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Theory of Index Selection
With pit bull terriers it might be deemed that the breed should maintain a specific ratio

of ugliness to vicious temperament, and a constrained index could incorporate this requirement
along with any other breeding objectives deemed appropriate — Gibson and Kennedy (1990)

Version 26 June 2014

While Chapters 28 and 29 present the basic theory for multivariate response, how, in practice,
does one perform artificial selection on multiple traits? One of the commonest schemes
is to construct some sort of index, wherein the investigator assigns (either explicitly or
implicitly) a weighting scheme to each trait, creating a univariate character that becomes
the target of selection. For example, if z is the vector of character values measured in an

individual, the most common index is a linear combination
∑

bizi = bT z and most of our
discussion focuses on such linear indices. We start with a general review of the theory of
selection on a linear index and then cover in great detail the Smith-Hazel index (the index
giving the largest expected response in a specified linear combination of characters) and
its extensions . We also discuss a number of other indices for different purposes, such as
restricted (constraining changes in specified traits) and desired-gains (specifying how the
components, rather than the index, will evolve) indices. We conclude our discussion of
index selection by considering how to best handle nonlinear indices. We finish the chapter
by examining the other approach for selecting on multiple traits, namely choosing traits
sequentially. Tandem selection, focusing on a single trait each generation (where the focal
trait changes over generations) is one such approach, while the other is to select different
traits at different times within the life span of single individuals (independent culling and
multistage index selection).

There is a huge literature on the theory and application of selection indices. General
reviews can be found in Turner and Young (1969), Lin (1978), Namkoong (1979), Bulmer
(1980), James (1982), Baker (1986), and Van Vleck (1993), while specific applications to plant
breeding (and other organisms with asexual reproduction and/or selfing) can be found in
Wricke and Weber (1986), Baker (1986), and Bernardo (2002).

GENERAL THEORY OF SELECTION ON A LINEAR INDEX

Consider selection on the univariate character defined by the linear index

I =
∑

bjzj = bT z (33.1)

where z is the vector of phenotypic values in an individual and b a vector of weights. Even
though it has multivariate components, I is just a univariate trait, so all previous results from
Chapters 10-15 apply to the index. For example, if we knew its heritability, the breeder’s
equation predicts its selection response (Chapter 10). Likewise, if we knew its genetic and
phenotypic variance, then we can also predict its change in variance (assuming the infinites-
imal model).

Genetic Variance, Heritability, and Response of an Index

400
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What are the variances and the heritability associated with an index? Let P and G denote the
phenotypic and additive-genetic covariance matrices for the vector z of component traits.
From standard results on the variance of a vector (LW Chapter 8), the phenotypic variance
of I is just

σ2
I = σ(bT z,bT z) = bT σ(z, z)b = bT Pb (33.2a)

while its additive genetic variance is given by

σ2
AI

= σA(bT z,bT z) = bT σA(z, z)b = bT Gb (33.2b)

Hence, the heritability of I is

h2
I =

σ2
AI

σ2
I

=
bT Gb

bT Pb
(33.2c)

as obtained by Lin and Allaire (1977) and Nordskog (1978). If phenotypes z and breeding
values g are jointly multivariate normal, linear combinations of each is also normally dis-
tributed (LW Chapter 8) and hence the univariate breeders’ equation holds for response in I .
The selection-intensity version of the breeder’s equation (Equation 10.6b) gives the expected
response in the index as

RI = ı h2
I σI = ı · bT Gb

bT Pb

√
bT Pb = ı · bT Gb√

bT Pb
(33.3)

Example 33.1. A convenient dataset we use through this chapter is that of Brim et al. (1959),
who estimated the genetic and phenotypic covariances for several characters in soybeans.
Consider three of these traits, z1 = oil content, z2 = protein content, and z3 = yield. For
these characters, Brim et al. estimated the covariance matrices as

P =




287.5 477.4 1266
477.4 935 2303
1266 2303 5951


 , G =




128.7 160.6 492.5
160.6 254.6 707.7
492.5 707.7 2103




Consider two indices, I1 which equally weights all three traits, and I2 which assigns four
times the weight to yield as the other triats. The resulting vectors of weight are

b1 =




1
1
1


 and b2 =




1
1
4




The genetic variance for index one is

σ2
A(I1) = bT

1 Gb1 = ( 1 1 1 )




128.7 160.6 492.5
160.6 254.6 707.7
492.5 707.7 2103







1
1
1


 = 5207.9

This index has phenotypic variance σ2(I1) = bT
1 Pb1 = 15266.3, giving a heritability of

h2(I1) = 5207.9/15266.3 = 0.34. Likewise, σ2(I2) = 125945.3 , σ2
A(I2) = 43954.1, and

h2(I2) = 0.35.
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Suppose truncation selection is practiced where we save the upper 5% of the population based
on their index scores. Example 10.10 shows that, provided the index values follow a normal
distribution in a large population, ı = 2.06. Equation 33.3 gives the response for index one as

R(I1) = ı · bT
1 Gb1√
bT

1 Pb1

= 2.06
5207.9√
15266.3

= 86.8

Similarly, the response for index 2 is found to be R(I2) = 255.1.

Response in the Individual Components of the Index

How does selection on this index change the vector of underlying character means? Under
the conditions of the multivariate breeder’s equation, R = GP−1S, so our task is to obtain the
vector of directional selection differentials S given selection on I . Consider Sj , the differential
associated with character j. First note that the correlation between relative fitness w and the
value of character j can be expressed as ρzj ,w = ρzj ,I ·ρI,w. Expressed in terms of covariances,

σ(zj , w)

σw σzj

=

(
σ(zj , I)

σI σzj

) (
σ(I, w)

σI σw

)
(33.4a)

Recalling the Price-Robertson identity (Equation 10.7), σ(zj , w) = Sj and likewise σ(I, w) =
SI = ı σI where ı is the selection intensity on the index. Solving for σ(zj , w) and using these
identities gives

Sj = σ(zj , w) =
σ(zj , I) · σ(I, w)

σ2
I

= ı · σ(zj , I)

σI
(33.4b)

Finally, note that σ(zj , I) = σ(zj ,
∑

k bkzk) =
∑

k bkPjk, where Pij is the ij-th element of the
phenotypic covariance matrix P. Hence, the jth selection differential is

Sj =

(
ı

σI

)
·
∑

k

bkPjk, (33.4c)

giving the vector of selection differential as

S =

(
ı

σI

)
· Pb (33.4d)

The vector of responses them becomes

R = GP−1S =

(
ı

σI

)
· Gb = ı · Gb√

bT Pb
(33.5)

Equation 33.5 shows that the vector of responses R in the components of the index is un-
changed if the index weights are rescaled from b to c·b as the constant c cancels out. However
the response in the univariate index I changes as b is rescaled. From Equation 33.3 the re-
sponse in the index using weights c ·b is c times the response expected when the index uses
b.
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Example 33.2. What are the responses in the component traits of index one from Example
33.1? Here

Gb =




128.7 160.6 492.5
160.6 254.6 707.7
492.5 707.7 2103







1
1
1


 =




781.8
1122.9
3303.3




Applying Equation 33.5 gives the vector of responses in the index components as

R =
ı√

bT Pb
· Gb =

2.06√
15266.3




781.8
1122.9
3303.3


 =




13.0
18.7
55.1




giving the response in I1 is 1 · 13.0 + 1 · 18.7 + 1 · 55.1 = 86.8, as found in Example 33.1.

A related problem is the correlated response in the some other index J = aT z =
∑

ajzj

when selection occurs on I = bT z. Applying Equation 33.5, the expected correlated response
is

RJ = aT (µ + R) − aT µ = aT R = ı · aT Gb√
bT Pb

(33.6)

The Retrospective Index

While indices have been presented as the objects of selection, often an investigator observes
a vector of selection differentials S or vector of responses R and wishes to obtain the linear
index that would give the same observed S and/or R. This approach of constructing a
retrospective index (or index in retrospect) was first suggested by Dickerson et al. (1954).
If the vector of selection differentials S is observed, Equation 33.4d suggests the weights for
the retrospective index as

b = P−1S (33.7)

(given our previous remarks we ignore the constant ı/σI ). Even when artificial selection
occurs using a known index, a retrospective index constructed from the effective selection
differentials (which measure fertility differences in addition to artificial selection, see Equa-
tion 10.8) provides the investigator with a measure of how natural selection interferes with
the desired selection scheme. Also note that Equation 33.7 is the same as the selection gradient
β (Chapter 29). Equation 33.7 allows us to move between the vector b of index weights (the
actual amounts of selection) and S, the observed within-generation change in the component
trait means.

An important application of Equation 33.7 arises when using multivariate response data
to estimated realized genetic covariances (Equation 30.31). While a target index may have
been used, estimates of genetic parameters should be based on the weights provided by the
retrospective index (obtained given the observed S), rather than relying on the index weights
used in the initial selection (Berger and Harvey 1975, Berger 1977, Gunsett et al. 1982). von
Butler et al. (1986) used a retrospective index to show that the actual weights on traits in a
mouse experiment estimated from the index were rather different than the values initially
selected, due to infertility and differences in offspring number among the selected parents.

Alternatively, the investigator may not know the within-generation change in S but can
observe the between-generation change R. In this case Equation 33.5 (again ignoring the
constant ı/σI ) suggests the retrospective index

b = G−1R (33.8a)
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Also note that Equation 33.8a corresponds to the realized selection gradient (Chapter 30).
Finally, there may be interest in S directly. Multiplying each side of the multivariate breeder’s
equation R = GP−1S first by G−1 and then P recovers

S = PG−1R (33.8b)

Humphreys (1995) presents an interesting use of a retrospective index looking at trait re-
sponse in a population of ryegrass subjected to both artificial and natural selection.

The Selection and Response Indices May Contain Different Traits

In most applications of multivariate selection, G is symmetric and hence square, as our focus
is the response for those traits we selected on (R and S refer to the same traits). However,
in index selection there are often times where the traits we select on and the traits whose
response is of interest do not fully overlap (e.g., Example 33.6 below). In such cases, the
multivariate breeder’s equation still holds, but now with a more general definition of G.
Suppose we select on n traits (the S vector), but are interested in the response of k traits (the
R vector). One example is that k < n, so all of the response traits are found in S, but some
traits in S are not seen in R, as we are not interested in their response. Another example is
where there are traits in R that do not appear in S. For both cases, we still have R = GP−1S.
As before, P is the n × n phenotypic covariance matrix for the traits under selection and S

is their vector of selection differentials. Note that the dimensions of P−1S are n × 1, while
the dimensions of R is k × 1. Thus, G must be of dimension k × n for the matrix products
to conform (LW Chapter 8). [As an aside, a quick check to make sure a matrix product is
comformable is an excellent safeguard against errors. For example, is there an error in (say)
the matrix product ABC? Recalling that the appropriate dimension of the rows and columns
must match for multiplication to be defined, we can write this product as Ai×jBj×kCk×l

which places constrains on the dimensions of B, given those of A and C.]
Returning to our expanded definition of G (which has our standard defination as a

spcial case when teh same traits are in R and S), we can write G = σ(g, z), where the ijth
element (row i and column j) of G is the covariance between the breeding value gi of the
response trait i and the phenotypic value zj of selection trait j. Thus, G need not be square.
Further, even if k = n, if some of the traits in the selection differential and response vector
differ, then G is not symmetric, as Gij = σ(gi, zj) 6= Gji = σ(gj , zi) unless the response and
differential vectors index exactly the same traits (See Example 33.6). Thus, when G is not
square, G−1 is not defined. Further, when G is not symmetric, G 6= GT , and need to carefully
account for when G is transposed (when it is symmetric, we ignore this distinction).

For the general case of a nonsymmetric G, how do we estimate a retrospective index
for S since G−1 may not exist, and thus Equation 33.8b is not applicable. To find a unique
solution, we minimized the selection intensity required for the observed response, which
gives

S = GT
(
GP−1GT

)
−1

R (33.9)

as obtained by Xu and Muir (1991). As expected, this collapses to PG−1R when G is sym-
metric. Example 33.3 gives the derviation. While a bit involved, this introduces the important
tool of Lagrange multipliers (Appendix 5) which appear several times in this chaper.

Example 33.3. We follow Xu and Muir’s (1991) derivation of the unique estimate of S when
G is potentially not symmetric. As will be developed shortly (Equation 33.35), the selection
intensity ı on an index can be expressed as

ı =
√

SP−1S
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Note for a single trait that this reduces to S/σz , as expected. Thus, we wish to solve GP−1S =
R subject to the constraint that ı is minimized. Appendix 5 introduces the machinery for
this sort of problem, namely Lagrange multipliers, a powerful tool for finding maximum
and minimum of functions subjected to constraints. This approach appears throughout this
chapter. First, since we need to take derivatives, it will be much easier to work with ı2/2 in
place of ı, as the former is minimized when the later is minimized. The resulting equation to
minimize is thus

Q =
SP−1S

2
+ λ(GP−1S − R)

Where λ is the vector of Lagrange multipliers (these are constants introduced to solve the
constrained equation, but otherwise are of no interest). Note that the second term is zero at
the desired solution, so to minimize Q we need to take derivatives with respect to both S and
λ and solve for when these are jointly zero. Again calling on results from Appendix 5, we first
have from Equation A5.1b (ignoring terms lacking λ),

∇λ(Q) = ∇λ

[
λ(GP−1S − R)

]
= GP−1S − R

where ∇x(f) denotes the vector of first partial derivations of f with respect to each element
in x (Appendix 5). Likewise, Equation A5.1c gives

∇S(Q) = ∇S

[
SP−1S

2
+ λ(GP−1S − R)

]
= P−1S + P−1GT λ

Both of these vectors equal zero at the solution, giving

P−1S + P−1GT λ = 0, and GP−1S = R

Pre-multiplying both side of the first equation by G yields

GP−1S + GP−1GT λ = R + GP−1GT λ = 0

Solving for λ,

λ = −
(
GP−1GT

)
−1

R

Substituting this solution for λ gives

P−1

(
S − GT

(
GP−1GT

)
−1

R

)
= 0

or

S = GT
(
GP−1GT

)
−1

R

Changes in the Additive Variance of I due to Index Selection

Recall from Chapter 13 that directional selection generates negative disequilibrium, reducing
the heritability and hence the effectiveness of selection. This, of course, also holds for a
selection index I . Artificial selection on an index usually occurs by truncation selection, where
the upper p percent are allowed to reproduce. Equation 13.5 gives the resulting phenotypic
variance in I following selection as

σ2
I∗ = (1 − κ)σ2

I , where κ = ı
(
ı − z[1−p]

)
(33.10)
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Here z[1−p] satisfies Pr(U ≤ z[1−p]) = 1 − p (for U a unit normal), and likewise ı can be
expressed as a function of p (Equation 10.26a). Starting from an unselected base population,
the initial disequilibrium is assumed zero, d(0) = 0. The dynamics of d(t) in subsequent
generations are given by iterating Equation 13.12,

d(t + 1) =
d(t)

2
− κ

2

[σ2
AI

+ d(t) ]2

σ2
I + d(t)

(33.11a)

From Equation 33.3a and 33.3b, the initial additive variance σ2
AI

= bT Gb, while the initial

phenotypic variance is σ2
I = bT Pb. Since disequilibrium changes the additive variance, it

changes both the heritability and phenotypic variance (Chapter 13), giving the response in
generation t as

RI(t) = ı h2
I(t) σI(t) = ı

(
σ2

AI
+ d(t)

σ2
I + d(t)

) √
σ2

I + d(t) (33.11b)

Under directional selection, d rapidly approaches its equilibrium value (Chapter 13). The
equilibrium additive variance in the index σ̃2

AI
is given by Equation 13.13, as obtained

by several workers (Bruns and Harvey 1976, Bennett and Swiger 1980, Gomez-Raya and

Burnside 1990, Villanueva and Kennedy 1993). Since d̃ = σ̃2
AI

− σ2
AI

(0), the equilibrium

phenotypic variance and heritability of the index follow as σ̃2
I = σ2

I (0)+ d̃ and h̃2
I = σ̃2

AI
/σ̃2

I .

Changes in G and P Under Index Selection

While the behavior of the variance components of the index simply follows from a univariate
treatment, the behavior of the covariance matrices of its components is a bit more involved. To
examine these changes, we again make the standard assumption of the infinitesimal model
so that allele frequency changes can be ignored and all changes genetic variances are due
solely to gametic phase disequilibrium. Following Chapter 31, the multivariate extension for
disequilibrium (which easily follows from an element -by-element comparison) is to express
the additive-genetic and phenotypic covariance matrices at generation t as Gt = G+Dt and
Pt = P + Dt. The unsubscripted matrices denote their linkage equilibrium values, while
Dt is the matrix of gametic-phase disequilibrium values. As in the univariate case, for un-
linked loci, transmission reduces each element of D by one-half of its previous value each
generation, giving ∆Dt+1 = −(1/2)Dt. Likewise, selection also generates disequilibrium,
D∗ = G∗ − G, where G∗ is the genetic covariance matrix after selection (but before repro-
duction). Again only half of this new equilibrium is transmitted to the offspring. Putting
these together gives the change in the disequilibrium matrix as the sum of both components,
or

∆Dt+1 =
1

2
(D∗

t − Dt)

To follow the change in covariance matrices, we assume D0 is a matrix of zeros (no initial
disequilibrium), and the dynamics of G and P follow from the dynamics of Dt, which
follow upon specification of D∗, the change induced by selection. Several authors (Zeng 1988,
Villanueva and Kennedy 1990, Itoh 1991) have shown that the within-generation change in
the phenotypic covariance matrix caused by truncation selection on I is

P∗ = P − κ

σ2
I

(Pb)(Pb)T (33.12a)

where κ is given by Equation 31.10. Equation 31.10a can also be written as

P−1(P∗ − P)P−1 = − κ

σ2
I

bbT (33.12b)
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Example 33.4 gives the derivation of both these expressions. The advantage of Equation
33.12b follows from Equation 30.12,

D∗ = G∗ − G = GP−1(P∗ − P)P−1G = − κ

σ2
I

GbbT G

= − κ

σ2
I

(Gb) (Gb)
T

(33.13)

The resulting equation for Dt becomes

∆Dt = −1

2

[(
κ

σ2
I (t)

)
(Gtb)(Gtb)T + Dt

]
(33.14a)

= −1

2

[(
κ

bT (P + Dt)b

)
([G + Dt]b)([G + Dt]b)T + Dt

]
(33.14b)

where it is generally assumed D0 = 0. As with the univariate case, we obtain the desired
values by iterating Equation 33.14.

As a final check, let’s use the above multivariate results to recover to change in d for the
index. The phenotypic and genetic variances of the index in generation t are

σ2
I (t) = bT Ptb = bT (P0 + Dt)b = σ2

I (0) + d(t) (33.15a)

and
σ2

AI
(t) = bT Gtb = bT (G0 + Dt)b = σ2

AI
(0) + d(t) (33.15b)

where bT Dtb = d(t) is the disequilibrium in I . Applying Equation 33.14,

∆d(t) = bT ∆Dtb = −bT

(
1

2

[
κ

σ2
I (t)

GtbbT Gt + Dt

])
b

= −1

2

(
κ

σ2
I (t)

) (
bT Gtb

) (
bT Gtb

)
− 1

2
bT Dtb

= −1

2
· κ

σ2
I (t)

σ4
AI

(t) − d(t)

2
(33.15c)

recovering Equation 33.11a, and showing that Bulmer’s univariate results also apply to an
index under truncation selection, even though the index itself is composed of several different
characters whose variances and covariances are changing.

Example 33.4. Let’s derive Equations 33.12c and 33.12d. Our starting point is Equation
13.14, which give the changes in variances and covariances for traits responding to correlated

selection. Here, selection is on the index I = bT z, and we see correlated changes in the
component traits zi. Mentioned breifly in earlier in the chapter, a very useful identity is the
covariance between the index and a particular component,

σ(I, zi) = σ(bT z, zi) = σ




∑

j

bjzj , zi


 =

∑

j

bjσ(zj , zi) = (Pb)i

where (Pb)i denotes the i-th element in the vector Pb. Note that this expression accounts
for the fact that zi may also be correlated with other components. From Equation 13.14d, the
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change in the phenotypic covariance for component traits i and j from selection on the index
I is

∆Pij = −κ
σ(zi, I)σ(zj , I)

σ2
I

= − κ

σ2
I

(Pb)i (Pb)j

Noting that the matrix terms correspond to the ijth element of the matrix multiplication of
(Pb)(Pb)T , we recover Equation 31.12a,

∆P = P∗ − P = − κ

σ2
I

(Pb)(Pb)T

Next, recalling that (Pb)T = bT PT = bT P, we can rewrite the above equation as

P∗ − P = − κ

σ2
I

PbbT P

pre- and post-multiplying by P−1 recovers Equation 33.12b,

P−1(P∗ − P)P−1 = − κ

σ2
I

bbT

OPTIMIZING THE EXPECTED RESPONSE OF A LINEAR INDEX

A common goal of multiple character selection is to maximize the response of some overall
merit function H(g) based on an index of the trait breeding values. The merit is given as a
function of breeding values because these are what is passed onto the offspring of the selected
parents (Chapter 10), and hence (for a linear index) the response of interest. Typically, the
merit function is taken to be a linear index H(g) = aT g, where the vector of economic
weights a assigns the desirability of relative responses in each character. For example, if a
unit response in character one is three times more desirable than a unit response in character
two, a1/a2 = 3. Economic weights are either preset by the investigator or estimated by
some prediction of an individual’s overall merit as a function of z. An example of this latter
approach is the prediction of individual fitness w (merit in this case) from the regression of
w on z (Chapters 29, 30). Other methods for estimating economic weights are reviewed by
Harris (1970), Gjedrem (1972), Melton et al. (1979, also see cautions by Thompson 1980 and
Goddard 1983 and the reply by Melton et al. 1993), and Cotterhill and Jackson (1985). For
example, Bernardo (1991) notes that for some aspects of plant breeding, practitioners use
an intuitive weight to either chose or reject lines for future consideration. This leads to 0/1
(reject/include) data, and Bernardo was able to generate economic weights by applying a
retrospective index, providing some quantification to an otherwise intuitive process. Note
that this is equivalent to survival data under natural selection, and so the machinery of
Chapter 29, which is in part based on a retrospective index, can also be used.

The Index of Selection Usually Does Not Equal the Index of Response

Index selection puts together two important concepts from selection theory. The first is
from univariate selection: the response depends upon the breeding values of the parents
(Chapter 10). Phenotype is one predictor of breeding value, with the correlation between an
individual’s breeding and phenotypic values given by h2. If we have additional information,
we may be able to improve, often substantially, our ability to predict breeding value, and thus
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improve response. Gathering this additional information for an individual into some index,
we may find that the correlation between this index (if well chosen) and breeding value
significantly exceeds h2. The second key concept is from multivariate selection: G rotates
and scales an initial selection vector to give a final response vector (Chapter 30). Thus, in
order to achieve a specific response, we may need to select in a rather different direction.

Under index selection, we are trying to maximize the response in a specific trait, namely
the merit, whose component values are known. For now, we assume that merit is a lin-
ear combination of these components, and hence the phenotypic value for the merit of an
individual can be written as

aT z =
k∑

i=1

ai zi

We could easy assign each individual in the population a merit score and then simply select
directly on this, choosing those individuals with the largest values of aT z to form the next
generation. However, it is not the phenotypic value that we are trying to maximize among
the parents selected to form the next generation, but rather their breeding values,

H = aT g =
∑

ai gi (33.16)

where gi is the breeding value for component trait i. The power behind index selection is that
if we know the component trait values and their genetic and phenotypic variances, we can
almost always improve (or at worst equal) the response by selecting on some appropriately-
chosen index versus selecting directly on the trait itself. The reason is that we can find an
index, based on the component traits, that is a better predictor of an individual’s breeding
value for merit H than is their phenotypic value for merit. Put another way, a larger response

in the merit can be obtained by selecting on a correlated character (another index I = bT z)
than by directly selecting on the character (aT z) itself. We can thus distinguish between a
selection index of phenotypic values that are used in the selection decision and a response
index of breeding values that we wish to maximize.

Let’s express this a bit more formally. Our goal is to maximize the response of merit,
which is done by maximizing the value of H in our selected parents. H is the additive genetic
value for merit, and H − µH = H − aT µ its breeding value (scaled to start the population
with a mean breeding value of zero). H also goes by many other names in the literature
(e.g., aggregate genetic value, genetic merit, breeding value for merit, profit, to name
a few). Our task is thus to find the linear index based on measurable phenotypic values

Is = bT
s z that has the highest correlation with H = aT g. Because of genetic and phenotypic

correlations between characters, the best predictor of the additive genetic value of merit
H is usually not the observed phenotypic merit aT z. Expressed in terms of a multivariate
response, if we select along the vector aT z, G rotates and scales the response away from this
vector, reducing response in the direction desired by selection. However, if we select in an
appropriately-chosen direction, then as G rotates and scales its response, it will align with
the maximal change in aT z.

Selection and Response Indices With Non-overlapping Traits

Recall that we earlier showed the multivariate breeder’s equation can be generalized by
allowing the vector of selection differentials to contain different traits from the vector of
responses. This result is very useful, as one powerful feature index selection is that index of
phenotypic selection I and index of breeding values in merit (i.e., the index of response H)
can consist of different traits. We consider the general case where H and I may have at least



410 CHAPTER 37

some (in the extreme, all) non-overlapping traits,

H =

k∑

i=1

aigi and I =
n∑

j=1

bjzj

Here zj is the phenotypic value of trait j in the selection index, while gi is the breeding value
for the ith trait in the response index. For this more general case, following our development
of the more general version of the multivariate breeder’s equation, define P as the n × n
phenotypic covariance matrix of z. Likewise define G = σ(g, z) is a k × n covariance matrix
whose elements Gij = σ(gi, zj) for 1 ≤ i ≤ k, 1 ≤ j ≤ n are the covariances between the
additive genetic values of the k characters comprising H and the phenotypic values of the
n characters comprising I . In this case G is generally not symmetric (Example 33.5). When
I and H contain the same traits, G reverts back to a standard n × n symmetric matrix of
genetic covariances. For those cases where H and I contain different elements, it will also
be useful to define Gg = σ(g,g) as the normal genetic covariance matrix for the traits in H .

When the traits in both I and H completely overlap, G = GT = Gg .

Example 33.5. Consider the following example from Yamada et al. (1975, with slight cor-
rections from Gibson and Kennedy 1990). The goal was to improve egg production (EP), feed
conversion efficiency (FC), and egg weight (EW) in chickens. These are the component traits
whose breeding values make up the response index. Phenotypic selection was based on egg
weight, adult body weight (BW), and a measure of the individual’s average egg production
plus that of seven of her full sisters (IEP). Note that egg weight is the only trait present in both
the selection and response indices. The resulting vector of selected traits and breeding value
of interest for response are

z =




EW

IEP

BW


 , g =




EP

FC

EW




The phenotypic covariance matrixP among the selected traits, Pij = σ(zi, zj), was estimated
as

P =




16 −1.53 28.8
−1.53 25.63 −1.13
28.8 −1.13 324


 ,

while the matrix of covariance between phenotypic and breeding values, Gij = σ(gi, zj),
were estimated as follows:

G =




σ[g(EP ), z(EW )] σ[g(EP ), z(IEP )] σ[g(EP ), z(BW )]
σ[g(FC), z(EW )] σ[g(FC), z(IEP )] σ[g(FC), z(BW )]
σ[g(EW ), z(EW )] σ[g(EW ), z(IEP )] σ[g(EW ), z(BW )]




=




−7.59 11.71 0
−1.02 −1.38 −3.05

8 2.61 12.88




Here G is not symmetric, as different traits are involved, e.g., G12 = σ[g(EP), z(IEP)] =11.71,
while G21 = σ[g(FC), z(EW)] = −1.02.
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The Smith-Hazel Index

Our treatment of the Smith-Hazel index allows for the general case where H and I may
contain different traits. Recall in this case that G = σ(g, z) and Gg refers to the genetic
covariance matrix associated with the response vector. The goal is to find the weights bs for

an index I = bT
s z of selection to give it the highest correlation with the index of response

H = aT g. To do so, first note that

σ2
H = σ(aT z,aT z) = aT σ(g,gT )a = aT Gga

and likewise σ2
I = bT Pb. Finally,

σH,I = σ(aT g,bT z)b = aT σ(g, z)b = aT Gb

Putting these together gives the correlation between the breeding value of merit H and a
phenotypic index I as

ρH,I =
σH,I

σHσI
=

aT Gb
√

aT Gga
√

bT Pb
(33.17a)

From standard regression theory (LW Chapter 3), the fraction of variation inH accounted
for by I is ρ2

H,I so that Equation 33.17a provides a measure of how well I predicts H . To
obtain the value of b maximizing this correlation, first note the since a is a constant we need
only maximize

aT Gb√
bT Pb

(33.17b)

Both quadratic products yield a scalar, so that derivatives can be taken by using the standard
quotient rule. Taking the derivative with respect to b (Appendix 5) and denoting solutions

giving a derivative of zero by b̃, gives

(
b̃

T
Pb̃

)
GT a =

(
aT Gb̃

)
Pb̃ (33.17c)

Since both b̃
T
Pb̃ and aT Gb̃ are scalars, solutions are of the form Pb̃ = c · GT a, giving the

optimal vector of weights as
bs = P−1GT a (33.18a)

These weights give the Smith-Hazel selection index

Is = bT
s z

=
(
P−1GT a

)T

z (33.18b)

= aT GP−1z (33.18c)

Smith (1936), following a suggestion by Fisher to use his recently developed method of
discriminant functions (Fisher 1936), obtained this index for the special case of selection on a
collection of pure lines (varietal selection, Chapter 20). Hazel (1945) extended Smith’s results
to outbreeding populations by considered the change in breeding value.

The Smith-Hazel index is the most widely-used set of weights for a linear selection
index, as using the weights bs for the index of phenotypic selection maximizes response in
the index H = aT z. The Smith-Hazel index depends critically on having good estimates of
G and P. Incorrect estimates result in a less than optimal index.
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Example 33.6. Returning to our soybean data (Example 33.1), what are the Smith-Hazel
weights to maximize the response in an index that weights yield four times as much as the

other two traits? Here, a = ( 1 1 4 )
T

, giving the Smith-Hazel weights bs as

P−1GT a =




287.5 477.4 1266
477.4 935 2303
1266 2303 5951




−1 


128.7 160.6 492.5
160.6 254.6 707.7
492.5 707.7 2103







1
1
4


 =




5.39
−9.28

4.06




Thus the optimal index to improve z1 + z2 + 4z3 is to select on 5.4z1 − 9.3z2 + 4.1z3.

What is the response? Equation 33.3 gives the response for Is = bT
s z as 177.3 (assuming

ı = 2.06). The careful reader might recall from Example 34.1 that using the “naive” weights
aT = ( 1 1 4 ), we obtained a response in the index of 255.1. What’s going on here, as it
seems that our “optimal” index gives a much smaller response? The key is that in Example
33.1, we selected on, and predicted the response for, I = aT z. However, with a Smith-Hazel

index we select on one index Is = bT
s z and are interested in a response in another (in essence,

a correlated trait), aT z. Thus, applying Equation 33.3 gives the response in Is. In order to
convert this into a response in I , the index we wish to improve, we apply Equation 33.6,
giving

R = ı · aT Gbs√
bT

s Pbs

= 299.1

Thus, basing selection on the index Is = ST z gave a larger response in the index I = aT z
(i.e., gives a larger value of the index H = aT g) than occurs by directly selecting on I .

To get some appreciation of how each character is weighted in the Smith-Hazel index,
consider the case where there are no phenotypic or genetic correlations (P and G are di-
agonal). Here bi = aih

2
i , giving the index as

∑
aih

2
i zi so that characters with both large

heritabilities and large economic weights receive the most value, while either a large heri-
tability, or economic weight, by itself is not sufficient to insure a large weight. Constructing
the Smith-Hazel index requires three sets of parameters – estimates of P, G and a. Errors in
estimating a appear to have only a small effect on the index weighting (reviewed by James
1982 and Smith 1983), while the consequences of using estimates of P and G are considerable
and will be discussed shortly.

Properties of the Smith-Hazel Index

1) Selection on the Smith-Hazel index provides largest response in merit for a fixed selection
intensity ı. Equation 33.6 shows that the maximal response in merit given selection on

another index bT z is given by maximizing the same expression as Equation 33.18a, namely
by using the Smith-Hazel weights b = bs. Noting that

bT
s Pbs =

(
P−1GT a

)T

Pbs = aT GP−1Pbs = aT Gbs

Equation 33.6, gives the expected response in merit using the Smith-Hazel index as

RH = ı · aT Gbs√
bT

s Pbs

= ı ·
√

aT Gbs

= ı ·
√

aT GP−1GT a (33.19)
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while from Equation 33.5 the change in the vector of character means comprising the response
index is

R =

(
ı

σI

)
· Gbs = ı · GP−1GT a√

aT GP−1GT a
(33.20)

2) The Smith-Hazel index is closely related to the least squares regression of breeding
value for merit on the vector of phenotypic values z. This regression can be written as

E[H | z] = a + bT z, where b and a are chosen such that the regression accounts for the
largest amount of variation in H . This occurs when b is chosen to maximize the correlation

between H and z and when a satisfies E[H] = a + bT E[z] (LW Chapters 3, 8). Given that bs

maximizes this correlation, the least squares regression is

E[H | z] = a + bT
s z = a + Is (33.21a)

Noting that E[H] = aT µ and E[z] = µ gives a = aT µ − bT
s µ, hence

E[ (H − aT µ) | z ] = bT
s (z − µ) (33.21b)

Since breeding value is the deviation of additive genetic value from the mean, the regression
of the breeding value for merit on phenotypic value is

bT
s (z − µ) = Is − bT

s µ (33.21c)

Estimates of breeding value based on least squares regressions are called often best linear
predictors (BLPs). Hence, if phenotypic characters are standardized to mean zero, the Smith-
Hazel index is the BLP of breeding value for merit. The related method of BLUP (best linear
unbiased predictor, LW Chapter 26; Chapters 16, 34), provides the best estimate of breeding
value when more general pedigree information is available. Similarities and differences of
the Smith-Hazel index BLP estimates and BLUP estimates are examined in more detail in
Chapter 34.

Just how much of the variance in breeding values is explained by the regressions given
by Equations 33.21a-c? From standard regression theory the fraction of variance explained

is ρ2(H, a + bT
s z) = ρ2(H,bT

s z) = ρ2(H, Is). Substituting bs into Equation 33.17 gives

ρH,Is
=

aT GP−1GT a√
aT GP−1GT a ·

√
aT Gga

=

√
aT GP−1GT a

aT Gga
(33.22a)

Thus the fraction of the additive genetic variance in merit explained by the Smith-Hazel
index is

aT GP−1GT a

aT Gga
(33.22b)

leaving a residual (unexplained) variance of (1 − ρ2)σ2
H or

(
aT GP−1GT a

aT Gga

)
· aT Gga = aT GP−1GT a (33.22c)

The relative performance of any candidate with respect to the optimal Smith-Hazel index
can be obtained by comparing the correlation of the candidate index and H with Equation
33.22a.
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Equations 33.21 and 33.22 do not require the assumption of multivariate normality,
while Equations 33.19 and 33.20 do. Another useful property of the Smith-Hazel index (due
to Williams 1962a and Henderson 1963), which also requires multivariate normality, is

3) The Smith-Hazel index gives the maximal probability of selecting the individual with
the largest breeding value for merit in a sample.

Other Useful Results for the Smith-Hazel Index

Three popular expressions in the literature relating to the Smith-Hazel index are

σ(H, Is) = σ2(Is), ρ(H, Is) =
σ(Is)

σ(H)
, RH = ı · σ(Is) (33.23)

These are obtained by first noting for bs = P−1GT a that

σ2(Is) = bT
s Pbs = aT GP−1GT a = aT Gbs = σ(H, Is) (33.24)

Substitution into Equations 33.22a and 33.19 (respectively) gives the last two identities.
When the phenotypic and genetic covariances are estimated in several populations

and/or environments (such as different years), the investigator is faced with a decision as
how to combine these estimates when constructing an index. At one extreme the index can
be computed using pooled covariance matrices to give an average index. At the other ex-
treme, separate indices can be constructed for each population/environment, giving specific
indices. Hanson and Johnson (1957) develop an approach for the optimal response that dif-
ferentially weights the covariances matrices, yielding what they refer to as a general index.
Caldwell and Weber (1965), examining response in soybeans over four populations, found
that specific indices gave the best overall performance, but that either general or average
indices were reasonable substitutes. Clearly, this is an area for both more theoretical and
experimental investigation.

Estimated, Base, Elston, and Other Indices

The Smith-Hazel index requires that both the phenotypic and genetic covariance matrices
are known. Since these are usually unknown, the estimated index

Îs = P̂
−1

ĜaT z (33.25)

is constructed using the estimated phenotypic and genetic covariance matrices (P̂ and Ĝ).
Due to the inaccuracies inherent in estimating these matrices (especially G), this index may
be quite different from the correct Smith-Hazel index. This lead Panse (1946), Brim et al.
(1959), and Williams (1962a,b) to suggest that the base index

Ib =
∑

aizi (33.26)

which is independent of P and G, may in many cases be preferable. Note that the base index
is only defined when the traits are H and I are identical (so that G is now symmetric), and
that selecting on the base index is equivalent to direct selection on the phenotypic value
of the merit. The base and Smith-Hazel indices are identical when there are no genetic and
phenotypic correlations and all characters have the same heritability. More generally, the two
indices are equivalent when P−1G = c · I or P = c ·G for any positive constant c. Heidhues
and Henderson (1962) have proposed the heritability index with weights bi = ai h2

i as an
alternative to the base index when confidence in genetic covariance estimates is low. Note
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from previous discussion that this reduces to the Smith-Hazel index when there are no
genetic or phenotypic correlations between characters. Smith et al. (1981) go a step further,
proposing to use the heritabilities as the economic weighs, ai = h2

i .
The expected response under the base index relative to the true Smith-Hazel index is

given by the correlation between these indices,

ρIs,Ib
=

σ(Is, Ib)

σIs
· σIb

=
σ(bT

s z,aT z)√
bT

s Pbs · aT Pa

=
bT

s Pa√
bT

s Pbs · aT Pa

=
aT Ga√

aT GP−1Ga · aT Pa
(33.27)

Although the base index can be applied without estimates of G and P, it still requires
the assignment of economic weights. If estimates of these covariance matrices are available,
the method of desired-gains to be discussed shortly can be use to construct an index without
having to specify a. In the extreme case where P, G and a are all unknown, Elston (1963)
suggests the nonlinear index

Ie = (z1 − m1)(z2 − m2) · · · (zn − mn) =

n∏

j=1

(zj − mj) (33.28)

where mj is the minimal value of character j and each character is scaled to have unit vari-
ance (Figure 33.3, at the end of this chapter, shows the form of this index for two characters).
In effect, the Elston index (occasionally called the weight-free index) assumes all characters
are equally weighted (Elston 1963, Baker 1974). Theoretical results (Cotterhill 1985) suggest
that if the traits in the index are positively correlated (both genetically and phenotypically)
the Smith-Hazel, base, and Elston indices give very similar responses. However, if there are
negative correlations (genetically or phenotypically) the Smith-Hazel index is significantly
superior. Experimental studies comparing base versus estimated indices reviewed later (Ta-
ble 33.4) show that both often give similar responses. A final nonparametric index in the
rank summation index of Mulamba and Mock (1978), which ranks all traits and then as-
signs the sum of an individual’s ranks as their index score. Crosbie et al. (1980) noted that the
rank summation, base, and Elston indices are not seriously influenced by unequal variances
among traits and thus should be consider more often.

Example 33.7. Once again, we return to the soybean data Brim et al. (1959) presented in

Example 33.1. The same traits are used for both I and H so that G = GT . Assume characters

have equal economic weight so that ai = 1. The resulting vector of weights b̂s for the
(estimated) Smith-Hazel index is

b̂s = P̂
−1

Ĝ




1
1
1


 =




2.4
−2.9

1.2




giving the index as Îs = 2.4z1 − 2.9z2 + 1.2z3. In contrast, the base index is Ib = aT z =
z1 + z2 + z3. Suppose two individuals are examined, one of which will be saved. The oil,
protein, and yield scores of these individuals are (1, 2, 3) and (1, 1, 1), respectively. Under
the estimated index, these individuals have scores of 2.4 · 1 − 2.9 · 2 + 1.2 · 3 = 0.2 and
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2.4− 2.9+1.2 = 0.7, while under the base index these individual have scores 1+2+3 = 6
and 1 + 1 + 1 = 3. Hence, individual two is saved under the Smith-Hazel index, while
individual one is saved under the base selection. To compare the responses under the base
versus Smith-Hazel index, assume that the error from using the estimates of P and G is small.

Since (aT ĜP̂
−1

Ĝa)1/2 ≃ 49.67, from Equation 33.19 the response in H to selection on Îs

is ı · 49.67. For the base index a = (1, 1, 1)T , σI =
√

aT P̂a ≃ 123.6 and aT Ĝa ≃ 5208.
Substituting these into Equation 33.3 gives

RI

ı
=

aT Ĝa√
aT P̂a

≃ 5208

123.6
≃ 33.1

which is only 85 percent of the expected response under the Smith-Hazel index. Applying
Equation 33.17a, the correlation between the two indices (assuming that the estimated index
is the correct Smith-Hazel index) is

aT Ĝa√
aT ĜP̂

−1
Ĝa · aT P̂a

≃ 5208

49.67 · 123.6
≃ 0.85

as expected from the response in the base index relative to the Smith-Hazel index.

While Equation 33.27 gives the relative efficiency of using the base index in place of the
true Smith-Hazel index, just is how much error is introduced by using the estimated index

b̂s = P̂
−1

Ĝa in place of the true index b = P−1G? As Harris (1963) notes, we need to
distinguish the optimal response (that obtained using the true Smith-Hazel index Is) from

the predicted response (which assumes Ĝ and P̂ are correct) and the achieved response (the

expected response using Îs), where

R

ı
=





√
bT

s Pbs optimal response

√
b̂

T

s P̂b̂s predicted response

aTGb̂s√
b̂

T

s Pb̂s

achieved response

(33.29)

The expression for achieved response was obtained by substituting b = b̂s into Equation
33.6. Thus there are two classes of errors using the estimated index. Errors in estimates of
P and G not only give incorrect index weighting, they also yield incorrect predictions of
the response to selection on this index. Hanson and Johnson (1957) note that the ratio of

the estimated response to the optimal response, R̂/R equals the correlation between the
estimated and optimal indices. Hence, the estimated response is always (on average) less
than the optimal response.

A number of workers (Nanda 1948; Cochran 1951; Tallis 1960; Harris 1961, 1963, 1964;
Heidhues 1961; Williams 1962a,b; Sales and Hill 1976a,b; Hayes and Hill 1980; Tai 1986)
have examined the errors using estimated covariance matrices to construct index weights,
although the results are often extremely complicated even for two characters and are highly
dependent on the particular experimental design used to estimate G and P. Heidhues (1961)
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suggests that one simple way to improve the accuracy of an estimated index is to remove
variables that have a low genetic correlation with merit but which are highly correlated with
other variables in the phenotypic selection index.

One situation where standard errors for predicted response are easily obtained is when
the index parameters are estimated from a parent-offspring regression (Tallis 1960). As-
suming the joint distribution of the vector of additive genetic and phenotypic values is
multivariate normal, the regression of the vector of additive genetic values g on the vector
of phenotypic values z is given by Equation 31.9a and can be written as g = c + GP−1z + e

where c is a vector of constants and e the vector of errors associated with predicting g from
z. Premultiplying by aT gives

H = aT g = c∗ + aT GP−1z + e∗ (33.30)

Note that Equation 33.30 still holds if g and z contain different traits, provided we use
G = σ(g, z). Thus the slope of the regression of offspring merit H on parental phenotypes z

is aT GP−1 = bT
s and hence the Smith-Hazel index weights can be directly estimated from

such a regression. Standard regression theory can then be used to place error bounds on bs

(using the standard errors of the slope estimates) and on the expected change in H .
A third class of errors, which occurs even if P and G are estimated exactly, is that

selection changes the genetic covariance structure (Chapters 13, 24, 31) and hence changes
the optimal weighting each generation. Equations 33.14 can be used to compute the change
in D (and hence the changes in P and G), but this assumes the infinitesiminal model.

A final source of error is that the selection intensity of truncation selection is overesti-
mated in finite populations (Chapter 10), so comparisons of predicted versus actual response
should use the empirical selection differential, rather than that expected given the fraction
of selection.

Given all these potential sources of error, how well is the use of the Smith-Hazel index
supported by experimental data? Table 33.1 summarizes Caballero’s (1989) review of exper-
iments from mice, Drosophila melanogaster, and Tribolium castaneum. The predicted response
overestimates, often dramatically, the achieved response.

Table 33.1. Summary of 19 experiments in Drosophila, mice, and Tribolium examining the relative
efficiency of selection on the estimated index, measured as the ratio of achieved to predicted response.
Original index estimates refers to the expected response using estimates of the genetic and pheno-
typic covariances used in constructing the initial index, while improved parameter estimates refers to
the predicted response based on covariances estimated from either a larger base population or from
estimates during selection. From Caballero (1989).

Expected response computed using:

Original index estimates Improved parameter estimates

Single-generation response 67% 87%

(range not available) (range: 23% - 94%)

Multiple-generation response 37% 50%

(range: 16% - 95%) (range: 25% - 69%)

This table highlights two sources of errors that reduce the efficiency of the estimated
index: those due to poor estimates and those due to changes in the genetic parameters as
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selection proceeds. The data show, as expected, that poor estimates of population parameters
results in a loss of efficiency. Achieved single-generation responses averaged 67% of that pre-
dicted based on an index constructed using the original parameter values. When improved
parameter values were used, the achieved/predicted response ratio increased to an average
value 87%. Table 33.1 also shows that changes in genetic parameters as selection proceeds
are a significant source of error. Achieved response dropped from 67% to 37% and from 87%
to 50% when the response is considered over multiple generations. Caballero (1989) presents
evidence that this is due to changes in genetic variances and covariances during the course
of selection. Another feature seen when replicated experiments are used is that while the
index may show a reasonably consistent response over replicates, considerable variation is
found in the response of component traits making up the index.

One especially interesting situation is antagonistic index selection, when the index
weights on pairs of traits have opposite sign to the genetic correlations between those char-
acters, e.g., H = g1 − g2 when σ(A1, A2) > 0 or H = g1 + g2 when σ(A1, A2) > 0. The
experimental results when antagonistic indices occur are mixed. For example, no response
was observed for an antagonistic index based on early weight gain and adult weight in mice
(ρg ≃ 0.55; von Bulter et al. 1980), while antagonistic indices based on litter size and body
weight in mice (ρg ≃ 0.6; Eisen 1977a, 1978), plant height and number of leaves in tobacco
(ρg ≃ 0.7; Matzinger et al. 1977), and pupal and adult weight in Tribolium (ρg ≃ 0.9; Campo
et al. 1990) showed a reasonable response.

The Hayes-Hill Transformation: Detecting Flaws in the Estimated Index

Suppose that I and H contain the same traits, so that G is symmetric. One obvious sign that

the estimated index is flawed is if Ĝ is not positive-definite and hence not a proper covariance
matrix. There is a significant probability of this when sample size is small and/or the number

of traits large (Hill and Thompson 1978). Even if Ĝ is positive-definite, it may be inconsistent

with estimates of P̂ as estimated heritabilities can exceed one. While simple inspection of Ĝ

and P̂ may reveal obvious problems such as negative variances or correlations that exceed
unity, others (such as partial correlations exceeding unity) can easily be overlooked. Hayes
and Hill (1980) note that this problem can be avoided by considering the eigenvalues of H =
P−1G. Their motivation is as follows. The canonical transformation (Appendix 4) transforms
a vector of correlated variables into a new vector whose elements are uncorrelated. Let U

be the matrix giving the canonical transformation of H = P−1G, e.g., U = (e1, e2, · · · , en)
where ei are the normalized eigenvectors of H. Hayes and Hill show that the transformed
phenotypic and additive genetic values

gU = Ug and zU = Uz (33.31a)

have covariances matrices

P̃ = σ(zU , zU ) = σ(Uz,Uz) = UPUT = I (33.32b)

GU = σ(gU ,gU ) = σ(Ug,Ug) = UGUT = Λ (33.32c)

where I is the identity matrix and Λ a diagonal matrix whose diagonal elements are given
by the eigenvalues of H = P−1G. Hence the transformed characters are uncorrelated and
the eigenvalues of H corresponds to the heritabilities of the transformed characters (as
each character as unit phenotypic variance). Under this transformation, the merit function
can be written as aT

U gU where aU = UT a is the vector of transformed economic weights.
Substituting into Equation 33.19 the response to selection on the Smith-Hazel index can be
expressed as

R

ı
=

√
αT GUP−1

U GUα =
√

αT ΛI−1Λα =
√

αT Λ2α =

√√√√
n∑

i=1

α2
i λ

2
I (33.32)
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Hence for any vector of economic weights a and (non-singular) covariance matrices P and
G, the Hayes-Hill transformation considerably reduces these n(n+2) parameters (n(n+1)/2
for both P and G and n for a) to just 2n parameters (n transformed economic weights αi

and n heritabilities of the transformed variables λi).

In light of this, Hayes and Hill (1980) suggest that the eigenvalues of Ĥ = P̂
−1

Ĝ be
examined, since these correspond to the heritabilities of the transformed variables and hence

should be between zero and one if the estimates of P̂ and Ĝ are well-behaved. If this is not the
case, the estimated covariance matrices can be modified until the estimates are consistent.
While one approach is to set negative variances to zero and heritabilities and correlations that
exceed unity to unity, the methods of bending and rounding discussed below are preferred.

“Bending” and “ Rounding” Corrections of the Estimated Index

Again assume that I and H contain the same traits, and hence G is symmetric. Hayes
and Hill (1981), noting that estimates of eigenvalues tend to biased (with large eigenvalues
overestimated and eigenvalues underestimated), suggest a bending procedure to improve
the efficiency of the estimated index. Their idea is to increase small eigenvalues and decrease
large ones while holding the average eigenvalue constant. This is done by computing the
eigenvalues of the modified matrix

Ĥ
∗

= (1 − γ) · Ĥ + γ · λI for 0 ≤ γ ≤ 1 (33.33)

where γ is the bending factor, λ = n−1
∑

λi is the average eigenvalue of Ĥ = P̂
−1

Ĝ, and I

the identity matrix. No bending (γ = 0 and Ĥ
∗

= Ĥ) corresponds to the estimated Smith-

Hazel index. With complete bending, γ = 1 giving P̂
−1

Ĝ = λ · I or P̂ = λ · Ĝ and hence
weights of

b = P̂
−1

Ĝa = c · Ĝ−1
Ĝa = c · a

which recovers the base index. Thus γ can be viewed as scaling the data from the Smith-
Hazel (γ = 0) to the base index (γ = 1). Figure 33.1 shows how the eigenvalues based on the
covariance matrices used in Example 33.1 change during bending.

Figure 33.1. The effects of bending. Using the estimates of P and G from Example 33.1, the

eigenvalues of Ĥ = P̂
−1

Ĝ are found to be λ1 = 0.84, λ2 = 0.622, and λ3 = 0.205,

for an average value of λ = 0.555. The three eigenvalues for the “bent’” matrix Ĥ
∗

=
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(1− γ) · Ĥ+ γ · 0.555 · I are plotted as a function of the bending coefficient γ. As γ increases

towards one, the eigenvalues smoothly converge towards λ.

Simulation studies by Hayes and Hill show bending always improves the estimated
index, but the optimal bending factor depends on the unknown parameters. While this is
obviously a problem, one common situation where the choice of bending parameter is fairly

clear is when eigenvalues of Ĥ are either negative or exceed one. Suppose one eigenvalue

is negative. In this case, Ĥ is bend until this eigenvalue increases to zero. Likewise, if an
eigenvalue exceeds one, the matrix is bent until this eigenvalue decreases to one. Even if the

eigenvalues of Ĥ are between one and zero, Hayes and Hill suggest the sample size alone
can be used to obtain the optimal bending parameter, but the theory is not fully developed.

Tai (1989) suggests a different procedure, rounding, again based on the canonical trans-

formation of Ĥ. Let U = (e1, e2, · · · , en) again denote the transformation matrix associated

with Ĥ where ei is the normalized eigenvector (of H) corresponding to eigenvalue λi. Under

this transformation, we can write the index Îs = b̂
T

s z = dT y, where d = Ub̂s and y = UT z.
Rounding assigns a vector of zeros for each eigenvector associated with a negative eigen-
value. For example, suppose eigenvalues one through n−m are between zero and one, while
the last m eigenvalues are negative. Rounding consists of using the index

I = dT ym where ym = Û
T

m z with Ûm = (e1, e2, · · · , en−m,0, · · · ,0) (33.34)

While this procedure may seem somewhat less ad hoc that bending, it does not correct the
the bias caused by overestimation of large eigenvalues. Rather, it compounds this bias by
retaining large eigenvalues while discarding small (and likely underestimated) ones.

Bending is related to the method of ridge regression (Hoerl and Kennard 1970, 1981),
which was created to handle ill-conditioned design matrices in linear models, with the
(XT X)−1 term in an OLS estimator replaced by (XT X + γI)−1. Both Saxton (1986) and Xu
and Muir (1990) briefly examined ridge regression of selection indices using (P+γ diag[P])−1

in place of P−1, where diag(P) denotes a diagonal matrix consisting of the diagonal elements
of P. While ridge regression seems to offer no advantages over bending, it could potentially
be very useful in the more general case where G is not symmetric (and hence bending is
not defined), to deal with ill-conditioned P matrices. However, such matrices can also be
handled by simply removing a few of the most highly correlated variables, especially if these
have low predictive power for the breeding value of merit.

Constraints on R and S Given a Specified Selection Intensity

In several places, we will need expressions for either all possible responses R or all selection
differentials S given a specific selection intensity. These are expressed as quadratic products
in R or S. To obtain these, first recall Equation 33.5,

R =
ı

σI
Gb, implying b =

σI

ı
G−1R (33.35a)

Equation 33.35a shows that our discussion is now restricted to the case where GT = G, and

hence G−1 is (potentially) defined. Since σ2
I = bT Pb (Equation 33.2a), substituting in the

above expression for b gives

σ2
I =

(σI

ı

)2

RT G−1PG−1R



THEORY OF INDEX SELECTION 421

or

ı2 = RT G−1PG−1R (33.35b)

This is a quadratic product in terms of the response vector R and solutions describe a hyper-
ellipsoid whose surface corresponds to all possible vectors R for a given selection intensity
ı. Likewise, substituting R = GP−1S gives

ı2 = ST P−1GG−1PG−1GP−1S = ST P−1S (33.35c)

Equation 33.35c also describes a hyper-ellipsoid, now the surface corresponds to all possible
vectors of selection differentials yielding the same selection intensity. Recall (Chapter 10) that
for a normally-distributed trait, the selection intensity is entirely a function of the fraction
p saved in truncation selection. These quadratic products thus correspond to the collection
of all possible responses and selection intensities given a specified amount of truncation
selection on an index.

RESTRICTED AND DESIRED-GAINS INDICES

While the Smith-Hazel index results in the largest response in a linear combination of charac-
ters, often we have different objectives in mind and hence different indices may be required to
achieve these. For example, we may wish the largest possible response in some linear combi-
nations of characters while ensuring that another set of characters remains unchanged. This
is done by constructing a restricted index. Likewise, instead of maximizing the response in
the (scalar) merit value, we may instead wish to find a linear combination of characters that
gives a prespecified response in the vector of characters means. Using such a desired-gains
index gives us more control over the individual responses in each character. Gibson and
Kennedy (1990) forcefully argue that the use of constrained indices (such as restricted and
desired-gains) comes at such a cost in terms of decreased response in merit relative to a
Smith-Hazel index (e.g., Example 33.8), that they should only be used in highly specialized
situations, and not in more general settings where strict economic gains are of concern.

Restricted Indices

Suppose we are interested in the response of k characters, but that characters one to m are at
their optimum values and we desire these to remain unchanged. Subject to this constraint we

wish to maximize the response of some linear combination
∑k

i=m+1 aigi of the remaining

characters. By defining the vector of weights as aT = (0, · · · 0, am+1, · · · , ak) the index to
optimize under the constraint can be written as aT z. This problem was first considered by
Morely (1955) with a general solution developed by Kempthorne and Nordskog (1959). Since
response to selection on an index is proportional to Gb (Equation 33.5), our constraint of
no response can be restated as the first m elements of the vector resulting from this matrix
product are zero. In matrix form,

CGbr = 0

where C is an m×k matrix with ones on the diagonal and all other elements zero. The method
of Lagrange multipliers (Example 33.3, Appendix 5) can be used to find the index giving
the maximal response in H for a fixed amount of selection subject to this constraint. Using
this approach, Kempthorne and Nordskog obtained the vector of weights for the restricted
index as

br =

[
I − P−1GT

r

(
GrP

−1GT
r

)
−1

Gr

]
P−1GT a (33.36a)
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where I is the identity matrix and
Gr = CG (33.36b)

Equation 33.36a allows for different traits in I and H , with G = σ(g, z) as above. We refer
to this restriction of no change in m specified characters as the Kempthorne-Nordskog
restriction. Akbar et al. (1984) extended these results to allow for different traits in the index
I and merit H , while Lin (1985) presents a derivation that does not use Lagrange multipliers.
For two characters where the goal is to maximize response in character one with no response
in character two, the resulting index (after rescaling) becomes

Ir = z1 −
(

σg1,g2

σ2
g2

)
· z2 (33.36c)

as obtained by Morely (1955). Note that we have seem similar restrictions in Chapter 30 when
the notion of conditional genetic variance and conditional evolvability were examined, and
both of these concepts are closely connected to restricted indices.

Example 33.8. Consider the soybean data from Example 33.1. Suppose that character z1 (oil
content) is at its optimal value, but we wish to optimize the sum of protein content and yield,
H = g2 + g3. Here,

C = ( 1 0 0 ) and a =




0
1
1




Applying Equation 33.36a gives

br =




−3.3
−0.8

1.1




Hence σ(Ir) =
√

bT
r Pbr ≃ 23.2 and from Equation 33.5 the expected change in the vector

of character means is

R =
ı

σ(Ir)
· Gbr = ı ·




0
4.0
11.2




I The resulting response in merit becomes

H = ı (1 · 4.0 + 1 · 11.2) = ı · 15.2

If instead of restricting the change in character one, the Smith-Hazel index is applied with a
as above so that no weight is placed on changes in z1 (i.e., we do not care what values they
take), then a is as above and

bs = GP−1a =




0.38
0.16
1.17


 giving R =

ı

σ(Is)
· Gbs = ı ·




6.4
9.2
27.3




The response in H is now 36.5 · ı under the Smith-Hazel index, as compared with only 15.2 · ı
under the restricted index. The price paid for no change in character one is that the expected
response in H is only 42 percent of that under no restrictions. This result is fairly typical, in
that using a restricted index often results in a rather significant decrease in the expected merit.
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A variety of restricted indices handling different classes of constraints have been pro-
posed (e.g., Tallis 1962, 1985, 1986; James 1968; Cunningham et al. 1970; Harville 1975; Niebel
and Van Vleck 1982). For example, Tallis (1962) considers the case where a specified response
is desired in k linear combinations of characters,

L1 =
k∑

j=1

cj1 Rj = d1, L2 =
k∑

j=1

cj2 Rj = d2, · · · , Lk =
k∑

j=1

cjk Rj = dk (33.37)

where Rj is the response in trait j. Here the constraint is CR = CGbr = d, where the m× k
matrix C has its ij-th element given by cij and d is the vector (d1, · · · , dm)T . This Tallis
restriction is a more general from of the Kempthorne-Nordskog restriction. Again using
the method of Lagrange multipliers, response is maximized subject to these constraints by
selecting on the index with weights

br =

[
I − P−1GT

r

(
GrP

−1GT
r

)
−1

Gr

]
P−1GT a + P−1GT

r

(
GrP

−1GT
r

)
−1

d (33.38)

where Gr is given by Equation 33.36b (now with C given as defined above) and hence al-
lows for different traits in I and H . Additional features of restricted indices are reviewed by
Brascamp (1984), sampling properties have been considered by Hill and Meyer (1984), and
Itoh and Yamada (1987) show the equivalence of several of these indices. Other reviews can
be found in Mallard (1972), who gives a geometric interpretation of restricted indices and
Harville (1974). Famula (1992) suggests an alternative approach for constraining response
in correlated characters based on linear programming. The advantage with this approach
is that it gives a smaller mean-squared deviation of the constrained trait from zero relative
to restricted index selection, but at a cost of a smaller response in the unconstrained char-
acters. Thus if reducing response is deemed more important that maximal response in the
unconstrained characters, linear programming methods should be considered.

Desired-gains Indices

Here the objective is to find the linear index Id = bT
d z giving a prespecified vector of pro-

portional responses in each character. Besides providing control over how each individual
character changes, the desired-gains index does not require specification of economic weights
a. It does, however, still require estimates of P and G (if these are not available and one is still
reluctant to assign values for a, then the Elston index might be considered). Let ∆d denote
the vector of desired changes, so that the ratio of any two elements, ∆i/∆j is the desired

ratio of response in characters i and j. From Equation 33.5, selection on I = bT z gives a
vector of response proportional to Gb. Hence Gbd = ∆d, giving the vector of weights for
the desired-gains index as

bd = G−1∆d (33.39)

as obtained by Pes̆ek and Baker (1969) and Yamada et al. (1975). In an evolutionary context,
this is the same as the realized selection gradient (Chapter 30). If C in Equation 33.38 is of full
rank (n linearly independent restrictions are imposed) then the responses of all characters
are completely specified and the Tallis-restricted index reduces to the desired-gain index.

Equation 33.39 assumes that desired response is specified for all n measured traits (i.e.,
I and H contain the same traits). More generally, if I and H contains different traits, the
(as above) G = σ(g, z). Solutions are still of the form Gbd = ∆d, but this does not yield a
unique solution for bd as G may not be square and hence G−1 may not be defined. A unique

solution can imposing the additional constraint that selection intensity bT Pb (see Equation
33.35c) is minimized (Itoh and Yamada 1985), giving

bd = P−1GT (GP−1GT )−1∆d (33.40)
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This was first obtained by Tai (1977), although in a much more cryptic form. As expected, this
reduces to Equation 33.39 when GT = G. Itoh and Yamada (1988b) have further modified
the desired-gains index to allow for restrictions in the response of specified characters.

Example 33.9. Once again using the soybean data from Example 33.1, suppose we wish to
increase (z1, z2, z3) = (oil content, protein content, yield) by relative amounts (1 : 1 : 1)
giving the vector of desired gains as

∆d =




1
1
1




Using Equation 33.39, and rescaling bd so that its first element is one gives

bd =




1.0
0.8

−0.5




Selection on the index Id = z1 + 0.8 · z2 − 0.5 · z3 thus gives the same response in each

character. To verify this, first note that σ(Id) =
√

bT
d Pbd ≃ 5.45, giving

R =

(
ı

σ(Id)

)
· Gbd = 2.22 ı




1
1
1




To distinguish between a desired-gains and Smith-Hazel index, compare this response with
that expected from the Smith-Hazel index on the merit function z1 + z2 + z3. Under the
desired-gains index, the response in merit is ∆µ1 + ∆µ2 + ∆µ3 = 6.66 · ı, only 13 percent
of the expected response of 49.67 · ı under the Smith-Hazel index (Example 33.7), illustrating
the cost of specifying response in each character as opposed to just being concerned with the
maximal response in merit. Now suppose that while all three characters are measured, we are
only interested in having equal response in oil and protein content and are unconcerned with
yield (z3). Here

∆d =

(
1
1

)
and G =

(
128.7 160.6 492.5
160.6 254.6 707.7

)

Applying Equation 33.40,

bd = P−1GT (GP−1GT )−1∆d =




0.0131
−0.0049

0.0002




This gives σ2(Id) = bT
d Pbd = 0.01286, so that the vector of responses is

R =

(
ı

σ(Id)

)
· Gbd = 8.82 ı




1.0
1.0
3.4




giving the change in the merit as ı · 8.82 · (1+1+3.4) = 47.63 · ı, 96 percent of the response
under the Smith-Hazel index.
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While it is usually assumed that errors from incorrect estimates have more serious
consequences for restricted indices than for unrestricted (Smith-Hazel) indices, the evidence
is mixed. Hill and Meyer (1984) extended the Hayes-Hill transformation to restricted indices
but, as with unrestricted indices, general statements of the effects of incorrect estimates
are difficult to obtain. A second source of error, changes in genetic parameters as selection
proceeds, has been examined by Mortimer and James (1987), who found for a four-locus
model that the restricted index is particularly sensitive to changes in genetic parameters. If
the assumptions of the infinitesimal model holds, changes in the covariance matrices under
restricted index selection can be computed using Equation 33.14. By analogy with univariate
results under directional selection (Chapter 13), the changes in disequilibrium mainly occur
over the first few generations, after which they settle on their equilibrium values.

Experimental Results for Restricted and Desired Gains Indices

Certainly any error in parameter estimates or changes in genetic parameters results in some
change in the restricted character, but the efficiencies of restricted indices (measured by
actual response in the index versus predicted response) appear similar to those for unre-
stricted indices (Caballero 1989). Table 33.2 summarizes the results of several experiments
on restricted indices. The general conclusions are that the observed response is almost al-
ways less (and often considerably so) than the predicted response, and the response under
a restricted index is usually less than the response from direct selection on the character of
interest, as expected. While significant responses in constrained characters are common, they
are usually less (and often considerably so) than the correlated response that occurs when us-
ing an unconstrained index. Hence estimated restricted indices are effective at reducing, but
not necessarily eliminating, undesirable correlated responses. Likewise, significant change
in genetic parameters can occur. For example, Matzinger et al. (1989) performed a restricted
selection experiment in tobacco to increase response in total alkaloids (TA) while constrain-
ing the response in yield (expected to decrease as a correlated response under unconstrained
selection as the additive genetic correlation between these two characters is−0.7). After three
cycles of selection, genetic variance in yield was unchanged and additive genetic variance
in TA decreased by 60% from its initial value while the genetic correlation was reduced to
−0.3.

Table 33.2. Results of representative experiments examining restricted indices.

Garwood and Lowe 1978 Excellent fit. Nonsignificant response in constrained
3 egg production traits character while the response of the index of

in poultry. unconstrained characters was as predicted.

Abplanalp et al. 1963 Poor fit. Response in unconstrained character three
8- and 24-week weight times that expected. Negative response in the

in turkeys. constrained character.

Scheinberg et al. 1967 Poor fit. Response in unconstrained character
Five traits in Tribolium far less than expected and constrained characters

castaneum. displayed a significant negative response.

Okada and Hardin 1967, 1970 Modest fit. Response in unconstrained character
Larval and adult weight far less than expected. Constrained character

in Tribolium castaneum. displayed a negative response, however this
response under the restricted index was much smaller
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than the correlated response from direct selection on the
unconstrained character. Index response asymmetrical.

Campo and Villanueva 1987 Modest fit. Nonsignificant response in constrained characters
Adult and pupal weight in two separate sets of experiments, response in

in Tribolium castaneum. unconstrained characters less than half expected value.

Campo and Velasco 1989 Good fit using both the Tallis restriction and
Adult and pupal weight desired-gain index in spite of very high genetic

in Tribolium castaneum. and phenotypic correlations (both ρ > 0.9).

McCarthy and Doolittle 1977 Modest fit. Four different restriction indices applied
5- and 10-week body weight to two highly correlated characters (ρg ≃ 0.9)

in mice. Only two of the four indices gave no response in the
constrained character. Responses in the unconstrained
characters below expectations.

Eisen 1977a,b Modest-Good fit. Response in unconstrained character
Weight gain and feed intake close to expected value. No response in the

in mice. constrained character over first four generations
of selection followed by positive correlated response.

Eisen 1992, Eisen et al. 1995 Poor fit. Significant and asymmetric response in the
Body fat and body weight constrained character.

in mice.

Matzinger et al. 1989 Excellent fit. Significance response in TA while nonsignificant
Total alkaloids (TA) and response in the constrained character Y despite strong

yield (Y) in tobacco. negative genetic correlation (ρg ≃ −0.7). Response in
unconstrained character matched predicted response.

Holbrook et al. 1989 Two cycles of restricted index selection resulted in significant
Yield and seed protein increases in yield and total protein, no significant change

in soybeans in protein concentration (the restricted trait).

Atchley et al. 1997 14 generations of restricted selection for increases/decreases in
Early vs. late growth early growth while restricting late growth, and vice versa.

in mice Good response in desired trait, little response in restricted trait.

SUMMARY OF LINEAR SELECTION INDICES

A variety of linear indices, which often have very different goals, have been introduced in
the last few sections. Table 33.3 reviews the salient features of these.

Table 33.3. Summary of the linear selection indices introduced in this chapter. Response in merit

H = aT g is of interest, while selection occurs on the index I = bT z. Here a is the vector of weights
for merit and P the phenotypic covariance matrix. We allow for H and I to include different traits
and hence G = σ(g, z) is not symmetric can be be nonsquare. When the same traits are in both H

and I , G = GT = σ(g,g) is the standard genetic covariance matrix. Unless mentioned otherwise,
we assume the more general from of G, which has the symmetric genetic variance as a special case.

Smith-Hazel index, Is = bT
s z, where bs = P−1GT a.

Selection on Is maximizes the expected response in aT g.
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Estimated index, Îs = b̂
T

s z, where b̂s = P̂
−1

Ĝ
T
a.

The estimate of the Smith-Hazel index using the sample phenotypic and
additive genetic covariance matrices.

Base index, Ib = aT z.

Suggested as an alternative to the Smith-Hazel index when confidence in the precision of
estimates of P and (especially) G is low. Only defined when I and H contain the same traits

Restricted indices:

The Kempthorne-Nordskog restriction, Ir = bT
r z. Defining Gr = CG,

br =

[
I − P−1GT

r

(
GrP

−1GT
r

)
−1

Gr

]
P−1GT a

Selection on Ir maximizes the response in aT g for m + 1 ≤ zi ≤ k while allowing
no response in characters z1, · · · , zm. C is an m × n matrix with ones
on the diagonal and all other elements zero.

The Tallis restriction, Ir = bT
r z. Defining Gr = CG,

br =

[
I − P−1GT

r

(
GrP

−1GT
r

)
−1

Gr

]
P−1GT a + P−1GT

r

(
GrP

−1GT
r

)
−1

d

Selection on Ir maximizes the response in aT g for m + 1 ≤ zi ≤ k while specifying
the response of m linear constraints of z, such that CR = d, where R is the
vector of responses and the elements of C specify the linear combinations. The
Kempthorne-Nordskog restriction follows as a special case (d = 0).

Desired-gains indices:

Pes̆ek-Baker index, Id = bT
d z, where bd = G−1∆d.

Selection on Id gives a vector of proportional responses ∆d, where the ratio of
the i-th and j-th elements of this vector gives the ratio of desired responses in these
characters. The assumption is that response in all characters in z is of interest.

Tai-Itoh-Yamada index, Id = bT
d z, where bd = P−1GT (GP−1GT )−1∆d.

Generalization of the Pes̆ek-Baker index to allow for H and I containing different triats.

Cross-Generational Retrospective index, Irt = bT
rt z, where brt = G−1R

The difference from the Pes̆ek-Baker index is one of interpretation. Here, the vector
of responses R is observed rather than desired and we construct an index that
would have accounted for this response. Again assumes H and I contain the same traits.
If H and I contain different traits, the Tai-Itoh-Yamada index is used with R replacing ∆d.

Within-Generational Retrospective index, Iret = bT
ret z, where bret = P−1S

Estimation of the coefficients of the index from the observed selection differentials
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NONLINEAR SELECTION INDICES

In many cases, merit functions naturally depart from linearity (ratios H(g1, g2) = g1/g2 and
products H(g) =

∏
gj being two examples). Dealing with nonlinearity introduces a number

of subtleties, and we consider these first. We then examine the quadratic index as a further
introduction into some of these issues. We conclude with a review of various proposed
strategies for finding the best linear index for approximating a nonlinear merit. In many
cases these are related to the Smith-Hazel index, but the weights can change each generation
and they can depend on the current population mean, the proposed selection intensity ı, and
the timeline over which we wish to maximize response.

Specific Issues With Nonlinear Indices

Care is required in considering the improvement goals when using a nonlinear merit func-
tion, as apparently subtle differences in the desired outcomes can become critical (Moav and
Hill 1966, Goddard 1983, Itoh and Yamada 1988a, Burdon 1990). To see this point, first note
that with a linear index, the mean of the index equals the index evaluated at the mean, e.g.,

E[H(g)] = aT µ = H(µ) = H(E[g])

With a nonlinear index, E[H(g)] 6= H(E[g]), and thus we must decide if our the goal to
improve the average merit of all individuals in the population E[H] or to improve the merit

of the population average H(E[z]) = H(µ). These goals are equivalent under a linear merit
function (as E[H] = H[µ]), but are generally different when nonlinear merit functions are
used. For example, suppose H = g2 so that E[ g2 ] = σ2

g +µ2 ≥ µ2 = ( E[g] )2. Goddard (1983)
notes that selection response theory predicts changes in means, so that it is convenient to
therefore define merit as a function of the mean vector of the component traits, and hence
the goal is to maximize merit as a function of the population mean, H(µ), and much of the
existing theory has focused on this case. However, Itoh and Yamada (1988) note that in many
settings it is more desirable to maximize the overall mean of the merit E(H).

A related concern is whether we wish to maximize the additive genetic value in merit in
the parents or in their offspring. Again, with a linear index these are equivalent, as the mean
breeding value of the parents µ equals the mean value in their offspring. This is not the case
with nonlinear merit. To see this, again consider the simple merit function H = g2. To further
simplify matters, assume that the population mean is initially zero and that phenotypic and
additive-genetic values are symmetrically distributed around the mean. Choosing adults
with the largest g2 values generates a group of parents with a mean g value of zero. Mating
these parents at random gives offspring with a mean breeding value of zero. While there
will be a transient increase in merit due to the transient increase in variance caused by the
generation of positive gametic-phase disequilibrium (this merit function is akin to disrup-
tive selection, Chapter 13), this increase decays away after selection stops. A much larger
(and permanent) change in the merit occurs by just selecting the largest individuals (select
to increase g rather than g2), which increases the mean and hence increases g2. Nonrandom
mating among selected individuals can also increase response when the merit function is
nonlinear (Allaire 1980). In this example, positive assortative mating among selected in-
dividuals will further increase response by generating additional positive disequilibrium,
although this decays away upon relaxation of selection (Chapter 13).

A final issue, related to the first two, is that essentially all of the theory focuses on
changes in means. As we have seen, selection introduces at least transient changes in the
covariance matrices G and P through the generation of linkage disequilibrium, and these
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second-order changes can potentially be quite important in nonlinear indices. Balancing this
is the problem that changes in variances (and especially covariances) are extremely hard to
predict and tend to be rather unstable.

Quadratic Indices

The quadratic selection provides an excellent introduction into nonlinear indices for several
reasons. First, it is the simplest such index, with linearity as a special case. Second, it naturally
arises in both breeding and evolutionary biology (recall the best quadratic fit of the fitness
surface, Chapter 29). Third, it allows us to highlight some of the subtle issues with nonlinear
indices just discussed. Finally, it provides a good introduction to linearization of non-linear
indices by using a Smith-Hazel index whose weights change as the mean changes.

Wilton et al. (1968) introduced the quadratic index, and we largely follow their treatment.
Consider a quadratic merit function, where H is of the form

H = c +

k∑

i=1

ai(µi + gi) +
k∑

i=1

aii(µi + gi)
2 +

1

2

k∑

i=1

k∑

j=1

aij(µi + gi)(µj + gj)

= c + aT (µ + g) + (µ + g)
T

A (µ + g) (33.41a)

where c is a constant (which we will now ignore, as it does not effect the relative rankings
of individuals with different g values) and A is a matrix of quadratic weights

A =




a11 a12/2 · · · a1k/2
a12/2 a22 · · · a2k/2

...
...

. . .
...

a1k/2 a2k/2 · · · akk


 (33.41b)

Note that we have essentially seen this before, namely Lande-Arnold fitness regression
(Chapter 29), where H was relative fitness. The critical different between a linear and a
quadratic index is that the relative ranking of individuals is now a function of the population
mean. To see this, consider a very simple quadratic index,

H = a1(µ1 + g1) + a22(µ2 + g2)
2

when g2 = −µ2, there is no contribution from a22, while when g2 is significantly different
from the population mean, being squared, the quadratic term can dominate. Thus an in-
dividual with the same g2 value can have very different merit, depending on the current
population mean. Corresponding quadratic phenotypic selection indices for this quadratic
merit function have the form

I = α + bT z + zT Bz (33.42a)

where the matrix B has the same form as A except that aij is replaced by bij . As with a linear
index, it is possible that z and g contain different traits and may have different dimensions
(n and k, repsectively). As above, define G = σ(g, z), a k×n matrix where Gij = σ(gi, zj). If
both g and z contain the same traits, this is just the standard n×n genetic covariance matrix.
Wilton et al show that the values of b and B that maximize the correlation between I and H
are

b = P−1GT (a + 2Aµ) (33.42b)

and
B = P−1GT AGP−1 (33.42c)
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Notice that the vectorbof linear weights has two components: a constant valueP−1GT a

that is the same as the Smith-Hazel weight for a linear index with weight a, and a second
component 2P−1GT Aµ that is a function of the current population mean µ and the quadratic
merit weight A. Thus, the linear weights change with the mean. In constrast, the matrix of
quadratic weights B remains constant.

Example 33.10. Wilton et al. (1968) present the following example of a quadratic index. The
value of an angus cattle at weaning is a function of its weaning weight z1 and type score (z2).
The net return (in 1963) is $0.111 per pound of weaning weight at a zero type score, and an
extra $0.0049 per pound for each one point increase in the type score, giving

H = (µ1 + g1) [0.111 + 0.0049(µ2 + g2)]

This is a quadratic, being a function of the two direct breeding values g1 and g2, and their
cross-product g1g2. The resulting vector a and matrix A of merit weights becomes

a =

(
0.111

0

)
, A =

(
0 0.00245.

0.00245. 0

)

the off-diagonal term following from 0.11 · 0.0049 = 0.00245. The authors give the following
covariance matrices

P =

(
2649 18.49
18.49 1.75

)
, G =

(
1452 7.20
7.20 1.12

)
, µ =

(
418.95
13.35

)

Noting that G = GT in this case and applying Equation 33.42b yield

b = P−1Ga + 2P−1GAµ
(

0.622
−0.201

)
+

(
−0.0000095 0.00274

0.00322 −0.00887

) (
µ1

µ2

)

Likewise from Equation 33.42c, we have

B = P−1GAGP−1 =

(
−0.0000052 0.0009151

0.0009151 −0.005855

)

Notice that although the quadratic merit function put no weight on g2, the resulting quadratic
index does.

Analysis of the quadratic also allows us to consider some of the subtleties with a nonlin-
ear index. The index weights given by Equation 33.42 correspond to optimizing the quadratic
function evaluated at the mean, H(µ). Wilton et al. (1968) show that

E[H(g)] = H(µ) + tr(AP)

Thus, for the quadratic the difference between the mean value of the merit and the merit of
the mean value is a constant, and hence their optimization is equivalent, provided P remains
constant. Recall that tr(AP) denotes the trace (sum of the diagonal elements) of the matrix
product AP. Thus, if we focus only on changes in the mean, we do not have to worry as to
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which specification (optimization of the mean of merit or the merit of the mean) is required.
However, selection also changes G, and hence P, by creating disequilibrium. In this setting,
the two are not equivalent.

The second issue, optimization of the merit in the parents or their offspring, also appears
with the quadratic. While the vector of means is unchanged, the genetic variance differs from
parent to offspring (due to segregating and decay of disequilibrium), resulting in the two
having different values.

Finally, the quadratic allows us to start our discussion of how best to linearize a non-
linear index. Goddard (1983) shows that the maximal response in the merit of the mean can be
obtained using a linear index. If the expected change in mean is small (as might occur with a
small selection intensity), the Smith-Hazel weighs are given by the best linear approximation
of the nonlinear index, namely the first-order Taylor series (see Appendix 5). This approach
for a general nonlinear index was first suggested by Moav and Hill (1966) who further noted
that it can break down when the change in mean is large, requiring other approaches to find
the best linear index (to be discussed shortly). In either case, the best linear approximation
changes as the mean (and other factors) change, and thus the Smith-Hazel weights are no
longer a constant, but rather must be periodically updated. To see this for the quadratic,
consider the merit function again,

H = c + aT (µ + g) + (µ + g)
T

A (µ + g)

Let’s expand H in a first-order Taylor series (Equation A5.6). Taking the vector of first deriva-
tives of the linear term with respect to g gives

∇g
[
aT (µ + g)

]
= a

which follows from Equation A5.1a. Equation A5.1e gives the derivative for the quadratic
term as

∇g

[
(µ + g)

T
A (µ + g)

]
= 2A(µ + g)

When evaluated g = 0, the linearized contribution from the quadratic becomes 2Aµ. Hence,
the linear approximation of the merit function has the form

H(g) ≃ H(0) + ∇T
g(H)

∣∣∣∣
g=0

g = H(0) + (a + 2Aµ)T g (33.43)

and this are the best linear approximation of the weights. Thus the linear term of the quadratic
index (Equation 33.42b) is just a Smith-Hazel index now using the best linear approximation
for the function, Equation 33.43, as the weights. As the population mean changes under
selection, so to do the weights. Note that the best linear approximation is a local one, and no
longer holds if one considers large differences in g from around the mean. In such cases, the
first-order Taylor series may no longer be a good approximation and other approaches are
required to find the best linear weights (as detailed below).

Linear Indices for Nonlinear Merit

With these examples from the analysis of the quadratic in mind, lets now proceed to the
general analysis of nonlinear indices. Changes in variance will be ignored, not because they
are unimportant but rather because the relevant theory has not yet been fully developed.

While nonlinear indices for specific situations have been proposed (e.g., Wilton et al.
1968, Rønningen 1971, Magnussen 1991), Goddard (1983) suggested when genetic variation
is completely additive that the largest response occurs by selecting on a linear, rather than
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nonlinear, index. As first sight, this assertion does not seem well-supported by the experi-
mental evidence. Campo and Rodrguez (1990) found selection on a nonlinear index gave a
larger response than selection using a linear index when selecting for an increase in the ratio
of egg mass to adult body weight in Tribolium castaneum. Fairfull et al. (1977) and Campo and
de la Blanca (1988) also observed this with another nonlinear trait (total biomass = number
of offspring × offspring weight) in Tribolium castaneum. These observations, however, do not
necessarily invalidate Goddard’s assertion, as there is still some uncertainly in these papers
as how to construct the linear index giving the largest response in an nonlinear H . Many of
the linear indices considered were somewhat arbitrary and perhaps not surprisingly were
outperformed by a specialized non-linear index. Finally, the contribution of nonadditive
genetic variation to response in nonlinear indices is an open issue.

How might the best linear index be obtained? The simplest situation is when the
nonlinear index can be transformed into a linear index, which can then be maximized using
the standard linear theory. For example, if the merit function is a simple polynomial, say
H(g) = g1 + g2

2 + g3, by defining g̃2 = g2
2 the index becomes linear, viz. H(g) = g1 + g̃2 + g3.

This approach was first hinted at by Smith (1936) and formally suggested by Kempthorne
and Nordskog (1959), but requires the phenotypic and additive genetic covariances of the
transformed variables.

A more general approach is to first obtain the best linear approximation of a nonlinear
merit using a first-order Taylor series about the population mean,

H(g1, g2, · · · gn) ≃ H(µ) +
n∑

i=1

ai(gi − µi) where ai =
∂H

∂gi

∣∣∣∣
g=µ

(33.44a)

This provides the (current) economic weights for the best linear approximation of the merit.
The resulting optimal index is then given by a Smith-Hazel index using these weight (Moav
and Hill 1966, Harris 1970), namely

a = ∇g[H ]
∣∣
g=µ (33.44b)

Since a depends on the population mean, these weights change each generation. Moav
and Hill (1966) and Goddard (1983) note that this approximation may be satisfactory when
selection intensity is low, but is poor for highly non-linear functions when selection intensity
is high (and hence the extremes of the nonlinear function are selected). Burton (1990) shows
when the heritability of the characters underlying the index is low that a linear approximation
is usually reasonable. Hence, if the heritability of the index obtaining by using Equation
33.44b is low and the selection intensity weak then the Taylor approximation is likely to
be reasonable. However, if response is large (as might happen with either high heritability
and/or strong selection), then the change in g may be sufficiently large that the linear Taylor
approximation is no longer appropriate. Itoh and Yamada (1988) have developed second-
order (quadratic) series approximation in these cases, but exact methods are also available,
as we discuss shortly.

Example 33.11. Moav and Hill (1966) introduced the following nonlinear merit function:

H = a − bg1 −
c

g2

Here,

∇g(H) =




∂H/∂g1

∂H/∂g2


 =




−b

c/g2
2






THEORY OF INDEX SELECTION 433

Hence ∇T
g(H)|µ = (−b c/µ2

2 )
T

giving the best linear approximation of H around the
current population mean as

H ≃ a − bg1 +
c

µ2
g2

The resulting vector of weights for the Smith-Hazel index become

a =

(
−b

c/µ2
2

)

In the next generation, we would update with the new mean and proceed. In a real experiment,
would estimate the new mean each generation and use this for the new value of µ2. If our goal
instead is to predict the expected response after some number of generations, then Equation
33.19 can be used to compute the change in the (linearized) merit, while Equation 33.20 predicts
the change in the components (g1, g2) of the merit. Thus, in the next generation the weight
on g2 would be c/(µ2 + R2)

2 where R2 is obtained from Equation 33.20. Proceeding in this
fashion, one could iterate the expected response out to any desired generation.

Figure 33.3. Two contours (solid lines) of the merit function H = g1 +g2
2 are plotted (corre-

sponding to values of 0.25 and 1). The dashed lines are the response surfaces corresponding to
two different intensities of selection. The intersection between the merit and response surfaces
gives the optimal linear weights on both traits. Note that under weak selection, most of the
weight is on g1, while with stronger selection, there is roughly equal weight on g1 and g2.
Thus, the optimal index weights are a function of the intensity of selection. After Goddard
(1983).

Exact Optimization of Nonlinear Indices

While a Taylor series may provide a good linear approximation to a highly nonlinear merit
function when the change in mean is small, it does a poor job when the change in mean
is large. An alternative approach to obtaining the best linear index in this case is based on
a graphical method suggested by Moav and Hill (1966) for two characters and holds even
when selection intensity is strong and heritability high. Itoh and Yamada (1988a) analytically
extend this approach to n traits using the method of Lagrange multipliers (Appendix 5,
Example 33.3), while Pasternak and Weller (1993), Groen et al (1994), and Dekkers et al.
(1995) offer further extensions based on optimal control theory. All of these methods start
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from Equation 33.35b, which gives the quadratic response surface (all possible R vectors)
that can be generated at the same selection intensity for a given G and P,

ı2 = RT G−1PG−1R

In the original graphical analysis by Moav and Hill, the response surface is plotted into a
series of contours in the merit function, with the optimal response R in the merit components
taken to be those values on the response surface giving the highest merit. Analytically, this is
simply the maximal gain in merit H(µ+R)−H(µ) subject to the constraints on R imposed
by Equation 33.35b. With the optimal R in hand, the optimal index weights are given by
Equation 33.35a,

b =
σI

ı
G−1R

Figure 33.3 shows an example, and makes the key point that, unlike the Taylor approxi-
mation, the optimal index weights are a function of the selection intensity. Goddard (1983)
shows this method gives the optimal single-generation response when the breeding goal is
to improve merit as a function of the population mean H[µ].

Optimal Weights Depend on the Lenght of the Experiment

The two above approaches, Taylor series approximation and exact optimization, both apply
to predicting a single generation of response. As the mean changes, so does the weight
vector of the best linear index. Since G (and hence P) also change under selection, the
response surface used in exact optimization also changes over time (although it likely rapidly
approaches an asymptotic value). These changes are generally not accounted for in the
literature on nonlinear indices, but is straightforward to use Equations 33.14 to compute the
change in D (and hence G and P).

When the goal is optimization of the total response in merit over some defined interval,
several approaches are possible. First, one could use either Taylor series or exact optimization
to update the linear weights b each generation, resulting in using a new vector of weights
each cycle of selection (changes in G and P can also be accounted for using this approach).
The alternative is exact optimization, but now with the response surface corresponding to
the total response by the end of the experiment. The idea is to find the best linear index
corresponding to this response, and hence one would use a constant index throughout.
Formally, for optimization of the total response after t generations, one would optimize
H(µ + tR) − H(µ) subject to the constraint of the response surface (Equation 33.35b) with
t ı replacing the selection intensity. Note, because of nonlinearity, the best single generation
response R might not correspond to the best cumulative response after t generations. One
advantage of this approach is that a constant index is used (the weights b do not change). One
disadvantage is that it does not account for changes in G and P. Groen et al. (1994) examined
these different approaches, and found that direct optimization had a very slight advantage
over methods that updated each generation. Dekkers et al. (1995) expand this problem, using
results from optimal control theory when more complex types of optimization (such as the
average merit through the experiment) are of interest.

SEQUENTIAL APPROACHES: TANDEM SELECTION AND
INDEPENDENT CULLIING

When the goal is to improve performance in a number of traits, one can either select them
simultaneously (as we have seen with index selection) or sequentially. We conclude this chap-
ter by considering such sequential methods, which could involve selecting different traits in
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different generations (tandem selection), sequentially selecting traits over a single interval
(independent culling), or selecting different traits at different times during an individual’s
life span (multistage selection). Throughout, the goal is to maximize H =

∑
aigi (or equiv-

alently, the response in aT z) for a fixed amount of selection ı applied each generation. Under
the assumptions of the multivariate breeder’s equation, ∆H = aT R = aT GP−1S, so that
the goal for each method is to obtain the vector of directional selection differentials S that
maximizes ∆H for a fixed amount of selection. It is well established that index selection
is optimal for this sort of problem. However, the researcher or breeder also has to worry
about the costs (in terms of time and responses) of selection, and thus another metric is to
consider the largest rate of economic return, defined as the response divided by the cost.
Under this framework, index selection may not optimal, as one must score all of the traits
in the individuals being tested, which can be quite resource-expensive, both in terms of cost
as well as time.

Tandem Selection

Under tandem selection, only a single trait is selected each generation, but the trait chosen
changes over time. Selection intensity is usually assumed to be constant over generations,
as would occur if truncation selection is used with the same fraction saved, independent of
the current trait under selection.

Suppose we seek improvement in n traits. Under tandem selection, in any particular
generation only one trait is under direct selection, while other traits can change via corre-
lated responses (Chapter 30). Suppose trait i is currently under direct selection. Assuming
a constant selection intensity ı, its selection differential is Si = ı σ(zi), giving a selection
gradient of βi = Si/σ2(zi) = ı/σ(zi). From Equation 30.3a, the selection differential on a
(phenotypically) correlated trait j is

Sj = σ(zi, zj)βi = ı
σ(zi, zj)

σ(zi)

Summing over generations, the expected response to m generations of tandem selection is

∆H = aT GP−1S, where Si = ı
n∑

j=1

mj
σ(zi, zj)

σ(zi)
(33.45)

with mj the number of generations individuals are chosen solely on character j. The optimal
response is obtained by solving for the weights mj given P, G, and a.

For the special case of no phenotypic or genetic correlations,

∆H =
m∑

j=1

aj h2
j Sj = ı

m∑

j=1

mj θj with θj = aj hj σ(gj) (33.46)

which follows by noting that hjSj = hj ıσ(zj) = ıσ(gj). Optimal response occurs by selecting
the character with the initially largest value of θj in the first generation and the character
with the largest value of θj in each subsequent generation. If the θj ’s remain unchanged as
selection proceeds, the optimal strategy is to continue to select only on the character that gave
the largest response in the first generation. This is also the optimum strategy for arbitrary P

and G, provided these remain unchanged (Turner and Young 1969). This strategy, however,
is rarely used. The breeder usually changes the character being selected after some desired
level of performance is reached (in effect, changing the economic weights a as additional
response in the initial character loses some of its desirability relative to response in other
characters).
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Figure 33.3. Graphical representation of truncation selection on two characters using different
multivariate selection methods. The shaded area represents the fraction saved. Upper left:
under index selection, all individuals above the line b1z1 + b2z2 are saved so that the values
of the two characters are weighted. Upper right: under the Elston index, individuals whose
values are above a quadratic curve are saved. Lower left: under independent culling an
individual must be exceptional in both characters (both must exceed their thresholds) to be
saved. Lower right: under selection of extremes the individual needs only be exceptional in
a single character (either exceeding its threshold value is sufficient) to be saved.

A second issue is that G and P do change over time, and hence the optimal trait can
change as well. Under the infintesimal framework, if there are no genetic or phenotypic
correlations between traits, then selection on one trait reduces only its additive variance (by
generating negative disequilibrium, Chapter 13) which can reduces its h2 value, potentially
making other traits more favorable. We can directly see this from Equation 33.13, as with
no phenotypic correlations, the vector b of index weights contains only one non-zero entry
(corresponding to the trait under selection), while G is diagonal. When selections stops
on this trait, disequilibrium decays quickly, increasing h2. Under this model, the optimal
approach can be to select on one trait for a few generations, then move onto another to let
the selection-generation disequilibrium in that trait decay to zero before restarting selection
on it (Villanueva and Kennedy 1993).

An interesting variant of tandem selection is to select for different traits in different
populations, and then cross them The F1 is equivalent to the result from tandem selection,
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provided the starting populations are the same. This is typically done with two populations
(e.g., Orozco et al. 1980), but in theory is also applies to a synthetic formed by crossing n
different populations, each improved for a different trait (Chapter 22). Again, the proviso is all
started from the same base stock. The presence on nonadditive variance can also complicate
issues if allele frequencies have diverged sufficiently for heterosis to appear (Chapter 22).
Independent Culling

After index selection, some variant of independent culling is the most popular approach
for selecting on multiple traits. Under independent culling (Figure 33.2), individuals are first
screened for one trait (or more generally for an index involving a subset of traits). Individuals
above a given threshold level are saved for the next round selection, the rest removed from
future consideration. On these surviving individuals a second trait is selected by saving
individuals above the assigned threshold for this trait, and so on until all traits are selected.
Operationally, if selection occurs on n characters, then for an individual to be saved, it must
have zi ≥ Ti for all characters, where Ti is the threshold value for character i. If any character
fails to exceed its threshold, the individual is automatically culled without measuring any
remaining characters.

Example 33.12. Under the simplest culling approach, a constant fraction f of individuals
are saved after each culling. While this is not usually an optimal strategy, it represents the
simplest baseline. Suppose p is the desired fraction of the population remaining after all culls.

The probability of surviving alln cullings isfn = p, givingf = p1/n. For example, if we desire

p = 0.1 of the population left afer all cullings, then for n = 2 we have f = 0.11/2 = 0.316.
Values for 3, 4, 5, and 10 cullings are 0.464, 0.562, 0.631, and 0.794. Thus, selection is actually
rather weak for any particular culling event, with over half the population saved in time for
three or more traits (with this p value).

While logistically very straightforward, the technical issues surrounding independent
culling are much more complex than those for index selection. Basically, there are two tricky
issues. First, culling really is not really independent in that if there are correlations (genetic or
phenotypic) among traits, then previous selection changes the means and variances of these
traits. This leads to significant computation issues in predicting the response, especially since
normality is quickly lost following one (or more) rounds of selection. The second issue is the
choice of the optimal culling levels, which can be influenced by such subtleties as the actual
order at which traits are culled.

The benefits of independent cullings are savings in time and resources in that not all
traits have to be measured. For example, if we have k traits in n individuals, then a total of
kn measurements are required for standard index selection. However, under independent
culling (assuming a constant fraction f saved each culling), we measure n for the first trait,
fn for the second, f2n for the third and so on, for a total of

n
(
1 + f + f2 + · · · + fk−1

)
= n

1 − fk

1 − f
= n

1 − (p1/k)k

1 − p1/k
= n

(
1 − p

1 − p1/k

)

measurements. For example, with p = 0.10, for k =2, 4, 6, and 10, the total number of
measurements under independent culling is 1.3n, 2.1n, 2.8n, and 4.4n, or 65%, 52%, 47% and
44% of that required under index selection. The savings, however, are typically larger than
the above number suggest in that if some traits are very expensive to measure and we save
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there cullings for last (or at least later), then instead of n such measurements, we have f jn
measurements if the trait is measured in the (j + 1)st culling.

As mentioned at the start of this section, while index selection gives a larger response
(Hazel and Lush 1942), independent culling may give a larger economic return, with a high
rate of return per cost. For example, Namkoong (1970) provides tabular solutions to maximize
this ratio for two characters, while Xu et al. (1995) outline this maximization for multiple
characters.

Selection of Extremes

Abplanalp (1972) has proposed a method related to independent culling, selection of ex-
tremes. As Figure 33.3 shows this method selects a fixed proportion of the highest ranking
individuals for each character. Selection of extremes and independent culling are complemen-
tary in that selection of extremes for the upper p individuals is equal to independent culling
of the lowest 1 − p individuals.

Under independent culling, an individual must be superior in all characters to be se-
lected so that an individual superior in all but one character would still be culled. Index
selection considers a weighted average of all characters, so that an individual extremely su-
perior in a few characters and average or inferior in all others can still be selected. Selection
of extremes is somewhere in between — it allows for the retention of individuals superior in
at least some traits along the advantage of independent culling in that not all characters need
to be measured before selection. Abplanalp shows that selection of extremes is superior to
independent culling with the proportions of individuals culled in less than half, so that this
is method should be considered when selection is weak and there are costs associated with
measuring all characters.

RELATIVE EFFICIENCIES OF INDEX SELECTION, INDEPENDENT CULLING,
AND TANDEM SELECTION

Theory

While tandem selection is perhaps the most conceptually straightforward approach of ar-
tificial selection on multivariate characters and independent culling can have significant
cost savings, index selection is theoretically the most efficient method. This was first demon-
strated by Hazel and Lush (1942), who examined the simple case of no genetic or phenotypic
correlations between characters. When all n characters have equal value (all have the same
economic weight a, heritability h2, and phenotypic variance σ2

z ), the expected response from
a single cycle of selection (assuming, as usual, an infinite population) is

∆H

ı · σz · a · h2
=





√
n, Index selection;

1, Tandem selection;

n ıp,n/ı Independent culling

(33.47)

where ı is the selection intensity for a fraction p culled and ıp,n the selection intensity for
a fraction p−n culled. Under the conditions leading to Equation 33.47, the response under
index selection is

√
n larger than tandem selection, while independent culling is intermediate

in efficiency between the other two methods. For example, suppose 5 characters are under
selection and the upper ten percent of the population is culled. Here p0.1,5 = 0.11/5 ≃ 0.63
so that the upper 63 percent of individuals in each character are saved, giving a selection
intensity on each character of ı0.1,5 = 0.60. For p = 0.10, the intensity of selection on all
individuals is ı = 1.75 giving the response under index selection relative to independent
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culling as (
√

n · ı )/(n · ıp,n ) = ( ı/ıp,n )/
√

n = ( 1.75 · 0.6 )/
√

5 ≃ 1.3, while the ratio of
response of index selection to tandem culling is

√
n =

√
5 ≃ 2.2.

Figure 33.4 plots the expected responses of index and tandem selection relative to the
response under independent culling for different p and n values. For weak selection (p close
to one), tandem selection and independent culling give essentially the same response with
index selection being far superior, while with strong selection (p near zero) independent
culling and index selection have essentially the same efficiency, both being far superior to
tandem selection. Figure 33.4 also shows that the superiority of index selection to indepen-
dent culling and of independent culling to tandem selection increases with n the number of
characters under selection.

Young (1961) and Finney (1962) relaxed the assumption of equal effects used Hazel
and Lush, and generalized their result that index selection is at least as good as indepen-
dent culling, which in turn is at least as good as tandem selection. However, these authors
found that in many cases these differences are sufficiently small that the methods are es-
sentially equivalent. When economic weights, heritabilities and phenotypic variances differ,
for uncorrelated traits Young (1961) showed that the maximal difference in response be-
tween methods occurs when the quantity γi = aih

2
i /σzi

is the same for each character. As
these γi differ between characters, differences between methods decrease. The conditions
examined by Hazel and Lush are those that maximize differences between the three meth-
ods and present the best case for index selection. When the characters being selected are
phenotypically negatively correlated, Young found index selection is far more efficient than
independent culling. When characters are strongly positively correlated, index selection and
independent culling are essentially equivalent. This makes sense in that when characters are
strong correlated, an extreme value in one character implies extreme values in most/all
other characters of interest. Since the methods differ in how the extreme values of charac-
ter are weighted, as these values become correlated, differences in the methods decrease.
Abplanalp (1972) numerically examined selection of extremes and found that while it was
always superior to tandem selection and always inferior to index selection, it is inferior to
independent culling under strong selection (p << 0.5) and superior under weak selection
(p > 0.5).

The above theoretical examinations are restricted to a single generation of change in an
infinite population when all parameters are assumed to be exactly known. Even if the last
two conditions hold, as selection proceeds it generates gametic-phase disequilibrium and
can change allele frequencies, changing G and P. This not only changes the weighting of
the Smith-Hazel index, but different selection schemes can generate different amounts of
disequilibrium and allele frequency change. Thus the asymptotic value of G under the same
selection intensity can be different under independent culling, index, and tandem selection.
A small two-trait simulation study (60 loci, 20 affecting each trait independently, 20 jointly
affecting both traits) by Bennet and Swiger (1980) found that while index selection gave
the largest asymptotic response, the difference in ultimate response were much less that the
initial single-generation differences. This was confirmed by Villanueva and Kennedy (1993),
who compared the long-term response of index and tandem selection under the assumption
of the infinitesimal model (all changes in G and P are due to gametic-phase disequilibrium
and are given by Equation 33.14). They found that while the largest response occurs when
the index is updated (Smith-Hazel weights recomputed each generation using the current
values of G and P), the benefit from updating is small (a maximum of 1.5% for the cases
studied).

A final complication is that the estimated Smith-Hazel index always underperforms the
true index, and the above comparisons assume that the true index is known. When this is
not the case, the difference between methods may become even smaller. Given all of these
concerns, what do the data say?
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Figure 33.4. Relative efficiencies (the expected response in an infinite population for the same
selection intensity) of index selection and tandem selection relative to independent culling for
the special case of no genetic or phenotypic correlations when all characters have the same
economic weight, heritability and additive genetic variance.

Data

A variety of experiments have examined the relative efficiencies of index selection, indepen-
dent culling (including multistage selection), and tandem selection (Table 33.4). While all
used very small effective population sizes and hence have a high variance in response, the
consensus is that response under index selection > response under independent culling >
response under tandem culling. It should be noted that in most cases the economic weights
were equal, the situation giving the largest differences between methods. In those experi-
ments where both were compared, the base and estimated indices gave essentially identical
results. Elgin et al. (1970) found that while the base index had essentially the same perfor-
mance as Smith-Hazel index, selection on the base index gave a much smoother response to
selection. Perhaps the most notable exception to the general trend of index selection being
superior was Rasmuson (1964), who examined bristle selection in Drosophila. She found in-
dependent culling was superior in all up-selected lines, while index selection was superior
in all down-selected lines. Rasmuson suggested one reason for this difference is that while
index selection allows individuals that are extreme in only one character to be saved, these
individuals are lost under independent culling which requires both characters to be extreme.
Hence, loci giving an extreme value in one character but not others are favored under index
selection, but can be selected against under independent culling.
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Table 33.4. Results of experiments examining the relative efficiencies of different methods for simul-

taneous selection of multiple characters. Îs = selection using the estimated Smith-Hazel index, Ib =
selection using the base index, IC = independent culling, TS = tandem selection.

Elgin et al. 1970 Îs and Ib were equally effectively, both
Cutting recovery time and four superior to IC , which in turn was

fungal resistance traits in Alfalfa superior to TS.

Sen and Robertson 1964 Considerable heterogeneity between replicate

Abdominal and sternopleural bristles lines, but general trend was Îs > IC > TS.
Drosophila melanogaster

Rasmuson 1964 TS gave poorest response. In all four
Abdominal and sternopleural bristles up-selected lines, IC gave a larger response

Drosophila melanogaster than Îs, while in all four down-selected

lines Îs was superior to IC.

Doolittle et al. 1972 Averaged over replicates, Îs > IC > TS, but
Weight gain and litter size in mice these differences were not significant.

Eagles and Frey 1974 Îs, Ib, and IC gave similar responses
Grain and straw yield in Oats when averaged across different

environments and selection intensities.

Orozco et al. 1980 Îs gave a larger response that F1 crosses
Pupal weight and egg number in between lines each selected for a single

Tribolium castaneum trait (equivalent to TS).

Campo and Rodriguez 1985 A modified base-index (adjusted empirically
Adult weight and egg number in each generation to improve response)

Tribolium castaneum gave a larger (but not significant) response

than Îs.

Campo and Rodriguez 1986 Replicated single-generation responses were

Adult weight and egg number in significantly higher under Îs than IC.
Tribolium castaneum

There are a couple of important exceptions to the general trend of index beating tandem
selection (measured by total gain, not economic rate of return). For disease-resistance traits,
there is a significant economic advantage to use independent culling, as a very large number
of seedlings can easily be screened for resistance to many diseases (often simply choosing
those that survive a disease challenge). Haarmann et al. (1992) selected for increased yield
and resistance to leaf blight and stalk rot in maize. They noted that tandem selection was
able to offer both resistance to stalk rot and increased yield, while index selection was not.
They suggest that disease resistance might be more effectively selected by focusing all effort
on this trait in a particular generation.

Finally, like index selection, modifications have been proposed for independent culling
to allow for restriction in the response of a character (Evans 1980) and for desired gains (Xu
and Muir 1991, 1992). Campo and Villanueva (1987) experimentally compared restriction
via independent culling with restriction by index selection for two sets of traits in Tribolium
castaneum, finding that while both methods restrict response in the constrained character,
index selection gave a larger response in the unconstrained characters.
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MULTISTAGE SELECTION

While independent culling can save resources and time when the succession of traits is
scored over a very short time interval, its real economic power occurs when one is selecting
on traits that appear in different life cycle stages. Suppose the goal is to improve some
index of both germination time and plant height. Under independent culling, we first select
on germination time and then much later select on height at maturity. This is an example
of multistage selection, where selection occurs over different stages, resulting in fewer
individuals to rear through all stages. Under traditional index selection, we need to have
measured both traits in all individuals, which requires the much greater expense of growing
all the seedlings to maturity.

Another classic example of multistage selection is cattle breeding, where individuals
are first chosen based on their phenotypic values. These survivors are then put through
much more expensive progeny testing to decide which of the remaining individuals to use
for future breeding. Under traditional index selection, culling could only occur after both
characters are measured in all individuals, requiring very expensive progeny tests for all
cattle.

Note the we have already seen multistage selection in action in our discussion of varietal
selection (Chapter 20). Here the goal is to select the best-performing pure line for an initial
large collection. The more members we measure from each line, the more precise our estimate.
However, we are limited by time and total acreage. Thus, the optimal strategy when a fixed
number of plants can be grown each year is a type of multistage selection, where each
selection cycle the number of different lines is decreased, while the number of replicates per
line is increased, in order to have the highest probability of choosing the true best-performing
line from an initially large collection.

Optimal Values for Multistage Cullings

A major problem with applying independent culling has been computing the optimal thresh-
old values when more than a few characters are considered. We assume truncation selection,
so that the threshold value is equivalent to the fraction of the population saved. The problem
of choosing the optimal values can thus be phrased as follows. The objective is to cull k traits
sequentially, where pi is the fraction for culling cycle i. Subject to the constraint that p =

∏
pi

is the total fraction saved, we wish to maximize the response, which is given by aT R. The
delicate part is that each episode of selection potentially changes the phenotypic and genetic
variances and covariances and we must account for this. Further, each cycle of culling further
drives the distribution away from normality, further complicating matters (although this is
typically ignored).

This problem has a rich history, starting with Cohran (1951). For two-stage selection,
Young and Weiler (1960) and Williams and Weiler (1964) give graphs of optimal truncation
points while Smith and Quaas (1982) have developed an iterative solution. Jain and Amble
(1963) examine more than two stages of selection, while Saxton (1989) and Ducrocq and
Colleau (1989) developed programs for more than two characters, but these are extremely
slow for more than five characters. The effects of finite population size have been considered
by Norell et al. (1991). Approximate solutions assuming either weak selection or low phe-
notypic correlations between characters (so that we can assume normality holds) have been
developed by Hanson and Brim (1963), Namkoong (1970), Cunningham (1975) and Cotterill
and James (1981). Xu and Muir (1991, 1992) developed a fairly general approach based on
transforming the cullings to a set of orthogonal values, and we discuss this powerful method
shortly.

Cotterill and James’ Approximately Optimal Two-Stage Selection
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Cotterill and James (1981) offer a general approximation for gain after two stages of selection
under the assumption that distribution of traits following stage one selection remains roughly
normally distributed. Suppose stage one selects on trait x (which may be an index of several
traits), stage two selects on trait y (again, this could be an index), and the goal is the optimal
improvement of the breeding value for merit g. Cotterill and James assume that (x, y, g)T

is initially trivariate normal, and that the distribution of (y, g)T remains roughly normal
following stage one of selection (x, however, need not remain normal). The new mean in g
given selection on x follows from a standard regression of g on x,

µ(g∗) = µg + Sxσ(x, g)/σ(x)2 = µg + ı1 ρx,gσ(g) (33.48a)

where ı1 is the intensity for the first stage of selection. The resulting reduction in the mean
of x is (Chapter 13)

σ2(x∗) = σ2(x) (1 − κ1) (33.48b)

where κ1 is given by Equation 33.10 using the values given by ı1. The variance of y in the
selected (stage-one) population is also a classic result (Cochran 1951; Chapters 13, 31) and is

σ2(y∗) = σ2(y)
[
1 − ρ2

x,y κ1

]
(33.48c)

Similarly,
σ2(g∗) = σ2(g)

[
1 − ρ2

x,g κ1

]
(33.48d)

Finally, the covariance between y and g in the selected (stage one) population is

σ(y∗, g∗) = σ(y)σ(g) [ ρy,g − ρx,y ρx,g κ1 ] (33.48e)

The mean in g following selection in the second stage (on y∗) is again given by a regression,
g∗ on y∗, which requires us to use the means, variances, and covariances following selection,

µ(g∗∗) = µ(g∗) + Sy∗σ(g∗, y∗)/σ(y∗)2 = µ(g∗) + ı2 σ(g∗, y∗)/σ(y∗) (33.49)

Write the response in standard deviations, substituting 33.48a - 48e into Equation 33.49, and
simplifying yields

∆g

σ(g)
=

µ(g∗∗) − µg

σ(g)
= ı1 ρx,g + ı2


ρy,g − ρy,xρx,g κ1√

1 − ρ2
x,y κ1


 (33.50)

Equation 33.50 is then numerically maximized subject to the constraint that p1p2 = p. Note
that we can simply plot this as a function of p1, as p1 determines both ı1 and κ1, while
p2 = p/p1 determines ı2.

Multistage Index Selection

Hanson and Brim (1963) and especially Young (1964) suggested an extension of independent
culling when selection occurs at different stages, multistage index selection. The first culling
takes place as usual, with only individuals with z1 ≥ T1 being saved. However, in subsequent
culling, linear combinations of characters are used, so that if z2 and z3 are the characters
being selected in the next two stages, then individuals are saved at these stages provided
b11z1 +b12z2 ≥ T2 and b21z1 +b22z2 +b23z3 ≥ T3 (contrasted with independent culling where
individuals are saved if z2 ≥ T2, z3 ≥ T3). By using this additional information, we can obtain
a larger response that under simple independent culling. Saxton (1989) has pointed out that
high correlations among indices for the different cullings can result in significant biases when
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methods assuming normality are used to obtain optimal culling values. Xu and Muir (1991,
1992) offer a way around this by judicious choice of the index weights.

Selection in multiple stages is equivalent to a type of independent culling, even when
partial selection indices form the basis of selection in each stage, and hence is expected to be
less efficient than single-stage index selection. Wing et al. (1983) estimated that two-stage in-
dex selection is slightly less efficient than a single-stage index for a set of Whitehorn chickens,
and this general trend in seen in experiments comparing single- and multi-stage selection.
For Example, Ayvagari et al. (1985) examined egg number and weight and body weight in
White Leghorn chickens, finding that six different two-stage index selection schemes were
between 60 and 80 percent as efficient as single-stage index selection. Likewise, Campo
and de la Fuente (1991) examined pupal weight and egg number in Tribolium castaneum.
Single- versus two-stage index selection were compared, with different amounts of selec-
tion intensity during the second stage. Two-stage selection was equally effective as standard
(one-stage) index selection when second-stage culling was moderate, but much poorer when
2nd-stage culling was stronger.

Xu and Muir’s Method of Transformed Culling and Orthogonal Index Selection

A very clever approach to multistage selection was offered by Xu and Muir (1991, 1992),
who make use of the Cholesky decomposition matrix. Suppose the covariance matrix P

is of full rank (i.e., non-singular). In this case, we can find an upper triangular matrix T

(a matrix will all zeros below the diagonal) such that TT T = P. The general advantage of
such a decomposition is as follows. Consider the transformation y = (TT )−1x. The resulting
covariance matrix for y becomes

σ(y,y) = (TT )−1σ(z, z)T−1 = (TT )−1PT−1 = (TT )−1TT TT−1 = I

Thus, this transformation rotates the variables in z to remove any correlation and scales them
to unit variance. The specific advantage to multistage selection follows from consideration
of (TT )−1, which is a lower triangular matrix,

(TT )−1 =




t11 0 · · · 0
t21 t22 · · · 0
...

. . .
...

tn1 tn2 · · · tnn




Hence, the vector y of transformed trait values becomes



y1

y2
...

yn


 = (TT )−1x =




t11z1 0 · · · 0
t21z1 t22z2 · · · 0

...
. . .

...
tn1z1 tn2z2 · · · tnnzn


 =




I1

I2
...

In


 (33.51a)

where

Ik =

k∑

i=1

tk,izi (33.51b)

is the index associated with the kth culling. Note that, by construction, σ(Ik, Ij) = 0 and
these indices are orthogonal. Xu and Muir refer to this as transformed culling.

One immediate use of this result is for a multistage desired-gains index. Recall from
Equation 33.9 that the vector of selection differentials S required to achieve a particular
vector of responses R is given by

S = GT
(
GP−1GT

)
−1

R



THEORY OF INDEX SELECTION 445

If S is the vector of selection differentials on the untransformed traits z, then

∆y = (TT )−1S (33.52a)

is the vector of selection differentials on the transformed vector y. Further note that since
the phenotypic variance of each yi is one, ∆y corresponds to a vector of selection intensities.
Thus, with multistage selection, the vector of required selection intensities at each stage to
achieve the desired response satisfy

∆y = (TT )−1GT
(
GP−1GT

)
−1

R (33.51b)

as obtained by Xu and Muir (1991).

Example 33.13. The following numerical example was presented by Xu and Muir (1991).
Suppose we are following three traits, with

P =




10 8 3
8 20 10
3 10 30


 , G =




5 3 4
3 5 5
4 5 20




Here

(TT )−1 =




0.3162 0 0
−0.2169 0.2712 0

0.0295 −0.1121 02006




To illustrate how to proceed when G is not symmetric, suppose that while we select on three
traits, our interest is only in the response of the first two, giving

G =

(
5 3 4
3 5 5

)

If our desired gains are R = ( 0.8 1.0 )
T

, then Equation 33.51b gives the vector of selection
intensties at each of the three stages of selection as

∆y =




ı1
ı2
ı3


 =




0.4810
0.5422
0.3039


 , implying p =




0.708
0.666
0.828




where the elements of p are the fraction of the population saved under truncation selection
in order to obtained the desired selection intensity (these can easily be obtained by solving
Equation 10.26a, ı = ϕ(z[1−p])/p for p given ı). The resulting total fraction saved is roughly
39%. Hence, we can achieve the desired gains for the first to traits by selection the upper 71%
of trait 1, then on the upper 66.7% of the index −0.22z1 + 0.27z2 and in the third stage, the
upper 83% of the index 0.3z1 − 0.11z2 + 0.20z3.

Xu and Muir also show how to use this decomposition to obtain the optimal culling
values for independent culling. As above, let H = aT g denote the breeding value for the
merit function we wish to maximize. First, note that Equation 33.52a implies S = TT ∆y.
Thus we can write the expected change in merit as

∆H = aT R = aT Gp−1S = aT GP−1TT ∆y = aT GT−1∆y (33.52a)
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where the last step follows from

P−1TT = (TT T)−1TT = T−1(TT )−1TT = T−1

Letting ti denote the ith column of T−1, we can use the triangular nature of this matrix to
write the response as

aT GT−1∆y = aT
n∑

i=1

Gti ıi (33.52b)

Recalling Equation 10.26a, we can express ıi as a function of the fraction pi saved, giving

∆H = aT
n∑

i=1

Gti

(
ϕ(z[1−pi])

pi

)
(33.52c)

The goal is to maximize equation 35.52c under the constraint that
∏

pj = p. This is a much

easier problem that finding multiple truncation points for a high-dimensional multivari-
ate normal and can easily (and quickly) be solved using Newton-Raphson iteration (LW
Appendix 4), see Xu and Muir (1991) and Xu et al. (1995) for details.

Example 33.14. This example is also do to Xu and Muir (1991). Using the same G and P
from Example 33.13, obtain the optimal selection fractions if our goal is to maximize H with
economic weights of aT = ( 1 2 ) (again, only the first two traits are of interest) under an
overall fraction saved of 20%. Equation 33.52b gives

∆H = aT
n∑

i=1

Gti ıi = 3.479 ı1 + 1.139 ı2 + 1.676 ı3

Writing the selection intensity ıi as a function of pi gives

∆H = 3.479

(
ϕ(z[1−p1])

p1

)
+ 1.139

(
ϕ(z[1−p2])

p2

)
+ 1.676

(
ϕ(z[1−p3])

p3

)

as the function of maximize for p1, p2, p3 subject to the constraint the p1p2p3 = 0.20. Using
Newton-Raphson iteration gives p1 = 0.253, p2 = 0.958, and p3 = 0.824. Hence, almost all
of the selection is in stage 1, and the resulting response is ∆H = 5.026. By contrast, if we used
a Smith-Hazel index, Equation 33.19 gives the expected responses as 5.635. Thus, multistage
selection gives 89% of the response as a standard Smith-Hazel index.

Xu and Muir (1992) extend their approach to the case where the “trait” added each
generation can now be an index of trait values not previously scored. The idea is to find the
weights that maximizes the correlation between H and the index Ii used in stage i, subject to
the constraint that all of the indices remain uncorrelated. Xu and Muir refer to this as selection
index updating, but we prefer the term multistage orthogonal index selection, as updating
usually refers to changing the economic coefficients in a standard Smith-Hazel index. This
restriction that the indices remain uncorrelated allows the above machinery to compute the
optimal factions saved at any culling cycle. However, it is also akin to a restricted selection
index and hence the response is expected to be less than maximizing response without such
restrictions. However, under such a case, the indices would be correlated, raising significant
computational issues in obtaining the optimal values. Xie and Xu (1997) further extend
orthogonal index selection to allow for restricted or desired gains within some subset of the
traits.
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