An Empirical Study on the Correctness of
Formally Verified Distributed Systems

Pedro Fonseca  Kaiyuan Zhang

Xi Wang

Arvind Krishnamurthy

University of Washington
{pfonseca, kaiyuanz, xi, arvind}@cs.washington.edu

Abstract

Recent advances in formal verification techniques enabled
the implementation of distributed systems with machine-
checked proofs. While results are encouraging, the impor-
tance of distributed systems warrants a large scale evaluation
of the results and verification practices.

This paper thoroughly analyzes three state-of-the-art, for-
mally verified implementations of distributed systems: Iron-
Fleet, Verdi, and Chapar. Through code review and testing,
we found a total of 16 bugs, many of which produce serious
consequences, including crashing servers, returning incor-
rect results to clients, and invalidating verification guaran-
tees. These bugs were caused by violations of a wide-range
of assumptions on which the verified components relied. Our
results revealed that these assumptions referred to a small
fraction of the trusted computing base, mostly at the inter-
face of verified and unverified components. Based on our
observations, we have built a testing toolkit called PK, which
focuses on testing these parts and is able to automate the de-
tection of 13 (out of 16) bugs.

1. Introduction

Distributed systems, complex and difficult to implement cor-
rectly, are notably prone to bugs. This is partially because
developers find it challenging to reason about the combina-
tion of concurrency and failure scenarios. As a result, dis-
tributed systems bugs pose a serious problem for both ser-
vice providers and end users, and have critically caused ser-
vice interruptions and data losses [57]. The struggle to im-
prove their reliability spawned several important lines of re-
search, such as programming abstractions [5, 36, 44], bug-

Revised version (4/19/2017)

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

EuroSys *17  April 23-26, 2017, Belgrade, Serbia
© 2017 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-4938-3/17/04. .. $15.00
DOI: http://dx.doi.org/10.1145/3064176.3064183

Developer

Specification

t

Verified distributed
system code

Shim layer

(OF

Verifier (core)

Figure 1: An overview of the workflow to verify a distributed
system implementation.

finding tools [26, 37, 53, 54], and formal verification tech-
niques [22, 29, 34, 52].

Formal verification, in particular, offers an appealing ap-
proach because it provides a strong correctness guarantee
of the absence of bugs under certain assumptions. Over the
last few decades, the dramatic advances in formal verifica-
tion techniques have allowed these techniques to scale to
complex systems. They were successfully applied to build
large single-node implementations, such as the seL4 OS ker-
nel [27] and the CompCert compiler [33]. More recently,
they enabled the verification of complex implementations of
distributed protocols, including IronFleet [22], Verdi [52],
and Chapar [34], which are known to be non-trivial to im-
plement correctly.

At a high level, verifying these distributed system imple-
mentations follows the workflow shown in Figure 1. First,
developers describe the desired behavior of the system in a
high-level specification, which is often manually reviewed
and trusted to be correct. Developers also need to model
the primitives, such as system calls provided by the OS, on
which the implementation relies upon; we refer to this as the
shim layer. Finally, developers invoke auxiliary tools (e.g.,
scripts) to communicate with a verifier and print results. The
specification, the shim layer, and auxiliary tools, as well as
the components they glue together, are part of the trusted
computing base (TCB). If the verification check passes, it



Protocol Consistency Code size

IronFleet Multi-Paxos Linearizability (x) 34K lines of Dafny/C#
Verdi Raft Linearizability 54K lines of Cog/OCaml
Chapar [2, 38] Causal 20K lines of Cog/OCaml

(%) IronFleet’s specification does not guarantee exactly-once semantics. See §5.

Figure 2: Summary of the verified distributed systems we analyzed.

guarantees the correctness of the implementation, assuming
the TCB is correct.

This paper conducts the first empirical study on the cor-
rectness of formally verified implementations of distributed
systems. While formal verification gives a strong correct-
ness guarantee under certain assumptions, our overarching
research goal is to understand the effectiveness of current
verification practices: what types of bugs occur in the pro-
cess of verifying a distributed system, and where do they oc-
cur? We focus on possible bugs in distributed systems; bugs
in external components, such as the OS, the verifier, or the
hardware, are beyond the scope of this paper.

In particular, this paper addresses the following three
research questions:

1. How reliable are existing formally verified distributed
systems and what are the threats to their correctness?

2. How should we test the assumptions relied upon by veri-
fication?

3. How can we move towards real-world, “bug-free” dis-
tributed systems?

To answer these questions, we studied three state-of-the-
art verified distributed systems (Figure 2). We acknowledge
that these systems, although with a formal correctness proof,
are research prototypes; our ultimate goal is not to find bugs
in them, but rather to understand the impact of the assump-
tions made by formal verification practices when applied to
building distributed systems. §3 will provide a detailed dis-
cussion of our methodology.

Our four main contributions follow. Surprisingly, we have
found 16 bugs in the verified systems that have a negative
impact on the server correctness or on the verification guar-
antees. Importantly, analyzing their causes reveals a wide
range of mismatched assumptions (e.g., assumptions about
the unverified code, unverified libraries, resources implicitly
used by verified code, verification infrastructure, and spec-
ification). This finding suggests that a single testing tech-
nique would be insufficient to test all the assumptions that
actually fail in real-world scenarios when building verified
distributed systems; instead, developers need a similarly di-
versified testing toolkit.

Second, we observe that the identified bugs occur at the
interface between verified and other components, namely
in the specification, shim layer, and auxiliary tools, rather
than in the rest of the system (e.g., the OS). These interface
components typically consist of only a few hundred lines
of source code, which represent a tiny fraction of the entire

TCB (e.g., the OS and verifier). However, they capture im-
portant assumptions made by developers about the system;
their correctness is vital to the assurances provided by veri-
fication and to the correct functioning of the system.

Third, none of these bugs were found in the distributed
protocols of verified systems, despite that we specifically
searched for protocol bugs and spent more than eight months
in this process. This result suggests that these verified dis-
tributed systems correctly implement the distributed system
protocols, which is particularly impressive given the noto-
rious complexity of distributed protocols. The absence of
protocol bugs found in the verified systems sharply con-
trasts with the results of an analysis we conducted of known
bugs in unverified distributed systems. This analysis con-
firms that even mature, unverified distributed systems suffer
from many protocol-level bugs. It suggests that these verifi-
cation techniques are effective in significantly improving the
reliability of distributed systems.

Finally, based on the evaluation results and with the goal
of complementing verification techniques, we built the PK!
testing toolchain that detects the majority of the bugs found.
The toolkit can be generalized to find similar bugs in other
verified systems. Inspired by the findings of our study, we
limited testing to the components that were found to be the
source of bugs for real-world verified systems. In particular,
our toolchain does not test verified components; it tests only
the TCB and, additionally, it focuses testing on the interface
between verified and unverified components.

2. Background

This section provides background on verification techniques,
replicated distributed protocols, and the verified distributed
systems that we analyzed.

2.1 Machine-Checked Verification

An important technique to formally reason about systems
relies on the programmer writing formal proofs. As opposed
to pen-and-paper proofs, machine-checked proofs provide
the assurance that each step in the proof is correct—a key
factor given that proofs can be extensive and complex.

Verification provides a formal guarantee that the system
satisfies a specification, which consists of: (1) a formal de-
scription of the properties (behavior) that the system must
satisfy, and (2) the assumptions made about the environment,
such as the network and file system.

The specification is a critical concept in verification. The
specification is important to (a) informally convince devel-
opers that the system has the properties that they desire and
(b) formally verify other systems through compositional ver-
ification techniques. The former application of the specifica-
tion relies on the fact that the specification is often smaller
and simpler than the implementation, increasing developer’s
confidence that it is correct through manual inspection.

I PK is an acronym for Panacea Kit



Bug Component Trigger Incorrect results Crash Impact Reported Fixed PK
Specification
I1  High-level specification Packet duplication - - Void exactly-once guarantee v - v
C4  Test case - - - Void client guarantee v v -
Verification tool
I2  Verification framework Incompatible libraries - - Verify incorrect programs v v v
I3 Verification framework Signal delivered - - Verify incorrect programs v v -
I4  Binary libraries - - - Prevent verification - v v
Shim layer
V1  Client-server communication  Partial socket read - v Crash server v - v
V2 Client-server communication  Client input v v Inject commands v v
V3 Recovery Replica crash - v Crash server v - v
V4 Recovery Replica crash v v Crash server v - v
V5  Recovery OS error during recovery v - Incomplete recovery v - v
V6  Server-server communication Lagging replica - v Crash server - v v
V7 Server-server communication Lagging replica - v Crash server - v v
V8  Server-server communication Lagging replica - v Crash server v - -
C1  Server-server communication Packet duplication v - Violate causal consistency v - v
C2  Server-server communication Packet loss - v Return stale results v - v
C3  Server-server communication  Client input v v Hang and corrupt storage v - v

Figure 3: Bugs that our analysis found in the high-level specification, verification tool, and shim layer of verified distributed systems. Some
bugs caused servers to crash or to produce incorrect results, and most bugs are detected by our testing toolchain (PK). We reported all listed
bugs to developers, except bug V6 and bug V7, which the developers had already fixed.

Importantly, all formal guarantees provided by machine-
checked verification are valid as long as the trusted com-
puting base (TCB) is correct. For verified systems, the TCB
includes: the specification, the verification tools (e.g., veri-
fier, compiler, build system), and the runtime infrastructure
(e.g., libraries, OS, hardware). With a correct TCB, verifica-
tion ensures that the implementation “bug-free.”

2.2 Replicated Distributed Protocols

The systems we studied implement replicated distributed
protocols. IronFleet and Verdi implement replicated state
machine protocols (MultiPaxos [30] and Raft [45], respec-
tively), while Chapar implements a replicated key-value
store that provides causal consistency [2, 38]. This section
provides background about these protocols.

Replicated state machine protocols. Replicated state
machine (RSM) protocols replicate an arbitrary state ma-
chine over a set of replicas while providing the abstrac-
tion of a single server running a single state machine. Both
MultiPaxos and Raft, which are leader-based, aim to pro-
vide fault-tolerance under the crash-fault model where repli-
cas and clients communicate over asynchronous networks.
MultiPaxos and Raft provide linearizable [23] semantics to
clients—the strongest consistency guarantee [31].

Causal consistency protocols. Causal consistency, a
weaker form of consistency, uses the notion of potential
causality [28]. It imposes fewer restrictions on implemen-
tation behavior than linearizability, potentially improving
performance while still providing intuitive semantics. Lloyd
et al. [38] and Ahamad et al. [2] proposed two different al-
gorithms for causal consistency.

2.3 Verified Systems Surveyed

We survey three state-of-the-art verified distributed systems:
IronFleet, Verdi, and Chapar.

IronFleet. IronFleet proposes a methodology to ver-
ify distributed systems that relies on state machine refine-
ment [1, 19, 29] and Hoare-logic verification [16, 24]. It
provides a verified implementation of a MultiPaxos server
library (§2.2) and an implementation of a counter that uses
the library.? IronFleet aims at proving the safety (lineariz-
ability) and liveness of the MultiPaxos library.

IronFleet is implemented and verified using Dafny. The
Dafny compiler and verifier [32] relies on a low-level com-
piler and verifier (Boogie [4]) and on an SMT solver (Z3 [14]).
Some of IronFleet’s non-verified implementation code is
written in C#.

Verdi. Verdi’s methodology to verify distributed systems
relies on a verified transformer [52]. It verifies a server
implementation of the Raft protocol (§2.2)? and seeks to
prove its safety properties (linearizability). Verdi provides
durability (operations are written to disk) and implements
recovery (replicas can recover from a crash).

Verdi is verified and implemented using the Coq proof
assistant [13]. It invokes Coq to translate its verified code
into OCaml, which is then either interpreted by the OCaml
interpreter or compiled into a binary by the OCaml compiler.
Some of Verdi’s non-verified code is written in OCaml.

Chapar. Chapar proposes a methodology to verify dis-
tributed systems with causal consistency semantics. It ver-
ifies a key-value store that implements the two causal con-
sistency algorithms described in §2.2. Chapar seeks to prove
the safety properties of both servers and clients.

2 IronFleet and Verdi implement additional, simpler protocols. We consider
these to be secondary and outside the scope of this paper.



Like Verdi, the Chapar server is implemented and veri-
fied using Coq and OCaml. Chapar also verifies the client
application using model checking.

3. Methodology

This section describes the methodology we used in our study
and discusses some of its limitations.

3.1 Scope

Our study analyzed two aspects of each verified distributed
system:

1. Overall correctness. We studied the overall correct-
ness of the server implementation (shim layer and verified
code).? Thus, we did not restrict the analysis to verified com-
ponents or verified properties.

2. Verification guarantees. We studied the specification
and verification tools used to verify the systems. This analy-
sis allowed us to understand the extent to which formal ver-
ification guarantees cover properties and components.

3.2 Analysis Techniques

We relied on the following methods to analyze the correct-
ness of the implementations and their formal guarantees.

Analysis of code and documentation. We analyzed the
verified systems’ source code and specification. In addition,
we leveraged existing documentation to understand their
design. We identified assumptions the systems made and
formulated hypotheses about missing or incorrect functions
that could constitute bugs.

Testing of implementation. We tested the implementa-
tions using a network and file system fuzzer, and we devel-
oped test cases to check the correctness of different compo-
nents. Furthermore, we applied traditional debugging tech-
niques, such as debuggers and packet sniffers, to gain a bet-
ter understanding of the implementations and to confirm or
rebut our hypotheses throughout our study. We incorporated
the testing tools we developed into our PK toolchain (§3.3).

Comparison of systems and interaction with devel-
opers. We cross-checked the different verified systems by
checking whether bugs found in one such system also ex-
isted in the others. In addition, we checked whether bugs
found in non-verified systems existed in the verified systems
analyzed as well. We reported to developers of the verified
systems the bugs we found using their issue trackers.

3.3 PK Testing Toolchain

Our analysis of the verified systems identified a series of
specific bugs that impaired their overall correctness or veri-
fication guarantees. Importantly, these bug examples, which
were gathered using the methods explained in §3.2, enabled
us to develop the PK testing toolchain that systematizes the
search for similar bugs. Figure 4 provides an overview of

3 We focus on servers because they typically contain most of the complexity
in distributed systems.

Shim layer
Verifying additional components of the system (§4.4, §4.5, §8.2)
Verifying resource usage and liveness properties (§4.4)
Improving documentation of libraries (§4.4)
Testing focused on the shim layer (§4.5)
Testing implicit resource usage (§4.5)
Specification
Proving specification properties (§5.2)
Verifying applications using specifications of underlying layers (§5.2)
Testing specifications (§5.2)
Verification tool
Designing fail-safe verifiers (§6.2)
Testing verifiers (§6.2)

Figure 4: An overview of prescribed approaches to improve the
overall reliability of verified software.

prescribed approaches to improve the reliability of verified
systems. We adopted some of these approaches in our testing
toolchain (§4.5, §5.2, and §6.2).

3.4 Study Limitations

We focused our efforts on analyzing the source code of the
implementations and the specification of the verified sys-
tems. Therefore, it is possible that our results could under-
represent bugs in other parts of the TCB.

As with other bug studies, it can be difficult to reason
about the number of false negatives, bugs that may exist but
were not found. This applies to bug studies that rely on bugs
reported by users [17, 40, 50], bugs found by testing tools [6,
7, 12, 18], and bugs found through a mix of testing tools
and manual inspection, like ours. Despite this challenge, we
aimed to be systematic using two separate means. First, we
cross-checked the bugs found in each verified system against
the other verified systems. Second, we analyzed the verified
systems by iteratively formulating and checking hypotheses,
which included hypotheses based on bugs that were found in
other non-verified distributed systems, such as those found
by Scott et al. [47].

Regarding false positives, on the other hand, the fact that
we reported the bugs and that nearly all of them were al-
ready either fixed or confirmed by the developers provided a
degree of high confidence that these were indeed bugs. Our
study analyzed a relatively small number of verified systems
(3) and found a limited number of bugs (16); small values
necessarily require care in generalizing results. Neverthe-
less, our study analyzed the largest number of verified im-
plementations and the largest number of bugs, relative to all
previous studies of which we are aware [55].

4. Shim Layer Bugs

We classified the shim layer bugs into three categories: (1)
RPC implementation, (2) disk operations, and (3) resource
limitations. All these bugs resulted from a discrepancy be-
tween the shim implementation and the expectation (also
known as low-level specification) that the verified compo-
nent held regarding the shim implementation.



// Client A, B and C run on different servers
1: Client A: PUT("key”, "NA")

2: Client A: PUT("key", "Request")

3: Client B: GET("key"”) = "Request”

4: Client B: PUT("key-effect”, "Reply")

// Packet sent by request 1 is duplicated
5: Client C: GET("key-effect”) = "Reply”
6: Client C: GET("key") = "NA"

Figure 5: Test case that violates causal consistency (Bug C1). Client
C reads the effect event ("Reply") but not the cause event ("Re-
quest") that Client B read.

4.1 RPC Implementation

We found five shim layer bugs affecting the client-server and
server-server communication. These bugs were all caused by
mismatched assumptions about the network semantics, with
respect to its failure model and limits, or the RPC input, with
respect to its size and contents.

Bug V1: Incorrect unmarshaling of client requests throws
exceptions.

The Verdi server used TCP to receive client requests but
wrongly assumed that the recv system call would return
the entire request in a single invocation. Because of this
assumption, the server tried to unmarshal a partial client
request, which caused it to throw an exception. The fix for
this problem is to accumulate the received data in a buffer
until the complete request is received.

Bug C1: Duplicate packets cause consistency violation.

We found that Chapar servers, which sent updates to
each other through UDP, accepted duplicate packets and
always reapplied the updates. As a result, we were able to
construct a test case (Figure 5) that caused a client to see
results that violate causal consistency [28]. Client C is able
to see the effect of an event ("Reply") by reading "key-
effect" but is unable to see the cause ("Request") by reading
"key". In addition to violating causal consistency, accepting
duplicate updates that are interleaved with other updates
to the same key prevented monotonic reads, an important
session guarantee property [51].

This bug resulted from the assumptions of Lloyd’s algo-
rithms [38] that were implemented by the server, which as-
sume a reliable network. The updates sent between servers
(reflecting the PUT operations from clients) contained a de-
pendency vector that used Lamport clocks. Before applying
a new update, the server checked that all causally preceding
updates had already been applied. Unfortunately, given the
use of UDP, this check is not enough in an unreliable net-
work. An old update would satisfy this check and be reap-
plied, but applying it could overwrite later updates.

Bug C2: Dropped packets cause liveness problems.

The server shim layer implementation did not handle
packet drops because it assumed that the network layer was

// Initialize

PUT("key1", "valuel"”)
PUT("key2", "value2")
PUT("key3", "value3")

// Inject GET("key2") request
GET("keyl - - \n132201621 216857 GET key2") = "valuel”

// GET requests return wrong values

GET("key1") = "value2” // Wrong value
GET("key2") "valuel” // Wrong value
GET("key3") "value2" // Wrong value

Figure 6: Command injection vulnerability (Bug V2).

reliable. Given that the server relied on UDP sockets to ex-
change updates, the practical result is that a single packet
drop prevented clients on the receiver server from ever see-
ing the respective update. This problem was made worse be-
cause a single dropped packet could also prevent the clients
from reading subsequent updates: the causal dependency
check would prevent subsequent requests from being ap-
plied. The fix to this problem would be to implement re-
transmission and acknowledgment mechanisms.

Bug V2: Incorrect marshaling enables command injection.

Figure 6 shows a sequence of requests that, when exe-
cuted, allowed the client to cause the server to execute mul-
tiple commands by invoking a single command. As the ex-
ample shows, this bug also causes subsequent requests to
return incorrect results.

This bug resulted from incorrect marshaling; the server
used meta-characters (newlines and spaces) to distinguish
commands and command arguments but it did not escape the
meta-characters. As a result, if the client invoked a command
request with specially crafted arguments, it caused the RSM
library to interpret that invocation as two or more distinct
requests. In addition, after injecting commands, subsequent
requests returned incorrect results because the client-server
protocol expected each invocation to be followed by exactly
one response (and had no other way to pair responses with
replies). Further, due to this bug, some arguments crashed
the server because they led to messages that did not comply
with the format expected by the server, causing the marshal-
ing function to throw an uncaught exception.

The fix to this problem would be to change, at both ends,
the client-server communication protocol to ensure that any
argument value can be sent by the client. This could be
achieved either by escaping meta-characters or by adopting
a length-prefix message format.

Bug C3: Library semantics causes safety violations.

Our tests demonstrated that, under certain conditions,
the server could sent corrupted packets to other servers
containing command arguments that were not provided by
the client. This bug violated an expected safety property
(namely, integrity) because the corrupted packets were ap-



L Siver_ SendMessage(...)
[ Ml | :

( Marshal.to_channel(..) J

Marshalled
o Block

Channel

ol
—
[ caml_put_block(..) ] [ caml_put_block(..) ] [ caml_put_block(.*

A} \

\ &cu rrent_pos
Buffer

Figure 7: Exception while invoking the marshaling function left
data in the internal buffers of the channel (Bug C3).

plied by the servers to their storage and were made visible
to other users.

Interestingly, this bug resulted from the semantics of
the OCaml library function Marshal. to_channel (), which
Chapar uses to marshal messages sent between servers. It
was triggered if the server tried to marshal and send a mes-
sage that did not fit within the UDP packet limit. When this
occurred, sending the packet would fail; more importantly,
the headers and partial data would be kept in internal buffers
of the OCaml library. In other words, the prefix of the mes-
sage was internally buffered while the suffix was discarded.
Our test case demonstrated that the buffered data, in turn,
could be concatenated with subsequent requests to construct
a packet that had the correct format but incorrect content.

As Figure 7 shows, the function Marshal. to_channel ()
broke down an OCaml object and serialized its subcompo-
nents (which are the elements of a list in Chapar’s case).
After converting each subcomponent into a byte representa-
tion, the marshaling function invoked the channel write func-
tion, caml_put_block(). OCaml channels can have differ-
ent types (e.g., UDP socket, TCP socket, or files). However,
the channel write function internally buffered the writes and
only wrote to the device (e.g., socket) if: (1) the buffer limit
had been reached during the write, or (2) the developer ex-
plicitly flushed the buffer. If the channel attempted to write
the buffer contents and failed, it would return, leaving the
contents as they were. The error returned from the chan-
nel layer was caught by the marshaling function, which then
returned to the code that invoked it; importantly, however,
the prefix of the byte representation was left in the channel
buffer and could be sent later due to other invocations.

Our example test case is complex, but we created sim-
pler test cases that caused other problems. Besides causing
servers to accept requests that no client issued, this bug can
cause: requests to be silently discarded; large requests to not
be sent when they exceed the UDP limit; and small requests
to not be accepted by the receiver when they are concate-
nated with large requests.

In addition to reporting this bug to Chapar developers, we
also reported it to OCaml developers. We did so because the
current semantics of the OCaml library are difficult to use
correctly, and this problem is not mentioned in the library
function documentation. The OCaml developers confirmed
the problem and, in response to our bug report, have been
actively discussing possible workarounds and fixes.

One workaround discussed by OCaml developers is the
following: (1) marshal the OCaml object into an external
buffer, (2) check whether the length of the buffer is smaller
than the UDP size, and (3) if it is smaller, then manually
invoke the channel write channel function on the external
buffer. Unfortunately, this workaround does not solve all the
problems because of other types of errors that could prevent
the write calls from succeeding (like those we discuss be-
low in Bug V5). In practice, this bug may have a significant
impact on verified systems reliability because of the number
of such systems that use the OCaml library and may suffer
from similar problems.

4.2 Disk Operations

We found three shim layer bugs related to disk operations.
All these problems were caused by developers assuming that
a single or set of disk operation(s) are atomic during crashes.

Bug V3: Incomplete log causes crash during recovery.

Bug V3 prevented replicas from recovering by causing
them to repeatedly crash if the (disk) log were truncated.
This problem was caused by the server code wrongly assum-
ing that the entries in the log were always complete. This was
not the case; the server used the write system call, which
does not guarantee to write atomically when servers crash.

In a deployment situation, an administrator could over-
come this problem by manually discarding the incomplete
entry at the end of the log. This would be safe (i.e., not cause
loss of data), assuming the rest of the server logic were cor-
rect because it would be equivalent to a server crash that oc-
curs immediately before the write operation. Nevertheless,
restoring service would require intervention from the admin-
istrator and a correct diagnosis.

Bug V4: Crash during snapshot update causes loss of data.

This bug caused the server to lose data due to defective
code that wrote the disk snapshots. Verdi’s shim layer imple-
mented a snapshotting mechanism that, at every 1000 events,
executed the following tasks: (1) wrote a new snapshot, (2)
removed any previous snapshot, and (3) truncated the log.
Unfortunately, data loss could occur because of the unsafe
order in which the three tasks were executed. In particular,
the implementation truncated the existing disk snapshot be-
fore it safely wrote the new one to disk. Thus, a crash be-
tween the truncation and write operations led to loss of data.

Because this bug caused data loss, it is more serious
than V3, as the administrator cannot easily recover from the
problem. Fixing this bug would require consistently ensuring



that durable information remains on the disk; in particular,
the old snapshot should be deleted after the new snapshot is
written to disk.

BugV5: System call error causes wrong results and data
loss.

This bug affected servers that were recovering and was
ultimately caused by the server not correctly distinguishing
between situations where there was both a log and snapshot
and those where there was only a log. The latter occurred if
the server crashed before it executed 1000 events (i.e., when
the first snapshot is created).

During recovery, the server tried to read the snapshot file
and if it failed to open it, the server wrongly presumed that
the snapshot file did not exist. In practice, this meant that
a transient error returned by the open system call, such as
insufficient kernel memory or too many open files, caused
the server to silently ignore the snapshot.

Our testing framework generated a test case that caused
the servers to silently return results as if no operations had
been executed before the server crashed, even though they
had. This bug could also lead to other forms of safety viola-
tions given that servers discard a prefix of events (the snap-
shot) but read the suffix (the log), potentially passing valida-
tion checks. Further, the old snapshot could be overwritten
after a sufficient number of operations were executed.

4.3 Resource Limits

This section describes three bugs that involve exceeding
resource limits.

Bug V6: Large packets cause server crashes.

The server code that handled incoming packets had a bug
that could cause the server to crash under certain conditions.
The bug, due to an insufficiently small buffer in the OCaml
code, caused incoming packets to truncate large packets and
subsequently prevented the server from correctly unmarshal-
ing the message.

More specifically, this bug could be triggered when a
follower replica substantially lagged behind the leader. This
could occur if the follower crashed and stayed offline while
the rest of the servers processed approximately 200 client
requests. Then, during recovery, the follower would request
the list of missing operations, which would all be combined
into a single large UDP packet that exceeded the buffer size
and crashed the server.

The fix to this problem was to simply increase the size
of the buffer to the maximum size of the contents of a
UDP packet. However, bugs Bug V7 and Bug V8, which we
describe next, were also related to large updates caused by
lagging replicas but these are harder to fix.

let rec findGtIndex orig_base_params raft_params@
entries i =
match entries with
| [1->101

| e :: es =>
if (<) i e.elndex
then e :: (findGtIndex orig_base_params
raft_params@ es i)
else []

Figure 8: OCaml code, generated from verified Coq code, that
crashed with a stack overflow error (Bug V8). In practice, the stack
overflow was triggered by a lagging replica.

Bug V7: Failing to send a packet causes server to stop re-
sponding to clients.

Another bug we found prevented servers from responding
to clients when the leader tried to send large packets to
a lagging follower. The problem was caused by wrongly
assuming that there was no limit on the packet size and
by incorrectly handling the error produced by the sendro
system call. This bug was triggered when a replica that
lagged behind the leader by approximately 2500 requests
tried to recover.

In contrast to Bug V6, this bug was due to incorrect code
on the sender side. In practice, the consequence was that
a recovering replica could prevent a correct replica from
working properly. The current fix applied by the developers
mitigates this bug by improving error handling, but it still
does not allow servers to send large state.

Bug V6 and Bug V7 were the only two that we did not have
to report to developers because the developers independently
addressed the bugs during our study.

Bug V8: Lagging follower causes stack overflow on leader.

After applying a fix for Bug V6 and Bug V7, we found that
Verdi suffered from another bug that affected the sender side
when a follower tried to recover. This bug caused the server
to crash with a stack overflow error and was triggered when
arecovering follower lagged by more than 500,000 requests.

After investigating, we determined that the problem was
caused by the recursive OCaml function findGtIndex()
that is generated from verified code. This function, which
constructed a list of missing log entries from the follower,
was executed before the server tried to send network data.
This was an instance of a bug caused by exhaustion of
resources (stack memory).

Figure 8 shows the generated code responsible for crash-
ing the server with the stack overflow. This bug appeared
difficult to fix as it would require reasoning about resource
consumption at the verified transformation level (§2.3). It
also could have serious consequences in a deployed setting
because the recovering replica could iteratively cause all
servers to crash, bringing down the entire replicated system.



4.4 Summary of Findings

Finding 1: The majority (9/11) of shim layer bugs caused
servers to crash or hang.

Bugs that cause servers to crash or stop responding are
particularly serious, especially for replicated distributed sys-
tems that have the precise goal of increasing service avail-
ability by providing fault-tolerance. Therefore, proving live-
ness properties is particularly important in this class of sys-
tems to ensure the satisfaction of user requirements.

Finding 2: Incorrect code involving communication caused
5 of 11 shim layer bugs.

Surprisingly, we concluded that extending verification ef-
forts to provide strong formal guarantees on communication
logic would prevent half of the bugs found in the shim layer,
thereby significantly increasing the reliability of these sys-
tems. In particular, this result calls for composable, verified
RPC libraries.

Finding 3: File system operations were responsible for 3 of
11 shim layer bugs.

File system semantics are notoriously difficult for devel-
opers to understand, especially in a crash-recovery model.
The bugs we found were all located in the unverified recov-
ery component of Verdi, the only system we studied that im-
plements durability. This result confirms the importance of
recent efforts to formalize file system semantics and verify
file systems [3, 11, 49].

Furthermore, we found the official OCaml library refer-
ence documentation to be surprisingly terse and devoid of
content. For instance, many functions provided by the basic
operations module (Pervasives module) were documented
with three or fewer sentences. This problem also affects file
system functions which have particularly complex semantics
due to possible error conditions. We look to have libraries,
especially those relied upon by verified systems, with com-
plete and accurate documentation.

Finding 4: Three of 11 shim layer bugs were related to
resource limits.

Bug V6 and Bug V7 were caused by unreasonable assump-
tions about: (1) the buffer size limits, and (2) the maximum
size of UDP packets. This suggests that explicitly reason-
ing about different types of resource limits is important for
the reliability of systems. For example, IronFleet verified
that message sizes always fit within a UDP packet, albeit,
in this case, the state machine size was bounded to fit the
UDP packet size. Ideally, verification should reason about
resources and ensure reasonable bounds on their usage.

Similarly, Bug V8, caused by assumptions on stack mem-
ory size, confirms that reasoning about resource limits is vi-
tal to prevent potentially serious bugs. In this case, the verifi-
cation checks did not reason about the consumption of stack
memory, which is an implicit resource.

Finding 5: No protocol bugs were found in the verified
systems.

None of the bugs we found were due to mistakes in the
implementation of distributed protocols (e.g., Paxos, Raft),
which are well known to be complex and difficult to imple-
ment correctly. Our results suggest that verification does im-
prove the reliability of the verified components: all the bugs
described in this section were located in the unverified shim
layer code, in the unverified shim layer library (Bug C3), or
in the shim layer runtime (Bug V8). In fact, we found no shim
layer bugs in IronFleet, which is the system studied with
fewest unverified components.

4.5 PK Toolchain: Preventing Shim-layer Bugs

Our results demonstrate, with concrete examples, that over-
all system correctness crucially depends on making cor-
rect assumptions regarding the shim layer, which represents
a small subset of the entire TCB. Motivated by these re-
sults, this subsection argues for the adoption of testing ap-
proaches that complement verification techniques by testing
non-verified components that interface with verified ones.
More specifically, as part of the verification methodology,
the shim layer should be independently tested to detect bugs
that arise from possible mismatches between assumptions
made by verified code and the properties provided by the
shim layer implementation.

We built several test cases that specifically targeted
Verdi’s shim layer; we incorporated these into our PK testing
toolchain. Our test cases consist of three testing applications
that we implemented in OCaml, which directly linked with
Verdi’s shim layer (i.e., excluded the verified code). Each
of these applications checks a different property that was as-
sumed by the verified code: (1) the integrity of messages sent
between servers, (2) the integrity of messages sent between
clients and servers, and (3) the integrity of the abstract state
machine log during recovery. Even though neither Verdi nor
Chapar aimed to prove liveness properties, using timeout
mechanisms, our toolchain tests for liveness, which is nec-
essary to detect serious classes of bugs, such as those that
crash or hang servers.

In addition to test cases, we implemented a file system
and network fuzzer that transparently, using LD_PRELOAD,
modifies the environment, unmasking bugs that would oth-
erwise remain undetected. For instance, our fuzzer emulates
different behaviors permitted by OS semantics, such as re-
ordering UDP packets, duplicating UDP packets, executing
non-atomic disk writes, and producing spurious system call
errors. Our experiments demonstrated that our testing infras-
tructure detects all shim layer bugs found, except for Bug V8
which is caused by implicit resource usage.

Using formal verification techniques, reasoning about im-
plicit memory usage and verifying that it is guaranteed to be
within given bounds would prevent bugs like the stack over-
flow bug [8]. However, it is unclear how to apply these tech-



niques to verify the resource usage of distributed systems. A
middle-ground approach would be to design test cases using
tools such as our fuzzer and to monitor the resource usage of
verified components, checking whether it matches expected
resource consumption models.

5. Specification Bugs

This section discusses two bugs that we found in the specifi-
cation of the systems analyzed. Neither bug caused the cur-
rent implementation of servers to crash or otherwise produce
incorrect results (unlike the bugs discussed in §4); however,
specification bugs partially void verification guarantees. In
practice, both bugs would allow distributed system imple-
mentations that return incorrect results to pass verification
checks.

Bug I1: Incomplete high-level specification prevents verifi-
cation of exactly-once semantics.

We found that the high-level specification of IronFleet’s
RSM server did not ensure linearizability because it did not
specify that the implementation had exactly-once semantics
even though it did implement this functionality.

We demonstrated the problem by constructing a patch
that modified the server. The patch disabled the deduplica-
tion functionality, which had been implemented, by modify-
ing only seven lines of the implementation. Notably, the
patched implementation still verified. Our patch demon-
strates that an implementation bug could prevent the servers
from providing exactly-once semantics and this problem
would not be detected by the verification process.

RSM libraries usually implement exactly-once semantics
by using per-client sequence numbers to identify the request.
This mechanism lets servers distinguish duplicate requests,
which can occur for several reasons. Duplicate requests can
arrive at servers due to network semantics (i.e., the network
can duplicate packets, and clients must retransmit packets if
they suspect lost packets) and the fault model (clients need
to resend requests if they suspect that a server might have
crashed).

We reported this bug to developers, who confirmed that
the specification did not provide exactly-once semantics.
However, they stated that: their understanding of lineariz-
ability does not include exactly-once semantics; the state
machine could implement de-duplication; and they had been
aware of the absence of exactly-once semantics in the speci-
fication. In response to our bug report, the developers added
a comment to the source code, clarifying that the specifica-
tion does not cover exactly-once semantics.

We consider this a bug because generally applications
expect replicated state machine libraries to provide exactly-
once semantics and because the absence of this guarantee
would cause incorrect results for applications that expect
it [31]. Regardless of the definition of linearizability, this

(* Client @ %)
put (Photo, "NewPhoto");;
put (Post, "Uploaded”);;

(x Client 1 %)
post <- get (Post);;
if (string_dec post "Uploaded") then
photo <- get (Photo);;
- if string_dec post "" then // Original
+ if string_dec photo "" then // Fix
fault
else
skip

Figure 9: Patch to fix BugC4 in a client example of Chapar
(Clients.v). The original Coq code is equivalent to assert(post
""). Instead, the assertion should check that photo is non-null
when the post is non-null.

example demonstrates well the need to be clear about the
exact specification.

Bug C4: Incorrect assertion prevents verification of causal
consistency in client.

The client application prog_photo_upload had a bug in
an assertion (see Figure 9). The check simply asserted the
condition of the conditional branch (the if-condition). There-
fore, the assertion always evaluated to true, which defeated
its purpose. This bug was easily fixed by asserting that photo
(instead of post) is non-null.

Besides verifying the server, Chapar verified clients using
model checkers to detect causal consistency violations. In
this example, no other assertion correctly performed the
causal consistency check in the client application. Of the
three systems analyzed, only Chapar verified clients, and this
was the only bug that we found in a client. All other bugs
were discovered in servers or in verification tools.

5.1 Summary of Findings

Finding 6: Incomplete or incorrect specification can prevent
correct verification.

Even if verification tools are correct, specifications must
be correct for verification to deliver its promise. Bug I1
showed an example of a subtle specification problem that
could result in application bugs. Regardless of the exact
definition of linearizability, the existence of different inter-
pretations is already sufficient to lead to application bugs. In
addition, we note that it was not initially obvious to us that
the IronFleet specification did not guarantee exactly-once
semantics. To complement the current verification method-
ologies, we need techniques to test specifications.

5.2 PK Toolchain: Preventing Specification Bugs

As we have discussed, verification crucially relies on the
correctness of the specification. This section discusses two
types of techniques that seek to validate specifications them-
selves, and we report our experience on applying them to
IronFleet. The first technique, negative testing, tests by ac-



tively introducing bugs into the implementation and confirm-
ing that the specification can detect them during verification.
The second technique, specification checking, relies on prov-
ing properties about the specification.

Negative testing. We built a testing tool that automati-
cally modifies the implementation source code. Its goal is to
help developers check whether the source code implements
more functions than required by the specification, a problem
that we found in IronFleet (Bug I1). This could indicate an
incomplete specification.

Our tool performs three types of simple transformations
to Dafny source code that disables code: (1) changing the
values of sub-conditions, (2) preventing updates to struc-
tures, and (3) commenting out entire statements. These
transformations sufficed to generate the changes necessary
to modify the implementation in a manner functionally
equivalent to the patch we discussed for BugI1. Never-
theless, like the types of transformations used in mutation
testing [15], other types of transformations could be con-
sidered, such as removing parts of statements or modifying
statements in different ways.

Our tool requires developers to specify the functions to be
tested and an upper bound on the number of transformations
per function. Our evaluation shows that when applying it to
HandleRequestBatchImpl, LProposerProcessRequest,
and ProposerProcessRequest in IronFleet, the tool re-
quires on average 377, 18, and 8015 iterations to generate
the patches, respectively; these modified functions disabled
the de-duplication function but still passed the verification
checks. Currently, our tool simply picks random transforma-
tions and applies them at random source code locations. If
not guided by the developer, this process could be expensive
given that several matching modifications must be made to
pass the verification checks. For instance, IronFleet relies on
a consistent protocol and implementation layer; therefore,
to pass the verification checks, the transformed source code
needs matching modification at both layers.

Specification checking. A non-programmatic approach
to find specification bugs relies on proving specification
properties. We explored this approach by writing a test
case in Dafny that combined the specification of IronFleet
with the specification of the counter application it provides.
By composing the two, we constructed a machine-checked
lemma that confirmed the possibility of reaching any counter
state after executing a single counter operation. This for-
mally confirmed that the specification did not prevent dupli-
cate execution of operations (Bug I1).

Ideally, such tests should be built by developers that did
not write the specification—adding a level of redundancy—
and should be reused across projects. Alternatively, verifying
the implementation of applications and formally composing
it with the verified distributed system library layer could
also increase confidence in the correctness of the distributed

system specification. However, it would still leave open the
correctness of the top-most specification.

6. Verification Tool Bugs

This section analyzes four bugs we found in verification
tools. Like specification bugs (§5), none of these bugs
crashed the server implementation or otherwise produced in-
correct results. However, they invalidated verification guar-
antees. In general, verification tool bugs can cause incorrect
server implementations to pass the verification check even if
the specification is correct. All the problems reported were
found in either auxiliary tools or at the perimeter of the ver-
ifier’s core functionality.

Bug I2: Prover crash causes incorrect validation.

A bug in IronFleet’s tools caused the verifier to falsely
report that any program passed verification checks, includ-
ing programs that asserted false. In addition, the verifier built
binaries for incorrect programs.

This bug was caused by a defect in NuBuild, a component
of the verification infrastructure like Unix make. NuBuild re-
peatedly invoked Dafny for each source code file to verify
and, if it verifies, compile it. For each invocation, NuBuild
parsed the output produced by Dafny and aborted the build
process if it detected an error; otherwise, it continued veri-
fying and eventually built the binary.

Unfortunately, NuBuild incorrectly parsed the output of
Dafny (see Figure 10). Dafny invoked both Boogie (the ver-
ifier) and Z3 (the prover) and emitted a diagnostic message
regarding the verification process and an additional message
if the prover crashed. NuBuild’s parsing function mistak-
enly terminated after consuming just the first message even
if there were additional message regarding a prover crash.
We found this bug because it was triggered by another bug
that caused the prover, Z3, to crash (Bug I4). However, this
bug could also be triggered in other situations that caused Z3
to abruptly terminate, such as insufficient memory or other
system errors.

In this case, several aspects combined to increase the
potential for an unsuspecting developer to be tricked by the
incorrect verifier: (1) no error or warning was made visible
to the user, (2) the verifier built the program binary (and
updated it if the source code changed), and (3) when the bug
was triggered, the build duration did not change drastically.

This bug is not necessarily triggered on every verifier in-
vocation. Instead, it can be triggered by “transient” prob-
lems, such as the termination of the prover by the OS due to
insufficient resources (e.g., memory). Furthermore, because
verification is computationally expensive and slow, NuBuild
can offload verification to a cluster of remote machines. Un-
der this setting, Dafny will run on many different machines
and potentially different NuBuild installations. This aggra-
vates the impact of the NuBuild bug because the verification
process could sporadically and silently fail.



noTimeouts = new Regex("Dafny_program_verifier_finished_
witho(\\d*)_verified,_ (\\dx)_errors*");
proverDied = new Regex("Prover_error:_Prover_died");

void parseOutput(out verificationFailures,
out parseFailures) {

match = noTimeouts.Match(output);
if (match.Success) {
verificationFailures = match.Groups[2];
return; // <=== Returns when the prover dies

}

match = proverDied.Match(output);

if (match.Success) {
parseFailures = 1; // <=== Not executed
return;

}

Figure 10: Simplified version of the NuBuild code responsible for
Bug I2. The proverDied regular expression was never matched
because the other regular expression matched first and returned
from parseOutput(). Furthermore, Dafny only included errors
found by the prover in the error count matched by the first regular
expression, not errors executing the prover.

void WaitForOutput() {
try {
outcome = thmProver.CheckOutcome(cce.NonNull(handler)
)5
}

catch (UnexpectedProverOutputException e) {
outputExn = e;

}
+ catch (Exception e) {
+ outputExn = new UnexpectedProverOutputException(e.
Message);
+ 3

Figure 11: Patch to fix Bug I3 in Boogie source code (Check.cs).
Adding a general exception handler caught all exceptions thrown
while the prover was executing.

This bug was confirmed by developers and fixed with our
patch proposal. Our patch changed the order of the regular
expressions used in the parsing function parseOQutput ().

Bug I3: Signals cause validation of incorrect programs.

When executing the verifier on Linux and macOS, we
found that if the user sent a SIGINT signal, verification was
interrupted (as expected), but Dafny misleadingly reported
that no error occurred, and that the files were verified. This
bug is similar to Bug I2 except that the verifier did not build
the binary.

This bug was caused by Boogie (a low-level verifier in-
voked by Dafny) not handling correctly the exception thrown
when the prover is interrupted. The exception handling code
handled only UnexpectedProverOutputException excep-
tions, but SIGINT threw a different type of exception. Boo-
gie’s developers have fixed the problem by patching the ver-
ifier (Figure 11).

Bug I4: Incompatible libraries cause prover crash.

The prover included in the IronFleet distribution failed
to execute, with an error (0xc00000007b). The problem was
caused by the inclusion of incompatible libraries in the pack-
age; the included z3.exe binary was built for 64-bit archi-
tectures, while the binary libraries included were built for
32-bit architectures.

The problem can be more serious than it appears because
the prover was not invoked directly by users; rather, it was
invoked by other verifier components, some of which had
defective error detection mechanisms. In fact, this problem
triggered Bug I2. The solution to this bug is simple: after we
reported it, the developers fixed it by updating the libraries
with matching architectures.

6.1 Summary of Findings

Finding 7: There were critical bugs in current verification
tools that could compromise the verification process.

Verification tools are complex and increasingly auto-
mated. In addition, they evolve quickly given their growing
popularity. Thus, it is not surprising that they contain bugs.
However, it is surprising that we found a combination of
bugs (Bug I2 and BugI4) that could mislead unsuspecting
developers, potentially with serious impact on the correct-
ness of verified programs. The correctness of verification
tools becomes even more relevant if the programmer is an
adversary [43].

Finding 8: All critical verifier bugs were caused by functions
that were not part of the core components of the verifier.

Surprisingly, the critical bugs found in verification tools
(Bug I2 and Bug I3) were not caused by the verifier’s core
components (i.e., the parts that reason about proofs). Instead,
they were found in auxiliary tools (Bug I2) and in the veri-
fier’s exception handling (Bug I3). These results call for bet-
ter methodologies to design and compose the various compo-
nents of verification infrastructures to ensure either correct
or, at least, fail-safe operation (e.g., reporting a verification
error rather than success if there is any exception).

6.2 PK Toolchain: Preventing Verification Tool Bugs

As the bugs we found attest, verification infrastructures can
contain serious bugs that potentially compromise the verifi-
cation process. The problem of verifier correctness has been
studied in the context of traditional verifiers, and several
techniques have been proposed, including verified code ex-
traction [42].

We developed verifier test cases, consisting of sanity
checks, that deliberately caused the verification process
to fail under different scenarios. This process determined
whether the verification infrastructure could detect certain
classes of verification problems. Although simple, these tests
enabled our testing toolchain to detect the bugs that affected
NuBuild and Z3. We argue that sanity checks should be con-



Protocol Code size

LogCabin  Raft Linearizability ~ 27K lines of C++
ZooKeeper Primary-backup Linearizability 142K lines of Java
eted Raft Linearizability 269K lines of Go

Cassandra  Paxos Linearizability =~ 374K lines of Java

Consistency

Figure 12: Summary of the unverified distributed systems.

ducted to the verification infrastructure and under its actual
execution environment—at the very least, when generating
the system binaries that will be deployed.

Interestingly, there has been significant recent interest
in increasing the level of automation of modern verifiers.
As a consequence, recent verifiers have become extremely
complex. Whereas traditional verifiers (e.g., SAT solvers)
relied on relatively simple artifacts, the Dafny verifier, for
example, relies on Boogie, which in turn relies on the Z3
SMT solver, which itself is more complex than traditional
verifiers. Furthermore, to mitigate the impact on verification
time caused by the high degree of automation, verifiers are
becoming distributed systems that rely heavily on caching
across multiple machines. This trend suggests that some of
the techniques and methodologies that have been developed
to improve the robustness of other systems should now be
considered for modern verifiers.

7. Response from Developers

The developers confirmed the existence of all problems we
reported. However, as discussed earlier, they did not consider
Bug I1 to be a bug because of their different understanding of
linearizability. The developers agreed to apply the patch we
proposed for Bug C4. Regarding Bug C1-3, developers stated
that causal consistency is guaranteed if the explicit commu-
nication properties in the semantics hold and suggested dif-
ferent fixes to improve the implementation (not using UDP,
modeling reordering, using acknowledgments, and limiting
input size). Bug V1-5 and Bug V8 were confirmed by the de-
velopers. As shown in Figure 3, the rest of the bugs have
already been fixed.

8. Toward “Bug-Free” Distributed Systems

To gain insight into how we can move towards “bug-free”
distributed systems, we tried to understand what are the com-
ponents and sources of reliability problems in modern de-
ployed distributed systems. Most of these systems imple-
ment a large set of features that have yet to be verified in any
distributed systems analyzed, although some of these fea-
tures are particularly complex (thus potentially bug prone)
and important for real-world users.

8.1 Methodology

Our analysis relied on the inspection of reports of known
bugs by sampling bugs from the issue trackers of each un-
verified system (Figure 12). Due to the large volume of bug
reports, we restricted our analysis to confirmed reports open

LogCabin ZooKeeper Etcd Cassandra \ Total

Communication 4 1 3 9 17
Recovery 0 1 0 7 8

Logging / snapshot 5 5 6 5 21
Protocol 1 1 2 8 12
Configuration 1 2 0 0 3
Client library 1 23 11 7 42
Reconfiguration 1 6 8 17 32
Management tools 1 22 21 116 160
Single-node storage 1 18 11 200 230
Concurrency 3 1 2 18 24

Total 23 80 65 387 ‘ 555

Figure 13: Sample of known bugs from the bug reports of unverified
distributed systems.

between March 2015 and March 2016 (a 1-year span). In ad-
dition, we discarded low-severity bugs and bugs that did not
affect functional correctness. Figure 13 presents an overview
of the results which support the findings in §8.2.

Limitations. We do not intend to compare the bug count
between the verified and unverified systems due to their sig-
nificant differences. These unverified systems are not re-
search prototypes; they implement numerous and complex
features, have been tested by innumerable users, and were
built by large teams. Furthermore, the analysis methodolo-
gies differ because the scale of the unverified system would
make it impractical for us to manually find undiscovered
bugs, as we did for verified systems. Instead of aiming at
a direct comparison, our analysis of unverified systems was
motivated by the need to understand how future verification
efforts can improve the reliability and robustness of real-
world distributed systems.

8.2 Results

Finding 9: No protocol bugs were found in verified systems,
but 12 bugs were reported in the corresponding components
of unverified systems.

This result suggests that recent verification methods de-
veloped for distributed systems improve the reliability of
components that, despite decades of study, are still not im-
plemented correctly in real-world deployed systems. In fact,
all unverified systems analyzed had protocol bugs in the one-
year span of bug reports we analyzed.

Finding 10: Most of the bugs in unverified systems were
found in management (160) and storage layers (230).

In part due to optimizations, the complexity of manage-
ment tools and storage layers explains the unreliability of
these components. This result strongly suggests that the ap-
plication of verification techniques to these tools and layers
could significantly improve the reliability of distributed sys-
tems. Interestingly, much recent interest focused on the ver-
ification of file systems [11, 48]. Our observations support
the interest in this research direction.



Finding 11: A rotal of 24 bugs in these systems were caused
by multi-threaded concurrency.

Only 4.3% of the bugs (24 out of 555) reported in de-
ployed systems were due to local concurrency. A closer anal-
ysis of these bug reports showed that almost all concurrency
bugs were in the storage layer. This relatively low number
could be caused by the absence of concurrency or the use of
coarse-granularity concurrency mechanisms in most compo-
nents. Another contributing factor could be that concurrency
bugs are often under-reported [40].

Although real-world distributed systems often rely on
concurrency, none of the verified systems that we analyzed
implemented multi-threaded concurrency. In fact, the verifi-
cation of shared-memory concurrent software, in general, is
an active area of research that is considered extremely chal-
lenging [21, 25]. Thus, it remains unclear how researchers
will address this challenge in the context of complex dis-
tributed systems and, accordingly, which testing techniques
should be adopted.

8.3 Discussion

Correctly writing complex software is hard for developers.
In traditional unverified systems, a single mistake made by
developers when writing code can lead to serious bugs that
immediately compromise the correctness of the application,
causing crashes or incorrect results. Efforts verifying imple-
mentations significantly improve this by adding a level of
redundancy.

Verified components can only fail, regarding verified
properties, if developers introduce both an implementation
bug and a verification bug (i.e., specification or verifier bug).
Furthermore, those two bugs have to match: the verifica-
tion bug has to cause the verification process to miss the
implementation bug. This extra level of redundancy helps
explain why we did not find any protocol-level bugs in any
of the verified prototypes analyzed, despite that such bugs
are common even in mature unverified distributed systems.
Next we discuss different paths to improve the reliability of
verified components that are protected by this redundancy
and unverified components that remain vulnerable:

Verifiers. We believe the routine application to verifiers
of general testing techniques (e.g., sanity checks, test-suites,
and static analyzers) and the adoption of fail-safe designs
should become established practices. Due to the reliance on
increasingly complex SMT solvers and caching mechanisms
and because verifiers are becoming distributed systems, test-
ing and correctly implementing verifiers is expected to be-
come increasingly challenging. This increased complexity
calls for the development of scalable testing techniques and
improved verifier designs.

Specification. In addition to verifier bugs, specification
bugs could invalidate verification guarantees. Proving prop-
erties about the specification or reusing specifications are
two important ways to increase the confidence that they are

correct. The latter is likely to occur naturally with the expan-
sion of verification to other systems but the former would
require the adoption of best practices that mandate the inclu-
sion of test cases for specifications.

Shim layer. As our study demonstrates, bugs in non-
verified components, such as the shim layer, remain a seri-
ous threat to the overall reliability of systems. Because these
components are not covered by verification guarantees, a sin-
gle implementation bug could compromise the overall sys-
tem correctness. Furthermore, the shim layer is often not
reused across projects—all surveyed verified systems had
custom-built shim layers. Therefore, existing shim layers are
likely to contain undiscovered bugs. Building reusable and
well documented shim layers that are applicable to differ-
ent applications would contribute to improve the reliabil-
ity of verified systems. In addition, formally specifying the
properties of shim layer, expected by the verified compo-
nents, allows testing tools, as we showed with PK toolchain,
to test the properties of the shim layer without having to
test the verified components. Isolating the unverified com-
ponents could significantly improve the scalability of testing,
as compared with testing unverified systems, by reducing the
amount of code that needs to be tested and by ensuring the
required properties are clearly defined.

9. Related Work

Much work has been done to analyze the correctness of un-
verified systems [10, 12, 18, 35, 39, 40, 46, 50]. In stark
contrast, Yang et al. [55] conducted the only other study, to
our knowledge, that analyzed the correctness of a formally
verified implementation. By testing 11 compilers, they found
more than 325 bugs, 11 of which were located in a verified
compiler (CompCert [33]) [56]. Like our study, their work
concluded that verification, while effective in reducing com-
piler bugs, does not replace testing—specifications are com-
plex and seldom check end-to-end guarantees. In contrast to
Yang’s study, our study targets a different class of verified
implementations. Interestingly, we found examples of prob-
lems in the verification tools themselves that their study did
not uncover.

The importance of distributed systems has prompted sig-
nificant work on analyzing and improving their reliability.
For instance, Yuan et al. [57] sampled and studied 198 bugs
in five popular implementations of distributed systems. Their
results showed that many serious bugs can be detected by
testing the error-checking code. Guo et al. [20] studied cas-
cading recovery failures that can bring down entire dis-
tributed systems. In the context of minimizing execution
traces, Scott et al. [47] found several bugs in an unverified
implementation of the Raft protocol.

The verification of distributed system protocols has been
an important line of research with a long history. For in-
stance, many protocol proposals provide a pen-and-paper
proof: the RSM protocols (e.g., Paxos [30], Raft [45], and



PBFT [9]) are notable examples. To prevent mistakes in pen-
and-paper proofs [58], others have gone further and pro-
posed machine-checked proofs [41]. As an alternative to
proof-based methods, bounded model-checking techniques
have been leveraged to increase confidence in the correct-
ness of distributed systems [26, 53, 54, 58]. More recently,
verified distributed system implementations, which we stud-
ied, have been proposed to extend formal guarantees to ac-
tual implementations [22, 34, 52].

10. Conclusion

This work presents the first comprehensive study on the cor-
rectness of formally verified implementations of distributed
systems. Our study found 16 bugs that were caused by a
wide-range of incorrect assumptions. We thoroughly ana-
lyzed these bugs and their underlying causes, which sug-
gest that only a small fraction of the TCB was responsible
for these problems; hence, this subset should be the focus
of special attention. Our analysis suggested that verification
was effective at preventing protocol bugs that occur in un-
verified systems. We conclude that verification, while bene-
ficial, posits assumptions that must be tested, possibly with
testing toolchains similar to the PK toolchain we developed.

Acknowledgments

We thank the anonymous reviewers and our shepherd,
Neeraj Suri, for their feedback. In addition, we are grateful
to the authors of the verified systems studied for their help in
analyzing our reports and clarifying our questions. In partic-
ular, we thank Manos Kapritsos, Mohsen Lesani, Jay Lorch,
Zachary Tatlock, James R. Wilcox, and Doug Woos, with
whom we had insightful conversations that greatly enhanced
this paper. This work was supported in part by DARPA under
contract FA8750-16-2-0032.

References

[1] M. Abadi and L. Lamport. The existence of refinement map-
pings. Theoretical Computer Science, 82(2):253-284, 1991.

[2] M. Ahamad, G. Neiger, J. E. Burns, P. Kohli, and P. W. Hutto.
Causal memory: Definitions, implementation, and program-
ming. Distributed Computing, 9(1):37-49, 1995.

[3] S. Amani, A. Hixon, Z. Chen, C. Rizkallah, P. Chubb,
L. O’Connor, J. Beeren, Y. Nagashima, J. Lim, T. Sewell,
J. Tuong, G. Keller, T. Murray, G. Klein, and G. Heiser. Co-
gent: Verifying high-assurance file system implementations.
In Proceedings of the 21th International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 175-188, Atlanta, GA, Apr. 2016.

M. Barnett, B.-Y. E. Chang, R. DeLine, B. Jacobs, and
K. R. M. Leino. Boogie: A modular reusable verifier for
object-oriented programs. In Formal methods for Components
and Objects, pages 364-387. Springer, 2005.

A. D. Birrell and B. J. Nelson. Implementing remote pro-
cedure calls. ACM Transactions on Computer Systems, 2(1):
39-59, Feb. 1984.

[4

—

[5

—

[6] C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R.
Engler. EXE: Automatically generating inputs of death. In
Proceedings of the 13th ACM Conference on Computer and
Communications Security (CCS), pages 322-335, Alexandria,
VA, Oct.—Nov. 2006.

[7] C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted
and automatic generation of high-coverage tests for complex
systems programs. In Proceedings of the 8th Symposium on
Operating Systems Design and Implementation (OSDI), pages
209-224, San Diego, CA, Dec. 2008.

[8] Q. Carbonneaux, J. Hoffmann, T. Ramananandro, and
Z. Shao. End-to-end verification of stack-space bounds for C
programs. In Proceedings of the 2014 ACM SIGPLAN Con-
ference on Programming Language Design and Implementa-
tion (PLDI), pages 270-281, Edinburgh, UK, June 2014.

[9] M. Castro and B. Liskov. Practical byzantine fault tolerance.
In Proceedings of the 3rd Symposium on Operating Systems
Design and Implementation (OSDI), pages 173-186, New
Orleans, LA, Feb. 1999.

[10] H. Chen, Y. Mao, X. Wang, D. Zhou, N. Zeldovich, and
M. F. Kaashoek. Linux kernel vulnerabilities: State-of-the-art
defenses and open problems. In Proceedings of the 2nd Asia-
Pacific Workshop on Systems, Shanghai, China, July 2011. 5
pages.

[11] H. Chen, D. Ziegler, T. Chajed, A. Chlipala, M. F. Kaashoek,
and N. Zeldovich. Using Crash Hoare Logic for certifying the
FSCQ file system. In Proceedings of the 25th ACM Sympo-
sium on Operating Systems Principles (SOSP), Monterey, CA,
Oct. 2015.

[12] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler. An
empirical study of operating systems errors. In Proceed-
ings of the 18th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 73-88, Chateau Lake Louise, Banff,
Canada, Oct. 2001.

[13] Coq development team. Coq Reference Manual, Version
8.4pl5. INRIA, Oct. 2014. http://coq.inria.fr/distrib/
current/refman/.

[14] L. de Moura and N. Bjgrner. Z3: An efficient SMT solver.
In Proceedings of the 14th International Conference on Tools
and Algorithms for the Construction and Analysis of Systems,
pages 337-340, Budapest, Hungary, Mar.—Apr. 2008.

[15] R. A. DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test
data selection: Help for the practicing programmer. Computer,
11(4):34-41, Apr. 1978. ISSN 0018-9162.

[16] R. W. Floyd. Assigning meanings to programs. In Proceed-
ings of the American Mathematical Society Symposia on Ap-
plied Mathematics, volume 19, pages 19-31, 1967.

[17] P. Fonseca, C. Li, V. Singhal, and R. Rodrigues. A study of the
internal and external effects of concurrency bugs. In Proceed-
ings of the 40th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN), pages 221-230,
Chicago, IL, June 2010.

[18] P. Fonseca, C. Li, and R. Rodrigues. Finding complex con-
currency bugs in large multi-threaded applications. In Pro-
ceedings of the ACM EuroSys Conference, pages 215-228,
Salzburg, Austria, Apr. 2011.


http://coq.inria.fr/distrib/current/refman/
http://coq.inria.fr/distrib/current/refman/

[19] S. J. Garland and N. A. Lynch. Using I/O automata for
developing distributed systems. Foundations of Component-
Based Systems, 13:285-312, 2000.

[20] Z. Guo, S. McDirmid, M. Yang, L. Zhuang, P. Zhang, Y. Luo,
T. Bergan, P. Bodik, M. Musuvathi, Z. Zhang, and L. Zhou.
Failure recovery: When the cure is worse than the disease. In
Proceedings of the 14th Workshop on Hot Topics in Operating
Systems (HotOS), Santa Ana Pueblo, NM, May 2013.

[21] A. Gupta, C. Popeea, and A. Rybalchenko. Predicate abstrac-
tion and refinement for verifying multi-threaded programs.
In Proceedings of the 38th ACM Symposium on Principles
of Programming Languages (POPL), pages 331-344, Austin,
TX, Jan. 2011.

[22] C. Hawblitzel, J. Howell, M. Kapritsos, J. R. Lorch, B. Parno,
M. L. Roberts, S. Setty, and B. Zill. IronFleet: Proving prac-
tical distributed systems correct. In Proceedings of the 25th
ACM Symposium on Operating Systems Principles (SOSP),
Monterey, CA, Oct. 2015.

[23] M. P. Herlihy and J. M. Wing. Linearizability: a correctness
condition for concurrent objects. ACM Transactions on Pro-
gramming Languages Systems, 12(3):463-492, 1990.

[24] C. A. R. Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576-580, Oct.
1969.

[25] J. Hoenicke, R. Majumdar, and A. Podelski. Thread modu-
larity at many levels: A pearl in compositional verification.
In Proceedings of the 44th ACM Symposium on Principles
of Programming Languages (POPL), pages 473485, Paris,
France, Jan. 2017.

[26] C. Killian, J. W. Anderson, R. Jhala, and A. Vahdat. Life,
death, and the critical transition: Finding liveness bugs in sys-
tems code. In Proceedings of the 4th Symposium on Net-
worked Systems Design and Implementation (NSDI), pages
243-256, Cambridge, MA, Apr. 2007.

[27] G. Klein, K. Elphinstone, G. Heiser, J. Andronick, D. Cock,
P. Derrin, D. Elkaduwe, K. Engelhardt, M. Norrish, R. Kolan-
ski, T. Sewell, H. Tuch, and S. Winwood. sel4: Formal ver-
ification of an OS kernel. In Proceedings of the 22nd ACM
Symposium on Operating Systems Principles (SOSP), pages
207-220, Big Sky, MT, Oct. 2009.

[28] L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7):558—
565, July 1978.

[29] L. Lamport. The temporal logic of actions. ACM Transac-
tions on Programming Languages and Systems, 16(3):872—
923, 1994.

[30] L. Lamport. The part-time parliament. ACM Transactions on
Computer Systems, 16(2):133-169, 1998.

[31] C. Lee, S. J. Park, A. Kejriwal, S. Matsushita, and J. Ouster-
hout. Implementing linearizability at large scale and low la-
tency. In Proceedings of the 25th ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 71-86, Monterey, CA,
Oct. 2015.

[32] K. R. M. Leino. Dafny: An automatic program verifier for
functional correctness. In Proceedings of the 16th Interna-
tional Conference on Logic for Programming, Artificial Intel-

ligence and Reasoning (LPAR), pages 348-370, Dakar, Sene-
gal, Apr.—May 2010.

[33] X. Leroy. Formal verification of a realistic compiler. Commu-
nications of the ACM, 52(7):107-115, July 2009.

[34] M. Lesani, C. J. Bell, and A. Chlipala. Chapar: Certified
causally consistent distributed key-value stores. In Proceed-
ings of the 43rd ACM Symposium on Principles of Program-
ming Languages (POPL), pages 357-370, St. Petersburg, FL,
Jan. 2016.

[35] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. CP-Miner: A tool
for finding copy-paste and related bugs in operating system
code. In Proceedings of the 6th Symposium on Operating
Systems Design and Implementation (OSDI), pages 289-302,
San Francisco, CA, Dec. 2004.

[36] B. Liskov. Primitives for distributed computing. In Proceed-
ings of the 7th ACM Symposium on Operating Systems Prin-
ciples (SOSP), pages 33-42, Pacific Grove, CA, Dec. 1979.

[37] X. Liu, Z. Guo, X. Wang, F. Chen, X. Lian, J. Tang, M. Wu,
M. E. Kaashoek, and Z. Zhang. D3S: Debugging deployed
distributed systems. In Proceedings of the 5th Symposium
on Networked Systems Design and Implementation (NSDI),
pages 423-437, San Francisco, CA, Apr. 2008.

[38] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Ander-
sen. Stronger semantics for low-latency geo-replicated stor-
age. In Proceedings of the 10th Symposium on Networked
Systems Design and Implementation (NSDI), pages 313-328,
Lombard, IL, Apr. 2013.

[39] L. Lu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and
S. Lu. A study of Linux file system evolution. In Proceedings
of the 11th USENIX Conference on File and Storage Tech-
nologies (FAST), pages 31-44, San Jose, CA, Feb. 2013.

[40] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes:
A comprehensive study on real world concurrency bug char-
acteristics. In Proceedings of the 13th International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), pages 329-339, Seattle,
WA, Mar. 2008.

[41] T. Lu. Formal verification of the Pastry protocol using TLA+.
In Proceedings of the Ist International Symposium on De-
pendable Software Engineering: Theories, Tools, and Appli-
cations, pages 284-299, Nov. 2015.

[42] G. C. Necula. Proof-carrying code. In Proceedings of the
24th ACM Symposium on Principles of Programming Lan-
guages (POPL), pages 106—119, Paris, France, Jan. 1997.

[43] G. C. Necula and P. Lee. Safe kernel extensions without
run-time checking. In Proceedings of the 2nd Symposium on
Operating Systems Design and Implementation (OSDI), pages
229-243, Seattle, WA, Oct. 1996.

[44] B. Nitzberg and V. Lo. Distributed shared memory: A survey
of issues and algorithms. Computer, 24(8):52-60, Aug. 1991.

[45] D. Ongaro and J. Ousterhout. In search of an understandable
consensus algorithm. In Proceedings of the 2014 USENIX
Annual Technical Conference, pages 305-319, Philadelphia,
PA, June 2014.

[46] T. J. Ostrand, E. J. Weyuker, and R. M. Bell. Predicting the
location and number of faults in large software systems. /[EEE



Transactions on Software Engineering, 31(4):340-355, 2005.

[47] C. Scott, V. Brajkovic, G. Necula, A. Krishnamurthy, and
S. Shenker. Minimizing faulty executions of distributed sys-
tems. In Proceedings of the 13th Symposium on Networked
Systems Design and Implementation (NSDI), pages 291-309,
Santa Clara, CA, Mar. 2016.

[48] H. Sigurbjarnarson, J. Bornholt, E. Torlak, and X. Wang.
Push-button verification of file systems via crash refinement.
In Proceedings of the 12th Symposium on Operating Systems
Design and Implementation (OSDI), pages 1-16, Savannah,
GA, Nov. 2016.

[49] H. Sigurbjarnarson, J. Bornholt, E. Torlak, and X. Wang.
Push-button verification of file systems via crash refinement.
In Proceedings of the 12th Symposium on Operating Systems
Design and Implementation (OSDI), pages 1-16, Savannah,
GA, Nov. 2016.

[50] M. Sullivan and R. Chillarege. A comparison of software de-
fects in database management systems and operating systems.
In Proceedings of the 22nd International Symposium on Fault-
Tolerant Computing, pages 475484, 1992.

[51] D. B. Terry, A. J. Demers, K. Petersen, M. Spreitzer,
M. Theimer, and B. W. Welch. Session guarantees for weakly
consistent replicated data. In Proceedings of the 3rd IEEE In-
ternational Conference on Parallel and Distributed Informa-
tion Systems (PDIS), pages 140-149, Washington, DC, Sept.
1994.

[52] J. R. Wilcox, D. Woos, P. Panchekha, Z. Tatlock, X. Wang,
M. D. Ernst, and T. Anderson. Verdi: A framework for imple-
menting and formally verifying distributed systems. In Pro-
ceedings of the 2015 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), pages
357-368, Portland, OR, June 2015.

[53] M. Yabandeh, N. KneZevi¢, D. Kosti¢, and V. Kuncak. Crys-
talBall: Predicting and preventing inconsistencies in deployed
distributed systems. In Proceedings of the 5th Symposium
on Networked Systems Design and Implementation (NSDI),
pages 229-244, San Francisco, CA, Apr. 2008.

[54] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin, M. Yang,
F. Long, L. Zhang, and L. Zhou. MODIST: Transparent model
checking of unmodified distributed systems. In Proceedings of
the 6th Symposium on Networked Systems Design and Imple-
mentation (NSDI), pages 213-228, Boston, MA, Apr. 2009.

[55] X. Yang, Y. Chen, E. Fide, and J. Regehr. Finding and
understanding bugs in C compilers. In Proceedings of the
2011 ACM SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 283-294, San Jose,
CA, June 2011.

[56] X. Yang, Y. Chen, E. Eide, and J. Regehr. Csmith/BUGS_RE-
PORTED.TXT. https://github.com/csmith-project/
csmith/blob/master/BUGS_REPORTED.TXT, Nov. 2013. Ac-
cessed: 2017-04-19.

[57] D. Yuan, Y. Luo, X. Zhuang, G. R. Rodrigues, X. Zhao,
Y. Zhang, P. U. Jain, and M. Stumm. Simple testing can pre-
vent most critical failures: An analysis of production failures
in distributed data-intensive systems. In Proceedings of the
11th Symposium on Operating Systems Design and Implemen-
tation (OSDI), pages 249-265, Broomfield, CO, Oct. 2014.

[58] P. Zave. Using lightweight modeling to understand Chord.
SIGCOMM Comput. Commun. Rev., 42(2):49-57, Mar. 2012.
ISSN 0146-4833.


https://github.com/csmith-project/csmith/blob/master/BUGS_REPORTED.TXT
https://github.com/csmith-project/csmith/blob/master/BUGS_REPORTED.TXT

	Introduction
	Background
	Machine-Checked Verification
	Replicated Distributed Protocols
	Verified Systems Surveyed

	Methodology
	Scope
	Analysis Techniques
	PK Testing Toolchain
	Study Limitations

	Shim Layer Bugs
	RPC Implementation
	Disk Operations
	Resource Limits
	Summary of Findings
	PK Toolchain: Preventing Shim-layer Bugs

	Specification Bugs
	Summary of Findings
	PK Toolchain: Preventing Specification Bugs

	Verification Tool Bugs
	Summary of Findings
	PK Toolchain: Preventing Verification Tool Bugs

	Response from Developers
	Toward ``Bug-Free'' Distributed Systems
	Methodology
	Results
	Discussion

	Related Work
	Conclusion

