Computational Complexity of
Air Travel Planning

Carl de Marcken
ITA Software
carl@itasoftware.com

This document is an annotated set of slides on the computational complexity of air travel planning. The goal is to give
somebody with an undergraduate level computer science background enough information to understand why air travel
planning is an interesting and especially difficult problem. It provides a basic introduction to the air travel planning
problem and then presents a variety of original computational complexity results as well as some related demos. The
complexity slides assume a basic familiarity with formal languages, computational complexity and computability, but the
introduction to the problem should be accessible without this.

ITA Software produces search and optimization software for the travel industry. Our search engines power popular web
sites such as Orbitz and Cheap Tickets; airline web sites such as America West, Continental Airlines and Alaska Airlines;
computer reservation systems (CRS/GDSes) used by travel agencies, such as Galileo; and various travel agencies. ITA was
founded by MIT computer scientists and is located adjacent to MIT in Cambridge, MA.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

Air Travel Planning

QUERY
SFO->BOS April 2
BOS->SFO April 5

Alrllne WebS|te

RESULT

SFO AA123 BOS

BOS AA191 DFW AA15 SFO
$634

Flights
Prices
Seat
availability

Suppose a traveler is planning a round trip from San Francisco to Boston and back.

Most likely they’ll contact an airline reservation agent or a travel agent, or perhaps visit an airline's website or a general
travel website like Orbitz, providing a query made up of airport and travel time requirements. For the most part these
agents are middlemen, and will pass the query off to one of a handful of companies, including ITA Software, that provide
search engines for the airlines and the traveling public. Hopefully the search engine will return one or more answers to the
query. Each answer consists of a specific set of flights for each part of the trip, and a price. The rest of this talk is about
the difficulties search engines face answering such questions.

The search engines run on databases of flights, prices, and seat availability, provided electronically over private networks
by the 800 or so airlines of the world. The data is not directly available to the general public and access often must be
negotiated with individual airlines. Flight data is updated daily or occasionally more frequently in the case of unexpected
cancellations. Prices are updated about ten times a day, and seat availability continuously. A large portion of the flight,
price and seat availability data, called published data, is used by all the major search engines, but a significant amount
of private data is restricted.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

Outline

* Introduction

« Flights

« How airline prices work

« Complexity of travel planning
« Demos

« Seat availability

» Further reading

The talk starts by listing some fundamental properties of the flight network, but flights are simple relative to prices, and
after the flight discussion will be a long but necessary introduction to airline prices. Then some basic computational
complexity results about the difficulty of air travel planning are presented, with demos that illustrate the complexity
results. The talk concludes with an introduction to seat availability processing, since it is an important part of
understanding how airline prices work, though this information isn't used in the rest of the talk.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

This is a map of all scheduled commercial flights in North America, with an arc drawn between two airports if there is at
least one flight between them over the next year. This and most other data presented in this talk dates from 2001.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

The Flight Network

« 4000 airports served by commercial airlines
« Served by average of 4 airlines, connect to 8 others
« Weighted by # of departures, 22 airlines, 64 destinations
+ Dominated by large airports
— largest 1% (>4000 flights/day) have 40% of departures
— largest 10% (>250 flights/day) have 85% of departures
— reflects airlines’ hub-and-spoke system
» Shortest path averages 3.5 in US, 5 worldwide (uniformly weighted)
+ Diameter > 20

« 30,000,000 scheduled commercial flights per year — 1 per second
« 4000 - 10,000 planes in air, mostly large jets

« 700,000 passengers in the air

« 50% of flights within US and Canada

There are more than 4000 airports served by commercial airlines worldwide. Averaged uniformly, each airport has an
outgoing degree of 8 (it has flights to 8 other airports), and is served by 4 airlines. However large airports dominate the
system: re-weighted by their number of departures, airports average degree 64. This reflects the hub-and-spoke system
used by many airlines, wherein for a given airline one to four airports account for half of their departures. Despite the
high connectivity amongst the major airports, the shortest path between two airports chosen uniformly averages 3.5
flights in the United States and 5 worldwide. Amazingly, the graph diameter is often as high as 20: there are airports that
can take 20 flights minimum to get between, over 4 days (typically this will be a small airport in Alaska or Canada to
another small airport in Africa or Indonesia).

Commercial airliners take off about once per second worldwide, and most are large jets more than half full, resulting in
close to a million people in the air at times. The United States and Canada heavily dominate air travel in terms of
numbers of flights, though deregulation in Europe has led to a great increase in air travel there over recent years.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

San Francisco to Boston: 2,000 paths

Switching to path planning, this map shows the routes involved in the 2,000 quickest paths (flight combinations) from
San Francisco to Boston on a certain day. Specific flights are not shown: some arcs represent multiple flights between
the same airports at different times of day. Notice that all of these paths look reasonable: they don’t leave the United
States and southern Canada, all are length 3 or less, and all arrive the same day. An impecunious traveler might be
willing to consider any of them. But 2,000 paths doesn’t begin to exhaust the possibilities.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

San Francisco to Boston: 10,000 paths

This map plots the arcs in the 10,000 quickest paths, all still arriving on the same day. A few more airports come into
consideration, but again no path is out of the realm of possibility.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

At 30,000,000 flights per year, standard
algorithms like Dijkstra's are perfectly capable
of finding the shortest path. However, as with

any well%onnected graph, the number of GrOWth rate Of # Of pathS
possible paths grows exponentially with the

duration or length one considers. Just for San

Francisco to Boston, arriving the same day, » Standard graph algorithms adequate to find one path

there are close to 30,000 ﬂight combinations, * Number of paths grows exponentially with duration or length
more flying from east to west (because of the

longer day) or if one considers neighboring

airports. Most of these paths are of length 2 o
or 3 (the ten or so 6-hour non-stops don't %0000 T
visually register on the chart to the right). For 25000
a traveler willing to arrive the next day the 200

15000

number of possibilities more than squares, to 7

10000

more than 1 billion one-way paths. And that’s so00 =
for two airports that are relatively close. 0 =

Considering international airport pairs where ;) Durton - -

the shortest route may be 5 or 6 ﬂlghtS there , . ——SF0 10 BOS —— SFO+SJC+OAK to BOS+PVD+MHT

may be more than 10 options within a small + Can’t quickly enumerate all reasonable one-way Iitineraries; completely
factor of the optimal. impractical to enumerate all round-trips

« Provably hard to use prices to inform selection

SFO to BOS paths (same day arrival)

40000

One important consequence of these numbers is that there is no way to enumerate all the plausible one-way flight
combinations for many queries, and the (approximately squared) number of round-trip flight combinations makes it
impossible to explicitly consider, or present, all options that a traveler might be interested in for almost all queries.

Air travel prices and paths have a very complex relationship with each other. As will be shown, it’s provably hard to use
prices to inform flight selection if one is searching for the cheapest route. This gives air travel planning a very different
character from many other easier route planning problems, such as car route search. Dynamic programming techniques
like those in Dijkstra's algorithm can not be used to reduce the exponential number of paths to a polynomial algorithm,
because when prices are considered the state of a search can not be summarized by the current position: prices depend on
the entire flight history.

One interesting note is that while standard algorithms can be applied to the flight graph to generate shortest paths (or the
k shortest paths), it is a considerable challenge to develop algorithms that can enumerate the best paths fast enough for
use in a planning system that may need to consider thousands to millions of routes within tens of seconds.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

Outline

* Introduction

« Flights

« How airline prices work

« Complexity of travel planning
« Demos

» Seat availability

* Further reading

Airline prices are much, much more complex than prices for almost any other good or service, and are not intuitive. It is
the prices, not route planning, that make air travel planning a difficult problem.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

Prices

» Almost all the difficulty in travel planning comes from prices

» Fare: price for one-way travel between two cities (a market)

AA BOS-SFO H14ESNR $436.28

» Fare has rules restricting its use

+ Axioms
— Each flight must be covered (paid for) by exactly one fare
— One fare may cover one or more (usually consecutive) flights
— One or more fares are used to pay for a complete journey

Fare component (FC) = fare + flights it covers

The atomic unit of price in the airline industry is called a fare. A fare is a price an airline offers for one-way travel
between two cities, usually good for travel in either direction. Such a city pair is known as a market. Each fare is given
an alphanumeric identifier called a basis or fare basis code, H14ESNR in the example. Each fare is published with a set
of rules restricting its use.

Fundamentally, each flight must be paid for by exactly one fare, but a single fare may pay for more than one flight.
Multiple fares may be combined to pay for all the flights in a journey. The airline industry uses the term fare
component (FC) to refer to a fare and the flights it pays for (covers).

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

10

Fare components

BOS-SFO Y $1000 BOS-SFO Y $1000

/\> /\>
SFO - BOS BOS SFO
\\\DFW//v

$2000
Airline | City1 | City 2 | Basis Price
AA BOS SFO |Y $1000
AA BOS DFW | QE14 $500
AA DFW SFO | K21AP $300

As an example, suppose that a round-trip journey on American Airlines consists of the three flights shown, nonstop from San
Francisco to Boston, then back to San Francisco through Dallas, and that American Airlines publishes the 3 fares listed in the
table. For example, the $1000 “Y” fare can be used to pay for travel from BOS to SFO or from SFO to BOS. Then,
assuming the Y fare’s rules are satisfied, one way to pay for this journey is by using the Y to pay for the single outbound
flight, and the Y again to pay for both return flights, for a total price of $2000.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

Fare components

BOS-SFO Y $1000 BOS-DFW QE14 $500 DFW-SFO K21AP $300

/_\> /'\ /—\A
SFO » BOS BOS SFO
. / _

|
DF

$1800
Airline | City1 | City 2 | Basis Price
AA BOS SFO |Y $1000
AA BOS DFW | QE14 $500
AA DFW SFO | K21AP $300

Assuming the QE14 and K21AP fares’ rules are met, there is another valid way to pay for the same flights, using a BOS-
DFW fare to pay for the first flight of the return and a DFW-SFO fare to pay for the second flight. In this case the total is
only $1800.

In general, a traveler may choose whatever fare combination for a ticket they wish so long as all fare rules are satisfied:
usually they’ll want to choose the cheapest combination, but (for example) they may choose more expensive fares that
permit refunds or first-class travel if they so desire.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

12

Fares are not the end of the story. There is
another unit of representation between a
fare component and a complete ticket,

called a priceable unit (PU). A Priceable Units
priceable unit is a collection of 1 to 4 fare
components in one of a small number of * Priceable unit (PU) is a group of 1 to 4 fare components

fixed geometric shapes. An analogy is that
if fares are atoms, priceable units are the
molecules used to build complete tickets.

— restricted to one of several fixed geometries

It's not entirely correct, but a good Working one way round trip open jaw open jaw circle trip 3 circle trip 4

intuition is that a priceable unit is the B A—B

smallest group of flights and fares that A_-B A—B A—B A—B A / l I l

could be sold on their own. A~—B A+~—C C+~ B ™~ D—C
C

The simplest priceable unit is the one way
PU built from one fare component. Others
include round trip PUs and circle trip

PUs built from 2, 3 or 4 FCs that form a + PU is domain for fare rules such as minimum stay

loop. Open jaw PUs are like circle trips “ . o
with one FC missing — usually the open gap — “Must be a Saturday night between departure of 1st flight in 1st fare

must be shorter than the distance flown in component of PU and departure of 1st flight in last fare component”
any of the flown FCs.

« Ticket is built from one or more priceable units

+ Many cheap (“round trip”) fares do not participate in one-way PUs

The airlines use priceable units as a domain in which many fare rules apply. For example, many of the least expensive fares
have a Saturday night stay restriction. The airlines often define such a restriction by reference to the priceable unit
containing the fare in question: “there must be a Saturday night between the departure of the 1st flight in the 1st FC of the
PU and the departure of the 1st flight in the last FC of the PU”. It is common for fares to require that other fares in the
same PU be on the same airline.

Importantly, many of the cheapest fares, known as round trip fares (to be distinguished from round trip PUs and round
trip journeys) have rules that prohibit their use in one way PUs. That means that for a round trip fare to be used, it must be
combined in a priceable unit with at least one other fare; it is round trip fares that usually impose Saturday night stay
restrictions. The net effect is that to use a (cheap) round trip fare one must fly a journey with at least two flights separated
by a Saturday night, and must use at least two fares to pay for the journey.

As will be discussed, priceable units are responsible for much of the theoretical difficulty in pricing air travel.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

13

Priceable Units

Fare components may be grouped into priceable units in multiple ways
— Affects the interpretation of fare rules

circle trip PU 2 open jaw PUs

=S
BOS
bFw %

7

A\

7
DEN
\i
BOS
/ ha
DFW

<~ QE14

\

SFO

Ao

/
/

14 AP: purchase time to dep. SFO 14 AP: purchase time to dep. DEN

QE14: 14 days advance purchase, Saturday-night stay

A specific set of flights may be partitioned into fares and priceable units in many ways. The above diagram shows two ways
to partition the four flights of a SFO to BOS round-trip journey. In both cases, four fares are used, one per flight. On the
left, the four fare components are grouped into a single circle-trip priceable unit. On the right, they are grouped into two
open-jaw priceable units. Each black line represents a flight and each red a fare. The boxes represent priceable units.

Because rules like the Saturday night stay restriction and advance purchase restrictions depend on how flights and fares are
divided into priceable units, it is important how fare components are grouped into priceable units, and this non-determinism
adds to the search space. Suppose the third fare, a BOS-DFW QE14 fare, has a 14-day advance purchase restriction and a
Saturday night stay restriction, and the three other fares do not have important restrictions.

The 14-day advance purchase restriction will likely be defined as requiring 14 days to pass between the time of reservation
and the departure of the first flight in the priceable unit of the fare with the restriction. In the case of the single circle-trip
priceable unit that flight is the initial departure from SFO, marked in green. In the case of two open-jaw PUs, that flight is
the later departure from DEN. Thus, from the perspective of the 14-day restriction, it is more likely the restriction will be
met in the two-PU choice.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

14

Priceable Units

« Fare components may be grouped into priceable units in multiple ways
— Affects the interpretation of fare rules

circle trip PU 2 open jaw PUs
7 7
DEN DEN
s RS
SFO BOS SFO BOS
\ DFW SE14 \ DFW 4, QE14
14 AP: purchase time to dep. SFO 14 AP: purchase time to dep. DEN
SAT: dep. SFO to dep. DFW SAT: dep. DEN to dep. BOS

QE14: 14 days advance purchase, Saturday-night stay

The QE14 fare's Saturday night stay restriction is likely defined as requiring that the first flight of the last fare component in
the priceable unit be on or after the first Sunday following the departure of the first flight of the first fare component in the

PU. In the single circle-trip PU case, the relevant times will be the departure from SFO and the departure from DFW. In the
two open-jaw PUs case, the relevant times will be the departure from DEN and the departure from BOS. Therefore from the

perspective of the Saturday night stay restriction, the circle-trip choice is advantageous (more time passes between the two
measurements).

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

15

Software™

Priceable Units

« Fare components may be grouped into priceable units in multiple ways
— Affects the interpretation of fare rules

circle trip PU 2 open jaw PUs
7 7
DEN DEN
S Ry
SFO BOS SFO BOS
\ DFW “2~QE14 \ DFW “2—"QE14
14 AP: purchase time to dep. SFO 14 AP: purchase time to dep. DEN
SAT: dep. SFO to dep. DFW SAT: dep. DEN to dep. BOS

Priceable units introduce long-distance flight & fare dependencies

Priceable units add to the complexity of ticket pricing in two ways. First, the choice of different partitions of fare
components into priceable units increases the search space. Second, and more importantly, priceable units introduce
long-distance dependencies between different parts of a trip. Notice in the case of the circle-trip priceable unit how
the Saturday night stay restriction tests the combination of the departure times of two flights widely separated in both
time and on the ticket. Nothing limits the distance between different fare components of a priceable-unit, which has
huge ramifications for search algorithms: most efficient search techniques demand that constraints be local.

Fare rules can and usually do restrict fare combinations within a priceable unit as well as flight combinations. For
example, a fare may require that other fares in the same PU be published by the same airline and have similar basis
codes.

Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

16

Priceable Units

« Flights can be broken into fare components and priceable units in many
ways

1 round trip 2 open jaws 1 circle trip 3

DEN DEN DEN
SFO /\\‘ </7 \\‘ //v'\;\\‘
S&—~——___— RS &
\ DFW / DFW / \

\
\“\

A specific set of flights may be partitioned into fares and priceable units in many, many ways. For the four flights shown
above 6 possibilities are shown (there are more). Each red line represents a fare component and each yellow polygon a
priceable unit. For example, a round trip PU may be used with one fare paying for both outbound flights and one for both

return flights. Alternatively two open jaw priceable units can be used, each containing two fares, each fare paying for one
flight.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

Fare Portfolio

« Airlines offer portfolio of fares at different prices in each market
— From 5 to 500 fares (and more generated by macros)

BA BOS - LON

AAP £5663 | HDWPXGB1 £578 | MLF3CP $377 | R £6142
B2 $653 | HDXPXGB1 £558 | MLF3IT $377 | VHF4CP $502
DAP £2951 | HFWPX2 £435 | MLFAM3FP $378 | VHF4IT $502
DXRT £3318 | HFWPXGB1 £517 | MLFAM3IT $378 | VYWAP2 £357
F1 £3469 | HHWAPUS $1063 | MLWAPUS $533 | VYWAPGB!1 £208
F1US £543 | HHWMTOW $577 | MLWSX7 £255 | VYXAP2 £337
F2BA £6608 | HHWMTOW $536 | MLWSX8 £225 | VYXAPGB1 £208
HAWPXGB1 £418 | HHWPX2 £610 | MLWSXGB1 £268 | WUS $1369
HAXPXGB1 £418 | HHWPXGB1 £620 | MLXAPUS $473 | Y £837
HBWPXGB1 £516 | HHXAPUS $1003 | MLXSX7 £235 | Y2 £407
HBXPXGB1 £496 | HHXMTOW $515 | MLXSX8 £225 | YUS $1369
HCWPXGB1 £437 | HHXMTOW $505 | MLSXGB1 £268

HCXPXGB1 £437 | HHXPX2 £590 | MQAPUS $803 AND 239 MORE...

Within every market airlines publish not just one, but many fares. For example, British Airways offers more than 280
fares between Boston and London. Some airlines publish as many as 1000 fares in international markets, and there are
various “macro” systems in the industry that can double or triple that number.

Each fare has a different price and a different fare basis code. A reasonable question is why the airlines publish so many
fares, if the traveler is free to choose the cheapest. The answer is that each fare has its own rules restricting use, so that
in any particular circumstances only a small subset of the fares may be usable.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

Fare Rules

» Fare rules restrict use of each fare
— Passengers
» Age, nationality, occupation, employer, frequent flyer status
Fare component
- Dates, times, locations, airlines, flights, duration of stops
Priceable unit
» Types of priceable units (one way, round trip, open jaw, ...)
« Other fares in the priceable unit (airline and basis codes)
- Dates, times, locations, airlines, flights, duration of stops
Journey
» Fares and flights in other priceable units (airline and basis codes)
 Other priceable unit geometries
— Other
» Purchase location and time

Fare rules can restrict most any aspect of a journey. Often they restrict the passengers who may use the fare - limiting
special discounts to children, for example -- and the travel agents who may sell the fare. Many fares include restrictions
on the flight numbers, locations and departure times of flights within the fare’s fare component. Typically fares within the
United States prohibit stops of longer than 4 hours within a FC. Fare rules may also impose restrictions at the priceable
unit domain, such as the Saturday night stay restriction that depends on the times of flights from the first and last FC in
the fare’s PU simultaneously. Rules very often restrict the fares that can combine in a priceable unit, such as requiring
them to be on the same airline or have similar fare basis codes.

It is even possible for a fare to restrict parts of the journey outside the fare’s priceable unit. As will be shown, this greatly
increases the difficulty of the search problem.

One passenger’s fares may restrict another’s, such as cheap companion fares that force a second or third passenger to
accompany the first, and that restrict the fares those passengers may use to pay for common flights. This can cause an
exponential increase in the complexity of search with the number of passengers on the trip.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

19

Sample Fare Rules

| AA BOS-SFO H14ESNR $436.28 |

Rule Details Restricts Routing

Tues or Weds 1 flight in FC must depart on Tues FC flights
or Weds
Surcharges add $22.50 if BOS>SFO; FC flights
add $20 if SFO->BOS

14 days adv purchase | 1*flight in PU must depart 14 days PU flights
after reservations

Saturday-night stay complicated PU flights
Combinability all fares in PU must be on AA or TW; | PU fares

other restrictions; no OW PUs PU geometry
Back-to-back complicated Other PU geometries

And much more

Rules expressed in extremely complicated and baroque electronic language
— ~1000 parameterized predicates
— Very limited range of logical combinators
— No quantifiers, variables, functions
— Very limited expressive power

Returning to the AA BOS-SFO H14ESNR fare, here is a subset of the fare’s rules. The fare restricts the first flight in its
fare component to be on Tuesday or Wednesday. It has a 14 day advance purchase restriction defined on the entire
priceable unit. That means that if the fare is used to pay for the return portion of a trip, then even if the flights the fare is
paying for leave 21 days after reservations the fare may not be usable, if the outbound portion of the trip took place only 7
days after reservation. The fare, a round trip fare, prohibits use in one way PUs. The fare includes a complicated back
to back restriction that limits the geometries of other priceable units in the journey.

One part of the fare’s rules is known as the routing. The routing is a directed graph of permitted routes within the fare
component. For example, the HI4ESNR fare permits non-stop travel between BOS and SFO, but also permits stops in
NYC, CHI, DFW and LAX (but not in both DFW and CHI). Thus, the price is the same, $436.28, whether one takes one
flight or four, despite the wildly different cost to the airline of providing the service. In fact, since many of the cheapest
fares on popular business routes prohibit non-stop travel, it is commonly the case that airlines’ prices and expenses are
anti-correlated, something to think about when you read about airline bankruptcy filings!

Fare rules are expressed in an extremely complicated and baroque electronic language, built from hundreds of
parameterized predicates joined by sometimes bizarre logical combinators. Although the language has to be very big to
express all of the many airlines’ restrictions, the language is not nearly as expressive as a general purpose programming
language. There are no functions, variables, quantifiers, scoping operators, iterators, etc. A non-profit company, ATP
(Airline Tariff Publishing), owned jointly by many airlines, manages and distributes fares and rules electronically and
working jointly with airlines and search companies defines the electronic representations.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

20

Summary: The Search Problem

 For a travel query, find the best solution
— A set of flights that satisfies the travel query
— A set of fares that covers all the flights exactly once
— A partition of the fares into priceable units

— For each fare, solution must satisfy fare's rules
« Fare rules restrict
— Flights in fare component
— Flights and fares in other fare components of priceable unit
— Priceable unit geometry
— All flights and fares and priceable units in journey (less common)

Although clearly not a practical algorithm, in the tradition of non-deterministic search one might summarize the air travel
search problem as: 1. Guess a set of flights that satisfies the travel query; 2. Guess a set of fares and a mapping from
flights to fares that covers all flights exactly once; 3. Guess a partitioning of the fares into priceable units; and 4. Verify

that all fares’ rules are met, where the rules may conceivably test all flights and fares in the journey but take a very
restricted form.

In fact this isn’t the entire truth. For international travel computing the price of a solution involves some additional tests,
called IATA checks, that compare one answer against other potential answers. In particular, IATA checks may raise the
total price of a set of fares on a ticket to the maximum price of any other sufficiently similar set (similar in a technical
sense), even if the other set of fares does not actually form a valid ticket itself. While practically IATA checks add greatly
to the difficulty of international search, they are too complex to explore here.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

21

Example with numbers

Real SFO-BOS round trip

— Confined to SFO>ORD->BOS, BOS>DFW->SFO

— Allflights on AA; max 1 day travel each way

— 14 days advance purchase, Saturday night stay
25,401,415 valid solutions from space >10,000,000,000
Just one of many, many airlines and routes

— longer routes have much bigger numbers

14 priceable unit geometries
13 partitions

28549 °RD7%
_ap fared Oneway One way
5 fl W 19 flight combos - 32 fares > 109 fcs S SFO>BOS BOS->DFW
SFO BOS 109 fcs 87 fcs
Ws -32 faW > 61 puls - 45 pus
2 fareg 32 fal Round Trip Open Jaw
> 7215, DFW Gg™ “gcs SFO>BOS ORD->BOS

BOS->SFO BOS->DFW
109 - 162 fcs 112 - 87 fcs
> 12,168 pus > 8,169 pus

This is a real SFO-BOS round trip example with numbers, constrained to a particular American Airlines route (SFO to
BOS through ORD, then after a Saturday night back from BOS to SFO through DFW) with travel each way limited to one
calendar day. There are a total of 25,401,415 valid solutions from a space of more than 10,000,000,000 combinations of
flights and fares and priceable units.

Exploring the diagram, from SFO to ORD on the travel date AA offers 5 flights and publishes 36 fares in the market.
After testing those fare rules that restrict fare component flights and times, there are a total of 85 possible SFO to ORD
fare components (from a space of 5 * 36 = 180). Similarly, from SFO to BOS the 5 SFO to ORD flights combine with the
7 ORD to BOS flights to produce 19 flight combinations (instead of 35, because of time constraints). AA publishes 32
SFO-BOS fares, but the 19 flight combinations * 32 fares only produce 109 fare components after checking appropriate
rules.

When constructing priceable units, the 112 outbound ORD to BOS fare components combine with the 87 return BOS to
DFW fare components to produce 8,169 open jaw priceable units. Again this is less than 112 * 87 because fare rules limit
combinations. There are 14 possible priceable unit geometries, and 13 ways to use the geometries to cover all four flights.

Putting together all the possible ways to combine all the possible priceable units into a complete ticket, there are
25,401,415 solutions. This is just for this particular airline and route - it represents a very small portion of the search
space that an engine would need to consider for an unrestricted SFO to BOS round trip journey.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

22

Why this mess ? Variable pricing

&p, p - demand(p) < Cost of flying plan(#

« Offer portfolio of fares at different
prices
* Prevent the rich (business
travelers) from using the cheap
fares
— Require advance purchase

— Prohibit one-way priceable
units

Price
$1000

c

oo _Costofflying plane — Require Saturday night stays
$100 - i
Number of seats — Prohibit nonstop routes
Seat rank by price + Dynamically enable and disable

fares according to demand

Why this mess? Why so many fares, such complicated rules, the logic of priceable units, and so on? The answer is often
called variable pricing. Various airline economists make the following claim: there is no price such that the price times
the demand at the price equals the cost of flying a large jet. There are a lot of technical issues that can be raised with
their argument, but leaving those aside the argument is that if the airline charges $1 per ticket of course the plane will fill,
but the total revenue of $150 barely pays for an hour of a pilot’s salary. If they charge $1000 a ticket then if they could
fill the plane they’d make a fortune, but only a small number of people are willing to fly at that price, so again they can’t
equal the fixed costs of flying a plane. But if the airline can make those who are willing to pay it pay $1000, and others
pay $800, and others $500, maybe down to $100 or so, then the sum total over all passengers is sufficient to pay for the
fixed costs. In fact, some estimates put the incremental cost of flying a single passenger as low as $30 (for the meal and
baggage and ticket handling), so that once the airline has committed to flying the planeit is in their interest to sell a ticket
for $30 rather than let a seat go empty. But they must keep those who can pay more from buying their ticket at low
prices, a tough balancing act.

The airlines solve this problem in two ways, collectively called revenue management. The first is to use fare prices and
fare rules to construct a system wherein the cheapest fares have restrictions that increase their perceived cost for a
business traveler to the point where the business traveler will choose to buy more expensive fares. For example, cheap
fares require round trip travel, prohibit non stop flights and ticket refunds, et cetera. But the cheap fares remain
available for leisure travelers with more flexibility, for whom the extra restrictions are not so onerous. The second way,
discussed later, consists of dynamically deciding whether to sell a given fare for a flight based on how much demand there
is for the flight. For example, if a flight is not filling, lower priced fares are made available (on the grounds that it’s better
to get some money than none) but on high-demand flights only the most expensive fares are available.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

23

Software™

Outline

« Introduction

* Flights

« How airline prices work

« Complexity of travel planning
« Demos

« Seat availability

« Further reading

Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

24

Next are 4 proof sketches of the complexity of different
aspects of the air travel planning and pricing problem. Some Complexi ty Results
It would in fact be easy to show that air travel planning is

hard if airlines could p‘:]-thh any type of rule with a fare, + Single fixed fare, fixed route, variable flights is NP-hard
as opposed to the restricted set they commonly use and + Fixed flights, fixed PUs, variable fares is NP-hard
that can be encoded in the industry’s electronic formats.
Except for the last one, the following proofs will rely only
on the most fundamental parts of the airlines’ pricing
framework, used routinely. And except the last one, all
the proofs are fairly simple and reduce standard

» Fixed flights, fixed fares, variable PUs is NP-hard
» Full search is EXPSPACE-hard (simpler proof)
» Full search is undecidable (more difficult)

computer science problems known to be difficult to the » Proofs rely only on fundamental parts of the pricing framework
question of whether there is a valid ticket for a query » All proofs reduce standard problems to travel queries over
over specially constructed flight and fare databases. specially constructed flight and fare databases

1. Even if the airlines publish only a single fare (with every ticket a single one way PU), and all the airports in a
passenger’s itinerary are fixed, so that the only remaining choice is what flights to use between the consecutive airports,
deciding whether there is a valid ticket is NP-hard.

2. Fixing the flights and priceable units, but leaving open the choice of fares to pay for each flight, deciding whether there
is a valid ticket is NP-hard.

3. Removing bounds on the size of solutions, the general question of whether there is a ticket for a query is EXPSPACE-
hard. That is, air travel planning is at least as hard (it might be harder) as deciding whether a computer program that can
use space exponentially bigger than the input halts. EXPSPACE-hard problems are (thought to be) much harder than NP-
complete problems like the traveling salesman problem, and even much harder than PSPACE-complete problems like
playing games optimally. There is no practical hope that computers will ever be able to solve EXPSPACE-hard problems
perfectly, even if quantum computing becomes a reality.

4. The final result shows that just finding out whether there is a valid solution for a query is actually harder than
EXPSPACE-complete: it is unsolvable (undecidable). The question of whether a valid ticket exists can not be solved for all
databases and all queries no matter how long a computer thinks. However the full proof of this result is considerably
more complex than the EXPSPACE-hard proof without offering any greater understanding of the problem.

One interesting result not written up here is that even completely fixing the flights and fares of a ticket, so that the only
remaining question is how to partition the fares into priceable units, is NP-complete. This is interesting because only flight
and fare information makes its way onto printed tickets, not the grouping of fares into PUs. Therefore the problem of just
validating a printed ticket is worst-case NP-complete, though it is rarely difficult in practice.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

25

Single fare, fixed route is NP-hard

« One fixed fare, fixed route: only choice is flight number selection
* Reduce 3SAT (m clauses over k variables):

(X, or X, or ~X;3) A (X, or ~X, or X;) ™ ... » (~X, or X, or ~X,)

X4 X, X5 Xy
R R
Flights: A B c z
N A A A A A
=% ~X, ~X, ~X
Fare: A>Z Rules = If ~x, and ~x, and x, then FAIL

If ~x, and x, and ~x, then FAIL

If x, and ~x, and x, then FAIL
Else PASS

It is possible to reduce the NP-complete 3SAT problem to the question of whether there is a combination of flights that
satisfies a particular fare’s rules. For a given 3SAT expression over k variables one can construct a sequence of k+1
airports with exactly two flights between the i and (i+1)™ airport, one flight representing the assignment of true to the i
variable, the other false. It is possible to construct a single fare from the first to the last airport such that the fare’s rules
enforce the 3SAT logical expression. This is not entirely trivial to show, in that the limited rule language forces one to
apply DeMorgan’s rule to the expression and to encode the restrictions on variables as a certain kind of restriction on the
flight numbers that can be used between two specific airports, but the fare rule language is (just barely) expressive
enough to do this.

th

This simple fact is interesting because the airlines often advertise fares to the public: “$100 special from Boston to San
Francisco!” Even looking at that fare’s rules, it may not necessarily be easy to find a sequence of flights that will satisfy
them.

In point of fact, the particular rule mechanisms used in the complete proof are not usually problematic for search, but the
combined set of all types of fare component flight and route and time restrictions can make it very difficult to find valid
flight sequences for many fares between airports separated by 3 or more flights (or to prove that no valid sequence
exists).

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

26

Fixing a sequence of flights but introducing a

choice of fares to pay for each flight, it is again

possible to reduce an NP-complete problem, k- Fixed f||g htS, variable fares is NP-hard
coloring a graph (coloring graph vertices with k

colors such that no two connected vertices share

the same color). In this construction vertices are « Flights are fixed: choice is over fares for each flight
represented by flights and the color of a vertex + Reduce k-Color (m vertices)
by the choice of fare used to pay for the flight. A « Fares can restrict fare basis codes of all other fares in solution

sequence of flights is constructed, one per

vertex, and a query posed between the
endpoints. The fare database is constructed to Fights: | ¥ ¥ v YV VT T
. Cov S X, X, X,

contain one fare per combination of vertex and

color. In the figure, the fares for the flight

representing .ver'tex i are named REDi, BLUEIi =% e L

and GREEN!I (for 3-color). = | = N
Fares: BLUET BLUE2 BLUEm

GREEN1 GREEN2 GREENmM
REDi rules: for all (i,j) in E, may not be used in solution with RED]

It is possible to encode in fare rules restrictions on the fare basis codes of other fares that appear on the same ticket, even
if they are in other priceable units. Extra-priceable-unit restrictions on fare combinations are called end-on-end fare
combinability restrictions, or end-on-end restrictions. To complete the translation of graph coloring into air travel
pricing, if vertex i is connected to vertex j by an edge, then every vertex i fare prohibits the vertex j fare of the same color
from appearing on the same ticket. For example, if vertex 3 is connected to vertex 6, then RED3 prohibits RED6, BLUE3
prohibits BLUE6 and GREEN3 prohibits GREENG.

Again, the only difficulties to this proof consist of finding mechanisms in the airline industry’s rule system sufficiently
powerful to encode the original problem. The power of a fare to restrict, even independently, the fare basis codes of all
other fares in a solution is simply too powerful for efficient search.

To the extent that one associates NP-hard (NP-complete) problems with exponential time search, this result is extremely
important, because in many queries the base and exponent are sufficiently large for exhaustive search to be impossible.
For example, for a round-trip query requiring three outbound and three return flights, it may be necessary to search over
tickets that use 6 fares per passenger. For each market, there may be 1000 published fares. Finally, if multiple
passengers travel there can be interactions between the passengers’ fares. So, for a two person query the search space
may be greater than 1000'%, or 10°¢. For a completely fixed set of flights!!

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

27

Full search is EXPSPACE-hard

« Simulate Turing Machine with exponential size tape

— Flight represents a tape cell's contents at a particular time, including
head position and state (all encoded into flight number)

« Trip flights from A to B encode entire history of Turing Machine's execution
Final flight to destination B can only be taken from accept state

A s of1][1]1]o[1]o]o]o[1]0]0]o]s —"

s[1J@ 1[1[1]o]1]o]o]o]1]0]0]o][s —

R=53
-
-

1‘1‘1 o‘1|o‘o‘o‘1‘o‘o‘o\$7>
$\1.0\1\1 o[1]ofofo[1][o]o]o]s —

%$\1‘0‘0‘1‘1‘1‘0‘0‘0‘0‘0 o‘o‘o.7’
—s]1]ofo]1][1][1]0]0]0]0]o0 o\o\o.—’B

Both of the previous proof sketches assumed a bounded number of flights, related to the size of the input problem. If one allows
that a traveler might take any finite number of flights to satisfy their query, the problem is much harder. It is not difficult to show
the problem is at least EXPSPACE-hard using a proof similar to Cook’s proof that SAT is NP-complete. The idea is, given a
Turing Machine to simulate, to construct a query from A to B such that if there is an answer, flights of that answer encode the
execution history of the Turing Machine tape from initial state to an accept state, and if the Turing Machine doesn’t halt or
accept the input, for there to be no valid solution to the travel query.

A network of flights is constructed such that each flight is covered by a single fare, with the combination representing the
contents of one cell of a TM tape at a certain time, holding either 0, 1, $ (the tape end symbol) or the combination of 0, 1 or $ and
a state symbol. The figure depicts a valid solution that reflects the execution of a TM. The solution is read from left to right, top
to bottom, and each line represents the TM configuration at a particular time. Color is used to represent the TM state: the
colored 0 in the second cell indicates that the TM starts in the green state with the read/write head over the second cell of the
tape. Here red is used to indicate the accept state: when (and only when) the TM transitions to the red state, the flight graph
permits a following flight to the destination B.

For further intuition, imagine that each flight is one day long and that the tape is of length 10, and that the trip starts on January
1st. Then the January 1% flight represents the initial contents of cell 1 ($). The January 24™ flight represents the contents of cell 4
at time step 3 (1, state yellow). The flight number can be used to encode the cell contents (#1000 for $, #2000 for 0, #3000 for
1) and the airline the state (Tape Airlines if the head is in a different cell, or Green Airlines, Yellow Airlines, Blue Airlines, Red
Airlines, etc). So the depicted solution would have flights TA1000, GA2000, TA2000, TA3000, etc). The next slide will complicate
this representation slightly.

Software Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003 28

One-step consistency

Key is that one time step and the next are related by a “regular relation”: can be
expressed by a finite-state transducer

— $:$(0:0]1:1)* (L1:A1 Q1:B1 R1:C1|L2:A2 Q2:B2 R2:C2|....) (0:0]1:1)* $:$
— Writing, moving and state transitions expressed by small table of triples

« If we collapse into one sequence of alternating symbols, can be expressed using FSM
— $$ (00]11)* (L1A+ Q1B+ RiCi|L2A2 Q2B2 R2Co|...) (00]11)* $$

A sfolof1 1]1]0/1][o00]1]0]ofo[s "
—sfrfefr 1]1j0 1o 00f1fofofo[s "
o sfriaf11]1]o 1o 00f1]ofofo[s "
— s[o 1o rfojojofr]ofofols

A [s[sfelTolo]t 1[1]r[1][1]0jof].—™
— 8 s B T o [—

—

—s|s |1 1 [11 o1 1\1]0\0\...]...

The important issue in the proof is how to enforce the standard logic for how a TM advances in time. The flight sequence
must correctly simulate the TM.

Start by considering a single TM transition. The tape away from the head does not change. The cell the head is over may
change contents, the state may change, and the head may move left or right one cell. Thus, all change takes place in a
window of 3 cells centered on the head, and within these cells only a small finite number of before and after
configurations are possible. Therefore the set of permitted transitions can be encoded using a non-deterministic finite-
state transducer (FST) that uses (0:0|1:1)* to account for most of the tape and a small set of triples L:A Q:B R:C to encode
the changes near the head. From the start of the diagram, we see that one triple is $:$ GREENO0:1 0:GREENUO.

We can change the representation so that the before-and-after contents of each cell are interleaved, as in the lower
diagram. There the gray cells represent the tape at the current time step, and the white cells the tape at the next time
step. Then a single row reflects one transition, and the consistency of that transition can be enforced by a non-
deterministic finite-state machine (FSM): where the FST had X:Y, the FSM has XY. Therefore the initial flight sequence
becomes TA1000 TA1000 GA2000 TA3000 TA2000 GA2000.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

29

Multi-step consistency

* Now one-step transitions are encoded within a time step by FSM flight graph
» To ensure multi-step consistency, need to enforce equality between cells on a diagonal

— Implemented using round-trip priceable-units that enforce same-flight-number
restrictions on outbound flight and return flight

— Key issue is ensuring that right cells are paired; implemented using minimum and
maximum stay restrictions: min stay = max stay = TAPE-LENGTH* 2 - 1

— EXP-SPACE limit comes from encoding of min/max stay: n bits encodes 2n length

The advantage of encoding single-step transitions within a row is that multi-step consistency is ensured if the “after”
portion of one row is identical to the “before” portion of the next, or in other words, if each white “after” cell is encoded
using the same airline and flight number as the gray “before” cell that is one down and to the left of it. But this geometric
relation is also a linear one: if the TM tape length is T, then each “before” flight must be the same as the “after” flight that
occurs 2T-1 days later.

This flight equality restriction can be enforced using round-trip priceable units. The fare database is constructed so that
each white cell (in a non-final row) can only be priced using a fare with rules that ensure it is paired in a round-trip
priceable unit with another same-flight fare. The rules also have 2T-1 day minimum and maximum stay restrictions,
ensuring that exactly the right white and gray cell are paired. Without this restriction the tape could become scrambled
from one time step to the next.

These minimum and maximum stay restrictions are the limiting factor in the simulation. It takes n bits to encode a
minimum stay of length 2", so this construction can “only” simulate a TM with a tape of length exponential in the length of
the encoding of the TM. On the other hand, there is no limit to the number of steps the TM can run.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

30

The flight and fare databases necessary
for this query do not depend on how long
execution takes, unlike Cook’s SAT proof.
This is because it is possible in the airlines'
electronic flight distribution language to
say that a flight leaves every day without
specifying each departure separately.

For a fixed Turing Machine the only
causes of variation in the size of the
encoding are that some flights need to be
dedicated to forcing the beginning of the
first row of the simulation to match the
TM input (thus, the flight network grows
linearly with the size of the TM input) and
the encoding of tape length using
minimum and maximum stay restrictions
on fares. As it is possible to encode a
duration of 2" using n bits, general travel
planning is at least EXPSPACE-hard.

Some Details

Finite-state machine encoding must be of size polynomial in the input, but allow for exponentially
many flights

— Electronic flight formats permit one to say “Flight X leaves every day at 5pm”

— Encoding size is thus governed only by representation of input and number of transition
triples

» Polynomial in input (TM specification and input tape)

* TM specification bounded at a small number if one encodes a Universal TM and writes
the program on the tape

— Minimum connection time (MCTs) tables make it easy to encode FSM

* MCTs are per-airport specifications of whether one can connect between two flights
with specified flight numbers, and if one can, minimum time that must be allowed

Can simulate non-deterministic TMs because their permitted transitions are just as easily
encoded using an FSM as deterministic TMs

Solutions are big
— For EXPSPACE, no limit on size of solution because no limit on # of steps

— If polynomial limit is placed on solution size, then can simulate polynomial-sized tape for
polynomial number of steps: NP-hard

— ITA Software's engine can run a TM over a tape of size 10 to 20 for 10 to 20 steps
No need to specify input tape: can let system search over all possible input tapes

The proof goes through equally well for non-deterministic TMs. This means that even if solution size is bounded to a
polynomial of the length of the TM input, the problem is NP-hard.

As will be understood by those familiar with the undecidability proofs of Post’s Correspondence Problem and CFG

Software™ Copyright 2003 ITA Software

intersection, the source of complexity here is the combination of finite state constraints (expressible in many ways: in this
proof with the flight network) and long-distance “equality” checks (expressed using round-trip priceable units). Both of
these are fundamental to the airline industry, though the trips constructed in this proof are very artificial.

An interesting question is whether there is a way to prevent tape permutations in some way other than with minimum and
maximum stay restrictions, since this is the limiting factor in the proof's complexity bound. If one could ensure the same
geometric equality conditions no matter how long the tape was, then the air travel planning could simulate a TM for an
unbounded number of steps on tapes of unbounded length: the problem of finding a valid ticket for a trip would be
unsolvable (undecidable) in the general case. For such a proof one needs a way to restrict the ways that priceable units
can be laid out in an answer. The airlines do provide one such mechanism, called the back to back restriction. It is not
nearly so fundamental to the industry, and not easy to coerce to a form useful for this proof, but it can be used by slightly
restructuring the layout of priceable units in solutions, as is possible using a proof based on Diophantine equations.
Unfortunately the details of that proof are considerably more complex and add little to the understanding of the problem.

Public notes on computational complexity, Fall, 2003

31

The general travel planning problem is
unsolvable, meaning that no computer, no

matter how long it spends, can find an :

answer to everygtravre)zl query (or determine FU I sea rCh IS UNSO |Va b le
that none exists) for every database of

flights and fares that the airlines can « Air travel planning is unsolvable for certain inputs
publish. + Reduce the Diophantine decision problem

The proof here is based on the Diophantine
decision problem, and is substantially more { XX, € Z | P(x..x,) =0} =0 ?
complicated than the previous ones

presented. It is not possible to explain all
here, and this sketch omits the most difficult + Value x represented by |X|, the number of X fares in solution
steps, but the general idea can be conveyed.

+ Example:
ab2-3b=0

Constrain solution to form A*B*C*P*N*, where |C|=|B||B|, |P|=|A||C]|, IN|=3|B]|
« |P| is sum of positive terms, |N| is sum of negative terms
« Enforce |P|=[N| using round trip priceable units

» Key challenge is enforcing multiplication: |Z|=|X||Y|

The (unsolvable) Diophantine decision problem, also known as Hilbert's 10" problem, is that of determining whether a
polynomial with integer coefficients has positive integer roots. This can be translated into a travel problem wherein the
equation has roots if and only if there is a solution to the travel problem. If there is a solution, the number of fares in the
solution in each of various different classes matches the roots of the polynomial. In general the count of fares in a class
represents the numerical value of a variable or expression: the reduction does unary arithmetic with fares. The flight
network is used to ensure that at least one fare in each input variable fare class must be used. The sum of all positive
terms will be represented by the number of fares in class P, and the sum of all negative terms by the number of fares in
class N. By giving P and N fares rules that force them to combine with each other in two-fare-component PUs, it is
guaranteed that a solution only exists if the equation sums to zero.

Since addition can be expressed in the reduction definition (by expanding the class of fares that represents an expression),
the key issue in this proof is whether it is possible to express multiplicative constraints on fare counts, such that any valid
solution must have number of fares of type Z precisely equal to the number of fares of type X times the number of fares of

typeY.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

Multiplicative constraints (|]Z| = |X]||Y|) can be

enforced for solutions of arbitrary size, though a L . .

full proof is substantial. Using unary arithmetic, Una ry mu Iti pllcatlon with fares
one can set up a geometric structure very similar

to that used in the EXPSPACE proof. This time

instead of copying forward the tape of a TM, + Example: 223=6 ([X|=2, [Y|=3, |Z|=6)

priceable units are used to copy forward the] o ,
number of fares of type X and the number of Trip = S(OE) (O’ | OF')
fares of type Y. The pattern of flights and fares is C BN E vE vBuT s = pAr(rE}

used to ensure that as time progresses, the | | | | |

number of unfinished priceable units involving B - e >« El i = e
fares (a helper fare) steadily reduces, so that the ? A T A ® c,: ® ? ® 0= (@ANECrB
number of steps (lines) in the construction is =R R RS E= 2B
equal to the number of fares of type Y. During | | |

each time step, another helper fare (A) is used to z Az A B o=@ZNE E=2E
ensure that a Z fare appears for every X. The

end result is that the number of Z fares is
precisely equal to [X]|[Y].

« Structure lets “back to back” restriction work around time limits in
EXPSPACE-hard proof; details are complicated

This is not a complete sketch: the difficult step is ensuring that exactly |X| fares of type Z appear in every row, a very
similar problem to the tape permutation problem. However with suitable complications to this basic structure some
details permit the airlines’ back to back restriction to be used to make the proof go through no matter how many fares
are in the solution. The back to back restriction is a rule the airlines can selectively enforce that limits the manner in
which priceable-units on the same airline can be embedded. It is designed to prevent people from circumventing Saturday
night stay restrictions for a round-trip A to B, B to A (with insufficient layover in B) by buying a “double” ticket A to B
(short stay) B to A (long stay) A to B (short stay) B to A, priced with the first A to B paired with the second B to A and the
first B to A paired with the second A to B. (The price of two round-trip tickets built from four cheap round-trip Saturday
night stay fares is often much less than one built from two expensive unrestricted fares.)

This unsolvability result is amusing, but doesn’t offer any greater insight into why the travel planning problem is hard than
the EXPSPACE proof. Any system that permits long-distance constraints sufficient to copy arbitrary amounts of data
forward (as PUs do) is liable to be undecidable.

It is important to understand that multiplication is extremely powerful, but only if the circuit is bi-directional, so that it can
search for factors. It is easy to evaluate a polynomial. It is another matter entirely to be able to search for the roots of
one. This multiplication circuit is really a multiplicative constraint on solutions, and a search engine that can find
solutions satisfying the constraint can be used to multiply, divide, factor and find roots.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

33

What do these proofs tell us? The first two proofs show that

even if all but one dimension of the problem are fixed, the)]
problem remains at least NP-hard. That is, each dimension of Complexity Review
the search is hard by itself. And the proofs themselves reflect

fairly well the algorithmic difficulties in solving the problem,

especially the proof that even if flights are fixed, the search for * Even the most basic subproblems are provably hard

fare combinations is NP-hard, since the types of restrictions

used in that proof are quite commonly encoded by the airlines. » Proofs reflect the real algorithmic challenges we have experienced
The proofs are slightly more difficult than they look here, only * Complexity proofs are harder than they look

because it is difficult to find the machinery in the airline — electronic format for fare rules is complicated but very limited
industry’s complicated but inexpressive rule language to express » Heuristics risky: airlines can change their fare and rule structures

instantaneously; sometimes deliberately complicate space
» Order-of-growth is a serious issue:

The EXPSPACE and unsolvability proofs are harder to — 30,000,000 flights in database

interpret. They depend on very unusual constructions and 150,000,000 fares in database _
lengthy tickets. They should perhaps be seen as supporting 10,000 to100,000,000 flight combinations for a round-trip
evidence for the power of the airlines' pricing system, that 10,000 to100,000,000 fare combinations for each flight combo
reinforces the simpler results. The fact that they depend only on — much worse for multiple passengers

very simple rule systems also suggests that complexity can arise

from the combination of independently simple pricing rules.

the constraints necessary for reductions.

A normal response to a problem that is theoretically hard is to search for heuristics that perform well in practice. One of the
challenges to the travel planning problem is that the airlines can update their fares and rules 10 times a day, potentially
changing the structure of the search problem in an instant: any carefully tuned system could be destroyed by a new vice
president of marketing at an airline on his or her first day of work.

One might hope that problem sizes are small enough in practice to be solvable, but the N’s in algorithmic complexity can be
big. There are 30 million flights a year, 150 million published fares, 10,000 to 100,000,000 or more flight combinations for a
simple round trip journey, 10,000 to 100,000,000 or 100,000,000,000,000 or more fare combinations for a fixed set of flights,
and exponentially worse for multiple passengers.

[As a minor aside, it is not entirely clear whether the proofs that these constrained problems are NP-hard should more precisely
read NP-complete; that is, it is not certain whether the constrained problems are in NP. To prove membership one must show that
potential solutions can be fully checked in time polynomial in their size, and the problem specification is too complex, and vague,
to ever mathematically prove such a result.

But formal proof aside, polynomial time evaluation of solutions is almost certainly possible if one does not consider price. To
validate the price of an international trip requries performing IATA checks, and whether these can be run in polynomial time is
not obvious, since IATA checks compare the solution's fares against other potential sets of fares, and the complexity of this process
turns on imprecise details of the IATA check specification. On the whole it is probably reasonable to assume that polynomial time
evaluation of solutions, including price, is possible, and that the constrained problems are NP-complete.]

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

34

Outline

* Introduction

* Flights

» How airline prices work

« Complexity of travel planning
e Demos

» Seat availability

* Further reading

As a demonstration of the techniques used in the preceding proofs, ITA Software has written some tools to translate
programs and circuits into industry-standard databases, and run ITA Software's stock search engine on them. All
solutions shown are the result of running the search engine as normal, but on this specially constructed input.

Software™

Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

35

Turing Machine Simulations

» Actually write code to translate programs into industry-standard fares and
rules

« Run on ITA Software’s production servers with unmodified code

« What can we handle in practice?
Non-deterministic Turing Machines
» Search all inputs at once
With production code settings
« Max tape length with 0/1 alphabet ~20
» Max execution steps ~20
+ Max ~10 states
» Takes about 1 second to run
Thus, e.g, small problems in NP
Standard Shannon/Minsky alphabet/state tradeoff theorems apply

Turing Machines can be encoded as in the EXPSPACE proof, but that doesn't mean a travel planning search engine will be
able to run them! Every search engine has limitations, and given the computational complexity of the planning problem it
is difficult to imagine very large simulations succeeding. In the case of ITA Software's engine as of early 2003, it is
possible to simulate TMs with small numbers of states for between 10 and 20 steps on tapes of length from 10 to 20
(depending on the specific TM and tape alphabet). Fundamentally, ITA Software's engine will not generally duplicate
airports for a user-requested portion of a trip, which limits the size of the tape and number of time steps to a polynomial in
the size of the databases. The net effect is that ITA Software's engine can execute non-deterministic TMs over small tapes
for small numbers of steps, or in other words, that it can solve small instances of problems in NP - as one would expect.

After the databases have been constructed, the machine is run by posing a query with one trip segment per time step,
between made-up airports. For example, to run for 3 time steps one poses a query “find solutions from XXA to XXB, then
from XXB to XXC, then from XXC back to XXA”. The flights in each trip segment encode the tape at that time step as well
as the transition to the next time step.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

36

Right to Left Increment

* Right-to-left boolean increment-by-1 machine is 2-state DTM (DFST)
» Left-to-right boolean increment-by-1 machine is 2-state NTM (NFST)
« Set prices of “1” fares to reflect bit position

— 1.00%$*2! input tape, 0.01$*2' output tape

Deterministic R-to-L Non-Deterministic L-to-R

0:0,L

1:1,R

As a first example, a left-to-right binary increment program is encoded. Incrementing a binary number from right (least
significant bit) to left (most significant bit) is a simple deterministic operation that only involves moving the head to the
left and maintaining the carry bit in the state. Working from left to right essentially reverses the machine's transitions,

which requires non-determinism. The machine must guess whether the remaining low bits will carry to know whether to
flip the bit under the head.

To simplify interpretation of results, the encoding of the TM assigns values to fares in such a way that the input and
output values represented in binary appear as the dollar and cents portion of the trip cost. This is done by giving a price
to the “1” fares used for the first segment of the trip a value in dollars proportional to 2' where i is the distance from the
right end of the tape, and similarly in cents to the “1” fares used for the last segment of the trip. Thus, solutions should
have values $0.01, $1.02, $2.03, et cetera.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

37

Graphical Presentation

Monday, August 11, 2003 | Tuesday, August 12, 2003

Cost From/To Date 6a 9a noon 3p 6p 9p mid 3a 6a 9a noon 3p

6p mid 6a noon 6p mid
$907.21 LAX to NCE Mon-Tue, Aug 11-12 DUB iR BB
$907.21 LAX to NCE Mon-Tue, Aug 11-12 DUB LR BB
$907.21 LAX to NCE Mon-Tue, Aug 11-12 BN = JEl

$1045.71 LAX to NCE Mon-Tue, Aug 11-12 ORD ey

$1049.21 LAX to NCE Mon-Tue, Aug 11-12 L+R [NEBH
$1049.21 LAX to NCE Mon-Tue, Aug 11-12 LHR [BD
$1049.21 LAX to NCE Mon-Tue, Aug 11-12 LHR [BD

$1053.21 LAX to NCE Mon-Tue, Aug 11-12
$1053.21 LAX to NCE Mon-Tue, Aug 11-12
$1057.71 LAX to NCE Mon-Tue, Aug 11-12
$1069.71 LAX to NCE Mon-Tue, Aug 11-12
$1074.21 LAX to NCE Mon-Tue, Aug 11-12
$1078.71 LAX to NCE Mon-Tue, Aug 11-12
$1078.71 LAX to NCE Mon-Tue, Aug 11-12
$1098.71 LAX to NCE Mon-Tue, Aug 11-12
$1155.36 LAX to NCE Mon-Tue, Aug 11-12
$1196.21 LAX to NCE Mon-Tue, Aug 11-12 = ous [JEBN += [NESHI
$1300.90 LAX to NCE Mon-Tue, Aug 11-12
$1409.21 LAX to NCE Mon-Tue, Aug 11-12 HR
$1556.56 LAX to NCE Mon-Tue, Aug 11-12
$1556.56 LAX to NCE Mon-Tue, Aug 11-12
$1621.90 LAX to NCE Mon-Tue, Aug 11-12
$1621.90 LAX to NCE Mon-Tue, Aug 11-12
$1624.83 LAX to NCE Mon-Tue, Aug 11-12
$1629.33 LAX to NCE Mon-Tue, Aug 11-12
$1629.33 LAX to NCE Mon-Tue, Aug 11-12

$1629.52 LAX to NCE Mon-Tue, Aug 11-12 AF
$1629.52 LAX to NCE Mon-Tue, Aug 11-12 |

$1629.52 LAX to NCE Mon-Tue, Aug 11-12 AF coG [AR

$1629.52 LAX to NCE Mon-Tue, Aug 11-12 : AF ' coG [AF

To help understand the upcoming slides, this figure shows a graphical presentation of a small set of solutions to a one-way
Los Angeles (LAX) to Nice (NCE) query. Each row represents one possible itinerary from LAX to NCE. Time is laid out
horizontally, with colored bars representing flights. A flight's airline determines the color of its bar. Layovers are
represented by gray bars. When there is space airline and airport codes are written. This general format will be used to
present solutions to queries, though in subsequent slides each trip will have several parts and thus be represented by
several lines.

In the TM encoding used for these demos, a tape cell's contents, and the TM state if the head is over the cell, are
represented by the airline of a flight. Thus, the configuration of the tape can be read from the sequence of bar colors.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

38

Query

[
osoft Intemet Explorer [_[O0x]
dress (€] hitp://matrix itasoftware. com/cwg dispatch/prego/submit & Go |J Links
Flexible Destination Flexible Dates
From A, Add aitports within |0 =] miles
seeat | [Jan B [T 2 [(oeve ol [Anyime =] | Atierate dates [none_ [#]
To B Add airports within |0 | miles
From | [B Add aitports within |0 | miles
oot | [Jan =] [13 5] [Comve =] [Anytme =] | Atsmate dstes [none =]
To [o<C Add aitports within |0 =] miles
From | [x¥C Add airports within |0 | miles
Depart Jan =] |25 =] |Leave =] [Anytime - Alternate dates |none
To <D Add airgonts within [0 =] miles
From <D Add aitports within |0 =] miles
s | [Feb =] [6 =l [Loove = [ryime =] | Aliernte dates[rons =]
To PE Add airports within |0 | miles
From | [E Add airports within |0 =] miles
oo | [Feb =] [18.5] [Lomve =] [Anytme =] | Atsmate dates [none =]
To [Add aitports within |0 =] miles
From | [<F Add airports within |0 | miles
Depart Mar =| |1 =] |Leave =] |Anytime = Alternate dates |none =
To 4G Add airports within [0 =] miles
[5G Add airports within |0 =] miles
Mar | |13 x| |Leave x| [Anytime | Alternate dates |none hd
To PH Add airports within [0] miles
From | [xH Add airports within |0 7| miles
vesar | [idar (=] [25 =] [Leave =] [Anytme =] Aternate dates [none =]
To A Add airports within |0 | miles
rigins and destinations may be city or airport names or codes. Separate rultiple entries with semicoloms
@ Remove Segment
@® Add Segment =
Passengers: @ Show Advanced Options
Infants Infants
Adults Seniors Youths Children inseat onlap
(1810 61) (62 plus) (1210 17) (210 11) (under 2) {under 2)
1= 0x 0= 0x 0x o=
2 [|4 ntemet v

The query is posed...

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

Cost Slice From/To

$55.56 0
1

$56.57

$57.58

XXA to XXB
XXB to XXC

Incrementer Results

Date

Sat-Thur, Nov 1-6
Fri-Wed, Nov 7-12

XXC to XXD Thur-Tue, Nov 13-18
XXD to XXE Wed-Mon, Nov 19-24

XXE to XXF
XXF to XXG
XXG to XXA
XXA to XXB
XXB to XXC

Tue-Sun, Nov 25-30
Mon-Sat, Dec 1-6
Sun-Fri, Dec 7-12
Sat-Thur, Nov 1-6
Fri-Wed, Nov 7-12

XXC to XXD Thur-Tue, Nov 13-18
XXD to XXE Wed-Mon, Nov 19-24

XXE to XXF
XXF to XXG
XXG to XXA
XXA to XXB

Tue-Sun, Nov 25-30
Mon-Sat, Dec 1-6
Sun-Fri, Dec 7-12
Sat-Thur, Nov 1-6

mid

day of dep.
noon

|
mid

next day
noon

Q

+2days |
mid
TO

noon
TO
TO

+ 3 days
noon

| +4days |
mid noon mi

2eHE

[No| | o To

+5days |
d noon mid

0
T0
0
0

XXB to XXC Fri-Wed, Nov 7-12
XXC to XXD Thur-Tue, Nov 13-18
XXD to XXE Wed-Mon, Nov 19-24
XXE to XXF Tue-Sun, Nov 25-30
XXF to XXG Mon-Sat, Dec 1-6
XXG to XXA Sun-Fri, Dec 7-12

EIEIEIEIEIE] _[EIEIEIEIEIE] _[FIEIEIEIEIE] 8
0 HHEEEEE:: ¢ : 2 2 HEEE

AN hE WD = O W AR WD = O WA WN

TO
TO
TO

This slide graphically depicts three of the solutions the search engine found running on a 6-cell tape. Dark gray flights are
1s, light gray are Os. The labels in cells are the airline (T0 Airlines represents a cell with a 0 in it, T1 Airlines represents a
cell with a 1 in it, NO indicates a cell with a zero that the head is over, in state N, et cetera). Colored cells indicate the
tape head, the green state for “carry” and the blue for “no carry”. Orange flights at start and end delimit the tape. Long
morning flights encode the current tape, short evening flights the tape at the next time step. Thus, short flights are
identically colored to the long flight diagonally below and to the left - 6 days later. When the machine enters a halt state
the state disappears from the tape; hence the last row of each solution has no colored state cells. Notice the non-
determinism of the machine: in some cases when in the blue no-carry state over a 0 cell, it increments the cell to 1, in some
cases it does not: it guesses the next carry (whether the remaining cells to the right are all ones). No solutions result from
wrong guesses, because every guess gets verified as the machine scans further right.

Note the complexity of these trips: 98 flights, 98 fares, 36 round-trip PUs, 26 one-way PUs!

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

Cost Slice

$10.05 0
1

From/To Date

XXA to XXB Sat-Wed, Nov 1-5
XXB to XXC Thur-Mon, Nov 6-10
XXC to XXD Tue-Sat, Nov 11-15
XXD to XXE Sun-Thur, Nov 16-20
XXE to XXF Fri-Tue, Nov 21-25
XXF to XXG Wed-Sun, Nov 26-30
XXG to XXH Mon-Fri, Dec 1-5
XXH to XXI Sat-Wed, Dec 6-10
XXI to XXJ Thur-Mon, Dec 11-15
XXJto XXA Tue-Sat, Dec 16-20

$11.21

O 0 N R WD = O O 0NN R W N

XXA to XXB Sat-Wed, Nov 1-5
XXB to XXC Thur-Mon, Nov 6-10
XXC to XXD Tue-Sat, Nov 11-15
XXD to XXE Sun-Thur, Nov 16-20
XXE to XXF Fri-Tue, Nov 21-25
XXF to XXG Wed-Sun, Nov 26-30
XXG to XXH Mon-Fri, Dec 1-5
XXH to XXI Sat-Wed, Dec 6-10
XXIto XXJ Thur-Mon, Dec 11-15
XXJ to XXA Tue-Sat, Dec 16-20

Bit rotation

day of departure

noon

mid noon

B
B
B
T
T
|
B
B
B
T
™
T
B
B
B
B
B
Z0
[
L

4 days after |
noon mid

2 days after | 3 days after
noon mid noon

X0

next day

|
id

g

N
o

m
wi
o
B
T
T
T
B
B
B
o
L
o
B
B
B
B
Z0
B
B
_ B

EEEE"EEE: : EEEENEEE > =
EEEEERN] L EEEEEEER |

EEEEEEEEEEEEEEEE s = 2 2
o

Here are two solutions from a more complicated four state deterministic TM that moves both right and left over a 5-cell
tape. This machine rotates the input bits one to the right: the blue (W) and green (X) states remember the previous bit

when marching to the right, and the red (Y) and yellow (Z) states remember the rightmost bit while marching to the left to

deposit it in the first tape position. An alternative implementation would have been a non-deterministic machine that
guessed what bit to write in the first cell, remembered its guess, and then validated it against the last cell of the tape.

Software™

Copyright 2003 ITA Software

Public notes on computational complexity, Fall, 2003

41

Multiplication

* Implement multiplication circuits

— Both unary and binary multiplication
— Unary is core of undecidability proof

— Not based on TMs, but just as with TM simulation, round-trip
PUs used to encode finite-state transducers

» Multiply: solutions that start with flight sequences “17” and “19”

» Divide: solutions that start with flight sequence “17” and end in
flight sequence “323”

» Factor: solutions that end with flight sequence “323”

Here two multiplication circuits are implemented, one unary and one binary. However the unary multiplication circuit
does not include the complications necessary for unbounded tape length. These are custom circuits not based on Turing
Machines, but that use the same mechanisms to copy information forward through the steps of a computation. The search
engine searches over all possible inputs, so its output is a “times table”. To aid interpretation, values have been assigned
to fares such that the dollar amount is equal to the product of the 10-cent and 1-cent position (i.e., $21.73 indicates that
21 is 7 times 3). Multiplication, division and factoring are the imposition of constraints on different parts of the trip.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

42

Cost Slice

$16.28 0
1

$16.44

Unary Multiplication

From/To Date

XXA to XXB Sat-Mon, Nov 1-10
XXB to XXC Tue-Thur, Nov 11-20
XXC to XXD Fri-Sun, Nov 21-30
XXD to XXE Mon-Wed, Dec 1-10
XXE to XXF Thur-Sat, Dec 11-20
XXF to XXG Sun-Tue, Dec 21-30
XXG to XXH Wed-Fri, Dec 31-Jan 9
XXH to XXI Sat-Mon, Jan 10-19
XXIto XXJ Tue-Thur, Jan 20-29
XXJ to XXA Fri-Sun, Jan 30-Feb 8
XXA to XXB Sat-Mon, Nov 1-10
XXB to XXC Tue-Thur, Nov 11-20
XXCto XXD Fri-Sun, Nov 21-30
XXD to XXE Mon-Wed, Dec 1-10
XXE to XXF Thur-Sat, Dec 11-20
XXF to XXG Sun-Tue, Dec 21-30
XXG to XXH Wed-Fri, Dec 31-Jan 9
XXH to XXI Sat-Mon, Jan 10-19
XXIto XXJ Tue-Thur, Jan 20-29
XXJ to XXA Fri-Sun, Jan 30-Feb 8

| day of dep.| next day | +2 days | + 3 days | + 4 days | + 5days | + 6 days | + 7 days | + 8 days | + 9 days |
mid mid mid mid mid mid mid mid mid mid mid

$16.82

O 00 1 O L A W N~ O VO I N A WD~ O VO I Uit A W

XXA to XXB Sat-Mon, Nov 1-10
XXB to XXC Tue-Thur, Nov 11-20
XXC to XXD Fri-Sun, Nov 21-30
XXD to XXE Mon-Wed, Dec 1-10
XXE to XXF Thur-Sat, Dec 11-20
XXF to XXG Sun-Tue, Dec 21-30
XXG to XXH Wed-Fri, Dec 31-Jan 9
XXH to XXI Sat-Mon, Jan 10-19
XXIto XXJ Tue-Thur, Jan 20-29
XXJ to XXA Fri-Sun, Jan 30-Feb 8

Unary multiplication is fairly easy (for the case of a bounded tape). The red and green cells are the input, and the number
of pink cells is the output. Blue cells implement a decrementing counter, and gray cells are “empty”.

Software™ Copyright 2003 ITA Software

Public notes on computational complexity, Fall, 2003

43

Binary Multiplication

| day of dep. | nextday | +2days | +3days | +4days | +5days | +6days | +7days | +8days |
mid mid mid mid m|d mid m|d mid mid m|d

-I-I- so N s [[

a0 I- SN e EEENN s

oN [l NG| soiy WY (s
S0 [

S0

Cost Slice From/To Date
$18.36

(=}

XXA to XXB Sat-Sun, Nov 1-9 A0
XXB to XXC Mon-Tue, Nov 10-18 A0
XXC to XXD Wed-Thur, Nov 19-27
XXD to XXA Fri-Sat, Nov 28-Dec 6
XXA to XXB Sat-Sun, Nov 1-9

XXB to XXC Mon-Tue, Nov 10-18
XXC to XXD Wed-Thur, Nov 19-27
XXD to XXA Fri-Sat, Nov 28-Dec 6
XXA to XXB Sat-Sun, Nov 1-9

XXB to XXC Mon-Tue, Nov 10-18
XXC to XXD Wed-Thur, Nov 19-27
XXD to XXA Fri-Sat, Nov 28-Dec 6
XXA to XXB Sat-Sun, Nov 1-9

XXB to XXC Mon-Tue, Nov 10-18
XXC to XXD Wed-Thur, Nov 19-27
XXD to XXA Fri-Sat, Nov 28-Dec 6
XXA to XXB Sat-Sun, Nov 1-9

XXB to XXC Mon-Tue, Nov 10-18
XXC to XXD Wed-Thur, Nov 19-27
XXD to XXA Fri-Sat, Nov 28-Dec 6
XXA to XXB Sat-Sun, Nov 1-9

XXB to XXC Mon-Tue, Nov 10-18
XXC to XXD Wed-Thur, Nov 19-27
XXD to XXA Fri-Sat, Nov 28-Dec 6

$18.63

S0
S0
S0
S0

$20.45

$20.54

$21.37

$21.73

WD = O WD = O W= O W —= O W —= O W —

Binary multiplication is a more complicated circuit, but can multiply bigger numbers with less tape and fewer time steps. Six
solutions are shown, from a 3-bit x 3-bit multiplier. Can you figure out the logic? It's standard grade-school multiplication.
Green and blue cells represent the input numbers, red the accumulated result. (Exercise: write the one-step FST for this
circuit.)

The binary circuit's time and space advantages don't come for free. In the unary circuit the number of possible flight
sequences for each line was quadratic in the length of the tape: there was one transition from red to blue, and one from blue
to gray. But the binary multiplier has choices of 0 or 1 for each cell, exponential in the length of the tape. Thus there are
exponentially greater many flight sequences to search over. As of September, 2003 the ITA Software search engine maxes out
its search capabilities at 4-bit multiplication — the times table up to 15 times 15, with 130 flights and fares per solution.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

Outline

» Introduction

* Flights

 How airline prices work

« Complexity of travel planning
« Demos

« Seat Availability

* Further Reading

Although not such a fundamental issue in the theoretical computational complexity of travel planning, airline seat
availability processing is a key component of the air travel pricing framework and has a huge impact on the prices
passengers see, as well as the practical difficulty of finding the lowest price. Another reason to understand seat
availability is that it is one of the areas of the airline industry with a public scientific literature.

Software™

Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

45

Seat Availability

How many seats free on AA191 SFO-JFK, April 2 ?

» Airlines use seat availability to adjust prices according to demand

« Every fare is assigned a booking code (F, Y, B, H, Q, ...), based on price and cabin
— usually first letter of fare basis code

* Availability of seat is dependent on booking code purchased

AA H14ESNR $436, booking code H

I v

AA191 AA4033
SFO > JEK BOS

F1Y9 B4 H4 W0 Q0 GO FO Y3 B3 H3 W1 Q1 GO

Airline seat availability is much more complicated than just the question of whether the number of reserved seats equals
the capacity of an aircraft. Airlines use seat availability as a way to dynamically adjust prices according to demand.
Simplifying somewhat, each published fare is assigned a letter of the alphabet called a booking code, typically also the
first letter of the fare’s basis code. The airline chooses the booking code for a fare based primarily on the fare’s cabin
(coach, business or first) and the fare’s price.

Asked whether there are any seats available on a plane, the response an airline gives is not “yes” or “no” but rather a per-
booking-code vector of seat counts. For example, in the figure the first flight has 1 F booking code and 4 H booking codes
available; the second has no F’'s and 3 H’s. To fly on these two flights using the H14ESNR fare (with booking code H), H
seats must be available for both flights. They are, and up to 3 people could buy H fares, but a (cheaper) fare with booking
code Q could not be used because no Q seats are available for the first flight.

Airlines do not usually publish seat counts higher than 9, so even when a plane is empty it is common to see F9 Y9 B9...

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

46

Availability Dynamics

F l—l_‘—_ first, ~$2000

coach, ~$800

H — |—|_‘_’_,— coach, ~$400
Q] M coach, ~$100

G coach, ~$10

60 40 20 0

days prior to departure

Airlines dynamically adjust their responses to seat availability queries as they estimate demand for flights. The simplest
case is for the most expensive fares. For example, months before a flight leaves all (first class) F seats will be available
but as seats are reserved the counts slowly drops until the plane is full; similarly for the most expensive coach class
booking code, Y.

But cheaper coach class booking codes like H have response profiles that reflect demand as well as capacity. Suppose the
airline sees very high demand for this flight relative to similar flights in the past. They may decide to stop selling cheaper
seats so as to force passengers to pay more, or viewed another way, so as to save seats for those who would pay more.
Some cheap booking codes might not normally be available at all, and might only be enabled in very low demand
situations. Importantly, the information the airline uses to estimate demand changes constantly, so seat availability
responses may fluctuate up and down even in absence of any reservations.

One of the biggest problems for the airline is predicting demand. They devote huge efforts to “cleaning” historical data
for use in training statistical demand models. Imagine trying to accurately predict demand immediately after a strike, or a
plane crash, or for flights to the city hosting the Olympics.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

47

O & D Availability

» To the airline, each seat is a potential part of many products
— different products compete for seat

— query must provide not just flight and cabin, but product context
« trip origin & destination (O&D)
« future: frequent flyer number, Swiss bank account #, etc

— very difficult optimization problem for airline

0 BOS
a0 UA131 SEA-DEN JUNE 10
Trip O | Trip D | Availability
SEA $200 DEN SEA DEN | F3Y9W2Q0
—

SEA BOS |[F2Y9W1Q0
SEA MIA | F3 Y9 W5 Q3

MIA

A further complication to seat availability, especially to the airline, is that each seat is a potential part of many
“products”, and all these products compete for that seat. The same seat on a SEA to DEN flight could be used fora' Y
fare for a passenger traveling from SEA to DEN, or could be part of a Q fare from SEA to BOS with a stop in DEN.
Selling a seat on one flight might fill that plane, making it impossible for someone else to use that plane as part of a
bigger trip that might bring more money to the airline. So many routes and many fares are all competing for seats. This
makes it much more challenging for an airline to decide whether or not to offer a given booking code on a given flight. A
consequence is that many airlines demand information about the entire route of a trip before providing availability for any
section: this is often called O&D (origin and destination) availability. The table shows how the seat availability for a
single flight can vary depending on what trip the flight is part of. When the availability of two flights depends on the
passenger taking both, the flights are said to be married.

Research in network revenue management is a very popular topic in the operations research (OR) community. Most
work is based on linear programming models but simulation techniques are gaining in popularity. One fundamental
result is that complicated revenue management techniques only significantly increase profits when planes are flying near
capacity.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

48

Seat Availability

« 1 plane/sec - 150 psgr/plane - 100 search/psgr - 1000 fl/search =
15,000,000 availability questions per second

— airline computers can’t support this load
— airline networks can’t support this load
— ITA Software uses distributed, scalable cache

+ Airline would like to take more features of trip into account
— all flights; all passengers; total price; etc
— would be disastrous for search: too many questions to ask

* No locking: answer is not guaranteed for any period of time
— between search and purchase, availability may have changed

Another interesting aspect of seat availability is the number of questions that the airlines must answer. If every passenger
poses 100 searches before buying a ticket (a number in line with actual behavior) and each search looks at 1,000 flights,
then the airlines would need to answer 15,000,000 questions a second. Neither their networks nor their computers can
handle this, a situation that forced ITA Software to develop a sophisticated seat availability caching system. The problem
is aggravated by O&D availability: if the entire trip must be included in each query, something many airlines desire, then
search becomes impossible because every potential solution must be independently validated with the airline.

Finally, the airlines’ seat availability infrastructure does not include any locking mechanism, so even if an airline responds
that a booking code is available, there is no guarantee that by the time a traveler says “yes, I'd like to buy it” it still will
be.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

49

Further Information

« Unfortunately, this is not an area with a big published literature.

— Large academic and industry literature on optimization problems like setting prices
and routes and seat availability

— But no work covers search from a consumer perspective, or covers complexity
— There is no nice problem statement

» The problem is defined mostly by IATA (International Air Transport Association,
a cartel of airlines) and ATP (Airline Tariff Publishing Company, manager of
electronic fare and rule formats), but they provide no formal specifications

— The problem statement and results I've presented here are mine
» Unpublished and not common knowledge
Further reading
— Introductory chapters of MS/PhD theses on revenue management
— Other academic/industry literature on revenue management and schedule
optimization
— “Hard Landing”, by Thomas Petzinger — very colorful history of airlines

A variety of MS and PhD theses on revenue management have readable reviews of the setting of airline prices and
availability. Read, for example, Belobaba's 1987 and Williamson's 1992 MIT PhD theses to get a (now dated) understanding
for some basic problems in airline revenue management. However this work concentrates on seat availability and fails to
detail most of the complexities of the industry's pricing logic, and does not address search. Revenue management has spread
to many other industries, and is used heavily in telecommunication and energy pricing.

Standard introductions to complexity theory include Hopcroft and Ullman (Introduction to Automata Theory, Languages and
Computation), Sipser (Introduction to Theory of Computation) and Garey and Johnson (Computers and Intractability). Also
highly recommended as background is Aho and Ullman (The Theory of Parsing, Translation and Compiling, volume 1) for a
broad introduction to formal languages. For more information on unsolvability read the collection of papers The
Undecidable (Davis, editor) and for a superb review of the unsolvability of the Diophantine decision problem read Davis's
Computers and Unsolvability. This last is fascinating for any computer scientist with a mathematical inclination, as it
presents a complete proof of one of the most important mathematical results of the 20" century in a form accessible to a
dedicated CS undergraduate.

Hard Landing by Thomas Petzinger is a light and very enjoyable history of the airlines that includes a lot of the history
behind their complicated pricing schemes.

Software™ Copyright 2003 ITA Software Public notes on computational complexity, Fall, 2003

50

Software™

Exercise

E-mail this itinerary | Back to search results | Modify search | Log out | Comments | Help | ITA Software

$1717.26 in US Dollars
1 adult @ $1717.26

Buy it! |

Hide booking details

Debug solution |

This ticket is non-refundable.

Changes to this ticket will
incur a penalty fee.

Airport maps/services:

BOS: Boston Logan

DTW: Detroit Wayne
County

MSP: Minneapolis/St. Paul
IncT

HNL: Honolulu Int’l

LAX: Los Angeles Int’l

PWM: Portland Int’l

Boston, MA to Honolulu, HI: 5121 miles 14 hrs 49 min
Northwest Airlines Flight NW 1821 on an Airbus A-319 (jet) in coach class
Departs Boston, MA (BOS) Sat, Sept 13 6:00a 2 hrs 3 min
@ Arrives Detroit, MI (DTW) 8:03a

1 adult in booking code M, covered by fare (A1) below
avail checked(live): B9 F9 H9 K9 L9 M9 P9 Q9 T9 V9 Y9; strict-local

Layover in Detroit 1 hr 2 min
Northwest Airlines Flight NW763 on a Boeing B-757 (jet) in coach class
Departs Detroit, MI (DTW) Sat, Sept 13 9:05a 1 hr55 min
@ Arrives Minneapolis/Saint Paul, MN (MSP) 10:00a

1 adult in booking code Q, covered by fare (B1) below
avail checked(live): B9 F9 HO M9 P9 Q9 V9 Y9 (married: NW763,NW921); strict-o&d
Layover in Minneapolis/Saint Paul 1 hr 30 min
Northwest Airlines Flight NW921 on a McD-Douglas DC-10 (jet) in coach class
(lunch, snack)

Departs Minneapolis/Saint Paul, MN (MSP) Sat, Sept 13 11:30a 8 hrs 19 min
Arrives Honolulu, HI (HNL) 2:49p

1 adult in booking code Q, covered by fare (B1) below

avail checked(live): B9 FO H9 M9 P9 Q9 V9 Y9 (married: NW763,NW921); strict-o&d

Honolulu, HI to Los Angeles, CA: 2552 miles 5 hrs 2 min
Northwest Airlines Flight NW930 on a McD-Douglas DC-10 (jet) in coach class
(dinner)
Departs Honolulu, HI (HNL) Sat, Sept 20 4:48p 5 hrs 2 min
Arrives Los Angeles, CA (LAX) Sun, Sept 21 12:50a

1 adult in booking code V, covered by fare (B2) below
avail checked(live): B9 F4 H9 K9 L9 M9 P9 Q9 T9 V9 Y9; pseudo-o&d

Los Angeles, CA to Portland, ME: 2640 miles 6 hrs 52 min
Northwest Airlines Flight NW334 on a Boeing B-757 (jet) in coach class
(lunch)
Departs Los Angeles, CA (LAX) ‘Wed, Oct 1 12:35p 4 hrs 19 min
Arrives Detroit, MI (DTW) 7:54p

1 adult in booking code V, covered by fare (B2) below
avail checked(live): B9 F9 H9 KO L9 M9 P9 Q9 T9 V9 Y9; pseudo-o&d
Layover in Detroit 42 min
Northwest Airlines Flight NW3468 on an Avro RJ (jet) in coach class
(operated by Mesaba Aviation)

Departs Detroit, MI (DTW) ‘Wed, Oct 1 8:36p 1 hr 51 min
Arrives Portland, ME (PWM) 10:27p

1 adult in booking code V, covered by fare (B2) below

avail checked(live): B9 F9 H9 K9 L9 M9 P9 Q9 T9 V9 Y9; pseudo-o&d

Note: The layover in Detroit (DTW) has relatively little room for delays, and for this
route a missed connection would likely be very inconvenient.

Portland, ME to Boston, MA: 1296 miles 6 hrs 15 min
Northwest Airlines Flight NW5872 on a Canadair Reg. Jet (jet) in coach class
(operated by Express Airlines)
Departs Portland, ME (PWM) Tue, Oct 7 6:06a 2 hrs 13 min
Arrives Detroit, MI (DTW) 8:19a

1 adult in booking code M, covered by fare (B3) below
avail checked(live): B9 H9 K9 L9 M9 Q9 T9 V9 Y9; strict-local

Layover in Detroit 2 hrs 16 min
Northwest Airlines Flight NW336 on a Boeing B-757 (jet) in coach class
Departs Detroit, MI (DTW) Tue, Oct 7 10:35a 1 hr 46 min
@ Arrives Boston, MA (BOS) 12:21p

1 adult in booking code M, covered by fare (A2) below
avail checked(live): B9 F9 H9 K9 L9 M9 P9 Q9 T9 V9 Y9; strict-local

Copyright 2003 ITA Software

Public notes on computational complexity, Fall, 2003

Booking details
Buying this ticket online using our website is the easiest and most reliable way to obtain this ticket at
this price. However, if we are unable to sell or you don’t want to buy the ticket online, the
information on this page will enable you to buy the ticket from the airline (Northwest Airlines:
1-800-225-2525, http://www.nwa.com/) or a travel agent. If you use a travel agent to buy this ticket:

* If your travel agent is online and has an e-mail address, e-mail this itinerary to them
* If your travel agent is not online, print out this page and fax/give it to them

It is very important to use the
in order to match the price we’

act same booking codes and fare codes that we’ve used on this page
e found.

Fare (A1): NW BOS==>DTT ME7NR fare (round trip fare) $250.23
Tax: US Transportation Tax (US) $18.77
Fare (B1): NW DTT==>HNL QLWET7N fare (round trip fare) $416.02
Tax: US Transportation Tax (US) $14.61
Fare (B2): NW HNL==>PWM VLW?7EN fare (round trip fare) $433.43

ansportation Tax (US) $17.30

Fare (B3): DTT ME7NR fare (round trip fare) $228.37
Tax: US Transportation Tax (US) $17.13

Fare (A2): NW DTT==>BOS ME7NR fare (round trip fare) $250.23
Tax: US Transportation Tax (US) $18.77

Tax: US Alaska/Hawaii Departure Tax (US) $13.40
Tax: US Flight Segment Tax (ZP) $24.00
Tax: US Passenger Facility Charge (XF) $15.00
Total for 1 adult passenger: $1717.26
(as of Wednesday, September 3, 2003 2:45am; fares loaded Tuesday, September 2, 2003 8:33pm)

Fare calc:
BOS NW DTT Q9.30 240.93ME7NR NW X/MSP NW HNL Q9.30 406.72QLWE7N NW LAX
$55.81 NW X/DTT NW PWM Q9.30 368.32VLW7EN NW DTT Q9.30 219.07ME7NR NW BOS
Q9.30 240.93ME7NR USD 1578.28 END SITI XT 99.98US ZP 24.00DTW XF 15.00DTW
Priceable units:
Fares A1, A2: round trip
Fares B1, B2, B3: circle trip

Search re

This is a solution as displayed on the ITA Software web
site, one of 2,197,704,882,975,408 the ITA Software
search engine found for a BOS-HNL-LAX-PWM-BOS
circle query, with one-day departure windows for each
part of the trip

— How much of this output can you understand now?

— Draw the trip with fares, priceable units and
booking codes

51

