=

bT
1 (z − µ)

bT
2 (z − µ)

(34.27a)

where Ii is the index that gives the best linear predictor of the breeding value of character i
using information from both z1 and z2. One then selects using the Ir values of each individual.
This should be an improvement in predicting the value of gi over that predicted just using
the value of zi alone unless both characters are phenotypically and genetically uncorrelated.
Applying Equation 34.2a, the weights of these linear indices are given by

b1 =




σ2
z1

σz1,z2

σz1,z2
σ2

z2




−1 


σ2
g1

σg1,g2


 , b2 =




σ2
z1

σz1,z2

σz1,z2
σ2

z2




−1 


σg1,g2

σ2
g2


 (34.27b)

The difference between this non-linear index and the Smith-Hazel index constructed using
Equation 34.26a is that the latter attempts to predict the ratio directly, while the nonlinear
index attempts to predict the denominator and numerator separately. A disadvantage of the
nonlinear approach is that existing theory cannot be use to predict response.

Which Method is Best?

Which of the three approaches — Smith-Hazel approximation, ratio of linear indices, direct
selection on the ratio — is best? Direct selection on the ratio is not recommended for two
reasons. First, the Smith-Hazel approximation generally provides a larger response. Second,
the ratio can change in the desired direction for undesirable reasons. For example, ideally
feed efficiency is decreased by both lowering the rate of feed intake and increasing the growth
rate. However, selection could reduce both, giving improvement in feed efficiency but the
undesirable result of reduced growth. With a linear index, we can exert more control over
the behavior of the components.

This leaves the two linear-index based approaches as useful candidates. While Famula
(1990) showed theoretically that there is should be very little difference between these two
approaches, this was not observed by Campo and Rodrı́guez (1990), who selected for in-
creased values of egg mass/adult weight ratios in Tribolium castaneum. They found that this
ratio did not respond to direct selection (response after three generations wasR = 0.82±1.56).
Selection on a linear index with economic weights given by Equation 34.26a was effective
(R = 1.92 ± 0.44), while the greatest response was observed by selection on the nonlinear
index given by Equation 34.27a (R = 5.94 ± 1.52). Hence while selection using either index
was more efficient that selecting directly on the character, the nonlinear index produced the
largest response.
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Figure 34.4. Ratio selection when both components are bivariate-normally distributed. The
trait of interest is the ratio r = z1/z2. Values of (z1, z2) corresponding to the same ratio r are
those that lie along the line z2 = (1/r)z1, a line through the origin with slope 1/r. Values
above this line have a smaller value for the ratio than r, while values below this line give
larger values for the ratio. The easy way to see this is to note that large z1 and small z2 yield
a large ratio value, while large z2 and small z1 give a small ratio value. Thus, if we select
individuals above the line passing through the population means, we are selecting for smaller
ratios (r∗ < r), while if we select individuals below this line we are selecting for larger ratios
(r∗ > r). Likewise, changes in the angle θ between this line and the z1 axis describes the
nature of selection. Increasing θ corresponds to selection for a smaller ratio, while decreasing
θ corresponds to a larger ratio.

Figure 34.5. The relationship between the threshold ratio score r[p] (simply listed as r in
the figure for brevity) and the bivariate distribution of the traits. The problem here is, for a
given value of p, to solve for the critical value r[p] such that Pr(r ≤ r[p]) = p. For a set cutoff

value of r, we have z1/z2 = r or z2 = (1/r)z1, a line passing through the origin with slope
1/r. Left: When selecting to increase this ratio (i.e., larger z1 and smaller z2), we select those
individuals lying below this line. Stronger selection decreases the angle between the line and
the z1 axis. Right: When selecting to decrease this ratio (negative selection), individuals lying
above the line are selected. Stronger selection increases the angle between this line and the z1

axis. Note in both cases that by rotating the line (changing the selection intensity) we also
change the selection differential unevenly on the two traits. Hence, the selection differential
ratio S1/S2 for the two traits is not fixed (as would occur with index selection), but rather is
a function of the selection intensity.

Selection Directly on a Ratio: Selection Differentials and Response
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While selection directly on a ratio is not generally recommended, it is still of interest to
examine the behavior of response in such cases. We can approximate the response in the ration
using Equation 34.25c, with the vector of responses in each trait given from the breeder’s
equation R = GP−1S. The issue is obtaining the vector of selection differentials given
selection on the ratio, a topic considered by Gunsett (1984) and Mather et al. (1988). These
papers assumed selection by truncation selection on either the upper p percent (positive
selection to increase the ratio) or the lower p percent (negative selection to decrease the ratio)
of measured individuals. Calculation of S occurs in two stages. The first is obtaining the
threshold value r[p] for the ratio that sets the upper (or lower) fraction p of the population,
and then with this value of r[p] in hand, obtaining S.

The issue with obtaining the critical value of r given a set amount of truncation selection
p is displayed in Figure 34.5. Here, the confidence region for the joint distribution of the z1, z2

phenotypes is plotted, and the fraction of individuals whose ratio is great than or equal to
r = z1/z2 is that fraction of the distribution lying below the line z2 = (1/r)z1 (e.g., Figure
34.5 Right). Conversely, if we select for decreased r values we choose individuals laying
above this line. The key feature of selection, which is hinted at in the figure, is that the
selection differentials on the two traits are very asymmetric, and the disparity between then is
a function of selection intensity. This has two immediate consequences. First, if the selection
intensities are different in the two sexes (as often happens with domesticated animals), then
the relative amounts of selection on the two components can vary over sexes. This does not
happen under linear index selection, as the ratio of the selection weights is unchanged. Note,
however (Chapter 33), that when using a linear index to approximate a nonlinear index that
the weights can indeed be a function of the selection intensity and hence can change with
changes in ı. Second, as a consequence of this differential change in the relative amounts
of selection, the breeder has much less control over changes in the component traits than
would occur when using a linear index.

We now (briefly) turn to the somewhat technical issue of obtaining the critical value r[p]

given a fraction p is selected and the translation of this into the vector of selection differentials
S. A worked example follows the derivations. We consider the case of negative selection, a
decrease in the ratio, as the results for positive selection follows from symmetry. We seek that
value r[p] of the ratio such that only p percent of the population have this value (or smaller).
By definition, r[p] satisfies

Pr(z1/z2 < r[p]) = Pr(z1 < r[p]z2) = Pr(z1 − r[p]z2 < 0) = p (34.28a)

Assuming both traits are MVN distributed, then z1 +az2 is also normal, with mean µ1 +aµ2

and variance σ2
1 + a2σ2

2 + 2aσ1,2. Defining y = z1 − r[p]z2, we have

µy = µ1 − r[p]µ2, and σ2
y = σ2

1 + r2
[p]σ

2
2 − 2r[p]σ1,2

Hence, we have

U =
y − µy

σy

is a unit normal random variable. Hence, we can rewrite 34.28a as

Pr(z1/z2 < r[p]) = Pr(y < 0) = Pr

(
y − µy

σy
<

−µy

σy

)
= Pr

(
U <

−µy

σy

)
= p (34.28b)

The middle expression follows by subtracting µy from sides and then dividing by σy . Re-
calling Equation 10.25a, we defined z[p] as satisfying Pr(U < z[p]) = p. Hence,

z[p] =
−µy

σy
=

−(µ1 − r[p]µ2)√
σ2

1 + r2
[p]σ

2
2 − 2r[p]σ1,2

(34.29a)
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Equation 34.29a can be algebraically solved for the threshold value r[p] to give (Mather et al.
1988)

r[p] =
µ2

1 − z2σ2
1

µ1µ2 − z2σ12 + δǫ
√

(µ1µ2 − z2σ12)2 − (µ2
1 − z2σ2

1)(µ2
2 − z2σ2

2)
(34.29b)

where we write z[p] simply as z for brevity, and δ and ǫ are indicator variables with

δ =

{
1 if p < 0.5

−1 if p > 0.5
, ǫ =

{
1 for negative selection on r

−1 for positive selection on r
(34.29c)

Example 34.7 Suppose we are selecting to decrease a ratio and wish the cuttoff value such
that only 5% of the population should have this small a ratio value. Thus, Pr(U < z[p]) = 0.05,
or (using the R command qnorm(0.05)), z[p] = −1.64. Suppose our two traits are normally
distributed with the means and phenotypic covariances as in Example 34.6,

µ1 = 2000, µ2 = 850, σ2
1 = 40000, σ2

2 = 6400, σ12 = 7200

Hence, the starting mean ratio (approximated as the ratio of the means) is 2000/850 = 2.35.
Applying Equation 34.29b returns r[0.05] = 1.98. As a check, substitution into Equation 34.29a
gives

z =
−(2000 − 1.98 · 850)√

40000 + 1.982 · 6400 − 2 · 1.98 · 7200
= −1.64

returning (as expected)z[0.05]. Hence, for these distributional values, only 5% of the population
should have a ratio of 1.98 or less.

Given the critical value r[p] (henceforth simply r for brevity) Mather et al. (1988) obtained
expresses for the selection differentials on the component traits by integrating the appropri-
ate truncated slice of the bivariate distribution to obtain the conditional means within the
selected region. For the numerator trait (z1), the resulting differential is

S1 =
ǫ γ1σ1

p
√

2π(1 + α2
1)

exp

(
− β2

1

2(1 + α2
1)

)
(34.30a)

where p is the fraction saved,

α1 =
rσ2

√
1 − ρ2

σ1 − rσ2ρ
, β1 =

rµ2 − µ1

σ1 − rσ2ρ
, γ1 =

{
1 if σ1 < rσ2ρ

−1 if σ1 > rσ2ρ
(34.30b)

with r = r[p], ρ is the phenotypic correlation, and ǫ as in Equation 34.29c. Similarly,

S2 =
ǫ γ2σ2

p
√

2π(1 + α2
2)

exp

(
− β2

2

2(1 + α2
2)

)
(34.31a)

where

α2 =
σ1

√
1 − ρ2

rσ2 − σ1ρ
, β2 =

µ1 − rµ2

rσ2 − σ1ρ
, γ2 =

{
1 if rσ2 > σ1ρ

−1 if rσ2 < σ1ρ
(34.31b)
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While these equations may look a little busy, an important biological feature follows directly
from them, namely that

sign(Si) = sign(γi · ǫ) (34.32)

If the phenotypic correlations are negative (ρ < 0), then γ1 < 0 and γ2 > 0, and the selection
differentials on trait means are as expected. When there is selection to reduce the ratio
(negative selection, ǫ = 1), then S1 < 0 and S2 > 0, decreasing the mean of the numerator
and increasing the mean of the denominator as might be expected. With selection to increase
the ratio (negative selection, ǫ = −1), the converse is true (again as expected). However,
when the two traits are phenotypically positively correlated, S1 and S2 can have the same
sign (either both positive or both negative) or can have different signs (Mather et al. 1988;
Rowe 1995, 1996). Letting φ = σ1/(r[p]σ2), then from Equations 34.30b and 34.31b we see
that if φ < ρ < 1/φ then γi = 1 , while if φ > ρ > 1/φ then γi = −1 (Figure 34.6). For
example, if there is selection to decrease the ratio when φ < ρ < 1/φ, both the numerator and
denominator with have positive selection differentials and hence both means will increase. The
ratio still declines because the denominator means increases more quickly than the numerator
mean. Likewise, if φ > ρ > 1/φ, the means of both traits decrease, but the numerator mean
decreases more quickly, decreasing the ratio. Comparative behavior occurs when there is
selection to increase the ratio under either of these parameter sets.

Figure 34.6. When the phenotypic correlation ρ between traits is positive, the signs of the
selection differentials for the two components in the ratio can change in unexpected directions.
The phase space for φ = σ1/(r[p]σ2) and ρ given above is for negative selection (selection to
reduce the ratio). Note in this case, we typically expect trait one (the numerator) to decrease
and trait two (the denominator) to increase. This is precisely what occurs in the middle range
of this phase space. However, there are also combinations of φ and ρ wherein both traits
increase or both traits decrease. In these cases, the ratio still decreases because of differences
in the rates of change in the mean. With selection to increase the ratio (positive selection), the
signs are reversed above.

Example 34.8 Let’s translate the ratio threshold from the last example into the selection
differentials on both traits. Applying Equation 34.30 gives

Trait α β γ S
1 1.101 −2.447 −1 −277.3
2 2.603 4.587 1 59.2
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Assuming the same P and G matrices as in Example 34.6 and 34.7, applying the multivariate
breeder’s equation gives the response in the component means as

R = GP−1

(
−277.3

59.2

)
=

(
−117.8

27.1

)

Using the approximation that the mean ratio is the ratio of the means, the values before and
after a single generation of selection become

µr ≃ µ1

µ2
=

2000

850
= 2.353, µ∗

r ≃ µ∗
1

µ∗
2

=
2000 − 117.8

850 + 27.1
= 2.146

Hence, the selection response is 2.353− 2.146 =−0.207. Recall from Example 34.6 that this is the
same response as that expected (given the appropriate approximations) under a Smith-Hazel
index for the ratio. However, there are differences, with a larger change in the numerator trait
(117.8 vs. 100.08) and a smaller change in the denominator trait (27.1 vs. 35.32) under direct
selection on the ratio versus selection on an index.

Finally, an alternative (but related) approach was suggested by Hühn (1992). From
Chapter 30, recall that the correlated response in a variable x given direct selection on another
variable r is the change in the breeding value of x caused by selection on r, or

∆µx = bAx,r · Sr =
σAx,Ar

σ2
r

· Sr =
σAx,Ar

σr
ır (34.33)

Here bAx,r denotes the slope of the regression of the breeding value of x on the phenotypic
value of r, which is given by their covariance divided by the variance of r. By taking x to be
either z1 or z2 and r = z1/z2, then if we can obtain these covariances we can approximate the
response. This approach is also an approximation because we are assuming the regression
of phenotype in r to breeding value in x is linear and homoscedastic. Assuming z1, z2 are
jointly multivariate normal, the machinery of LW Appendix 1 (essentially taking the first
few terms in the appropriate Taylor series) can be used to approximate these variances and
covariances, see Hühn for details.

SELECTION AND SEXUALLY DIMORPHIC TRAITS

A trait can be sexually dimorphic, with its mean and/or variance differing over the sexes. In
the extreme, some are sex-specific or sex-limited (e.g., milk production). Trait values in males
and females can be treated as correlated characters, with sexual dimorphism generated by an
imperfect correlation between the sexes and/or differences in trait variances (see Equation
34.34a). Selection on sexually dimorphic traits is a classic correlated-character problem, as
selection on one sex generates a direct response in that sex and a correlated response in the
other. This becomes especially interesting in situations where the nature of selection varies
over the sexes (particularly when it is antagonistic), and raises a number of interesting
questions: Is an observed sexual dimorphism the result of selection for different means in
males and females or is it simply a correlated response from direct selection on only one
sex? How strongly constrained is the independent evolution of the mean values in the two
sexes? These questions, and others, can be addressed by using the multivariate breeder’s
equation.

A related issue that we will briefly touch on is differential ıtransmission of a trait value
depending on the sex of the ıparent. Sexual dimorphism is the differential ıexpression of trait
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value depending on the sex of the ıindividual. With sex-specific transmission the individual’s
sex also influences the transmission of parental value to the offspring, such as occurs when
either sex-linked or imprinted autosomal loci influence the trait (LW Chapter 24). Such sex-
specific differences in transmission can also be addressed within the framework of sexually
dimorphic traits by tracking the transmission from each parent separately.

Components of the Genotype × Sex Interaction Variance

Sexual dimorphism is simply a genotype × environment interaction (LW Chapter 24). Re-
stricting attention (for now) to autosomal loci with different effects depending upon the sex
in which they reside, a specific genotype might have a value of Am +Im in males (the sum of
the breeding A and residual I values) and Af +If in females. As a correlated character prob-
lem, three quantities are of interest: the additive genetic variances in both sexes (σ2

Am
, σ2

Af
)

and the genetic correlation rA, or covariance σ(Am, Af ) = rAσAm
σAf

, between them. The
amount of usable genetic variation for differences between the sexes is given by the genotype
× sex interaction variance, which can be expressed in terms of these components as

σ2
G×S =

(
σAm

− σAf

)2

2
+ σAm

σAf
(1 − rA) (34.34a)

=
σ2

Am
+ σ2

Af

2
− σ(Am, Af ), (34.34b)

This simply follows from the G × E interaction variance for a trait over two environments
(Robertson 1959). Equation 34.34a highlights two sources of exploitable between-sex genetic
variance. The first, and obvious, is when the genetic correlation rA between the sexes is less
than one. The second is a difference in the genetic variances (scale effects), and these can
generate usable between-sex genetic variance even when the genetic correlation between
the sexes is perfect (rA = 1). Some of the early literature on sexual dimorphism was overly
focused on transformations to remove scale effects (e.g., Eisen and Legates 1966, Hanrahan
and Eisen 1973), but differences in variance can result in different heritabilities in males
and females, and hence differential response even when the sexes are perfectly correlated
(Yamada and Scheinberg 1976, Leutenegger and Cheverud 1982). That σ2

G×S measures the
amount of usable between-sex differences can be seen by noting that the additive genetic
variance for the difference of a genotype expressed in males versus females is just

σ2(Am − Af ) = σ2
Am

− 2σ(Am, Af ) + σ2
Af

= 2σ2
G×S, (34.34c)

as noted by Eisen and Legates (1966).

Selection in Sex-limited Traits

Chapter 17 outlined the general approach for selecting on a sex-limited trait. Consider milk
production. Mothers can be chosen (i.e., have their breeding values predicted) on the basis of
their phenotype, or a more general index based on measured female relatives (for example,
by using Equation 34.11). Likewise, the breeding value for the trait in fathers can be estimated
from family selection (such as a half-sib daughter design) or again a more general index of
measured female relatives. The expected response is simply the average of the parental and
maternal breeding values. The generalization of using an index based on all known relatives
to predict breeding values in all parents is the basis for BLUP selection, which is discussed
in the next chapter.

Differential Selection Across the Sexes
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Breeders may impose differential selection across the sexes on a trait, and this may happen
in nature as well. There are at least three (non-exclusive) situations for differential selec-
tion on the sexes in natural populations (Darwin 1871, Lande 1980, Slatkin 1984, Hedrick
and Temeles 1989, Fairbairn 1997). First, there may be ecological reasons, such as reducing
competition between the sexes. The niche variation hypothesis (e.g., Rothstein 1973, Price
1984) suggests selection pressure for males and females to exploit slightly different niches.
Second, males and females may experience differential selection because they have very
different reproductive roles. A larger female might be favored by higher fecundity, while a
smaller male might be favored by increased dispersal. Finally, there may be sexual selection
(Darwin 1871; Chapter 44), wherein males either complete amongst themselves for access to
mates (male-male competition) and/or display traits or behaviors to improve their attrac-
tiveness to females (female choice). For such traits, there is direct selection only on males,
but the trait value in females can also change via a correlated response.

With no genetic variation in sexual dimorphism (σ2
G×S = 0) and no sex-specific differ-

ences in transmission, the response in a trait is simply R = h2S, where S = (Sm + Sf )/2 is
the average selection differential over both sexes (Chapter 10). However, with sexual dimor-
phism and/or sex-specific differences in transmission, this simple average of the selection
coefficients is no longer sufficient, with response depending on four pair-wise regressions
of sex of parent on each sex of offspring (Equations 10.4, 34.35).

Sex-specific Transmission Differences

Sex can influence the genetic covariance, and hence the parent-offspring regression, through
three different routes. First, consider non-imprinted autosomal loci with sex-specific effects
(so that σ2

G×S 6= 0). In this case, the sex of an individual influences its genotypic value,
and we might expect father-son and mother-daughter genetic covariances to differ, but
the two cross-sex genetic covariances (father-daughter, mother-son) to be the same, albeit
potentially different from the same-sex covariances. Second, for species in which the male
is the heterogametic sex, the male genotype associated with the X chromosome is haploid,
while it is diploid in females. Likewise, when females are the heterogametic sex they are
haploid (ZW), while males are diploid (ZZ). Again, this results in potentially different father-
son, mother-daughter, and cross-sex genetic covariances, although again the two cross-sex
(father-daughter, mother-son) covariances are the same (Bohidar 1964, James 1973, Grossman
and Eisen 1989; summarized in LW Chapter 24). The final route is when loci influencing a
trait show imprinting (Spencer 2009, LW Chapter 24), in which case the sex of its parent, not
the sex of the individual, determines gene expression. For traits influenced by imprinted loci,
the father-offspring and mother-offspring covariances can differ (Spencer 2002, Santure and
Spencer 2006, Dai and Weeks 2006, Spencer 2009), independent of offspring sex. This results
in the cross-sex genetic covariances being potentially different. In any of these three settings,
a constant complication when considering paternal- vs. maternal-regressions is inflation of
the genetic covariance estimate by material effects. Santure and Spencer (2006) show this
is particularly complex when imprinting occurs, and separation of the effects remains a
significant challenge. This is especially problematic as maternal effects typically make a
transient, rather than permanent, contribution to selection response (Chapter 11), and so
separation of the effects is critical to predict the amount of sustainable selection response.

The Joint Response for a Single Dimorphic Trait

Taken together, all of these factors mean that we must consider four different pathways
of transmission (father → son, father → daughter, mother → son, mother → daughter) to
fully account for selection response for a sexual dimorphic trait or a trait with sex-specific
transmission. For a single trait, we did just this in Chapter 10 (Equation 10.4, Example 10.1),
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where the response in daughters was given by

Rda = bda,fa Sfa + bda,mo Smo (34.35a)

Here bda,fa is the regression coefficient of daughters (da) on their fathers (fa) and bda,mo the
mother (mo)-daughter regression coefficient. Likewise, the response in sons (so) is

Rso = bso,fa Sfa + bso,mo Smo (34.35b)

As a prelude to a more general analysis of a vector of sexual dimorphic traits, following
Lande (1980) we can place Equations 10.4 and 34.35 into a multivariate breeder’s equation
framework. This also allows us to express these regression coefficients in terms of genetic
and phenotypic variance components.

Since selection in fathers and mothers is based on different individuals, there is no
within-generation correlated responses between males and females due to phenotypic cor-
relation. Hence

P =

(
σ2(zfa) 0

0 σ2(zmo)

)
, so that P−1 =

(
σ−2(zfa) 0

0 σ−2(zmo)

)
(34.36a)

A little care is needed withG, as it need not be symmetric (as the cross-sex genetic covariances
can differ). While much of our previous discussions have used G as a variance-covariance
matrix of breeding values, a slightly more general definition (that used in Chapter 33) is
required here (which reduces to the standard variance-covariance matrix in many cases).
Define the elements of G as the covariance between the phenotypic value z of a parent
and the expected value of its offspring, which is simply the expected genotypic value G of a
random offspring from that parent. This definition is motivated by the regression of expected
offspring value on parental phenotypic value, and gives the elements of G as

Gij = σ(Gi, zj),

namely the expected genotypic value for trait i in an offspring of a parent with phenotypic
value z for trait j. For a single dimorphic trait, we have

G =

(
σ(Gso, zfa) σ(Gso, zmo)
σ(Gda, zfa) σ(Gda, zmo)

)
(34.36b)

Hence,

GP−1 =

(
σ(Gso, zfa)/σ2(zfa) σ(Gso, zmo)/σ2(zmo)
σ(Gda, zfa)/σ2(zfa) σ(Gda, zmo)/σ2(zmo)

)
=

(
bso,fa bso,mo

bda,fa bda,mo

)
(34.36c)

Recalling the multivariate breeder’s equation, R = GP−1S, where R = (Rso, Rda)T , recov-
ers Equation 34.35. One can also use the gradient form of the breeder’s equation, R = Gβ,
with G as defined in Equation 34.36b.

Example 34.9. Pearson and Lee (1903) estimated correlations among height (stature) in fa-
thers and mothers versus their (adult) sons and daughters, a study that was instrumental to
Fisher’s 1918 paper that marks the founding of quantitative genetics. Rogers and Mukher-
jee (1992) re-examined these data, converting them to a log scale to remove the correlation
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between the mean and variance. The covariance between fathers and sons (on the adjusted log-
scale) was 0.809, while the mother-daughter covariance was 0.793. The cross-sex covariance
was assumed equal and estimated from the average of the father-daughter and mother-son
covariances, giving 0.789. The phenotypic variance of the trait in males and females as 1.575
and 1.567, respectively, giving

GP−1 =

(
0.809 0.789
0.789 0.793

) (
1.575 0

0 1.567

)−1

=

(
0.514 0.504
0.501 0.506

)

The resulting response equations become

Rso = 0.514 Sfa + 0.504 Smo, and Rda = 0.501 Sfa + 0.506 Smo.

To express the elements of G in terms of genetic variance components, we assume
autosomal, non-imprinted loci with differential expression across the sexes underly the trait.
Decomposing the genotypic and phenotypic values into breeding valuesA, interaction effects
I , and environmental effects E gives

Gij = σ(Gi, zj) = σ(Ai + Ii, Aj + Ij + Ej) = σ(Ai, Aj) (34.37a)

This follows by assuming no genotype-environment covariance and random mating (so that
A and I are uncorrelated, however with imprinting these are correlated even under random
mating, Spenser 2009). The presence of A×A epistasis and/or shared environmental values
can inflate the response, but (as discussed in Chapter 11), these make transient contributions
to the response, while changes in mean breeding value are permanent. Assuming (for now)
that the additive genetic variances of the trait are equal in parents and offspring of the
same sex (being σ2(Am) in males, σ2(Af ) in females), then the father-son genetic covariance
becomes

σ(Aso, Afa) = σ(Afa/2, Afa) = σ2(Am)/2 (34.37b)

This follows since (on average) only half of a parent’s breeding value is passed onto their
offspring. Likewise, σ(Ada, Amo) = σ2(Af )/2. For autosomal, non-imprinted loci the cross-
sex genetic covariances are equal, with

σ(Aso, Amo) = σ(Ada, Afa) =
rA

2
σAm

σAf
(34.37c)

More generally, the correlation between Ax in an offspring and Ay in its parent is

σ(Ax, Ay) =
rAx,Ay

2
σAx

σAy
, (34.37d)

with Equations 34.37a-c being special cases of this more general form. Substitution into
Equation 34.36c yields

GP−1 =
1

2

(
σ2

Am
rAσAm

σAf

rAσAm
σAf

σ2
Af

) (
σ2

zm
0

0 σ2
fm

)−1

=
1

2

(
h2

m rAhf (σAm
/σzf

)
rAhm(σAf

/σzm
) h2

f

)
(34.38a)
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Under the assumption that the phenotypic variances are the same in both sexes, Equation
34.38a reduces to

Rso =
h2

m

2
Sfa +

hmhfrA

2
Smo, Rda =

hmhfrA

2
Sfa +

h2
f

2
Smo (34.38b)

This is the common expression in the literature (e.g., Leutenegger and Cheverud 1982, Fair-
bairn 1997, Merilä et al. 1998), and shows the influence of both differences in sex-specific
heritabilities and the genetic correlation between sexes. Note that even if rA = 1 and the
amount of selection is the same in each sex (Sfa = Smo = S),

Rso = hm

(
hm + hf

2

)
S and Rda = hf

(
hm + hf

2

)
S, (34.38c)

so that there can still be a differential response in males and females if the sex-specific
heritabilities differ (Yamada and Scheinberg 1976, Leutenegger and Cheverud 1982).

Example 34.10. Merilä et al. (1998) examined sexual dimorphism in body size of collared
flycatchers (Ficedula albicollis), as measured by tarsus lenght. The genetic correlation between
males and females was essentially one, whileh2

f = 0.72andh2
m = 0.70. Natural selection was

antagonistic, with estimated selection differentials (on survival from fledging to recruitment
to the breeding population) during the study period of Sm = −0.554 and Sf = 0.273.
Applying Equaiton 34.38b, the expected response in daughters is

Rda = −
√

0.72 · 0.70 · 1
2

· 0.554 +
0.72

2
· 0.273 = −0.098

To illustrate the constraint imposed by the between-sex genetic correlation, the expected re-
sponse for rA = 0.5 is

Rda = −
√

0.72 · 0.70 · 0.5

2
· 0.554 +

0.72

2
· 0.273 = 0,

while if trait expression is entirely uncorrelated between the sexes, then

Rda = h2
f Sf = 0.72 · 0.273 = 0.197.

As this example highlights, the genetic correlation rA imposes a significant constraint on
selection response. However, recall Zeng’s (1988) results (Equation 31.39), that ıprovided
G is non-singular (e.g., rA < 1), if there are different optimal values for the two sexes, the
population will eventually evolve to them (Lande 1980, Slatkin 1984). The constraint imposed
by a high value of rA is that the time for the population to evolve to the joint equilibrium
for the two sexes can be quite considerable. If the environment (and hence potentially the
sex-specific optimal values) are changing, the population might evolve too slowly to track
them.

Yamada and Scheinberg (1976) consider the more general case when the phenotypic
variance differs over sexes. In this case Equation 34.38b becomes

Rso =
h2

m

2
Sfa +

rA

2
hf

σAm

σzf

Smo =
h2

m

2
Sfa +

rA hm hf

2

σzm

σzf

Smo (34.39a)

Rda =
rA

2
hm

σAf

σzm

Sfa +
h2

f

2
Smo =

rA hm hf

2

σzf

σzm

Sfa +
h2

f

2
Smo (34.39b)
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Others versions of the joint response (which are special cases of Equation 34.39) were pro-
posed by Eisen and Legates (1966), Griffing (1966a,b), and Frankham (1968a,b). Expressions
for joint response when maternal effects are present were given by Eisen and Hanrahan
(1972) and Hanrahan and Eisen (1973).

Response with Sex-linkage

Response is the presence of sex-linkage (QTLs on the sex chromosome) can be handled by
using expressions for the covariances between relatives under sex-linkage (e.g., LW Equation
24.5b, LW Table 24.1) to fill out the elements of G in Equation 34.36b. The total response is
the sum of the autosomal and sex-linked responses. While straightforward, this approach
can obscure some of the important implications of sex-linkage. As discussed in LW Chapter
4, if the allele frequencies at a sex-linked locus differ over the sexes, Hardy-Weinberg is
not obtained in a single generation. Rather, male and female allele frequencies show an
oscillatory approach to their eventual equilibrium value. Consider a species where the male
is the heterogametic sex. The male obtains his X chromosome from his mother, while females
receive the same X as in their father and a second X from their mother. If pm and pf are the
initial allele frequencies at a sex-linked locus in males and females, then under random
mating the allele frequencies in both sexes eventually reach an equilibrium value of

p̂ =
2pf + pm

3
,

which follows since 2/3 of the X chromosomes are in females, the rest in males. The frequency
of an X-linked allele in males in generation t is simply its frequency in females in the previous
generation, while the frequency in females is just the average of both sexes, giving

pm(t) = pf (t − 1), and pf (t) =
pm(t − 1) + pf (t − 1)

2
.

The deviation of the female frequency from the equilibrium value p̂ is halved each generation,
with (LW Equation 4.2c)

pf (t) − p̂ =

(
−1

2

)t

( pf − p̂ ) .

Hence, if a single generation of selection changes allele frequencies between the sexes (to p∗f
and p∗m), it takes several generations of random mating for male and female allele frequencies
to approach the new equilibrium value p̂ ∗ = (2p∗f +p∗m)/3. The exact same argument holds if
p∗f and p∗m are now the allele frequencies following any number of generations of selection. If
p∗f 6= p∗m, then upon relaxation of selection, the allele frequencies (and hence trait values) will
change in males and females as they both equilibrate to the new equilibrium frequency p̂ ∗.
Even if the allele frequency difference at any particular locus is small, the cumulative effect
over a modest number of loci can potentially be fairly substantial, resulting in significant
fluctuations in the sex-specific means as the loci approach their new equilibrium values
(Griffing 1965, Lande 1980).

In a similar fashion to selection generating new disequilibrium while recombination is
removing it, under constant selection, the expected change in the means of the two sexes
approaches a constant value (Lande 1980), reflecting the effects of random mating trying
to equilibrate allele frequencies in both sexes with the generation of new changes in allele
frequencies from selection. When selection is stopped, the above comments hold, with po-
tential fluctuations in the means as they approach an equilibrium value, which is set by the
sex-specific allele frequencies at the stoppage of selection.

Because of the pattern of sex-chromosome transmission, selection on the homogametic
sex results in changes in both the homo- and heterogametic sex in the next generation, while
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selection on the heterogametic sex results in only changes in the homogametic sex in the
next generation (and then hence in the heterogametic sex in the following generation). For
example, selection on XY males changes the frequency of X-linked alleles that are passed
onto their daughters. Since they only pass along Y chromosomes to their sons, we must wait
until their grandsons to see the effect of selection on their male progeny. Because of this
transmission pattern, Beilharz (1960) suggested that, when sex linkage is present, focusing
selection on the homogametic sex will result in the largest response. However, Frankham
(1968a) found roughly equal response when selection focused only on male or only on females
for a trait (abdominal bristles) in Drosphila with a strong sex-linked effect (roughly one third
of the additive variance was due to sex-linked genes). However, he also found that response
was largest in the sex that was selected, consistent with the direct response being greater
than the correlated response (Chapter 31). Despite the large fraction of sex-linked variance
associated with this trait, Frankham did not see significant fluctuations in the sex-specific
means following relaxation of selection.

Sexual Dimorphism: A Correlated or Direct Response?

A response in the between-sex differences in the mean of a trait could be a direct response to
differential selection on the two sexes or a correlated response from direct selection on either
a single sex or on the average trait value in both sexes. Thus, it is often useful to transform
our variables of interest from the response in the means of the two sexes to the response in
average trait value

Rµ =
Rm + Rf

2
,

and the response in amount of dimorphism (the difference between the sexes)

Rδ = Rm − Rf .

Following Rogers and Mukherjee (1992), we can also place the joint evolution of these two
traits in a multivariate breeder’s framework. Define

Rδ,µ =

(
Rδ

Rµ

)
=

(
Rm − Rf

(Rm + Rf )/2

)
, and C =

(
1 −1

1/2 1/2

)
(34.40a)

Then for P, G, and R as defined in Equation 34.36, we have

Rδ,µ = CR = CG
[
CT (CT )−1

]
P−1

[
C−1C

]
S

=
[
CGCT

] [
(CT )−1P−1C−1

]
[CS]

= G̃P̃
−1

S̃ (34.40b)

where
G̃ = CGCT , P̃ = CPCT , S̃ = CS (34.40c)

Example 34.11. From Example 34.9, for human stature the genetic covariance matrix for the
traits of sexual dimorphism in stature and average stature becomes

G̃ = CGCT =

(
1 −1

0.5 0.5

) (
0.809 0.789
0.789 0.793

) (
1 0.5

−1 0.5

)
=

(
0.024 0.008
0.008 0.795

)
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If there is only direct selection β on average size, then the correlated response in the amount of
sexual dimorphism isRδ = 0.008 β, while the direct response in average size isRδ = 0.795 β,
a 99-fold difference. A one unit increase in mean size gives a correlated response of a 0.01 unit
increase in the difference between males and females. Rogers and Mukherjee (1992) used this
observation to suggest that it is unlikely the differences in sexual dimorphism across different
human populations are simply a correlated response to direct selection on average size (as
had been suggested in the literature).

Sexual Dimorphism in Size: Rensch’s Rule

Sexual dimorphism is common in body size, and often denoted as SSD, for sexual size
dimorphism. As with any sexually dimorphic trait, SSD could arise from direct selection to
differentially change mean size in the two sexes or it could arise as a correlated response to
selection on a single sex. Given our above discussions, when the genetic correlation for body
size among the sexes is close to one, the evolution of SSD is very slow, regardless of whether
it is a direct or correlated response.

What is intriguing about body size is that some general trends are apparent in animals.
As reviewed by Arak (1988), Abouheif and Fairbairn (1997), and Fairbairn (1997), females
tend to be larger in most invertebrates, amphibians, and reptiles, while males tend to be
larger in many birds and mammals. Further, size dimorphism tends to be more pronounced
among polygamous than monogamous species. There are exceptions to these general pat-
terns within each group. A more consistent observation is Rensch’s Rule (Rensch 1950, 1960):
SSD increases with body size for those species in which males are the larger sex (male bias),
and decreases with body size for those species with female bias. Fairbairn and Preziosi (1994)
and Abouheif and Fairbairn (1997) note that Rensch’s rule can be expressed as an allometry,
relating the size of males (µf ) and females (µm) among a group of related species by

µf = a · µb
m

where Rensch’s rule implies b < 1, and hence a greater evolutionary divergence in male
size, independent of which sex is larger. Using corrections for correlations from shared
ancestry, Abouheif and Fairbairn (1997) found wide support for Rensch’s assertion using a
meta-analysis of 21 different animal taxa.

Much of the discussion on the proximate causes for SSD revolves around sexual selection
in males and/or fecundity selection in females. Sexual selection by male-male competition
may favor larger males (but see Example 34.12), and the strength of sexual selection is
expected to be stronger in polygamous species. For many invertebrates, amphibians, and
reptiles, fecundity is expected to increase with body size. However, in some cases, fecun-
dity can increase with smaller body size. Downhower (1976) suggested the energetics can
determine the nature of selection for reproduction in female birds. If resources must be ac-
cumulate directly before reproduction (for example, in a marginal environment following
a heavy rain), then smaller size may be favored, as smaller females can accumulate the re-
sources more quickly and hence reproduce earlier. Conversely, when females bring resources
(perhaps in the form of fat reserves) with them to a breeding ground, then larger size (and
hence more stored resources) could be favored. Price (1984) observed that smaller females
in Darwin’s finch (Geospiza fortis) do indeed have a breeding advantage, being able to more
quickly respond to favorable changes in the environment.

Example 34.12. Sźekely et al. (2004) presented an interesting analysis of size dimorphism
in shorebirds. This group shows the full range of size dimorphisms, with males ranging from
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60% to 170% of female body mass, and mean body size varying almost 80-fold over the group.
Rensch’s rule exists within this group, and the authors found that two components of sexual
selection, the intensity of selection on males and the agility of the male’s display, account
for the observed pattern. Clutton-Brock (1985) suggested potential size tradeoffs in males
under sexual selection. A larger male would be stronger, but less agile. Hence, if display or
male/male competition is based on strength, larger male would tend to be favored, but if it
is based on agility, smaller males are favored. This is indeed what Sźekely et al. observed,
with male biased species showing less agile courtship behavior, and female-biased species
displaying more agile courtship behavior. There was also an interaction between these two
components, in that for species with low agility courtships, the male bias became increasingly
pronounced with the intensity of sexual competition. However, in species with high degrees
of agility in courtship, the female size bias was equally pronounced under medium and high
levels of sexual competition.

Selection on a Vector of Sexually Dimorphic Traits

Building upon Equation 34.34, now suppose that selection is based on a vectors zfa and zmo

of (potentially different) traits in fathers and mothers to predict response in vectors of traits
zso and zda in sons and daughters. The resulting vectors of responses Rso in the sons and
Rda in the daughters are

(
Rso

Rda

)
=

(
σ(Aso, zfa) σ(Aso, zmo)
σ(Ada, zfa) σ(Ada, zmo)

) (
P−1

zfa
0

0 P−1
zmo

) (
Sfa

Smo

)
(34.41a)

where Aso and Ada are the vectors of breeding values in sons and daughters (respectively),
and Pzx

is the phenotypic covariance matrix for the traits in sex x. As in Chapter 33, these
equations are completely general, allowing for the vector of traits in sons (and/or daughters)
to be different from the traits measured in either parent. The resulting response for the vector
of traits in sons becomes

Rso = σ(Aso, zfa)P−1
zfa

Sfa + σ(Aso, zmo)P
−1
zmo

Smo

= σ(Aso, zfa)βfa + σ(Aso, zmo)βmo (34.41b)

While for daughters, we have

Rda = σ(Ada, zfa)P−1
zfa

Sfa + σ(Ada, zmo)P
−1
zmo

Smo

= σ(Ada, zfa)βfa + σ(Ada, zmo)βmo (34.41c)

For (non-imprinted) autosomal loci, the elements in the covariance matrices σ(Ax, zy) follow
directly from Equation 34.37d. Specially, the ijth element is

σ(Ai,x, zj,y) = σ(Ai,x, Aj,y) =
rAi,x,Aj,y

2
σAi,x

σAj,y
, (34.4ad)

where Ai,x is the breeding value of trait i in an offspring of sex x and Aj,z is the breeding
value of trait j in its parent of sex x.

Example 34.13. Building on Example 34.9, Pearson and Lee (1903) measured span (S) in
addition to height (H) in humans, and Rogers and Mukherjee (1992) used this data to obtained
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(log-transformed) genetic covariance matrices for the vectors

(
zso

zda

)
=




Hso

Sso

Hda

Sda


 , and

(
zfa

zmo

)
=




Hso

Sso

Hda

Sda


 .

The structure the genetic covariance matrix considers all combinations of height and span
among the two sexes of parents and their offspring. In the matrix below, the elementAHda, Sfa

denotes the covariance between the phenotypic value for span in the father with the breeding
value of height in her daughter, with the other entries similarly defined,

G =




AHso, Hfa AHso, Sfa AHso,Hmo AHso, Smo

ASso,Hfa ASso, Sfa ASso,Hmo ASso, Smo

AHda,Hfa AHda, Sfa AHda,Hmo AHda, Smo

ASda, Hfa ASda, Sfa ASda,Hmo ASda, Smo




As in Example 34.9, Rogers and Mukherjee assumed that the cross-sex covariances were
the same, and used the average of the father-daughter and mother-son values, giving the
covariance matrix as

G =




0.809 0.758 0.789 0.723
0.785 1.168 0.771 1.161
0.789 0.771 0.793 0.741
0.723 1.161 0.741 1.191




Written in gradient form, the expected response becomes

R =




RH,so

RS,so

RH,da

RS,da


 = Gβ =




0.809 0.758 0.789 0.723
0.785 1.168 0.771 1.161
0.789 0.771 0.793 0.741
0.723 1.161 0.741 1.191







βH,fa

βS,fa

βH,mo

βS,mo




For example, if there is only selection on the heights of fathers (βH,fa = β), the resulting
vector of direct (male stature) and correlated responses (all other combinations) becomes

R =




RH,so

RS,so

RH,da

RS,da


 = G




β
0
0
0


 = β




0.809
0.785
0.789
0.723




or correlated response of 97%, 97.5%, and 89% of the direct response for the other trait com-
binations.

Equation 34.40 for the joint evolution of average size and sexual dimorphism easily extends
to a vector of traits,

Rδ,µ =

(
Rδ

Rµ

)
=

(
Rm − Rf

(Rm + Rf )/2

)
, with C =

(
I −I

I/2 I/2

)
(34.42)

with Equations 34.40b and 34.40c holding with the above definition of C (Rogers and
Mukherjee 1992).
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Example 34.14. Consider the joint evolution of average trait value and sexual dimorphism
for the traits height and span given in Example 34.13. Here,

C =




1 0 −1 0
0 1 0 −1

1/2 0 1/2 0
0 1/2 0 1/2




Using the G matrix from Example 34.13, Equation 34.40c gives

G̃ = CGCT =




0.024 0.005 0.008 −0.016
0.032 0.037 0.046 −0.012
0.008 0.033 0.795 0.748

−0.002 −0.012 0.755 1.170




If we select on average height only, the resulting vector of responses becomes

Rδ,µ =




Rδ,H

Rδ,S

Rµ,H

Rµ,S


 =




0.024 0.005 0.008 −0.016
0.032 0.037 0.046 −0.012
0.008 0.033 0.795 0.748

−0.002 −0.012 0.755 1.170







0
0
β
0


 = β




0.008
0.046
0.795
0.755




The correlated response in average span (Rµ,S = 0.755β) is 95% of the direct response
in average height (Rµ,H = 0.795β). The correlated response Rδ,H = 0.008β in sexual
dimorphism in height is one percent of the gain in average height, while the correlated response
Rδ,S = 0.046β in span is larger, around six percent of the gain in average height.

SELECTION ON THE ENVIRONMENTAL VARIANCE, σ2
E

The final section of this chapter uses the machinery of multivariate selection to expand our
discussion from Chapter 13 on the consequences of selection when there is heritable variation
in σ2

E . First, we consider the index-selection approach of Mulder et al. (2007) to estimate the
joint vector (Am, Av) of breeding values for the mean and environmental variance. We then
use this method to examine the effects on σ2

E from both direct phenotypic selection on a trait
and from using schemes for direct selection on Av using the variation among half-sib families
from different sires. Finally, we briefly examine changes in the genetic variance-covariance
structure under both the additive and multiplicative models. Given that we rely heavily on
models and results introduced in Chapter 13, the reader wish to review this material before
proceeding.

The approaches considered here are approximations that rely on various assumptions
of normality. Even if the distribution of trait values for a given genotype is indeed normal,
the distribution of trait values in the population is a mixture of normals with potentially
difference variances, and hence not itself strictly normal (e.g., LW Chapter 13). Under the
additive model for environmental variances where E ∼ N(0, σ2

e + AV ), Mulder et al. (2008)
found that the excess kurotsis (relative to a normal) is 3σ2

Av
/σ4

z , so that any variation in Av

generates a slightly leptokurtic distribution, with extreme values more likely than under
a normal. Likewise, the coefficient of skewness is 3σAm,Av

/σ3
z , so that any correlation in

breeding values generates asymmetries in the distribution about the mean (in particular, z
and z2 become correlated). Thus, normality of the population distribution of trait values may
be a reasonable approximation for values near the mean (e.g., within one or two standard
deviations), but it fails when more extreme values are considered. One consequence of this



APPLICATIONS OF INDEX SELECTION 491

is that normality may not be an unreasonable assumption for models with relatively weak
selection, but under very strong selection (say only the upper one percent is saved) this
assumption breaks down.

The Bivariate Mulder-Bijma-Hill Model: Estimation

Building on the additive model (Equation 13.26), Mulder et al. (2007) suggest an approach to
estimate the breeding values (Am, Av) for an individual simply given its phenotypic value
(i.e., not requiring sibs or repeated observations). Their method also generalizes to pedigree
information.

Motivated from index selection theory (and supported by simulations), they suggest
that the phenotypic value z of an individual is a predictor of the breeding value for trait
mean Am, while z2 is a predictor for the breeding value Av for environmental sensitivity.
When the correlation rA between Am and Av is zero, they note (through simulations) that
the regression of Am on the phenotypic value z is very close to linear for most of the range
of z. The regression of Av on z2 is also almost linear. Due to departures from normality,
their simulations showed that both relationship becomes somewhat curvilinear for extreme
values of z. Hence, z−µz roughly predicts Am, while (z−µz)

2−E(z−µz)
2 roughly predicts

Av . If we have only a single observation z for an individual, we can consider the vector

z =

(
z − µz

(z − µz)
2 − E(z − µz)

2

)
=

(
z

z2 − σ2
z

)
when µz = 0 (34.43a)

as an estimator for the vector of breeding values

g =

(
Am

Av

)
. (34.43b)

Specifically, Mulder at al. (2007) suggest the regression

g = GT P−1z (34.43c)

where P = σ(z, z) is the matrix of covariances between the elements of z,

P =

(
σ2(z) σ

(
z, z2 − σ2

z

)

σ
(
z2 − σ2

z , z
)

σ2
(
z2 − σ2

z

)
)

=

(
σ2

z 3σAm,Av

3σAm,Av
2σ4

z + 3σ2
Av

)
, (34.43d)

and G = σ(z,g) is the matrix of covariances between the phenotypic observations z and the
breeding values g,

G = σ(z,g) =

(
σ(z, Am) σ(z,Av)
σ(z2, Am) σ(z2, Av)

)
=

(
σ2

Am
σAm,Av

σAm,Av
σ2

Av

)
(34.43e)

Note that while G is symmetric in this case (GT = G), we use the transpose notation
throughout because we will also consider situations (such as we saw in Chapter 33) where
G is not square, and hence not symmetric. Example 34.15 outlines the derivation of the
elements of P and G.

Example 34.15. The elements in Equations 34.43d and 34.43e follow from the properties of
expectations and assumptions of normality. Recall (under the assumption that µz is zero) that

z = Am+E where Am ∼ N
(
0, σ2

Am

)
and (under the additive model) E ∼ N

(
0, Av + σ2

e

)
.
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As in Chapter 13, we use the roman E to denote expectation and the italic E to denote the
random environmental variable. For x ∼ N(0, σ2), Johnson and Kotz (1970) give the first
four moments of x as

E[x] = E[x3] = 0, E[x2] = σ2, E[ x4] = σ4 − 3σ2

Likewise σ(x, x2) = 0, which directly follows as

σ(x, x2) = E(x3) − E(x)E(x2) = 0 − 0 · σ2
z = 0

These results will prove very useful in computing the elements of P and G.

First consider σ
(
z, z2 − σ2

z

)
, the off-diagonal element in P. Since the covariance of a constant

is zero, we have

σ
(
z, z2 − σ2

z

)
= σ(z, z2) = E(z3) − E(z)E(z2) = E(z3) − 0 = E(z3)

Expanding,

E(z3) = E[(Am + E)3] = E(A3
m + 3A2

mE + 3AmE2 + E3)

= 0 + 3E(A2
mE) + 3E(AmE2) + 0

Further, E(A2
mE) is zero, as A2

m is uncorrelated with E. Finally,

E(AmE2) = E[Am(Av + σ2
e)] = E[AmAv] + σ2

eE[Am] = σAm,Av
+ 0

Putting these results together gives

σ
(
z, z2 − σ2

z

)
= 3σAm,Av

Thus z and z2 are uncorrelated unless there is skew in the distribution, which is generated if
Am and Av are correlated. Similar gymnastics give the other elements on P, see Mulder et al.
(2007) for details.

The elements in G (Equation 34.43e) follow in a similar fashion. For example, G1,1 =
σ(z,Am) = σ(Am + E,Am) = σAm,Am

= σ2(Am), while G2,1 = σ(z2, Am), which
can be expanded as

σ(A2
m + 2AmE + E2, Am) = σ(E2, Am) = σ(Av + σ2

e , Am) = σAv,Am

The Bivariate Mulder-Bijma-Hill Model: Response in σ2
E

Since the mean breeding value of a set of offspring is simply the mean breeding value of
their parents (Chapter 10), from Equation 34.43c, the expected vector of responses R is just

R = µg∗ − µg = GT P−1 (µz∗ − µz) (34.44)

where the superscript ∗ indicates the (within-generation) value after selection, while µg and
µz are the vectors of mean breeding and phenotypic values (respectively).

Consider truncation selection first, where the uppermost fraction p of the population is
saved. Recall (Chapter 10) that when the trait distribution is roughly normal, we can translate
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p into a selection differential S (Equation 10.24) or selection intensity ı (Equation 10.26a).
Rescaling the pre-selection mean to zero gives the population mean following selection as

µz,s = ı σz (34.45a)

Mulder et al. show that the mean value of z2 following selection (again assuming normality)
is

µz2,s = (ı x + 1)σ2
z (34.45b)

where x satisfies Pr(U > x) = p for a unit normal U . Substituting into Equation 34.44 gives
the response in Am, Av following truncation selection as

R =

(
RAm

RAv

)
= GT P−1

(
µz,s − µz

µz2,s − σ2
z − (µz2 − σ2

z)

)

=

(
σ2

Am
σAm,Av

σAm,Av
σ2

Av

) (
σ2

z 3σAm,Av

3σAm,Av
2σ4

z + 3σ2
Av

)−1 (
ıσz

ıx1−pσ
2
z

)
(34.46)

Here RAm
= ∆µz and RAv

= ∆σ2
E . Using the rules of matrix multiplication and writing

σAm,Av
= rAσAm

σAv
(where rA is the genetic correlation), recovers Mulder et al. (2007)

result,

Rm =

(
σ2

Am
(2σ4

z + 3σ2
Av

) − 3r2
Aσ2

Am
σ2

Av

D

)
ı σz + rA

(
(σ2

z − 3σ2
Am

)σAm
σAv

D

)
ı x σ2

z

(34.47)

Rv = rA

(
2σ4

z σAm
σAv

D

)
ı σz +

(
σ2

zσ2
Av

− 3r2
Aσ2

Am
σ2

Av

D

)
ı x σ2

z

where
D = σ2

z(2σ4
z + 3σ2

Av
) − 9r2

Aσ2
Am

σ2
Av

is the determinant of P. Setting rA = 0 and simplifying recovers Equation 13.31. As shown
in Example 34.16, genetic correlations can have a dramatic effect on response in σ2

E under
directional selection on the trait mean.

Example 34.16. To see the effects of genetic correlations between the breeding values for
mean and environmental variance, recall Example 13.8. Here, we considered the response in
mean and variance following a single generation of truncation selection with p = 0.1 for a
trait with h2

m = 0.3, h2
v = 0.03, and σ2

z = 100. In order to apply Equation 34.47, we need to
convert these into variance components. First, σ2

Am
= h2

mσ2
z = 30. From Equation 13.27b,

0.03 = h2
v =

σ2
Av

2σ4
z + 3σ2

Av

=
σ2

Av

20000 + 3σ2
Av

Numerically solving gives σ2
Av

= 659.3. Recall (Example 13.8) that for rA = 0,

RAm
= 0.3 · 1.755 · 10 = 5.265, and RAv

= 0.03 · 1.755 · 1.282 · 100 = 6.750

Applying Equation 34.47 with rA = 0.5 gives

RAm
= 5.326, and RAv

= 16.803,
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while when rA = −0.50,

RAm
= 5.180, and RAv

= −6.124

There is a slight increase (1%) in the response in µz when Am and Av are positively corre-
lated, and a slight decrease (1.6%) when they are negatively correlated, reflecting the indirect
response in µz contributed from selection directly on Av . The effect of genetic correlations
on σ2

E is much more dramatic, more than doubling the response under a positive correlation,
and reducing (rather than increasing) the variance when negative correlated.

Mulder et al. show that the approach used for response under directional selection easily
extends to stabilizing and disruptive selection under the double-truncation model (Figure
13.1). Under double-truncation stabilizing selection where the upper- and lower-most p/2
of the population is culled, assuming z is normally distributed and scaling the mean to zero
gives

µz,s − µz = 0, and µz2,s − µz2 = −
(

1 − p

p
ı ′ x′

)
σ2

z (34.48a)

where ı ′ and x′ are the selection intensity and truncation value corresponding to p′ = (1 −
p)/2. Under the normally assumption, there is no direct selection on the mean, and hence
µz only changes if the breeding values are correlated. In this case, the resulting selection
responses become

Rm = −rA

(
(σ2

z − 3σ2
Am

)σAm
σAv

D

) (
1 − p

p
ı ′ x′

)
σ2

z

(34.48b)

Rv = −
(

σ2
zσ2

Av
− 3r2

Aσ2
Am

σ2
Av

D

) (
1 − p

p
ı ′ x′

)
σ2

z

If rA = 0, these reduce to
Rm = 0, Rv = −h2

v ı ′ x′ σ2
z (34.48c)

When rA 6= 0, distribution is skewed, and as a result, selection on the variance also results
in selection on the mean (see Figure 28.6). Even though the source of skewness is the genetic
correlation between Am and Av , this effect of the skew putting direct selection pressure on
the mean is ınot accounted for by Equation 34.48b, which only considers the change in the
mean as a correlated response of direct selection on the variance, and ignores the additional
direct selection created from skew.

Under double-truncation disruptive selection,

µz,s − µz = 0, and µz2,s − µz2 = ı ′′ x′′ σ2
z (34.49a)

where ı ′′ and x′′ are the selection intensity and truncation value corresponding to p′′ = p/2.
The resulting response equations become

Rm = rA

(
(σ2

z − 3σ2
Am

)σAm
σAv

D

)
(ı ′′ x′′ ) σ2

z

(34.49b)

Rv =

(
σ2

zσ2
Av

− 3r2
Aσ2

Am
σ2

Av

D

)
(ı ′′ x′′ ) σ2

z
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Again if rA = 0, these reduce to

Rm = 0, Rv = h2
v ı ′′ x′′ σ2

z (34.49c)

Example 34.17. Stabilizing selection reduces the additive variance σ2
Am

in the trait by gen-
erating negative disequilibrium (Chapter 13). It also selects for a smaller error variance. What
is the relative importance of these two sources of change? Let’s return to Example 13.3, with
double-truncation stabilizing selection for a trait with σ2

z = 100, h2 = 0.5 and p = 0.5
(the upper-most and lower-most 25% of the population is culled). In this case, after one gen-
eration of selection the additive variance decreases from 50 to 39.27. What is the expected
single-generation reduction in σ2

E? Here p′ = (1 − 1/2)/2 = 0.25, giving x′ = 0.675 and
ı ′ = 0.636. Assuming rA = 0 (no genetic correlation) and a standard heritability value of
h2

v = 0.03, the expected reduction in the environmental variance is

−h2
v ı ′ x′ σ2

z = 0.03 · 0.675 · 0.636 · 100 = 1.29

Hence, after one generation the total reduction in variance is 10.73 + 1.43 = 12.02, 89% of which
is due to reduction in σ2

Av
.

While the example illustrates that the reduction in total phenotypic variance from sta-
bilizing selection is largely due to disequilibrium reducing the additive variance σ2

Am
, rather

that σ2
E , this single-generation result presented is potentially misleading. Most of the reduc-

tion in σ2
Am

occurs in the first few generations, as the disequilibrium quickly approaches an
equilibrium value, which here is −13.3 (Example 13.3). Reduction in σ2

E , however, contin-
ues at (roughly) a linear rate. Hence, after roughly 14 generations, the reduction in σ2

E is
around 14, on pair with the reduction in σ2

Am
. The reduction in σ2

E eventually itself becomes
curvilinear, as the environmental variance must remain positive. At some point the additive
model (being a ılocal approximation) breaks down as µAv

is reduced to the point where there
is a significant probability of individuals with a negative environmental variance. A second
subtle feature, which we address shortly, is that selection also generates disequilibrium in
the additive variance of the environmental sensitivity, so that σ2

Av
itself declines, reducing

h2
v and slowing the response. From Chapter 13, we expect that this decline quickly reaches

an equilibrium value.
The above discussion highlights the subtle effects of genetic heterogeneity in σ2

E on
standard selection-response equations. Under directional or stabilizing selection, negative
disequilibrium is generated, reducing the additive variance in trait value. When there is
no heritable variation in σ2

E , the net result is a decline in the heritability. However, with
heritable variation, σ2

E itself changes. In the absence of a genetic correlation between Am and
Av , directional and disruptive selection increase σ2

E , while stabilizing selection decreases it.
Hence, the reduction in h2 under directional selection may be greater than predicted from
the standard (homogenous variance) infinitesimal model (Chapter 13), as the phenotypic
variance does not decrease as fast as the additive variance (as decreases in σ2

Am
are partly

offset by increases in σ2
E). Conversely, when there is a negative genetic correlation, the error

variance decreases under directional selection, and if this rate of decrease is sufficiently large,
the heritability can actually increase. Similar arguments hold for stabilizing and disruptive
selection. Finally, when the genetic correlation is non-zero, directional selection can give
asymmetric responses. Suppose rA > 0. Up-selecting on the trait also increases σ2

E , while
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down-selecting on the trait decreases σ2
E . Under the infinitesimal model, the reduction in

σ2
Am

in both direction is the same (given equal amounts of selection). However, the change
in σ2

E is not, and as a result the heritabilties differ in the two directions.

Extensions of the Mulder-Bijma-Hill Model: Accounting for Skew

While the use of this bivariate regression is well-motivated from index selection theory
(Chapter 33), the distribution of phenotypic values is skewed when the breeding values are
correlated. Mulder et al. found through simulation studies that incorporating a cubic term
(z−µz)

3 accounts for much of skewness and also some of the non-linearity at extreme values
from excess kurotsis. Higher moments of z did not improve fit in the simulations and hence
were ignored. Based on these observations, they suggest an index of three functions of the
phenotypic value be used to estimate Am and Av , now using

z =




z
z2 − E[ z2 ]
z3 − E[ z3 ]


 =




z
z2 − σ2

z

z3 − 3σAm,Av


 (34.50a)

Again (as throughout this section) we have scaled the mean to be zero to simplify the ex-
pectations for the quadratic and cubic terms. Recall that Chapter 33 examined cases like this
where the elements in the vector of selected traits z did not match the elements in vector g

of desired breeding values. Using this extended z vector, estimation of g again follows from
Equation 34.43c, but now P is a 3 x 3 matrix, with the same 2 x 2 elements as in Equation
34.43d and augmented by

P13 = P31 = 4σ4
z + 2σ2

Av
, P23 = P32 = 27σ2

zσAm,Av

P33 = 15σ6
z + 45σ2

zσ2
Am

σ2
E + 81σ2

Am,Av
+ 45σ2

zσ2
Av

(34.50b)

These new elements are the phenotypic covariances involving z3, and are obtained using the
approach in Example 34.15. Fortunately, the expression for G is much more straightforward,

G = σ(z,g) =




σ2
Am

σAm,Av

σAm,Av
σ2

Av

3σ2
zσ2

Am
3σ2

zσAm,Av


 (34.50c)

The response is just

R = GT P−1
(
µzs

− µz
)

= GT P−1




µz,s − µz

µz2,s − µz2

µz3,s − µz3


 (34.50d)

For directional truncation selection, the first two elements are given by Equations 34.45a/b,
while

µz3,s − µz3 =
(
ı x2 + 2 ı

)
σ3

z (34.51)

as obtained by Mulder et al.

Extensions of the Mulder-Bijma-Hill Model: Sire-Selection

Increased uniformity is often desired by breeders, and the economic advantage of improving
the mean value of a trait may be offset by decreased uniformity through increases in σ2

E .
Indeed, a breeder may be more interested in uniformity than in the trait mean. A breeder
would thus like to have more targeted control over changes in σ2

E over those provided under
individual selection.
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One option might be sire selection, where Am and Av for a specific sire are estimated
from the distribution of their offspring values (see Mulder et al. 2007, 2008 for other schemes).
An estimate of Am is provided from the offspring mean z, while Av can be estimated from
the within-family variance

V arw =
n

n − 1

[
z2 − (z)2

]

where n is the number of measured sibs and z2 is the mean of squared offspring values. For
small n, Mulder et al. found that z 2 also provides additional information on estimating Av

and suggest a regression of gT = (Am, Av) for a sire on the basis of

z =




z − E(z)
(z − µz)

2 − E[(z − µz)
2]

V arw − E(V arw)


 (34.52a)

To compute the expectations in Equation 34.52a, we again rescale the mean to zero (E(z) =
µz = 0). The expected within-family variance is simply the total varianceσ2

z minus the genetic
covariance between sibs, rwσ2

Am
, where rw is the additive-genetic relationship among the

sibs (e.g., 1/4 for half-sibs, 1/2 for full-sibs). Finally, since E( z ) = 0, E( z 2 ) is simply the
variance in z. This has two compoents: the sampling variance for the mean σ2

z/n plus a
correction for the fact that relatives are correlated,

σ2( z ) = σ2

(
1

n

n∑

i=1

zi

)
=

n

n2
σ2

z +
1

n2

∑

i 6=j

σ(zi, zj)

=
σ2

z

n
+

n(n − 1)

n2
σ(zi, zj) =

σ2
z

n
+

n − 1

n
rwσ2

Am

Hence, Equation 34.52a becomes

z =




z
z2 − n−1

[
σ2

z + rw(n − 1)σ2
Am

]

V arw −
[
σ2

z − rwσ2
Am

]


 (34.52b)

As above, we estimate g by GT P−1z, where G = σ(z,g) and P = σ(z, z) with g given by
Equation 34.43b, and z by Equation 34.52a. The corresponding G matrix is

G = rp




σ2
Am

σAm,Av

σAm,Av
/n σ2

Av
/n

σAm,Av
σ2

Av


 (34.53a)

where rp is the relationship of the relative to the individuals that comprise the data in z,
which is 1/2 for the offspring of a sire. The elements of P are more complex,

P11 =
σ2

z + rw(n − 1)σ2
Am

n
, P12 = P21 =

3 + 3rw(n − 1)σ(Am, Av)

n2
(34.53b)

P13 = P31 =
3 + rw(n − 3)σ(Am, Av)

n
, P23 = P32 =

3 + rw(n − 3)σ2
Av

n2
(34.53c)

P22 = 2P 2
11 +

3 + 3rw(n − 1)σ2
Av

n3
(34.53d)
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P33 =
2(σ2

z − rwσ2
Am

)2

n − 1
+

3σ2
Av

n
+ σ2

Av

rw(n2 − 2n + 3)

n(n − 1)
(34.53e)

as obtained by Mulder et al. (2007).

Example 34.18. Assume the variance component values for the hypothetical trait examined
in Example 34.16, namely, σ2

z = 100, σ2
Am

= 30, and σ2
Av

= 660 (where we have rounded
the later for ease of presentation). Further, assume that Av and Am are uncorrelated, so that
σAv,Am

= 0. Under half-sib sire design with n = 50 offspring, each from an unrelated
mother, rw = 1/4 and the resulting G matrix becomes

G =
1

2




30 0
0/50 660/50

0 660


 =




15 0
0 6.6
0 330




while

P =




9.350 0.001 0.060
0.001 175.039 3.103
0.060 3.103 550.669


 and z =




z
z2 − 9.35

V arw − 92.5




As above, rescaling the trait so that the population mean is zero, the predicted vector g =

GT P−1z of breeding values becomes

(
AM

Av

)
=

(
15 0 0
0 6.6 330

) 


9.350 0.001 0.060
0.001 175.039 3.103
0.060 3.103 550.669




−1 


z
z2 − 9.35

V arw − 92.5




=

(
1.604 0.000 0.000
−0.004 0.027 0.599

) 


z
z2 − 9.35

V arw − 92.5




For this example, the estimated breeding values for a sire are

Âm = 1.604 · z
Âv = −0.004 · z + 0.027 · (z2 − 9.35) + 0.599 · (V arw − 92.5)

= −0.004 · z + 0.027 · z2 + 0.599 · V arw − 55.660

Only the progeny mean contributes to the estimate Am for the sire, while the bulk of the
information for estimating Av comes from the within-family variance, with the squared mean
and mean making only very minor contributions.

As this example illustrates, family-based selection offers a higher level of control over
changes in σ2

E than does individual (i.e., phenotypic) selection. Phenotypic directional se-
lection can generate potentially undesirable changes in Av (and hence σ2

E), even when Am

and Av are uncorrelated. When individuals are selected the basis of the mean performance
of their offspring (as opposed to their own trait value), there is only weak selection on Av

(provided Am and Av are uncorrelated). Further, the strength of selection on Av quickly
diminishes as the number of sibs per sire increases (Zhang and Hill 2004, Mulder et al. 2007).
Family-based selection is, however, not a panacea, as Av can still change dramatically as a
correlated response when rA 6= 0.
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In addition to allowing one to avoid selection on σ2
E , family-based schemes allow us to

directly target it as well. Selection for increased uniformity can be attempted by choosing
sires with smaller within-family variances. The effectiveness of this scheme depends, on part,
on how close to reality the infinitesimal model is for the particular trait of interest. Under the
infinitesimal, all sires have the same genetic segregation variance (Chapters 13, 24). When
there are segregating genes of even modest effect, selection on the within-family variance
selects for sires with lower amounts of heterozygosity for QTLs influencing the trait, as such
individuals have lower segregation variances and hence lower within-family variances. This
results in an increase in the amount of inbreeding. Caution is therefore in order when using a
sire-selection scheme to reduce the environmental variance. If the selection for more inbred
individuals is significant, this may actually ıinflate the environmental variance, given the
empirical association between environmental sensitivity and amount of inbreeding see in
some traits (Chapter 13).

Index Selection For Joint Changes in the Mean and Environmental Variance

The index selection machinery developed in Chapter 33 can be employed when the breeding
objective is to improve both the mean and uniformity of a trait. Suppose the goal is to
maximize the response of some linear combination H of the traits,

H = µz + aσ2
z (34.54a)

where a is the relative weight on the variance. Under the additive variance model (Equation
13.26b), changes in both trait mean and variance are linear functions of changes in breeding
values, so that this breeding objective is equivalent to

H = Am + aAv = aT g (34.54b)

where aT = (1, a). Technically, Equation 34.54b is an approximation of Equation 34.54a,
as it ignores the change in σ2

z from any changes in σ2
Am

from disequilibrium generated by
selection. If desired, these can also be incorporated using the machinery developed here and
in Chapter 13.

To maximize response in H = aT g, the Smith-Hazel index result (Equation 33.18a)

states that selection should be on the index I = bT z of trait values z (such as the sire
family information, Equation 34.52a) with the weights given by b = P−1GT a. This gives
the phenotypic index upon which to select as

Is = aT GP−1z (34.54c)

Example 34.19. Consider the trait whose variance components were given in Example 34.16,
σ2

z = 100, σ2
Am

= 30, and σ2
Av

= 660. Suppose we wish to maximize response in the index

H = µz − σ2
z

so that we want to increase both the mean and uniformity. We use a sire selection design with
n = 50 offspring/sire. With this number of sibs/sire, the additional information provided
from z 2 is small, so we construct an index based on just the family mean z and variance V arw ,

z =

(
z

V arw

)
, a =

(
1
−1

)
, G = rp

(
σ2

Am
σAm,Av

σAm,Av
σ2

Av

)
=

(
15 0
0 165

)
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where the correction term σ2
z − rwσ2

Am
on V arw is ignored in z, because it enters as the same

constant for all individuals and does not influence the relative ranking of the index values for
different individuals. Finally, P is now 2 x 2 with elements

P =

(
P11 P13

P31 P33

)
=

(
9.350 0.060
0.060 550.669

)

where the Pij are given by Equation 34.53. The Smith-Hazel weights for this index are

b = P−1GT a =

(
9.350 0.060
0.060 550.669

)−1 (
15 0
0 165

) (
1
−1

)
=

(
1.61
−0.30

)

Since -0.3/1.61 = -0.19, we can rewrite the optimal index on which to selection as I = z −
0.19 · V arw .

The machinery of index selection can be used to obtain quantities of potential interest, such
as σ2

I , σ2
AI

, or h2
I (Equation 33.2). We might also be interested in the response in the in-

dex (Equation 33.19) or in its individual components (Equation 33.20). Finally, one might
wish a restricted selection index, changing the mean while restricting change in Av to near
zero, or vice-versa. The Morely index (Equation 33.36c), which is the two-trait version of the
Kempthorne-Nordskog index (Equation 33.36b), can be used for this purpose.

While a powerful set of results are available to us for linear indices, in many settings
the merit function H whose response we seek to optimize is nonlinear. This naturally arises
when the multiplicative (Equation 13.24) or exponential (Equation 13.25) model is used for
variances. It also arises if the profit (merit) function we seek to maximize is quadratic or
some other nonlinear function. One such example is offered by Mulder et al. (2008),

H = c1(z − θ)2 + c2 = (z − θ)2 + c (34.55)

where θ is the optimal trait value, and c1 and c2 are profit weights (with c = c2/c1). Here
c2 is the profit at the optimal, and c1 measures the penalty for departures from the optimal.
Nonlinear indices are very delicate to work with, as optimizing the merit in the parents
ıdoes not optimize merit in their offspring (Chapter 33). One can linearize a nonlinear index
by using a first-order Taylor series (e.g., Equations 33.43-33.44), but the resulting weight
are not constants and must be continually updated. Other machinery for nonlinear indices
introduced in Chapter 33 can also be applied. For example, an optimal linear index for a
nonlinear merit function can be constructed given the vector R of desired total response
(Equation 33.35a).

Example 34.20. Following Mulder et al. (2008), consider the quadratic merit function given
by Equation 34.55. Since E(z2) = σ2

z + µ2
z , the expected profit E(H) for a population is

E(H) = E
[
(z − θ)2 + c

]
= E(z2) − 2θE(z) + θ2 + c = σ2

z + µ2
z − 2θµz + θ2 + c

From Equation 33.44, the linearized index values are given as the derivatives of E(H) with
respect to µz and σ2

z , giving the merit (profit) weights for the linearized profit function as

a1 =
∂E(H)

∂µz
= 2(µz − θ), a2 =

∂E(H)

∂σ2
z

= 1
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The resulting vector b = P−1GT a of optimal weights, where a = (a1, a2)
T , changes

depending on the population mean. When µz = θ, a1 = 0 and all of the weight is placed on
the variance.

Changes in the Genetic Variances and Covariances for Am, Av

Until now, we have been ignoring any changes in the genetic covariances, treating them as
unchanging under selection. Of course, as we say in Chapter 13, selection on the mean value
of Av also changes its variance. Under the infinitesimal model, all changes in σ2

Am
, σ2

Av
, and

σAm,Av
are caused by linkage disequilibrium, and the machinery of Chapter 31 (Equations

31.1-31.4) can be used to following their dynamics. Before selection, the genetic covariance
can be written as σij = σij(0) + dij , the linkage-equilibrium value σij(0) plus the current
disequilibrium dij . Selection generates additional equilibrium d∗ij so that the new covariance
in the population of chosen parents becomes

σ∗
ij = σij + d∗ij = σij(0) + dij + d∗ij

With unlinked loci, offspring retain only half the disequilibrium of their parents (Chapters
13, 24), giving the covariance among the offspring as

σ′
ij = σij(0) +

dij + d∗ij
2

Given our results from Chapter 13, we expect that directional and stabilizing selection on Av

generates negative d, reducing its genetic variance and heritability. Disruptive selection, on
the other hand, generates positive d, increasing the genetic variance. Under the infinitesimal
model, when selection stops, the mean value of Av remains unchanged, but the disequilib-
rium decays and σ2

Av
returns to its initial value. What is less clear are the dynamics of the

genetic covariance, and what role (if any) this plays in the dynamics of σ2
Av

. Again, under
the infinitesimal, any changes in covariances are due to disequilibrium, which decays away
upon relaxation of selection. The joint dynamics of σ2

Am
, σ2

Av
, and σ2

Am,Av
under the infinites-

imal model have been examined by Gavrilets and Hastings (1994) and Hill and Zhang (2004,
2005), and we consider their results here. As emphasized in Chapter 31, when the infinitesi-
mal model does not hold, genetic variances, and in particular covariances, can be especially
fragile, with the later even changing sign. Hence, the infinitesimal results are best thought
of as an approximation to the short-term response. This is also in keeping with the notion of
the additive model for heritable variance in σ2

E being a local model that breaks down after
sufficient genetic change.

Gavrilets and Hastings (1994) considered weak quadratic selection under the multi-
plicative model (Equation 13.24) for the environmental variance, using the fitness function

W = 1 − s(z − θ)2 (34.56a)

which accommodates both weak stabilizing (s > 0) and disruptive (s < 0) selection. Equation
13.29b frames this fitness function in terms of selection on the vector of breeding values. If
we rescale the trait for simplicity such that θ = 0 and σ2

e = 1, then Equation 13.29b simplifies
to

W = 1 − s(A2
m + A2

v) (34.56b)

Under stabilizing selection, both µAm
and µAv

are driven towards zero, and the remainder
of our analysis assumes both of these means are zero, and hence no directional selection. At
this value the mean population fitness becomes

W = 1 − s(σ2
Am

+ σ2
Av

), (34.56c)
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From Equation 13.24c, the mean environmental variance becomes

σ2
E = (µ2

Av
+ σ2

Av
)σ2

e = 02 + σ2
Av

· 1 = σ2
Av

, (34.57a)

giving the average total variance as the sum of the two additive variances,

σ2
z = σ2

Am
+ σ2

E = σ2
Am

+ σ2
Av

. (34.57b)

Gavrilets and Hastings (1994) use Equation 31.3 to obtain the within-generation change d∗

generated by selection under this model as

d∗Am
= − 2s

W

(
σ4

Am
+ σ2

Am,Av

)
(34.58a)

d∗
Av

= − 2s

W

(
σ4

Av
+ σ2

Am,Av

)
(34.58b)

d∗
Am,Av

= − 2s

W
σAm,Av

(
σ2

Am
+ σ2

Av

)
(34.58c)

For stabilizing selection (s > 0), negative disequilibrium is generated and both additive
variances decrease. Note that since the genetic covariance enters into Equations 34.58a and b
as a squared term, any covariance increases the amount of negative disequilibrium generated
for the additive variances. When the genetic covariance is initially zero, it remains so. If it is
initially non-zero, selection reduces its absolute value.

Hill and Zhang (2004, errata 2005) develop similar expressions for the disequilibrium
created under truncation selection when the additive model (Equation 13.26) is used for σ2

E .
The resulting expressions are considerably more complex,

d∗
Am

= −ı

(
(ı − x)

[
σ2

Am

σz
+ x

σAm,Av

2σ2
z

]2

+
σ2

Am
σAm,Av

σ3
z

+ 3 x
σ2

Am,Av

4σ4
z

)
(34.59a)

d∗
Av

= −ı

(
(ı − x)

[
σAm,Av

σz
+ x

σ2
Av

2σ2
z

]2

+
σ2

Av
σAm,Av

σ3
z

+ 3 x
σ4

Av

4σ4
z

)
(34.59b)

d∗Am,Av
= −ı

(
(ı − x)

[
σ2

Am

σz
+ x

σAm,Av

2σ2
z

] [
σAm,Av

σz
+ x

σ2
Av

2σ2
z

]

+
σ2

Am
σ2

Av
+ σAm,Av

2σ3
z

+ 3x
σAm,Av

σ2
Av

4σ4
z

)
(34.59c)

where ı and x are as in Equation 34.45. Inspection of these equations suggests that most d
generated is negative, and this was borne out in the limited amount of simulations presented
by Hill and Zhang. In particular, the disequilibrium associated with σAm,Av

tends to be
negative, even when it is initially zero, resulting in the covariance becoming more negative
following selection. One way to conceptualize this negative correlation in breeding values is
to recall that selection tends to make fitness components negatively correlated. Under modest
selection (the fraction saved p < 0.5), larger values of both Am and Av improve fitness, and
hence these tend to become negatively associated. Conversely, recall from Figure 13.5 that
when p > 0.5, ılower values of Av improve fitness under directional truncation selection,
and this may lead to a positive association between Am and Av . Indeed for sufficiently weak
selection (p > 0.8), some positive d can be generated for σAm,Av

. In many cases, the change in
genetic covariance is modest and have only a minor influence on the dynamics of the mean
and covariance, but the full dynamics of Equation 34.59 remain unexplored.
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What are the consequences of these changes in variances and covariances? When the
decline in phenotypic variance is entirely due to the decline in the additive variance (i.e.,
declines in d), the heritability decreases and the rate of response in the mean slows. Fur-
ther, d, and hence the genetic variance and h2, rather quickly reach an equilibrium value
(Chapter 13). However, when there is heritable variation in σ2

E , changes in µAv
also change

the phenotypic variance, and the change in heritability becomes somewhat unpredictable. It
may decline faster than expected, slower that expected, or even increase, depending on the
rate (and direction) of change in µAm

. Another consequence of changes in σ2
z being due to

changes in µAv
is that an equilibrium value for h2 many not be reached, as the phenotypic

variance continues to change with response in µAv
. Eventually, the additive model breaks

down when the change in µAv
is sufficiently large to generate negative values of σ2

E .



504 CHAPTER 38

Literature Cited

Abouheif, E., and D. J. Fairbairn. 1997. A comparative analysis of allometry for sexual size dimorphism:

assessing Rensch’s rule. Amer. Nat. 149: 540–562. [34]

Arak, A. 1988. Sexual dimorphism in body size: a model and a test. Evolution 42: 820–825. [34]

Avalos, E. and W. G. Hill. 1981. An experimental check of an index combining individual and family

measurements. Anim. Prod. 33: 1–5 [34]

Beilharz, R. G. 1963. On the possibility that sex chromosomes have a greater effect than autosomes on

inheritance. J. Genet. 58: 441–449. [34]

Berge, S. 1934. Om spredningen til et gjennomsnittstall av lexiske rekker. Meld. Norges Landbrukshøgskole

14: 787–804. [34]

Bohidar, N. R. 1964. Derivation and estimation of variance and covariance components associated with

covariance between relatives under sex-linked transmission. Biometrics 20: 505–521. [34]

Bouchez, A., and B. Goffinet. 1990. Evaluation of selection index: application to the choice of an indirect

multitrait selection index for soybean breeding. Theor. Appl. Genet. 79: 261–267. [34]

Burrows, P. M. 1984. Inbreeding under selection from unrelated families. Biometrics 40: 357–366. [34]

Buxton, D. R., J. S. Hornstein, and G. C. Marten. 1987. Genetic variation for forage quality of alfalfa

stems. Can. J. Plant Sci. 67: 1057–1067. [34]

Campo, J. L. and M. Rodrı́guez. 1990. Relative efficiency of selection methods to improve a ratio of two

traits in Tribolium. Theor. Appl. Genet. 80: 343–348. [34]

Campo, J. L. and P. Tagarro. 1977. Comparisons of three selection methods for pupal weight of Tribolium

castaneum. Ann. Genet. Sel. Anim. 9: 259–268. [34]

Clutton-Brock, T. H. 1985. Size, sexual dimorphism, and polygyny in primates. in W. L. Jungers (ed)

Size and scaling in primate biology, pp. 51–60. Plenum, New York. [34]

Cunningham, E. P. 1969. The relative efficiencies of selection indexes. Acta Agric. Scand. 19: 45–48. [34]

Dai, F., and D. E. Weeks. 2006. Ordered genotypes: an extended ITO method and a general formula

for genetic covariance. Amer. J. Hum. Genet. 78: 1035–1045. [34]

Darwin, C. 1871. The descent of man and selection in relation to sex. Murray, London [34]

Downhower, J. F. 1976. Darwin’s finches and the evolution of sexual dimorphism in body size. Nature

263: 558–563. [34]

Ehdaie, R., and J. G. Waines. 1993. Variation in water-use efficiency and its components in wheat. I.

well-water pot experiment. Crop Sci. 33: 294–299. [34]

Eisen, E. J., and J. E. Legates. 1966. Genotype-sex interaction and the genetic correlation between the

sexes for body weight in Mus musculus. Genetics 54: 611–623. [34]

Eisen, E. J., and J. P. Hanrahan. 1972. Selection for sexual dimorphism in body weight in mice. Aust. J.

Biol. Sci. 25: 1015–1024. [34]

Fairbairn, D. J. 1997. Allometry for sexual size dimorphism: Pattern and process in the coevolution of

body size in males and females. Ann. Rev. Ecol. Syst. 28: 659–687. [34]

Fairbairn, D. J., and R. Preziosi. 1994. Sexual selection and the evolution of allometry for sexual size

dimorphism in the water strider Aquarius remigis. Amer. Natl. 144: 101–118. [34]

Famula, T. R. 1990. The equivalence of two linear methods for the improvement of traits expressed as

ratios. Theor. Appl. Genet. 79: 853–856. [34]

Fisher, R. A. 1918. The correlation between relatives on the supposition of Mendelian inheritance. Trans.

Royal Soc. Edinburgh 52: 399–433. [34]

Frankham, R. 1968a. Sex and selection for a quantitative character in Drosophila. I. Single-sex selection.

Aust. J. Biol. Sci. 21: 1215–1223. [23]



APPLICATIONS OF INDEX SELECTION 505

Frankham, R. 1968b. Sex and selection for a quantitative character in Drosophila. I. The sex dimorphism.

Aust. J. Biol. Sci. 21: 1225-1237. [23]

Frankham, R. 1982. Contribution of Drosophila research to quantitative genetics and animal breeding.

Proc. 2nd World Congress on Genetics Applied to Livestock Production V: 43-56. [34]

Gallais, A. 1984. Use of indirect selection in plant breeding. In W. Lange, A. C. Zeven, and N. G.

Hogenboom (eds.), Efficiency in plant breeding, pp. 45–60. Pudoc, Wageningen. [34]

Garwood, V. A., and P. C. Lowe. 1981. A comparison of combination and family selection in chickens.

Poulty Sci. 60: 285–288. [34]

Gjedrem, T. 1967a. Selection indexes compared with single trait selection. 1. The efficiency of including

correlated traits. Acta Agric. Scad. 17: 263–268. [34]

Gjedrem, T. 1967b. Selection indexes compared with single trait selection. 2. The efficiency of selection

for a trait when included in an index. Acta Agric. Scad. 17: 269–275. [34]

Griffing, B. 1965. Influence of sex on selection. I. Contribution of sex-linked genes. Aust. J. Biol. Sci. 18:

1157–1170. [34]

Griffing, B. 1966a. Influence of sex on selection. II. Contribution of autosomal genotypes having dif-

ferent values in the two sexes. Aust. J. Biol. Sci. 19: 593–606. [34]

Griffing, B. 1966b. Influence of sex on selection. III. Joint contribution of sex-linked and autosomal

genes. Aust. J. Biol. Sci. 19: 775–793. [34]

Grossman, M., and E. J. Eisen. 1989. Inbreeding, coancestry, and covariance between relatives for

X-chromosomal loci. J. Heredity 80: 137–142. [34]

Gunsett, F. C. 1984. Linear index selection to improve traits defined as ratio. J. Anim. Sci. 59: 1185–1193.

[34]

Gunsett, F. C. 1986. Problems associated with selection for traits defined as a ratio of two component

traits. In Proc. 3rd. World Congress of Genetics Applied to Livestock Production, volume 11, pp. 437–442.

University of Nebraska, Lincoln. [34]

Gunsett, F. C. 1987. Merit of utilizing the heritability of a ratio to predict the genetic change of a ratio.

J. Anim. Sci. 65: 936–942. [34]

Hanrahan, J. P., and E. J. Esen. 1973. Sexual dimorphism and direct and maternal genetic effects on

body weight in mice. Theor. Appl. Genet. 43: 39–45. [34]

Hazel, L. N. 1943. The genetic basis for constructing selection indexes. Genetics 28: 476–490. [34]

Hedrick, A. V., and E. J. Temeles. 1989. The evolution of sexual dimorphism in animals: Hypotheses

and tests. Trends Ecol. Evol. 4: 136–138. [34]

Hill, W. G. 1976. Order statistics of correlated variables and implications in genetic selection pro-

grammes. Biometrics 32: 889–902. [34]

Hill, W. G. 1977. Order statistics of correlated variables and implications in genetic selection pro-

grammes. II. Response to selection Biometrics 33: 703–712. [34]

Hill, W. G., and X.-S. Zhang. 2004. Effects of phenotypic variability of directional selection arising

through genetic differences in residual variability. Gen. Res. Camb. 83: 121–132. [34]

Hill, W. G., and X.-S. Zhang. 2005. Erratum. Effects of phenotypic variability of directional selection

arising through genetic differences in residual variability. Gen. Res. Camb. 86. 160. [34]
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