Time-Lock Cryptography

Sending Messages to the Future

William Clarkson

william.clarkson@tufts.edu

Mentor: Ben Hescott

December 15, 2013



Abstract

In contrast with existing mainstream cryptographic methods, time-
lock cryptography promises the ability to encrypt data which, by design,
cannot be decrypted before a specific amount of time has passed. I will
review the eminent work in the field of cryptography on the matter, and
explore both the potential applications and the inherent limitations of the
process. Finally, I will discuss my implementation of a simple time-lock

algorithm and assess it’s practicality.

1 Introduction

Cryptography is the fundamentally the study of methods by which sensitive
human-readable information (the “plaintext”) can be transformed into an obs-
fucated form (the “ciphertext”) from which the original information can only be
recovered by a trusted party, using secret information (the “key”) which they
possess but an attacker does not. As is convention in cryptography, I will use
the names Alice and Bob to refer to the two parties who wish to secretly share
information. Most methods of cryptography currently in use fall into one of two

categories.

Symmetric Cryptography The same key is used to both encrypt and de-
crypt the message. Any party with the power to either encrypt or decrypt the
message can also do the opposite. Since both Alice and Bob possess the same
key, if either party is compromised, then an attacker could decrypt existing
messages that Alice and Bob send each other, but also forge new messages to

either party.

Asymmetric Cryptography FEach party possesses a pair of keys—their “pub-

lic key” and their “private key”. The public key is widely available but the



private key is never shared. To send a message to Bob, Alice encypts it with
Bob’s public key. Bob uses his private key to decrypt the message. Due to the
structure of public-key algorithms, only the private key can be used to encrypt
messages. Since Bob’s private key is not shared with anyone, it is more difficult
for an attacker to obtain than the shared key used in symmetric algorithms.
To allow Alice and others to send him messages that only he can decrypt, Bob
must only share his public key. In public-key cryptography, the roles of the
public and private keys can also be reversed, so Alice can encrypt a message
with her private key which can be decoded with her public key. While this does
not protect the information from any attacker, the encrypted message could not
have been generated without the use of Alice’s private key, so in effect, Alice
can be verified as the legitimate source of the information. These two modes
of encryption can be used in tandem to allow Alice to send a message to Bob
which only Bob can decrypt and which provides the guarantee that, if Alice’s
private key was not compromised, the information originated from Alice and

was not tampered with [Trall].

Time-Lock Cryptography The two methods presented above provide guar-
antees about who can encrypt and decrypt a message—with the proper keys,
Alice and Bob can encrypt and decrypt messages with relative computational
ease, and an attacker must brute-force the keys they are using, which will take
prohibitively long if they have been chosen carefully. In contrast, time-lock
cryptography has an inherently different goal: to provide a guarantee not about
who can decrypt a message, but when they can decrypt it. One method of en-
crypting a time-locked message is to symetrically encrypt the message, release
the ciphertext to the public, and rely on a trusted authority to release the key
at a specified time and date. However, there are several key ways in which

this could go wrong. The authority could somehow lose the key so the original



information may never be revealed. The likelihood of this could be reduced by
distributing the key to multiple trusted authorities. However, this increases the
likelyhood of another negative outcome: if any one of the parties chooses to
defect and release the key before the planned time, then the encrypted infor-
mation becomes publicly available before the planned date. Depending on the
contents of the information, this could have potentially disastrous consequences.
This concern could be ameliorated somewhat by using an erasure code like zfec
[WO12]. This would break the key into a number of partially redundant chunks.
For example, a 4K file can be broken into a dozen chunks, any 4 of which can
be used to reconstruct the original file. If each of the chunks of the key were
distributed to a trusted authority, then several would have to defect in order
for the key to be released early. While this improves the prospect, being forced
to rely on a third party makes for a poor cryptographic scheme, analogous to
trusting a messenger to deliver a secret message without reading it or allowing
the message to be otherwise intercepted. In this paper, I will discuss the other
known method for time-lock cryptography, which revolves around a proof-of-
work scheme, meaning that a certain amount of computational time is required

to decrypt a message.

2 To the Community

2.1 Background

In recent history, with our society’s growing dependence on distributed com-
puter systems, cryptography has become a field of utmost importance. In the
age of Caesar, when messages were discretely dispatched by messenger to his
generals, a simple transposition cipher may have provided sufficient security

against the messenger or another party glancing at the message. However in



our era, when an individual can transfer their wealth over the open channels of
the Internet, where there could be numerous attackers observing traffic between
a user’s computer and their bank’s server, much more sophisticated cryptogra-
phy is required. The SSL/TLS protocol which enables secure online banking and
transfer of other sensitive information relies on the existence of trusted certifi-
cate authorities. However, new technologies have recently emerged which allow
secure online transactions without relying on a central authority, most notably
Bitcoin. In short, it relies a public block chain which is a record of all confirmed
transactions (which have each been signed with the private key of the user mak-
ing them). Third parties perform a process called mining involves confirming
transactions which have occurred and add them to the block chain, and which
is incentivized by possible rewards for confirming transactions [Bit13]. The sys-
tem is carefully designed so it is resilient to attempts to falsify transactions
and account balances, all without relying on any centralized authority. The
meteoric rise of Bitcoin indicates the growing relevance of distributed systems
which do not rely on any centralized authority. In the age of nearly omnipotent
government agencies like the NSA which could very well be manipulating even
authorities we have previously taken as trustworthy, it is more important than
ever to investigate more systems which are inherently distributed and cannot
easily be compromised at one point with secret bureaucratic intervention. In
light of this, I will focus on assessing several methods of time-lock cryptography
which do not rely on any trusted authority to function. In the next section, I

will discuss possible actions of such a system.

2.2 Applications

A number of interesting applications of time-lock cryptography are presented

in [RSW]. Currently, online auctions rely on a middleman to record the bids



of each participant and reveal the winner once the time is up. However, a
distributed online auction system could allow each user to encrypt and submit
their bid to the other users participating in the auction and each user could
begin decrypting the bids of the other users to independently verify the winner.
If each user encrypted their bid to withstand at least the time remaining in the
auction when they submitted it, no participant could determine any other user’s
bid before the auction ended.

An individual may want to automate the payment of money on a regular
schedule. With a digital currency like Bitcoin, one could encrypt a series of
transactions with regularly increasing solve times so the recipient could, for
example, decrypt one payment each month [RSW].

Consider a scenario where an individual has information which is currently
incriminating, the release of which the individual wants to guarantee at a later
date. A criminal may want to release a memoir about escapades for which
they were not punished, but which must not be released before the statute of
limitations has been exceeded. If they were to retain an unencrypted copy of the
memoir, they would risk its discovery. With time-lock cryptography, however,
the safe release of the information can be guaranteed. Mark Felt, famously
known as the informant for the Watergate Scandal, could have encrypted a
confession of his identity to be decrypted half a century later to ensure that the
world could know his secret, in case he had passed away before being able to
reveal it.

With the advent of Bitcoins and other currencies which are based on the
posession of information rather than the possession of physical matter, a variety
of possible schemes which leverage the ability to encrypt money or transactions

are possible, such as the one above, suggested in [RSW].



3 Limitations

The simple method of constructing a timelock puzzle I will explain in the next
section can be constructed in O(logn) time, but will require O(n?) time to
solve. While this allows for the construction of puzzles in significantly less time
than they will take to solve, it still means that it is not trivial to create puzzles
which will be withstand decades or more of computation. Furthermore, it has
been shown that this asymptotic gap is optimal, and cannot be improved upon
[BMGO09].

The fundamental problem with time-lock puzzles is that, without relying on
a trusted third party, the only way that they can require the passage of a certain
amount of time is to require the amount of sequential computation expected to
correspond to the desired amount of wall clock time, since any algorithm which
checks the actual clock time could easily be spoofed. Since this fundamentally
relies on an expectation of the amount of real time required for a given amount
of computation (i.e. clock speed), and the speed of different computers varies
so widely at any given time, as well as constantly increasing, it is difficult to
determine how difficult of a puzzle to create which will require no less than, but
not significantly more than some given amount of real time.

The algorithm described below is inherently sequential, so more parallelized
computation doesn’t make it any more tractable to solve quickly. However, the
algorithm does rely on the two prime factors of a large number remaining secret.
It is currently very difficult to factor large numbers, but this is a parallelizable
problem and could conceivably become much more possible in the future with
the rise of quantum computing, and extremely fast single-purpose integrated
circuitry, which has recently grown in popularity due to its ability to mine
bitcoins significantly more quickly than with a traditional CPU. This effectively

puts a cap on the longest effective time-lock puzzle, since an individual seeking



to decrypt the message would find the prime factors of the large number used
in the puzzle in order to solve it in O(logn) time if it was quicker than solving
it in the intended way. As the time required to find prime factors decreases, the

usefulness of time-lock puzzles of this variety will decrease.

4 The Basic Algorithm

4.1 Creating a Puzzle

In this section I will describe the basic algorithm presented in [RSW]. We would
like to encrypt a message M such that it will require T seconds to decrypt. We

start by generating two large, randomly chosen primes, p and ¢ and calculate:
n = pq
We then calculate Euler’s totient function of this value:
¢(n) = (p—1)(¢—1)

Determine the fastest processor which the puzzle must withstand and find how

many times per second, S, it can square a number modulo n. Then calculate:
t=1TS

Generate a random key K which is long enough that it will be difficult to brute
force. Using a secure symmetric encryption algorithm FE, encrypt the message
using the key:

Cy =E(K, M)



Pick a random integer @ in the range (1,n). We would like to encrypt K with:
Cx =K +ad* (mod n)
However, it would be expensive to directly calculate azt, so we first calculate:

e=2" (mod ¢(n))

€

b=a® (mod n)

We can then much more efficiently calculate:
Cxk =K+b (modn)

The values (n, a,t, Ck,Chys) are returned as the encrypted time-lock puzzle, and

all other variables should be carefully destroyed.

4.2 Solving a Puzzle

Since the factors of n, p and ¢ have been thrown away, the fastest way to solve

the puzzle is currently to perform the repeated squaring operation:

b=a? (mod n)
The original key can then be recovered:

K=Ckg—-b (modn)



Then using the decryption algorithm D which reverses the encryption algorithm

FE, used in the encryption process:
M = D(K,Cy)

Thus, the original message, M, has be recovered.

5 More Sophisticated Algorithms

Several other algorithms have been proposed which offer improved the ability
to more quickly produce a puzzle resistant to more computation, and to more

accurately specify the time required to solve the puzzle.

Chained Hashing Start by generating n values, which we will call a; ... ay,.
Apply some function f repeatedly to each value for some number of iterations
m. This function can be repeated modulus squaring, or some other good hash
function. These n processes are independent and can be performed in parallel
on n CPUs. Call these results by ... b, where b; = f™(a;). Take the first result,
f™(a1), and use it to encrypt the next seed, as. More generally encrypt the
initial value a; with the value f™(a;—1). Then, use the final value, f™(a,) to
encrypt the message, yielding the ciphertext C;. The final time-lock puzzle is
(n,a1,ba...by, f,Carr). To decrypt the puzzle, one must calculate by = f™(a;)
and use it to decrypt ag, so by = f™(az2) can be calculated, and so on. This
allows a puzzle to be created with n efforts of some specified amount of com-
putation in parallel which requires the same n efforts of computation to be
performed in series [Gwell]. Therefore, with access to 10 CPUs, one can, in
a day, create a puzzle which will require 10 days to solve on any of the CPUs.

This is for any general hash function. Using the repeated squaring method with



the prime factor shortcut to determining the final value, one can additionally

take advantage of the O(logn) vs. O(n?) ratio described in Section 3.

Memory-Hard Functions The repeated squaring algorithm described in
Section 4.1 is constrained only by CPU speed the speed of accessing on-die
memory like registers and primary cache. These speeds vary widely across
machines. However, research has been on functions which by design require
constant access to new data from main memory, which cannot be significantly
sped up with a faster CPU or cache. While CPU speeds have been consistently
improving, memory access speeds have been much more constant. In fact, the
physical lower bound on memory access is O(y/n), while the lower bound for
speeds of circuits (assumed to be square) is O(logn). These lower bounds are
enforced by the speed of light, and mean that CPU speed will always continue
to outstrip memory performance [Per]. Therefore, algorithms which require fre-
quent memory accesses can be used to more closely associate the computational

work required to solve a time-lock puzzle with real elapsed time.

6 Description of Implementation

I implemented the simple repeated squaring algorithm described above in Ruby
to assess it’s real-world practicality!. I tested creating timelock puzzles and
found that the time required to solve the puzzle is very clearly O(n?), as can
be seen in Figure 1. The plot shows desired solve times (entered by the user)
and the actual time required to solve the puzzle on the same machine. The R?
value of 0.9996 indicates that, at least for short puzzles, the required time can
be very accurately predicted, meaning that the user can specify precisely how

long they want the puzzle to take to solve, provided the speed (squarings per

My code can be found at https://github.com/wclarkson/timelock

10



Time-Lock Puzzle Solving Time

50
y = 0.088x2 + 0.5717x - 0.8756
R2 = 0.9996
375
Q
R
H
a
S
z 2
Q
5]
=
€
<
12,5
0
0 5 10 15 20

Desired Solution Time

Figure 1: Illustration of expected O(n?) time to solve puzzle

second) the machine decrypting the message can perform.

7 Conclusion

In this paper, I gave an overview of the eminent research in the field on the
subject of time-lock cryptography. It has many promising applications, but it
is also important to understand the inherent restrictions on what can actually
be accomplished. Finally, a working implementation of the algorithm of Rivest
et al. was provided so the user can perform further testing of their own, and

experiment with this novel cryptographic concept.

11



References

[Bit13]
[BMG09]

[Gwell]
MMV11]

[Per]

[RSW]

[Trall]

[WO12]

Bitcoin.org. How does bitcoin work? 2013.

Boaz Barak and Mohammad Mahmoody-Ghidary. Merkle puzzles are
optimal — an o(n2)-query attack on any key exchange from a random
oracle. In Proceedings of the 29th Annual International Cryptology
Conference on Advances in Cryptology, CRYPTO 09, pages 374-390,
Berlin, Heidelberg, 2009. Springer-Verlag.

Gwern. Time-lock encryption. 2011.

Mohammad Mahmoody, Tal Moran, and Salil Vadhan. Time-lock
puzzles in the random oracle model. In Proceedings of the 31st Annual
Conference on Advances in Cryptology, CRYPTO’11, pages 39-50,
Berlin, Heidelberg, 2011. Springer-Verlag.

Colin Percival. Stronger key derivation via sequential memory-hard
functions.

Ronald L. Rivest, Adi Shamir, and David A. Wagner. Time-lock
puzzles and timed-release crypto. Technical Report Technical memo
MIT/LCS/TR-684, MIT Laboratory for Computer Science. (Revi-
sion 3/10/96).

Wade Trappe. Public key cryptography: Rsa and lots of number
theory. 2011.

Zooko Wilcox-O’Hearn. zfec, 2012.

12



	Introduction
	To the Community
	Background
	Applications

	Limitations
	The Basic Algorithm
	Creating a Puzzle
	Solving a Puzzle

	More Sophisticated Algorithms
	Description of Implementation
	Conclusion

