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Abstract

Impoverished syntax and nondifferentiable vocabularies make natural
language a poor medium for neural representation learning and appli-
cations. Learned, quasilinguistic neural representations (QNRs) can
upgrade words to embeddings and syntax to graphs to provide a more
expressive and computationally tractable medium. Graph-structured,
embedding-based quasilinguistic representations can support formal
and informal reasoning, human and inter-agent communication, and the
development of scalable quasilinguistic corpora with characteristics of
both literatures and associative memory.

To achieve human-like intellectual competence, machines must be
fully literate, able not only to read and learn, but to write things worth
retaining as contributions to collective knowledge. In support of this
goal, QNR-based systems could translate and process natural language
corpora to support the aggregation, refinement, integration, extension,
and application of knowledge at scale. Incremental development of QNR-
based models can build on current methods in neural machine learning,
and as systems mature, could potentially complement or replace today’s
opaque, error-prone “foundation models” with systems that are more
capable, interpretable, and epistemically reliable. Potential applications
and implications are broad.

To facilitate skimming, brief summaries of the main sections
of this document are collected in Section 2.5.
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1 Introduction

This section presents a brief summary and outline of core concepts, including
boundaries (what is not proposed) and some terminology. Descriptions of the
main sections are collected in Section 2.5.

1.1 A brief summary

Natural language (NL) is a powerful medium for expressing human knowl-
edge, preferences, intentions, and more, yet NL words and syntax appear
impoverished when compared to the representation mechanisms (vector em-
beddings, directed graphs) available in modern neural ML. Taking NL as a
point of departure, we can seek to develop representation systems that are
strictly more expressive than natural language. The approach proposed here
combines graphs and embeddings to support quasilinguistic neural represen-
tations (QNRs) shaped by architectural inductive biases and learned through
multitask training. Graphs can strongly generalize NL syntactic structures,
while lexical-level embeddings can strongly generalize NL vocabularies. QNR
frameworks can syntactically embed and wrap non-linguistic objects (images,
data sets, etc.) and formal symbolic representations (source code, mathemati-
cal proofs, etc.). Through access to external repositories (Figure 1.1), inference
systems can draw on corpora with content that spans scales that range from
phrases and documents to scientific literatures and beyond.

. | QNR $ QNR $ QNR $
nputs :> encoder inference decoder [/} OUtPUts

<

QNR repository

Figure 1.1: Information flows in generic QNR systems supported by
access to a repository of QNR content. Inputs and outputs may be
multimodal.

Embeddings can abstract QNR content to enable semantic associative mem-
ory at scale. Neural networks, potentially exploiting (soft) lattice operations,
can process retrieved QNR content to recognize analogies, complete patterns,
merge compatible descriptions, identify clashes, answer questions, and inte-
grate information from both task inputs and repositories.



“NL*” refers to aspirational QNR systems that outperform natural lan-
guage as a medium for semantic expression and processing. The NL* vision
aligns with and extends current research directions in NLP, and NL* imple-
mentations could build on current neural architectures and training methods.

Potential applications are diverse, ranging from familiar NL-to-NL func-
tionality (interactive search, question answering, writing, translating) to novel
forms of representation and reasoning in science, engineering, software devel-
opment, and mathematics. Potential advantages in scalability, interpretability,
cost, and epistemic quality position QNR-based systems to complement or
displace opaque foundation models (Bommasani et al. 2021) at the frontiers of
machine learning.

To facilitate skimming, brief summaries of the main sections are collected
in Section 2.5. Readers who prefer to start in the middle may wish to

skip ahead to Section 8: Quasilinguistic Neural Representations.

1.2 Some (Over)simplified Descriptions
An oversimplified problem framing:
human intelligence : natural language :: machine intelligence : ?

An oversimplified approach: Use architectural inductive bias and representa-
tion learning in neural ML systems to upgrade language by replacing word
sequences with explicit parse trees and words with embedding vectors. This
is an oversimplification because it (wrongly) suggests a close, fine-grained
correspondence between natural languages and QNRs.

A less oversimplified description: Use architectural inductive bias and rep-
resentation learning to develop models that generate and process directed
graphs (that strongly generalize NL syntax) labeled with vector embeddings
(that strongly generalize both NL words and phrases), thereby subsuming
and extending both the syntactic structures and lexical-level components of
natural languages. The resulting representation systems can surpass natu-
ral languages in expressive capacity, compositionality, and computational
tractability.

Further objectives and approaches: Learn to embed lexical-level vector rep-
resentations in structured semantic spaces. Use inductive biases and mul-
titask learning to associate meanings with semantic-space regions (rather
than points), and exploit approximate lattice operations (soft unification and
anti-unification) as mechanisms for knowledge integration, refinement, and



generalization. Translate broad knowledge (e.g., from natural language cor-

pora) into large QNR corpora and employ scalable algorithms to access and

apply this knowledge to a wide range of tasks. Enable neural ML systems

to write and read QNR content to enable learning that is both efficient and

interpretable.

1.3

What is Not Proposed

Some contrasting negative samples from the space of related concepts can

help readers refine their internal representations of the present proposal:

1.4

Not a formal language. Formal languages supplement natural languages,
but have never subsumed their expressive capacity; frameworks pro-
posed here can embed but are not constrained by formal representations.
Not a constructed language. Constructed languages! have typically
sought clarity and comprehensibility, yet sacrificed expressive capacity;
frameworks proposed here seek to expand expressive capacity, yet as a
consequence, sacrifice full human comprehensibility.

Not a system of hand-crafted representations. Products of neural repre-
sentation learning typically outperform hand-crafted representations;
accordingly, frameworks proposed here rely, not on hand-crafted repre-
sentations, but on representation learning shaped by architectural bias
and training tasks.?

Not a radical departure from current neural ML. Frameworks proposed
here are informed by recent developments in neural ML and suggest
directions that are aligned with current research.

Some Concepts and Terms

“NL” refers to natural language in a generic sense. The representa-
tional capacity of NL (in this sense) can be thought of as a sum of the
representational capacities of human languages.

Representations will be vector-labeled graphs (VLGs); potential arc
labels (indicating types, etc.) are not explicitly discussed.

1. Lingua generalis, Esperanto, Loglan, etc.

2. This document often describes illustrative forms of representation and functionality, or
describes how neural computation could potentially implement those forms and functions, but
always with the implicit proviso that learned neural representations and mechanisms are apt
to be surprising.



* Quasilinguistic neural representations (QNRs, implemented as VLGs)
are compositional and language-like: graphs provide upgraded syntactic
structure, while embeddings provide upgraded lexical components.!

¢ “NL*” refers to proposed? QNR-based products of neural representation
learning that would subsume and extend the representational capacity
of natural languages.>

* The term “lattice” and the lattice operations of “meet” (here, “unifica-
tion”) and “join” (here, “anti-unification”, sometimes termed “general-
ization”) have their usual mathematical meanings; in the present context,
however, lattices and lattice operations will typically be approximate, or
“soft” (Appendix Al).

2 Motivation and Overview

Several perspectives converge to suggest that high-level machine intel-
ligence will require literacy that is best developed in a machine-native
medium that is more expressive than natural language. This section

concludes with an overview of the sections that follow.

Because language and machine learning are broad topics intertwined with
each other and with a host of disciplines and application fields, it is difficult
to neatly disentangle the various “motivations and perspectives” promised by
the section title. The discussion that follows (perhaps unavoidably) contains
sections with overlapping conceptual content.

2.1 Why Look Beyond Natural Language?

Why seek a language-like representational medium that is more expressive
and computationally tractable than natural language? The question almost
answers itself. But is such a medium possible, what would it be like, how
might it be developed and applied? More generally, how might we complete
the analogy mentioned above,

1. Formal language-like systems (programming languages, mathematical notations, efc.) are
sometimes called “quasilinguistic”; here, the term is extended to include less formal systems.

2. Here, to “propose” means to suggest a potential future objective or development; in the
ML literature, by contrast, what is “proposed” is often already demonstrated.

sy

3. Superscripting “+” improves esthetics in hyphenated forms; using the U+207A character
code improves typographic stability.



human intelligence : natural language :: machine intelligence : ?

It seems unlikely that the best answer is “natural language” (again) or “un-
structured vector embeddings”.

Human intelligence and human societies rely on language as a primary
medium for communicating and accumulating knowledge, for coordinating
activities, and to some substantial extent, for supporting individual cognition.
Intellectually competent humans are literate: They can read and can write
content worth reading. High-level machine intelligence will surely be able
to do the same and have use for that ability. Current Al research is making
strong progress in reading and writing natural language as an interface to
the human world, yet makes little use of language(-like) representations for
communicating and accumulating knowledge within and between machines.

The world’s accessible information constitutes a vast, multimodal corpus in
which natural language serves as both content and connective tissue. General,
high-level intelligent systems must be able to use and extend this information,
and it is natural to seek a medium for representing knowledge, both translated
and new, that is well-adapted and in some sense native to neural machine
intelligence.

What might a machine-adapted language be like? It would be strange
to find that the best languages for neural ML systems lack basic structural
features of human language—in particular, syntax and word-like units—yet
perhaps equally strange to find that machines able to share expressive vector
embeddings will instead employ sequences of tokens that represent mouth
noises.

The present document proposes a framework for quasilinguistic neural
representations (QNRs) that—by construction—could match and exceed the
representational capacity of natural language. Both the potential value and
general requirements for such systems seem clear enough to motivate and
orient further investigation.

2.2 Some Motivating Facts and Hypotheses

The motivation for pursuing QNR approaches that are anchored in NL can
be grounded both in uncontroversial facts and in contrasting plausible and
implausible hypotheses.

Key motivating facts

1) Natural language is a key element of human cognition and communica-
tion.



2) Natural language provides expressive capacity of unique breadth and
flexibility.

3) Structured neural representations can be both richer and more ML-
compatible! than sequences of words.

Corresponding (and plausible) motivating hypotheses

+1) Quasilinguistic neural representations of some sort will be key elements
of human-level machine cognition and communication, and:

+2) The abstract features of natural language (syntactic and lexical con-
structs) can inform the development of QNRs that subsume and extend
syntax and words with graphs and embeddings, and:

+3) QNRs informed by natural language constructs can be more expressive
and computationally tractable than languages that translate or imitate
NL-like sequences of word-like tokens.

Corresponding (but implausible) demotivating hypotheses The plausibil-
ity of the above hypotheses is supported by the implausibility of contrary
hypotheses:

—1) That language-like representations will be of little use in human-level
machine cognition and communication, or:

-2) That language-like syntactic and lexical structures can be no better than
flat sequences of vector representations,? or:

-3) That embeddings in combination with language-like syntactic structures

can be no more expressive than sequences of word-like tokens.

2.3 General Approach and Goals

In brief, the present line of inquiry suggests a framework that would, as
already outlined in part:

1. E.g., they can be differentiable

2. Note that representations of theoretically equivalent expressive capacity need not be
equivalent in, for example, computational tractability, compositionality, compactness, scalabil-
ity, or inductive bias.

10



* Replace and generalize discrete, non-differentiable NL words and
phrases with semantically rich, differentiable embeddings.!

* Replace and generalize NL syntax with general graphs (which also have
differentiable representations).

* Complement flat neural representations with syntactic structure.

* Move linguistic content closer to (quasi)cognitive representations.

This strategy starts with NL as a point of departure, retaining generality by
subsuming and extending NL piecemeal, at the level of understandable ele-
ments. The alternative—to attempt to capture the whole of NL functionality in
a more formal, theory-based framework—would risk the loss of functionality
that we do not fully understand.

Beyond these basic features, QNR frameworks can be extended to:

* Exploit abstractive embeddings of fine-grained content (Section 8.3.4).

* Exploit abstractive embeddings of large-scale contexts (Section 8.3.5).

* Support semantic search at scale (Section 9.1.2).

* Support semantic normalization, alignment, refinement, and integration
(Section 8.4).

* Subsume or embed formal and non-linguistic representations (Sec-
tion 9.2).

What do we want from scalable high-end QNR/NL* systems?

¢ To translate (and refine) large NL corpora into more tractable forms?

* To combine knowledge from multiple sources, making use of recogniz-
able concordance, clashes, and gaps

* To provide comprehensive, dynamic, beyond-encyclopedic knowledge
for use by machines and humans

* To support the growth of knowledge through machine-aided reasoning

The latter goals are worth emphasizing: A key motivation for pursuing NL*
capabilities is to enable systems to learn from, apply, and extend content that
ranges from informal, commonsense knowledge to mathematics and scientific

1. One direction in which language-like representations might diverge from the picture
painted here is in the semantic level of embeddings: As discussed in Section 5.3, embeddings
can, through representation discovery, subsume the function of syntactic units above the lexical
level (e.g., relatively complex phrases and relatively simple sentences). The partial interchange-
ability of graph and vector representations (Section 7.3) blurs the potential significance of such
a shift, however.

2. While also translating among a likely multiplicity of NL*t dialects and overlapping
task-oriented sublanguages.

11



literatures. While NL* representations have potentially important roles in
NL-to-NL processing (translation, etc.), this is almost incidental. The primary
aim is to represent, not NL, but what NL itself represents, and to do so better
and with broader scope.

Current language-related machine representations do not provide full NL
(much less NL*) functionality: They range from opaque language models to
explicit knowledge graphs and formal languages, but despite their strengths,
none can match (much less exceed) human language in power and generality.
Systems like these should be seen as complements—not alternatives—to QNR
frameworks.!

2.4 Four Perspectives That Help Situate the NL* Concept

Reinforcing the points above, four external perspectives may help to situate
the NL* concept with respect to related research topics:

* The power and limitations of natural language set a high bar to clear while
suggesting directions for developing more powerful systems.

s The power and limitations of symbolic systems® suggest a need for comple-
mentary, less formal representation systems.

* The power and limitations of flat neural representations suggest the poten-
tial advantages of systems that combine the expressive power of dense
vector representations with the compositional structure of NL.

* The power and limitations of current NLP tools® suggest that current
neural ML techniques can both support and benefit from QNR-based
mechanisms with NL* applications.

2.5 Section Overviews

The topics addressed in this document are broad, many-faceted, and have a
large surface area in contact with other disciplines. The topics are difficult to
disentangle, but the following overviews provide a sketch of the organization
and content of the document.*

1. For example, opaque Transformer-like models may be useful in QNR applications: In
general, quasicognitive processing is complementary to quasilinguistic representation.

2. Logic, mathematics, programming languages, knowledge representation languages, at-
tempted formalizations of natural language, etc.

3. Including systems that exploit pretrained language models.

4. Readers who don’t skim will encounter redundancy provided for those who do.

12



Section 1: Introduction This section presents a brief summary and outline
of core concepts, including boundaries (what is not proposed) and some
terminology.

Section 2: Motivation and Overview. Several perspectives converge to sug-
gest that high-level machine intelligence will require literacy that is best
developed in a medium more expressive than natural language.

Section 3: Notes on Related Work. Current developments in neural ML
provide architectures and training methods that can support QNR-oriented
research and development. Prospective advances are linked to work in sym-
bolic and neurosymbolic computation, and to broad trends in deep learning
and natural language processing.

Section 4: Language, Cognition, and Neural Representations. Using NL
as a motivation and point of departure for NL* motivates a review of its
roles in communication, cognition, and the growth of human knowledge.
Prospects for improving compositionality through QNR representations are
key considerations.

Section 5: Expressive Constructs in NL and NL*. NL* must subsume the
functionality of NL constructs identified by linguists, and the shortcomings
of those constructs suggest substantial scope for surpassing NL's expressive
capacity.

Section 6: Desiderata and Directions for NL*. Prospects for improving ex-
pressiveness in NL* representations include mechanisms both like and beyond
those found in natural languages. Research directions aimed at realizing these
prospects are well-aligned with current directions in neural ML.

Section 7: Vector-Labeled Graph Representations. In conjunction with to-
day’s deep learning toolkit, vector-labeled graph representations provide
powerful, differentiable mechanisms for implementing systems that represent
and process structured semantic information.

Section 8: Quasilinguistic Neural Representations. Applications of vector-
labeled graphs can generalize NL syntax and upgrade NL words to implement
quasilinguistic neural representations that parallel and surpass the expressive
capacity of natural language at multiple levels and scales.

13



Section 9: Scaling, Refining, and Extending QNR Corpora. Scalable QNR
systems with NL*-level expressive capacity could be used to represent, refine,
and integrate both linguistic and non-linguistic content, enabling systems to
compile and apply knowledge at internet scale.

Section 10: Architectures and Training. Extensions of current neural ML
methods can leverage architectural inductive bias and multitask learning to
support the training of quasilinguistic neural systems with NL*-level expres-
sive capacity.

Section 11: Potential Application Areas. Potential applications of QNR/NL*
functionality include and extend applications of natural language. They in-
clude human-oriented NLP tasks (translation, question answering, semantic

search), but also inter-agent communication and the integration of formal

and informal representations to support science, mathematics, automatic

programming, and AutoML.

Section 12: Aspects of Broader Impact. The breadth of potential applica-
tions of QNR-based systems makes it difficult to foresee (much less summarize)
their potential impacts. Leading considerations include the potential use and
abuse of linguistic capabilities, of agent capabilities, and of knowledge in
general. Systems based on QNR representations promise to be relatively
transparent and subject to correction.

Section 13: Conclusions. Current neural ML capabilities can support the
development of systems based on quasilinguistic neural representations, a line
of research that promises to advance a range of research goals and applications
in NLP and beyond.

2.6 Appendix Overviews

Several topics have been separated and placed in appendices. Of these, only
the first focuses on topics that can be considered foundational.

Appendix Al: Unification and Generalization on Soft Semantic Lattices.
QNR representations can support operations that combine, contrast, and
generalize information. These operations—soft approximations of unification
and anti-unification—can be used to implement continuous relaxations of
powerful mechanisms for logical inference.

14



Appendix A2: Tense, Aspect, Modality, Case, and Function Words. Tables
of examples illustrate expressive constructs of natural languages that do not
reduce to nouns, verbs, and adjectives.

Appendix A3: From NL Constructs to NL*. Condensing, regularizing, and
extending the scope of semantic representations can improve expressive ca-
pacity and compositionality, and can support theoretically grounded methods
for comparing and combining semantic information.

Appendix A4: Compositional Lexical Units. Embeddings with explicit com-
positional structure may offer advantages in efficient learning and generaliza-
tion.

Appendix A5: Compact QNR Encodings. String representations of QNRs,
in conjunction with discretized vector spaces and graph-construction opera-
tors, can provide compact and efficient QNR encodings.

3 Notes on Related Work

Current developments in neural ML provide architectures and training
methods that can support QNR-oriented research and development.
Prospective advances are linked to work in symbolic and neurosymbolic
computation, and to broad trends in deep learning and natural language

processing.

The prospects explored in the present document include NLP-oriented QNR
systems, which is to say, systems that read, process, and produce content
within QNR domains while supporting NL inputs and outputs at external
interfaces. The discussion focuses on broad, long-term goals and associated
software infrastructure.

Topics considered at this level are too abstract to correspond closely to
particular neural ML implementations, precluding fine-grained comparisons.
Accordingly, this section discusses connections to current work (useful tools,
competing and complementary approaches), but only in outline; more exten-
sive discussions of related work can be found in cited papers.

15



3.1 Potentially Useful Models and Tools

Potentially useful models and tools for quasilinguistic processing (QLP) are
coextensive with broad areas of neural ML (in particular, neural NLP), and a
range of applicable tools (architectures, training data, training tasks, compu-
tational resources...) can be found in current practice.

3.1.1 Vector-Oriented Representations and Algorithms

Flat neural representations—sets and sequences of one or more embedding
vectors—are ubiquitous in modern neural ML and play key roles as compo-
nents of proposed QNR architectures. The most closely related work is in
natural language processing.

In neural NLP, we find vector representations of words at input and (of-
ten) output interfaces;! some systems produce embeddings of higher-level
entities such as sentences and documents.> Semantic structure in vector
spaces emerges spontaneously in word embeddings.®> End-to-end training can
produce compatible vector representations of images and text for tasks that
include image captioning and visual question answering.*

Extensions of current NLP representations, architectures, and training
methods are natural candidates for analogous roles in QLP. Transformer
architectures—successful in tasks as diverse as translation, question answer-
ing, theorem proving, object recognition, and graph-based inference®>—appear
to have sufficient generality to support many (perhaps most) aspects of
quasilinguistic processing.

Transformer architectures have been extended to read external memories,
including stores of NL text® and vector embeddings.” QLP systems could po-

1. Rezaeinia, Ghodsi, and Rahmani (2017) and Devlin etal. (2019)
2. Adi etal. (2017), Ganguly and Pudi (2017), and Conneau et al. (2018)

3. Mikolov, Yih, and Zweig (2013), S. Liu et al. (2018), and Ethayarajh, Duvenaud, and Hirst
(2019). Relative to words in natural languages, embeddings can improve correspondence
between representational and semantic distance, a long-standing goal for improving linguistic
systems (Wilkins 1668).

4. Yu etal. (2017) and Hossain et al. (2019)

5. Vaswani etal. (2017), Devlin etal. (2019), Koncel-Kedziorski etal. (2019), Brown
etal. (2020), Polu and Sutskever (2020), and Carion et al. (2020)

6. E.g., 128-token text pieces (Verga et al. 2020), or more general multimodal information
(Fan etal. 2021).

7. Khandelwal et al. (2020) and Yogatama, Masson d’Autume, and Kong (2021). Models
of this kind fall within the broad class of memory-augmented neural networks (Santoro
etal. 2016).
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tentially be based on broadly similar architectures in which inference systems
write and read, not flat embeddings, but QNR content.

3.1.2 Graph Representations and GNNs

Graph structures complement vector representations in proposed QNRs, and
applications of graph representations have spurred extensive work in neural
ML.

Iterative, node-to-node message-passing systems—graph neural networks!
(GNNs)—are deep, convolutional architectures that have been successful in
tasks that range from scene understanding to quantum chemistry and neu-
rosymbolic computing;? their functionality may be well-suited to semantic
processing on QNRs. Graph-oriented models, often GNNs, are widespread
in neural knowledge-representation systems.> Similar graphs can be aligned
for comparison and processing.* Although classic GNNs operate on fixed
graphs, both differentiable representations and reinforcement learning have
been used to implement generative models in the discrete graph-structure
domain® (graphs can, for example, be mapped to and from continuous em-
beddings®). With suitable positional encodings, Transformers can operate
not only on sequences, but on trees or general graphs.” The rich tool set
provided by current graph-oriented neural models seems sufficient to support
the development of powerful QNR-based applications.

3.1.3 Computational Infrastructure

Broad applications of NL* call for scaling to large corpora, first training on
large NL corpora, then writing and applying QNR corpora that may be larger
still. Rough analogies between NLP and QLP tasks suggest that computational
costs in both training and applying large-scale systems can be in line with the
costs of currently practical systems for language modeling and translation

1. Recently reviewed in J. Zhou et al. (2020) and Wu et al. (2021).

2. R. Li etal. (2017), Gilmer etal. (2017), Lamb etal. (2020), and Addanki etal. (2021).
Labeled scene graphs, in particular, exemplify learnable semantic relationships among objects
in which both objects and their relationships can best be represented by embeddings (see
Figure 8.1).

3. Wen Zhang et al. (2019) and Ji et al. (2021)

4. Heimann et al. (2018), Cao etal. (2019), and Fey et al. (2020)

5. Yun etal. (2019), J. Zhou et al. (2020), Kazi et al. (2020), and Wu et al. (2021)
6. Cai, Zheng, and Chang (2018) and Pan etal. (2018)

7. Shiv and Quirk (2019) and Chen, Barzilay, and Jaakkola (2019)
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(Section 9.1); in particular, algorithms for efficient embedding-based seman-
tic search at scale—a key enabler for exploiting large corpora—have been
demonstrated in commercial applications.! Accordingly, current computa-
tional infrastructure seems adequate for development, training, and potential
large-scale deployment of NL* applications. Reductions in computational
cost and improvements in algorithmic efficiency continue (Hernandez and
Brown 2020).

3.2 Symbolic, Neural, and Neurosymbolic Al

Classic symbolic and neural approaches to Al provide further context for the
proposed line of development, which has connections to combined, neurosym-
bolic approaches.

3.2.1 Symbolic Al

The early decades of Al centered on symbolic models that have little direct
relevance to current neural approaches. Symbolic systems had striking suc-
cesses,” yet produced unimpressive results in learning and perceptual tasks
like vision. In NLP, symbolic Al faced persistent difficulties stemming from
the interplay of word meanings, syntax, and semantic context, while in a key
application—machine translation—statistical methods outperformed classic
symbolic Al

The quasilinguistic approach suggested here differs from symbolic Al in
two quite general ways:

1. Proposed QNRs and QLP computation are intended to support—not
directly implement—mechanisms for inference and control.

2. Proposed QNRs and QLP computation are saturated with neural repre-
sentations and learning mechanisms.

What symbolic Al does have in common with proposed QLP is the use of
graph-structured representations (in symbolic Al, typically syntax trees) that
are associated with distinct lexical-level components.

1. J. Wang et al. (2018) and Johnson, Douze, and Jégou (2019)

2. Perceptions of success were (notoriously) blunted by reclassification of research results
(“If it works, it isn’t AI”). Highly successful automation of symbolic mathematics, for example,
emerged from what had initially been considered Al research (Martin and Fateman 1971;
Moses 2012).
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3.2.2 Neural ML

In recent years deep learning and neural ML have advanced rapidly in both
scope and performance, successfully addressing an astounding range of prob-
lems. Because the range of potential neural architectures and tasks is open
ended, it would be unwise to draw a line around deep learning and propose
limits to its capabilities. The present proposals are within, not beyond, the
scope of modern neural ML.

That said, one can point to persistent difficulties with the most common
neural ML approaches, which is to say, models that employ flat neural rep-
resentations (vectors, sets of vectors, sequences of vectors) that often scale
poorly, lack clear compositionality, and resist interpretation.

3.2.3 Neurosymbolic AI

Developments in neurosymbolic Al are advancing at the intersection between
symbolic and neural ML, with approaches that include the adaptation of
symbolic algorithms to richer, embedding-based representations.! This body
of work has multiple points of contact with proposed QNR approaches, but
its diversity resists summarization. Appendix Al explores connections with
constraint logic programming and related reasoning mechanisms based on
neurosymbolic representations.

It is important to distinguish among approaches that can be called “neuro-
symbolic”, yet differ fundamentally. Geoffrey Hinton has remarked that:

Some critics of deep learning argue that neural nets cannot deal with
compositional hierarchies and that there needs to be a “neurosymbolic”
interface which allows neural network front- and back-ends to hand
over the higher-level reasoning to a more symbolic system. I believe
that our primary mode of reasoning is by using analogies which are
made possible by the similarities between learned high-dimensional
vectors... (Hinton 2021)

The present proposal differs from those that Hinton criticizes: While both
QNRs and conventional symbolic systems employ explicit syntactic struc-
tures, compositional hierarchies, and word-like units, QNRs employ high-
dimensional vectors, not conventional symbol-tokens, in part for the reason

1. E.g., see Rocktédschel and Riedel (2017), Minervini et al. (2020), Garcez and Lamb (2020),
and Arabshabhi et al. (2021).
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Hinton cites. Although higher-level reasoning seems likely to have an algo-
rithmic character, employing conditional branches and dispatch of values to
functions,! there is good reason to expect that those conditionals and func-
tions will operate on neural representations through neural mechanisms. To
structure the objects and operations of reasoning need not impoverish their
content.

3.3 Foundation models

The term “foundation model” has been has been introduced (Bommasani
etal. 2021) to describe systems that are “trained on broad data at scale and
can be adapted (e.g., fine-tuned) to a wide range of downstream tasks”. To-
day’s leading foundation models (e.g., BERT and GPT-3?) are pretrained on
extensive corpora of NL next, while others (e.g., CLIP3) are multimodal; all
are based on Transformers.

Despite their extraordinary range of applications, current foundation mod-
els have suffered from opaque representations, opaque inference mechanisms,
costly scaling,* poor interpretability, and low epistemic quality, with conse-
quences reviewed and explored in depth by Bommasani et al. (2021).

QNR-oriented architectures could potentially alleviate each of these diffi-
culties by complementing or displacing models based on stand-alone Trans-
formers. Rather than representing knowledge in unstructured, multi-billion-
parameter models,” architectures that represent knowledge in the form of
scalable QNR corpora (Section 9) could provide foundation models in which
information content is compositional (Section 4.3) and substantially inter-
pretable (Section 9.3.3). Questions of epistemic quality could be addressed by
QNR-domain reasoning about external information sources (Section 9.5).

1. For a recent example, see (Fedus, Zoph, and Shazeer 2021).
2. Devlin et al. (2019) and Brown et al. (2020)
3. Radford etal. (2021)

4. Even relatively scalable Transformer architectures (Beltagy, Peters, and Cohan 2020;
Katharopoulos et al. 2020; Zaheer et al. 2020) attend only to sections of text, not literatures.

5. In which knowledge representation and inference mechanisms entangle error-prone
arithmetic and information retrieval with fluent multilingual translation.
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4 Language, Cognition, and Neural Representations

Using NL as a motivation and point of departure for NL* motivates
a review of its roles in communication, cognition, and the growth of
human knowledge. Prospects for improving compositionality through

QNR representations are key considerations.

Humans accumulate and share information through natural language, and lan-
guage is woven into the fabric of human cognition. The expressive scope of NL,
though limited, is unique and vast. If we seek to build artificial systems that
match or exceed human cognitive capacity, then pursuing machine-oriented
NL-like functionality seems necessary. The present section reviews the power
and shortcomings of natural and formal languages, and from this perspective,
considers prospects for quasilinguistic constructs more powerful and closer
to cognitive representations than NL itself.

The expressive capacity of NL has resisted formalization, and despite its
familiarity, remains poorly understood. Accordingly, in seeking more power-
ful representations, the proposed strategy will be to upgrade the expressive
capacity of the relatively well understood linguistic components of language—
lexical units and means for composing them—and to thereby upgrade the less
well understood whole.

4.1 Language, Cognition, and Non-Linguistic Modalities

Natural language, human cognition, and the social accumulation of knowledge
are deeply intertwined. Prospects for NL* systems parallel the role of NL in
supporting both reasoning and the growth of knowledge.

4.1.1 The Roles and Generality of Language

Through biology and culture, natural language evolved to exploit animal
vocalizations, an acoustic channel that transmits information between neural
systems, constrained by limitations (working memory, processing speed) of
the cognitive mechanisms that encode and decode meaning. At a societal level,
sequences of symbols—written language—encode and extend speech, while at
a neurological level, the semantic structures of language mesh with cognition.

Natural language has evolved under pressures toward comprehensive ex-
pressive capacity, yet its shortcomings are real and pervasive. We can regard
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NL as both a benchmark to surpass and as a template for representational
architectures.

4.1.2 Complementary, Non-Linguistic Modalities

Not words, really, better than words. Thought symbols in his brain,
communicated thought symbols that had shades of meaning

words could never have. ) )
—Clifford Simak

City,! 1952

The human use of complementary, non-linguistic modalities highlights
limitations of NL. It is said that a picture is worth a thousand words, but it
would be more true to say that images and language each can express semantic
content that the other cannot. Another modality, demonstration of skills (now
aided by video), is often complemented by both speech and images. Today,
artifacts such as interactive computational models provide further modalities.

Like language, other modalities mesh with human cognition down to un-
conscious depths. Human thought relies not only on language, but on mental
images, imagined physical actions, and wordless causal models. NL serves
as a kind of glue between non-linguistic modalities—naming, linking, and
explaining things; NL* frameworks must and can do likewise. Neural ML
shows us that vector embeddings can describe much that words cannot, images
and more. Expressive embeddings beyond the scope of human language can
serve as integral, in some sense “word-like” parts of quasilinguistic semantic
structures, stretching the concept of NL*. The ability to directly reference and
wrap a full range of computational objects stretches the concept further.

4.1.3 How Closely Linked are Language and Cognition?

Embeddings resemble biological neural representations more closely than
words do: Embeddings and neural state vectors contain far more information
than mere token identities, and both are directly compatible with neural(-like)
processing. Thus, embedding-based QNRs are closer to cognitive represen-
tations than are natural languages, and presumably more compatible with
(quasi)cognitive processing.?

1. Reprinted, Simak (2016).

2. This does not argue that internal cognitive representations themselves have a clean,
graph-structured syntax, nor that sparse, syntax-like graphs are optimal representations for
externalized QNRs. The argument addresses only properties of QNRs relative to word strings.
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How deep are the connections between language and human cognition?
Without placing great weight on introspective access to cognitive processes,
and without attempting to resolve theoretical controversies, some aspects of
the relationship between language and cognition seem clear:

* Language and cognition have co-evolved and have had ample opportu-
nity to shape and exploit one another.

* Language is compositional, and the success of neural models that parse
scenes into distinct objects and relationships (Figure 8.1) suggests that
compositional models of the world are more fundamental than language
itself.!

* The experience of trying to “put thoughts into words” (and sometimes
failing) is good evidence that there are thoughts that are close to—yet
not identical with—language; conversely, fluent conversation shows that
substantial cognitive content readily translates to and from language.

* Externalization of thoughts in language can help to structure personal
knowledge, while writing and reading can expand our mental capacities
beyond the limits of memory.

These observations suggest that the use of linguistically structured yet qua-
sicognitive representations could aid the development of machine intelligence
by providing a mechanism that is known to be important to human intel-
ligence. Conversely, prospects for high-level machine intelligence without
something like language are speculative at best.

4.2 Cumulative and Structured Knowledge

With some loss of nuance, speech can be transcribed as text, and with some loss
of high-level structure,? text can be mapped back to speech. A central concern
of the present document, however, is the growth (and refinement) of accessible
knowledge; today, this process relies on the development of text corpora that
express (for example) science, engineering, law, and philosophy, together with
literatures and histories that describe the human condition. Indeed, in this
document, “natural language” tacitly refers to language captured in writing.

1. Applications of compositional neural models include not only language-linked expla-
nation and question answering (Shi, Zhang, and Li 2019) but non-linguistic tasks such as
predictive modeling of physical systems (Watters et al. 2017). However, to the extent that neural
ML systems can display competence in compositional tasks without language-like internal
representations, this counts against the necessity of language-like representations in cognition.

2. E.g., due to working-memory constraints (Caplan and Waters 1999).
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In communication, NL* aims to be more expressive than NL; in connection
with cognition, NL* aims to be more directly compatible with (quasi)cognitive
processing; on a global scale, NL* aims to be more effective in accumulat-
ing and applying general knowledge. The growth of NL* corpora can be
cumulative and content can be structured for use.

Returning to a cognitive perspective, humans not only read and write lan-
guage, but also “read and write” long-term memories. NL* content shares
characteristics of both language and memory: Like text, NL* content con-
stitutes explicit, shareable information; like long-term memory, NL*-based
systems can store (quasi)cognitive representations that are accessed through

associative mechanisms.!

4.3 Compositionality in Language and Cognition

Why does the structure of language suit it to so many tasks? Links between
language and cognition—their co-evolution, their close coupling in use—are
part of the story, but correspondence between compositional structures in
language, cognition, and the world is another, perhaps more fundamental
consideration.

The case for the broad utility of NL* frameworks in Al is based in part
on this correspondence:> Compositionality in the world speaks in favor of
pursuing compositional representations of knowledge, situations, and actions.
Likewise, compositionality in cognition (and in particular, deliberate reasoning)
speaks in favor of strong roles for compositional representations in supporting
quasicognitive processing.

4.3.1 Degrees of Compositionality

Here, a system—Ilinguistic, cognitive, or actual—will be termed “compo-
sitional” if it can be usefully (though perhaps imperfectly) understood or
modeled as consisting of sets of parts and their relationships.®> Useful compo-
sitionality requires that this understanding be in some sense local, emerging
from parts that are not too numerous or too remote* from the parts at the

1. Section 9.1.2 considers embedding-indexed QNR stores as associative memories accessed
through near-neighbor lookup in semantic spaces.

2. Goyal and Bengio propose language-inspired compositionality as a key to developing
systems that more closely model human-like intelligence (Goyal and Bengio 2021); see also
(Y. Jiang et al. 2019), which makes strong claims along similar lines.

3. This is a softer criterion than that of formal compositionality.

4. In a sense that may be neither spatial nor temporal.
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focus of attention or analysis. Hard, local compositionality in symbolic sys-
tems requires that the meaning of expressions be strictly determined by their

components and syntactic structures;!

in natural language, by contrast, com-
positionality is typically soft, and locality is a matter of degree. Strengthening
the locality of compositionality can make linguistic representations more

tractable, and is a potential direction for upgrading from NL.

4.3.2 Compositionality in Language and the World

Compositionality in language mirrors compositionality in the world—though
the compositionality of the world as we see it may be conditioned by language
and the structure of feasible cognitive processes. Language (and quasilinguis-
tic systems such as mathematical notation and computer code?) can represent
compositionality beyond narrow notions of discrete “things” and “events”.
Phenomena that are distributed in space and time (e.g., electromagnetic waves,
atmospheric circulation, the coupled evolution of species and ecosystems) can
be decomposed and described in terms of distributed entities (fields, fluids,
and populations) and relationships among their components. Entities them-
selves commonly have attributes such as mass, color, velocity, energy density,
that are compositional in other ways.

Neural representation learning confirms that compositionality is more than
a human mental construct. A range of successful ML models incorporate
compositional priors or learn emergent compositional representations.> These
successes show that compositional approaches to understanding the world
are useful in non-human, quasicognitive systems.

Representations typically include parts with meanings that are conditioned
on context.* In language, the meaning of words may depend not only on
syntactically local context, but on general considerations such as the level of
technicality of discourse, the epistemic confidence of a writer, or the field

1. Scoped binding of symbols stretches but does not break notions of syntactic locality—if
locality is construed in terms of arcs in identifiable graphs, it is not constrained by syntactic
distances over sequences or trees.

2. Interestingly, although computer languages are models of compositionality, fMRI studies
show that reasoning about code is only weakly focused on brain regions specialized for natural
language (Ivanova et al. 2020). This distribution of neural function supports a broad role for
compositional representations in non-linguistic cognition.

3. Raposo etal. (2017), Watters et al. (2017), Battaglia et al. (2018), Eslami et al. (2018), G. R.
Yang etal. (2019), and Bear et al. (2020)

4. In formal systems, definitions and bindings within a scope are examples of a precise form
of contextually conditioned compositionality.
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under discussion (“glass” means one thing in a kitchen, another in optics,
and something more general in materials science). In images, the appearance
of an object may depend on lighting, style, resolution, and color rendering,
and scenes generated from textual descriptions can differ greatly based on
contextual attributes like “day” or “city”. Contexts themselves (as shown by
these very descriptions) can to some extent be represented by NL, yet images
generated by neural vision systems can be conditioned on contextual features
that are substantially compositional (as shown by structure in latent spaces),
and even recognizable by humans, yet not readily described by language.

All of these considerations speak to the value of compositional representa-
tions in language and beyond. Taken as a whole, these considerations suggest
that quasilinguistic representations can describe features of the world that
elude language based on strings of words.

4.3.3 Compositionality in Nonlinguistic Cognition

Compositionality in cognition parallels compositionality in language and
in the world. When we perceive objects with properties like “relative po-
sition”, or consider actions like “dropping a brick”, these perceptions and
cognitive models are compositional in the present sense; they are also funda-
mentally nonlinguistic yet often expressible in language. Thus, visual thinking
(Giaquinto 2015) can be both non-linguistic and compositional; when this
thinking is abstracted and expressed in diagrammatic form, the resulting
representations typically show distinct parts and relationships.

4.3.4 Compositionality in Natural Language

The concept of language as a compositional system is woven through the
preceding sections, but these have spoken of language as if compositionality in
language were a clear and uncontroversial concept. It is not. Formal symbolic
systems provide a benchmark for full compositionality, and by this standard,
natural languages fall far short.! Formal concepts of compositionality have
difficulty including contextual features like “topic” or “historical era” or “in

1. The lack of full compositionally in language has been a bitter pill for formalists, and
not all have swallowed it. The Principle of Compositionality, that the meaning of a complex
expression is determined by its structure and the meanings of its constituents, has been taken
to apply to language; although others recognize a pervasive role for context (enriching word
embeddings with contextual information has been a successful strategy in neural NLP; see Liu,
Kusner, and Blunsom (2020)), some seek to apply context to determine (fully compositional)
lexical-level meanings, which seems an arbitrary and perhaps unworkable choice. See Szab6
(2017).
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Oxford”, and struggle with contextual modulation of meaning at the level of
(for example) sentences rather than words.!

Neural NLP can (and to be effective, must) incorporate information that
is beyond the scope of locally compositional representations of word strings.
Transformer-based language models show something like understanding of
text in a broad world context, yet the embodiment of that knowledge in their
weights is not obviously compositional in its abstract structure, and obviously
not compositional in its concrete representation. To say that the meaning of
text emerges from a composition of its components—with particular Trans-
former computational states as one of those components—would stretch the
meaning of compositionality to the breaking point.? To be meaningful, com-
positionality must be in some sense local.

Compositionality in language can be strengthened by strengthening the
localization of contextual information. Quasilinguistic neural representations
can contribute to this in two ways: First, by substituting descriptive vector
embeddings for ambiguous words and phrases, and second, by incorporating
embeddings that locally summarize the meaning of a syntactically broad con-
text (for example, a context on the scale of a book), together with embeddings
that locally summarize remote context, for example, the kind referred to in
expressions like “when read in the context of...”* The second role calls for
embeddings that are not conventionally “lexical”.’

In brief, the world, cognition, and language are substantially “composi-
tional”, and relative to natural language, quasilinguistic neural representa-
tions can improve local compositionality. As we will see, improving local
compositionality can have a range of advantages.

1. “Castle Mound gives a good view of its surroundings.” Is the context of this sentence
tourism in present-day Oxford, or military intelligence during the Norman conquest? The
nature of the view and its significance may be clear in the context of a pamphlet or book, but
cannot be found in the quoted string of words.

2. The same can be said of natural language expressions in the context of human memory
and neural states.

3. Note that the problem is not ambiguity per se, but ambiguity that is unintentional or
costly to avoid. Intentional ambiguity is expressive, and (to meet benchmark criteria) must
therefore be expressible in NL* (see Section 8.3.1 and Section A3.4).

4. Because expressions may appear in multiple contexts, this should be seen as information
about the context of a particular citation or use of an expression.

5. As discussed in Section 8.3.5.
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5 Expressive Constructs in NL and NL*

NL* must subsume the functionality of NL constructs identified by
linguists, and the shortcomings of those constructs suggest substantial

scope for surpassing NL'’s expressive capacity.

The rich expressive constructs found in natural languages provide a bench-
mark and point of departure for the pursuit of more powerful capabilities.
Considering linguistics in the context of neural ML suggests both challenges
that must be addressed and challenges that can be set aside in pursuing the
promise of NL*. Figure 6.1 illustrates relationships among some overlapping
classes of representation systems, some of which stretch the definition of
“linguistic”.

Appendix A3 explores further aspects of the relationship between natural
language and potential QNR/NL™ representations, including prospects for
condensing, regularizing, and extending the scope of quasilinguistic represen-
tations.

5.1 Vocabulary and Structure in Natural Languages

What linguistic constructs enable NL to serve human purposes?! Those pur-
poses are broad: Natural languages are richer than “knowledge representation
languages”?
plex things, relationships, and situations, along with goals, actions, abstract

or other formal systems to date; language can describe com-

argumentation, epistemic uncertainty, moral considerations, and more.

The proposed strategy for developing frameworks that subsume and ex-
tend NL is to upgrade representational functionality by upgrading both NL
components and compositional mechanisms. Crucially, this strategy requires
no strong, formal theory of semantics, grammar, syntax, or pragmatics, and hence
no coding of formal rules. An approach that (merely) upgrades components
and structure sidesteps questions that have generated decades of academic
controversy and addresses instead a far more tractable set of problems.

1. Note this question does not ask how those constructs actually operate, which is a subject
of ongoing controversy among linguists.

2. See Bobrow and Winograd (1977) and McShane and Nirenburg (2012). Knowledge
representation languages typically attempt to build on unambiguous ontologies (Guarino
2009), yet the ability to express ambiguity is an important feature of natural languages.
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5.2 Grammar and Syntax

It is widely agreed that sentences can usefully be parsed into trees! defined by
grammars, yet there are several competing approaches.? In an NL* framework,
explicit graphs can accommodate and generalize any choice, hence no choice
need be made at the outset; further, because neural models can integrate infor-
mation across extended syntactic regions, grammar-like choices of local graph
structure need not strongly constrain semantic processing. Architectures with
a QNR-oriented inductive bias together with neural representation learning
on appropriate tasks should yield effective systems with NL* functionality
(Section 10).

Section 7 explores potential vector/graph representations in greater depth,
while Section 8 considers applications of vector embeddings that subsume
elements of NL syntactic structure—again, not to propose or predict, but
instead to explore the potential of learned NL* representations.

5.3 Words, Modifiers, and Lexical-Level Expressions

The role of lexical-level units in NL is subsumed by embeddings in NL*
frameworks, and prospects for improving NL* expressiveness depend in
part on the potential advantages of representations in continuous, structured
spaces. It is easy to argue that embeddings can be as expressive as words (e.g.,
embeddings can simply designate words), but a deeper understanding of their
potential calls for considering words and word-like entities in the context of
continuous semantic spaces.

5.3.1 Words and word-level units

When considering NL* frameworks from an NL perspective, a key question
will be the extent to which multi-word expressions can be folded into com-
pact, tractable, single-vector representations while gaining rather than losing
expressive power. Two heuristics seem reliable:

1. Meanings that some languages express in a single word can be repre-
sented by a single vector.’

1. Or DAGs, when coreference is represented explicitly.
2. See Borsley and Borjars (2011).

3. Meanings, not words: Vector representations of words perform poorly when those words
have multiple meanings, but representing meanings rather than words sidesteps this problem.
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2. Sets of word-level units with related meanings correspond to sets of
points clustered in a semantic space.

In the present context (and adopting an NL perspective), “lexical” (or “word-
level”) units will be restricted to a single noun or verb together with zero or
more modifiers (e.g., adjectives or adverbs),! and a “simple” noun (or verb)
phrase will be one that cannot be decomposed into multiple noun (or verb)
phrases.” The phrase “a large, gray, sleepy cat” is a simple noun phrase in this
sense; “a cat and a dog” is not simple, but conjunctive.

As with many features of language, the single-vs.-conjunctive distinction
is both meaningful and sometimes unclear: Is “spaghetti and meatballs” a
single dish, or a pair of ingredients? Is “bait and switch” a deceptive strategy
or a pair of actions? Is the semantic content of “ran, then halted” necessarily
compound, or might a language have a verb with an inflected form denoting a
past-tense run-then-halt action? Note that nothing in the present discussion
hinges on the sharpness of such distinctions. Indeed, the typical flexibility and
softness of mappings between meanings and representations speaks against
discrete tokens and formal representations and in favor of QNR/NL* systems
that can represent a softer, less formal semantics.>

In natural language, the meaning of “word” is itself blurry, denoting a
concept that resists sharp definition. In linguistics, “morphemes” are the
smallest meaningful linguistic units, and include not only (some) words,
but prefixes, suffixes, stems, and the components of compound words. In
morphologically rich languages, words may contain morphemes that denote
case or tense distinctions that in other languages would be denoted by words
or phrases. Blurriness again speaks in favor of soft representations and against
linguistic models that treat “word” as if it denoted a natural kind.

5.3.2 Content word roles and representations

Linguists distinguish “content words” (also termed “open class” words) from
“function” (or “closed class”) words. The set of content words in a vocabulary

1. This use of “lexical” differs from a standard usage in linguistics, where to be “lexical”,
a phrase must have a meaning other than what its components might indicate, making the
phrase itself a distinct element of a vocabulary. The phrases “on the other hand” and “cat-and-
mouse game” are lexical in this sense. NLP research recognizes a similar concept, “multi-word
expressions” (Constant et al. 2017).

2. Linguists define “simple phrases” differently.

3. Note that points in a vector space are inherently sharp, yet may be taken to represent
(potentially soft) regions in a lower dimensional space (see Section 7.1.5).
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is large and readily extended;! the set of function words (discussed below) is
small and slow to change.

Content words typically refer to objects, properties, actions, and relation-
ships. They include nouns, verbs, adjectives, and most adverbs, and they
typically have more-or-less regular marked or inflected forms. The growth
of human knowledge has been accompanied by the growth of content-word
vocabularies.

From the perspective of NL syntax and semantics, adjectives and adverbs
can be viewed as modifying associated nouns and verbs; this relationship
motivates the description of the resulting phrases as word-level (or lexical)
in the sense discussed above. In exploring the potential expressive capacity
of NL* frameworks, will be natural to consider semantic embedding spaces
that accommodate (meanings like those of) nouns and verbs together with
the lexical-level refinements provided by adjectives, adverbs, markers, and
inflections.?

One can think of content words as representing both distinctions of kind
and differences in properties.> Numbers, animals, planets, and molecules are
of distinct kinds, while magnitude, color, accessibility, and melting point
correspond to differences in properties, potentially modeled as continuous
variables associated with things of relevant kinds. In embedding spaces,
one can think of distinctions of kind as represented chiefly by distances and
clustering among vectors, and differences in properties as represented chiefly
by displacements along directions that correspond to those properties.*

Note that this perspective (kinds — clusters; properties — displacements)
is primarily conceptual, and need not (and likely should not) correspond to
distinct architectural features of QNR/NL™* systems.

1. The vocabulary of an English speaker may include 10,000 to 100,000 or more content
words; different speakers may employ different blocks of specialized (e.g., professional) vocab-
ulary.

2. Note also the potential value of explicitly compositional representations of embeddings, e.g.,
embeddings built by concatenation (Appendix A4).

3. Distinctions of kind and differences in properties differ, yet are not entirely distinct.

4. The somewhat counter-intuitive geometric properties of high dimensional spaces are
relevant here (see Section 7.1.4). Note also that displacements in a particular direction need
not have the same meaning in different regions of semantic space: Most properties relevant to
planets differ from those relevant to music or software.
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5.3.3 Function word roles and representations

Function (closed-class) words are diverse. They include coordinating con-
junctions (and, or, but...) conjunctive adverbs (then, therefore, however...),
prepositions (in, of, without...) modal verbs (can, should, might...), determin-
ers (this, that, my...), connectives (and, or, because, despite. .. ), and more (see
Table A2.1).

While the set of open-class words is huge, the set of closed-class words
is small—in English, only 200 or so. The vocabulary of open-class words
can readily be extended to include new meanings by example and definition.
Closed-class words, by contrast, typically play general or abstract roles, and
linguists find that this small set of words is nearly fixed (hence “closed”).! The
still-awkward repurposing of “they” as a gender-neutral third-person singular
pronoun illustrates the difficulty of expanding the closed-class vocabulary,
even to fill a problematic gap—alternatives such as “ze” have failed to take
hold (C. Lee 2019).

Function words that in themselves have minimal semantic content can
shape the semantics of complex, content-word constructs (such as clauses,
sentences, and paragraphs), either as modifiers or by establishing frameworks
of grammatical or explanatory relationships. Representations that subsume
NL must span semantic spaces that include function words.

The closed-class nature of NL function words suggests opportunities for
enriching the corresponding semantic domains in NL*. In English, for exam-
ple, the ambiguity between the inclusive and exclusive meanings of “or” in
English suggests that even the most obvious, fundamental—and in human
affairs, literally costly—gaps in function-word vocabularies can go unfilled

for centuries.?

1. The poverty of closed-class vocabulary is mitigated by the availability of compound
function words (at least, because of...) that can be treated as lexical entities. See Kato, Shindo,
and Matsumoto (2016).

2. The constructs “X and/or Y” and “either X or Y” can express the inclusive/exclusive
distinction, yet trade-offs between precision and word economy (and the cognitive overhead of
instead relying on context for disambiguation) ensure frequent ambiguity and confusion in
practice. As a less trivial example, the ability to compactly express “possibly-inclusive-but-
probably-exclusive-or” would be useful, and in a continuous vector space of function words,
would also be natural.
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5.3.4 TAM-C modifiers

Natural languages employ a range of tense, aspect, modality, and case (TAM-
C) modifiers;' some are widely shared across languages, others are rare. In
some languages, particular TAM-C modifiers may be represented by gram-
matical markers (a class of function words); in others, by inflections (a class of
morphological features). Meanings that in English are conveyed by function
words may be conveyed by inflections in other languages.? Sets of TAM-C
overlap with closed-class adjectives and adverbs, and are similarly resistant to
change.

Some TAM-C modifiers alter the meaning of lexical-level elements (both
words and phrases); others operate at higher semantic levels. They can convey
distinctions involving time, space, causality, purpose, evidence, grammatical
roles, and more:

* Tense and aspect distinctions typically indicate times and time-spans rel-
ative to the present (ran, run, running, had run, will have been running. .. );
see Table A2.2.

* Modality can indicate distinctions between questions, commands, confi-
dent statements, and possibilities, among many others; see Table A2.3.

* Case can indicate distinctions between (for example) grammatical roles
(subject, object...), functional roles (instrumental case), states of pos-
session (genitive case), or relative physical positions (various locative
cases); see Table A2.4.

Note that many of these distinctions are particularly important to situated and
cooperating agents.

TAM-C modifiers are sufficiently general and important that NLs encode
them in compact lexical representations. The role of TAM-C modifiers in
NL calls for similar mechanisms in NL*, and—Ilike adjectives and adverbs—
TAM-C modifiers are natural candidates for folding into lexical-level vector
representations (Section A3.3).3

1. Because tense, aspect, and modality overlap and intertwine, linguists often group them
under the label “TAM”; because they also overlap with case distinctions, all their indicators
(inflections, markers) will be lumped together here and simply referred to as “TAM-C modifiers”
(for examples and discussion, see Appendix A2 and Section A3.3).

2. Further muddling standard linguistic distinctions, punctuation can indicate case or
modality (question marks, exclamation marks) and can play roles like function words that
clarify syntax (commas, semicolons, periods) or express relationships of explanation, example,
or reference (colons, parentheses, quotation marks). In spoken language, verbal emphasis and
paralinguistic signals play similar roles.

3. Linguists recognize a semantic space of modalities (Allan 2013).
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5.4 Phrases, Sentences, Documents, and Literatures

NL* representations like those anticipated here condense (some) phrase-level
meanings into single, hence syntax-free, embeddings. Within an NL* domain,
these “phrase-level” meanings are definitional, not merely approximations of
the meaning of a hypothetical phrase in NL. As outlined above, meanings
of kinds that correspond to simple, lexical-level noun and verb phrases (in
NL) are strong candidates for single-embedding representation, while the
equivalents of noun and verb conjunctions (in NL) typically are not; nonethe-
less, equivalents of NL phrases of other kinds (some noun clauses?) could
potentially be captured in single embeddings. The boundaries of the useful
semantic scope of definitional vector embeddings are presently unclear, yet at
some level between a word and a document, definitional embeddings must

give way to vector-labeled graph representations.!

5.5 At the Boundaries of Language: Poetry, Puns, and Song

Discussions of potential NL* “expressiveness” come with a caveat: To say
that a representation “is more expressive” invites the question “expressive to
whom?” The meanings of NL text for human readers depend on potentially
human-specific cognition and emotion, but NL* expressions cannot, in gen-
eral, be read by humans—indeed, systems that “read” NL* (e.g., systems for
which “associative memory” means scalable search and “NL* expressions” are
situated within a spectrum of QNRs) are apt to be quite unlike humans.
What might be called “outward-facing expressions”—descriptions, com-
mands, questions, and so on—represent a kind of semantic content that may
be accessible to human minds, but is not specific to them. The arguments above
suggest that NL* representations can outperform NL in this role. However, NL
text—and utterances—can convey not only outward-facing semantic content,
but human-specific affective meaning, as well as NL-saturated associations,
allusions, and word play. Puns and poetry translate poorly even between
natural languages, and poetry merges into song which merges into pure music,
far from what is usually considered semantic expression. For present pur-
poses, these functions of text and utterances will be considered beyond the
scope of “language” in the sense relevant to NL* functionality; what can be
represented, however, is literal content (NL text, recorded sound) embedded

1. Potentially accompanied by abstractive, non-definitional embeddings (Section 8.3.4). The
contours of such boundaries need not be determined by an implementation: There is no need
to engineer representations that neural systems can instead learn.
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in NL* descriptions of its effects on human minds (which are, after all, parts of
the world to be described).!

In the context of this document, the content (or “meaning”) of natural
language expressions will be equated with semantic content in the outward-
facing sense. When a poem delivers a punch in the gut, this is not its meaning,
but its effect.

6 Desiderata and Directions for NL*

Prospects for improving expressiveness in NL* representations include
mechanisms both like and beyond those found in natural languages.
Research directions aimed at realizing these prospects are well-aligned
with current directions in neural ML.

Building on the NL-centered considerations discussed above, and looking
forward to mechanisms beyond the scope of natural language, this section
outlines desiderata for NL* (and more generally, QNR) functionality. Ap-
pendix A3 further explores NL*-oriented prospects for QNR frameworks.

6.1 Improve and Extend Fundamental NL Constructs

Desiderata for NL* representations include improving and extending funda-
mental NL constructs:

Subsume (but do not model) NL: The aim of research is not to model NL,
but to model (and extend) its functionality.

Exploit deep learning: Use neural ML capabilities to extend NL con-
structs without hand-crafting representations.

Improve compositionality: Embeddings can provide effectively infinite
vocabularies and loosen the dependence of meaning on context.

Use explicit graph representations: Graphs can compose embeddings
without the constraints of NL syntax and ambiguities of coreference.
Exploit vector embedding spaces: Relative to words, embeddings can
improve both expressive capacity and computational tractability:

- Embeddings are natively neural representations that need not be
decoded and disambiguated.

1. Philosophers have dissected considerations of this sort to provide richer distinctions and
more precise terminology.
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- Embeddings, unlike words, are differentiable, facilitating end-to-
end training.

- Embeddings provide effectively infinite vocabularies, enriching
expressive capacity.

Embrace (but do not impose) formal systems: NL* frameworks and
formal systems are complementary, not competing, modes of representa-
tion. Formal systems can be embedded as sub-languages in NL*, much
as mathematical expressions are embedded in textbooks (Section 9.2.4).

6.2 Exploit Mechanisms Beyond the Scope of Conventional NL

The discussion above has focused on features of NL* frameworks that can be
regarded as upgrades of features of NL, replacing words with embeddings and
implicit syntactic trees with explicit, general graphs. There are also opportu-
nities to exploit representations beyond the scope of NL: These include vector
representations that enable novel, high-level forms of expression, abstraction,
and semantic search, as well as QNR-based tools for knowledge integration at
scale syntactically embedded non-linguistic content far beyond the bounds of
what can be construed as language (Section 9.2).

6.2.1 Use Embeddings to Modify and Abstract Expressions

Embeddings can perform semantic roles at the level of sentences, paragraphs,
and beyond. In an adjective-like role Section 8.3.1), they can modify or refine
the meaning of complex expressions; in an abstractive role, they can enable
efficient, shallow processing (skimming) (Section 8.3.4).

6.2.2 Use Embeddings to Support Scalable Semantic Search

Abstractive embeddings can support similarity-based semantic search—in
effect, associative memory—over NL* corpora. Efficient similarity search
scales to repositories indexed by billions of embeddings (Section 9.1.5).

6.2.3 Reference, Embed, and Wrap Everything

At a syntactic level, NL* frameworks can embed not only formal systems, but
also content of other kinds (Figure 6.1):

Non-linguistic lexical-level units: Neural embeddings can represent
objects that differ from words, yet can play a similar role. For example,
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image embeddings can act as “nouns”, while vector displacements in a
latent space can act as “adjectives” (Section 8.2).

Non-linguistic objects: Through hyperlinks, online NL expressions can
in effect incorporate arbitrary informational or computational objects.
NL* expressions can do likewise (Section 9.2).

Linguistic objects: NL* expressions can reference, describe, and help
index linguistic and language-infused objects such as books, websites,
and video. NL* content can also cite sources (Section 9.5.2).

. S

’ QNR
corpus

wrapped
NL :
translations

natural language

wrapped | | tt-------"
formal systems formal
systems
wrapped
non-linguistic

content

non-linguistic
content

______

Figure 6.1: Approximate transformation and containment relation-
ships among representation systems.

6.3 Exploit QNRs to Support Knowledge Integration

NL* representations can support tools for knowledge integration based on
semantic search over QNR corpora in conjunction with soft matching, unifi-
cation, and generalization over QNR representations.! These operations can
compare and combine expressions to identify and represent areas of concor-
dance or conflict, as well as structural analogies, pattern completions, and

1. Unification of two expressions produces the least specific (most general) expression that
contains the information of both; unification fails if expressions contain conflicting information.
Generalization (anti-unification) of two expressions produces the most specific (least general)
expression that is compatible with (and hence unifies) both. Unification and anti-unification
are associative and commutative, and satisfy several other axioms. Soft unification and anti-
unification relax these constraints. (See Section A1.4.3.)
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semantic overlaps that enable the integration of narrow expressions to build
semantic structures span broader domains. Soft unification of QNR structures
can support continuous relaxations of logical inference through (for example)
Prolog-like computation (Section A5.1). Thus, QNR representations and cor-
pora can support knowledge integration through mechanisms beyond those
readily available in processing NL text.

6.4 Build on Current Research

NL*-oriented research can build on current ML applications, methods, ar-
chitectures, training data, and tool sets. Potentially useful components in-
clude Transformers, graph neural networks, models that embed or generate
graph/vector representations, and multitask learning methods that can be
applied to shape multipurpose representations.

NL* representations and corpora have natural applications in translation,
question answering, and conversational interfaces, as well as reinforcement
learning (RL).!

NL*-enabled systems could contribute to current research objectives in
mathematics, science, engineering, robotics, and machine learning itself, both
by helping to integrate and mobilize existing knowledge (e.g., mining litera-
tures to identify capabilities and opportunities), and by facilitating research
that produces new knowledge. Efforts to harness and extend the power of
natural language align with aspirations for advanced machine learning and
artificial intelligence in general.

6.5 Some Caveats

The present discussion describes general frameworks, mechanisms, and goals,
but the proposed research directions are subject to a range of potential (and
equally general) criticisms:

* Proposed NL* frameworks are templated on NL, but perhaps too closely
to provide fundamentally new capabilities.

* Alternatively, proposed NL* frameworks may differ too greatly from NL,
undercutting the feasibility of equaling NL capabilities.

* In light of the surprising power of flat neural representations, inductive
biases that favor QNRs might impede rather than improve performance.

1. For applications of language in RL, see Das etal. (2017), Lazaridou, Peysakhovich, and
Baroni (2017), Shah et al. (2018), and Luketina et al. (2019).
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* Both neural ML and human cognition embrace domains that are decid-
edly non-linguistic, limiting the scope of NL-related mechanisms.

* Ambitious NL* applications may call for more semantic structure than
can readily be learned.

* Implementation challenges may place ambitious NL* applications be-
yond practical reach.

* Current research may naturally solve the key problems with no need to
consider long-term goals.

* The prospects as described are too general to be useful in guiding re-
search.

* The prospects as described are too specific to be descriptive of likely
developments.

Most of these criticisms are best regarded as cautions: Linguistic mechanisms
have limited scope; relaxing connections to NL may improve or impede various
forms of functionality; implementations of working systems can be difficult
to develop or fall short of their initial promise; motivations and outlines of
research directions are inherently general and open-ended; generic, short-term
motivations often suffice to guide developments up a gradient that leads to
capabilities with far-reaching applications.

Nonetheless, despite these caveats, near-term research choices informed by
QNR/NL" concepts seem likely to be more fruitful than not, leading to tools
and insights that enable and inform further research. Much current research
is already well-aligned with QNR development and NL* aspirations, and it is
interesting to consider where that research may lead.

7 Vector-Labeled Graph Representations

In conjunction with today’s deep learning toolkit, vector-labeled graph
representations provide powerful, differentiable mechanisms for imple-
menting systems that represent and process structured semantic infor-
mation.

This present section examines vector-labeled graph representations (VLGs)
from the perspectives of representational capacity and neural ML tools; the
following section will examine prospects for applying this representational
capacity to implement QNR systems that surpass the expressive capacity of
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natural language.!

7.1 Exploiting the Power of Vector Representations

In a sense, the large representational capacity of typical high-dimensional
embedding vectors is trivial: Vectors containing hundred or thousands of
floating point numbers contain enough bits to encode lengthy texts as charac-
ter strings. What matters here, however, is the representational capacity of
vectors in the context of neural ML—the scope and quality of representations
that can be discovered and used by neural models that are shaped by suitable
architectural biases, loss functions, and training tasks. This qualitative kind
of capacity is difficult to quantify, but examples from current practice are
informative.

7.1.1 Vector Representations are Pervasive in Deep Learning

Deep learning today is overwhelmingly oriented toward processing contin-
uous vector representations, hence the extraordinary capabilities of deep
learning testify to their expressive power.

7.1.2 Vector Representations Can Encode Linguistic Semantic Content

Continuous vector representations in NLP shed light on prospects for ex-
pressive, tractable QNRs.2. The two leading roles for vector embeddings in
proposed QNR systems are (1) definitional representations of lexical-level
components (paralleling vector semantics in NL and word embeddings in
NLP, Section 8.2) and (2) abstractive representations of higher-level constructs
for indexing and summarization (Section 8.3.4).

7.1.3 Single Vectors Can Serve as Compositional Representations

In conventional symbolic systems, compositionality enables complex mean-
ings to be represented by combinations of components. In vector represen-
tations, meanings can be attributed to orthogonal vector components (e.g.,
representing different properties of something), then those components can

1. These representations can also be approximately as compact as NL text (see Appendix A5).

2. Note, however, successful applications of discretized representations in which learned,
finite sets of vectors are selected from continuous spaces; see, for example, Oord, Vinyals, and
Kavukcuoglu (2018) and Razavi, Oord, and Vinyals (2019)
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be combined by vector addition and recovered by projection onto their corre-
sponding axes. Condensing what in NL would be multi-component, lexical-
level syntactic structures into single embeddings can reduce the number
of distinct representational elements, retain semantic compositionality, and
enable facile manipulation by neural computation.

7.1.4 High-Dimensional Spaces Contain Many Well-Separated Vectors

In considering the representational capacity of high-dimensional vectors, it is
important to recognize ways in which their geometric properties differ from
those of vectors in the low-dimensional spaces of common human experience.
In particular, some measures of “size” are exponential in dimensionality, and
are relevant to representational capacity.

Call a pair of unit-length vectors with cosine similarity < 0.5 “well sepa-
rated”. Each of these vectors defines and marks the center of a set (or “cluster”)
of vectors with cosine similarity > 0.86; these sets are linearly separable and
do not overlap. How many such well-separated cluster-centers can be found
in a high-dimensional space?

In a given dimension d, the number of vectors k(d) that are well separated by
this criterion is the “kissing number”, the maximal number of non-overlapping
spheres that can be placed in contact with a central sphere of equal radius
(Figure 7.1). Kissing numbers in low-dimensional spaces are small (k(2) = 6,
k(3) = 12...), but grow rapidly with d. For d = 64 and 128, k(d) > 107 and
10'2; for d = 256, 512, and 1024, an asymptotic lower bound (Edel, Rains,
and Sloane 2002) k(d) > 2020754 gives k(d) >10'4, 1030, and 10°2. Thus,
the number of neighboring yet well-separated cluster-centers that can be
embedded in spaces of dimensionalities commonly used in neural ML is far
(1) in excess of any possible NL vocabulary.?

Note that the region around a cluster-center itself has great representation
power for sub-clusters: For example, its content can be separated from the
rest of the space by a linear threshold operation and then scaled and projected
into a space of d-1 dimensions, where similar considerations apply recursively

1. Cited in Torquato and Stillinger (2006).

2. Note that the number of vectors that are all nearly orthogonal (all pairwise cosine simi-
larities < 0.5) also grows exponentially with d and becomes enormous in high dimensional
spaces.
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Figure 7.1: Kissing spheres, d =2,k =6

so long as the residual dimensionality remains large.!

The above description is intended to provide an intuition for some aspects
of the expressive capacity of high-dimensional vector spaces, not to predict
or suggest how that capacity will or should be used in prospective systems:
Learned representations in current neural ML may offer a better guide.

7.1.5 Points Can Represent Regions in Lower-Dimensional Spaces

https://www.overleaf.com/project/61183c4al765f22abf2e3ebf An embed-
ding of dimensionality 2d can represent (for example) a center-point in a
d-dimensional semantic space together with parameters that specify a sur-
rounding box in that space.? An embedding may then designate, not a specific
meaning, but a range of potential meanings; alternatively, a range can be
regarded as a specific meaning in a semantic space that explicitly represents
ambiguity. Interval arithmetic® generalizes some operations on d-dimensional
points to operations on d-dimensional boxes.

1. The use of Euclidean distance or cosine similarity is explicitly or tacitly assumed in much
of this document, but growing interest suggests that hyperbolic spaces (useful in graph and
sentence embeddings) or mixed geometries may provide attractive alternatives for embedding
QNR expressions; see for example Peng et al. (2021).

2. Appendix Al, Section A1.5.3, and Section A1.6 discuss both boxes and more flexible
classes of representations in the context of unification and generalization operations on soft
lattices.

3. Arithmetic in which operands are intervals over R.
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This document will usually discuss embeddings as if they represent points
in semantic spaces, with operations on embeddings described as if acting on
vectors that designate points, rather than regions. The concept of semantic re-
gions becomes central, however, in considering semantic lattice structure and
constraint-based inference that generalizes logic programming (Section A1.4).

7.2 Exploiting the Power of Graph-Structured Representations

Graphs are ubiquitous as representations of compositional structure be-
cause they can directly represent things and their relationships as nodes
and arcs. Graphs (in particular, trees and DAGs) are central to traditional,
word-oriented natural language processing, while general graphs have found
growing applications in diverse areas of neural ML. This section outlines sev-
eral classes of graphs and their potential roles in representing and processing
semantic information.

7.2.1 Terminology, Kinds, and Roles of Graphs

The components of graphs are variously (and synonymously) called edges,
arcs, or links (potentially directed), which connect vertices, points, or nodes,
which in turn may carry labels, attributes, or contents. The present discussion
will typically refer to arcs (or links between document-scale objects) that
connect nodes that carry attributes or labels (in a semantic context, contents or
embeddings).!

Here, “graph” typically denotes a directed graph with attribute-bearing
nodes. Labeled arcs, multigraphs, and hypergraphs? are potentially useful
but not explicitly discussed; weighted arcs are essential in some differentiable
graph representations. (Sequences of embeddings can be viewed as instances
of a particularly simple class of graphs.)

In prospective QNR frameworks, vector-labeled graphs have at least two
areas of application: The first area parallels the use of graphs in classic NLP,
where expressions are typically parsed and represented as syntax trees or (to

1. In some formal models, arcs also carry attributes. Without loss of generality, graphs G with
labeled arcs can be represented by bipartite graphs G’ in which labeled arcs in G correspond
to labeled nodes in G’. For the sake of simplicity (and despite their potential importance)
the present discussion does not explicitly consider labeled arcs. In general, computational
representations of graphs will be implementation-dependent and will change depending on
computational context (e.g., soft, internal representations in Transformers translated to and
from hard, external representations in expression-stores).

2. Van Lierde and Chow (2019) and Menezes and Roth (2021)
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represent resolved coreferences) DAGs; VLGs can represent syntactic trees
explicitly, bypassing parsing, and can represent coreference through DAGs,
bypassing resolution. The second area of application involves higher-level
semantic relationships that in NL might be represented by citations; in an NL*
context, similar relationships are naturally represented as general, potentially
cyclic graphs. (These topics are discussed in Section 8.1.)

7.2.2 VLGs Can Provide Capacity Beyond Stand-Alone Embeddings

Fixed-length embeddings lack scalability, while sequences of embeddings
(e.g., outputs of Transformers and recurrent networks), though potentially
scalable, lack explicit, composable, and readily manipulated structure.

Arcs, by contrast, can compose graphs to form larger graphs explicitly
and recursively with no inherent limit to scale or complexity, and subgraph
content can be referenced and reused in multiple contexts. Trees and graphs
are standard representations for compositional structure in a host of domains,
and are latent in natural language. Graphs with vector attributes can expand
the representational capacity of sets of embeddings by placing them in a
scalable, compositional framework.!

7.2.3 VLGs Can Be Differentiable

Typical neural operations on vector attributes are trivially differentiable, while
differentiable operations on representations of graph topologies require spe-
cial attention. Without employing differentiable representations, options
for seeking graphs that minimize loss functions include search (potentially
employing heuristics or reinforcement learning) and one-shot algorithmic
construction.? With differentiable representations, more options become avail-
able, including structure discovery through end-to-end training or inference-
time optimization.

Conventional representations in which nodes and arcs are simply present or
absent can be termed “hard graphs”; representations can be made “soft” and
differentiable by assigning weights in the range [0, 1] to arcs. Differentiable
algorithms that assign weights tending toward {0, 1} can recover conventional

1. Single embeddings can, however, represent small graphs; thus, graph-structured repre-
sentation does not always require reification of nodes and arcs (See Section 7.3).

2. Yun etal. (2019), J. Zhou etal. (2020), Kazi etal. (2020), and Wu etal. (2021). For ap-
plications of RL to graph construction, see Z. Zhou et al. (2019) and Trivedi, Yang, and Zha
(2020).
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graphs by discarding edges when their weights approach zero, implementing
structure discovery through differentiable pruning.

Differentiable pruning operates on a fixed set of nodes and typically consid-
ers all pairs, impairing scalability,' but algorithms that exploit near-neighbor
retrieval operations on what may be very large sets of nodes (Section 9.1.5)
could implement scalable, differentiable, semantically informed alternatives
that do not a priori restrict potential topologies. In typical graph representa-
tions, a link is implemented by a semantically meaningless value (e.g., an array
index or hash-table key) that designates a target node. Through near-neighbor
retrieval, by contrast, a vector associated with a source-node can serve as a
query into a semantically meaningful space populated by keys that corre-
spond to candidate target-nodes. Selecting the unique node associated with
the nearest-neighbor key yields a hard graph; attending to distance-weighted
sets of near neighbors yields a soft graph.?

In this approach, query and key embeddings can move through their joint
embedding space during training, smoothly changing neighbor distances and
the corresponding arc weights in response to gradients. Mutable, soft-graph
behavior can be retained at inference time, or models can output conventional,
hard-graph VLGs, potentially retaining geometric information. Thus, models
that build and update QNR corpora could provide fluid representations in
which changes in embeddings also change implied connectivity, implicitly
adding and deleting (weighted) arcs. In semantically structured embedding
spaces, the resulting changes in topology will be semantically informed.

Weighted graphs may also be products of a computation rather than interme-
diates in computing hard-graph representations. Substituting a set of weighted
arcs for a single hard arc could represent either structural uncertainty (poten-
tially resolved by further information) or intentional, semantically informative
ambiguity.

7.2.4 VLGs Can Support Alignment and Inference

Neural algorithms over VLGs can support both processing within single
expressions and operations that link or combine multiple expressions. These

1. To enable arbitrary graphs as outputs requires initializing with complete graphs (hence
N(N —-1) directed arcs). Restricting optimization to local subgraphs, to restricted search spaces,
or to algorithmically generated “rough drafts” can avoid this difficulty.

2. Note, however, that efficient, highly scalable near-neighbor retrieval algorithms on un-
structured spaces are typically “approximate” in the sense that nearest neighbors may with
some probability be omitted. This shortcoming may or may not be important in a given appli-
cation, and fast algorithms on weakly structured spaces can be exact (see Lample etal. 2019).
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have potentially important applications within QNR frameworks.
Algorithms that align similar graphs! can facilitate knowledge integration

over large corpora, supporting the identification of clashes, concordances, and

overlaps between expressions, and the construction of refinements, general-

2 as well as

izations, analogies, pattern completions, and merged expressions,
more general forms of interpretation and reasoning. Differentiable algorithms
for graph alignment include continuous relaxations of optimal assignment
algorithms that enable end-to-end learning of alignable, semantically mean-

ingful embeddings (Sarlin et al. 2020).

7.2.5 VLGs Can Support (Soft) Unification and Generalization

If we think of expressions as designating regions of some sort?, then to unify
a pair of expressions is to find the largest expressible intersection of their
regions, while to anti-unify (or generalize) a pair of expressions is to find the
narrowest expressible union of their regions. Domains that support these op-
erations (and satisfy a further set of axioms) constitute mathematical lattices.*
Given a set of expressions, unification may be used to infer narrower, more
specific expressions, while anti-unification operations may be used to propose
broader, more general expressions.

As discussed above, QNR expressions that represent explicit uncertainty
or ambiguity (e.g., containing vectors representing uncertain or partially
constrained values) may be regarded as representing regions in a semantic
space. The nature of “expressible regions” in the above sense depends on
choices among representations.

Notions of “soft” or “weak” unification (discussed in Section A1.4.3) can
replace equality of symbols with similarity between point-like semantic embed-
dings, or approximate overlap when embeddings are interpreted as representing
semantic regions. Soft unification supports continuous, differentiable relax-
ations of the Prolog backward-chaining algorithm, enabling soft forms of
multi-step logical inference. Applications of soft unification include question

1. Heimann etal. (2018), Cao etal. (2019), Qu, Tang, and Bengio (2019), and Fey et al. (2020)

2. Soft unification and anti-unification operations can contribute to this functionality (Ap-
pendix Al).

3. In logic, symbols correspond to zero-volume regions, while variables correspond to
unbounded regions.

4. See Section A1.2. In generalizations of lattice representations, a “region” may be fuzzy,
in effect defining a pattern of soft attention over the space, and lattice relationships may be
approximate (Section A1.4.3).
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answering, natural-language reasoning, and theorem proving;! Soft oper-
ations can also infer variables from sets of values (Cingillioglu and Russo
2020). As noted above, unification and generalization have further potential
applications to knowledge integration in NL* corpora.

7.3 Mapping Between Graphs and Vector Spaces

Research has yielded a range of techniques for mapping graphs to and from
vector representations. These techniques are important because they bridge
the gap between high-capacity compositional structures and individual em-
beddings that lend themselves to direct manipulation by conventional (non-
GNN) neural networks.

7.3.1 Embeddings Can Represent and Decode to Graphs

Neural models can be trained to encode graphs? (including tree-structured
expressions®) as embeddings, and to decode embeddings to graphs.* A com-
mon training strategy combines graph-encoding and generative models with
an autoencoding objective function.®

In the domain of small graphs, embeddings could encode representations
with considerable accuracy—potentially with definitional accuracy, for graphs
that are small in both topology and information content. Note that summary,
query, and key embeddings (Section 8.3.4 and Section 9.1.2) can represent

semantic content without supporting graph reconstruction.

7.3.2 Embeddings Can Support Graph Operations

Embeddings that enable accurate graph reconstruction provide differentiable
graph representations beyond those discussed in Section 7.2.3. Whether di-
rectly or through intermediate, decoded representations, graph embeddings
can support a full range of VLG operations. Accordingly, this class of embed-
dings can be considered interchangeable with small® VLGs, and need not be

1. Rocktdschel and Riedel (2017), Campero etal. (2018), Minervini etal. (2018), Weber
etal. (2019), and Minervini et al. (2020)

2. Narayanan et al. (2017), Grohe (2020), and Pan et al. (2020)

3. Allamanis et al. (2017), R. Liu etal. (2017), H. Zhang et al. (2018), and Alon et al. (2019)
4.Y. Lietal (2018) and Cao and Kipf (2018)

5. Pan et al. (2018), Simonovsky and Komodakis (2018), and Salehi and Davulcu (2020)

6. What counts as “small” is an open question.
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considered separately here. Potential advantages include computational effi-
ciency and seamless integration with other embedding-based representations.

8 Quasilinguistic Neural Representations

Applications of vector-labeled graphs can generalize NL syntax and
upgrade NL words to implement quasilinguistic neural representations
that parallel and surpass the expressive capacity of natural language at

multiple levels and scales.

The present section discusses how vector-labeled graphs (VLGs) can be applied
to implement quasilinguistic neural representations (QNRs) that improve on
natural languages by upgrading expressive capacity, regularizing structure,
and improving compositionality to facilitate the compilation, extension, and
integration of large knowledge corpora. Appendix A3 covers an overlapping
range of topics in more detail and with greater attention to NL as a model for
potential NL* frameworks.

As usual in this document, conceptual features and distinctions should not
be confused with actual features and distinctions that in end-to-end trained
systems may be neither sharp, nor explicit, nor (perhaps) even recognizable.
Conceptual features and distinctions should be read neither as proposals for
hand-crafted structures nor as confident predictions of learned representa-
tions. They serve to suggest, not the concrete form, but the potential scope of
representational and functional capacity.

8.1 Using Graphs as Frameworks for Quasilinguistic Representa-
tion

Proposed QNRs are vector-labeled graphs.! Attributes can include type infor-
mation as well as rich semantic content; to simplify exposition,? attributes of
what are semantically arcs can be regarded as attributes of nodes in a bipartite
graph,® and will not be treated separately. Like trees, general (e.g., cyclic)
graphs can have designated roots.

1. Attributes (labels) can potentially be expanded to include sets of vectors of explicitly or
implicitly differing types.

2. And perhaps also implementation.

3. A representation that can also accommodate multigraphs and hypergraphs.
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8.1.1 Roles for Graphs in NL-Like Syntax

As already discussed, vector attributes can represent lexical-level components,
while graphs can represent their syntactic compositions; where syntax in NL
is implicit and often ambiguous, QNR-graphs can make syntactic relation-
ships (and in particular, coreference) explicit, thereby disentangling these
relationships from lexical-level semantic content. (See also Section A3.1.1.)

8.1.2 Roles for Graphs Beyond Conventional Syntax

In an extended sense, the syntax of NL in the wild includes the syntax of
(for example) hierarchically structured documents with embedded tables,
cross references, and citations.! QNRs can naturally express these, as well as
syntactic structures that are unlike any that can be displayed in a document.?

Stretching the concept of syntax, graphs can express networks of relation-
ships among objects. Scene graphs provide a concrete illustration of how
recognizably linguistic relationships can naturally be expressed by a non-
conventional syntax (for a simple example, see Figure 8.1).

. Visual

: Reasonin

— | Intermediate Graph | — = sk &
Representation Loss

<Man, Throwing, >

Figure 8.1: A neurally inferred scene graph that relates several en-
tities through subject—verb—object relationships. An enriched graph
for this scene could represent more complex relationships (e.g., manl
failing to prevent man2 from throwing a Frisbee to man3). An en-
riched representation of entities could replace instances of labels like
“man” with embeddings that have meanings more like man-with-
appearance(x)-posture(y)-motion(z), replace instances of verbs like
“catching” with embeddings that have meanings more like probably-

will-catch-intended-pass, and so on.3

1. And footnotes.
2. Examples not included.

3. Figure from Raboh et al. (2020), used with permission.
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8.2 Using Embeddings to Represent Lexical-Level Structure

At a lexical level, embedding-space geometry can contribute to expressive
power in several ways:

Proximity can encode semantic similarity.

Large displacements can encode differences of kind.

Small offsets (or larger displacements in distinguishable subspaces) can
encode graded, multidimensional semantic differences.

Where NL depends on context to disambiguate words, QNRs can employ
lexical-level embeddings to express meanings that are substantially disentan-
gled from context. (For further discussion, see Section A3.2.1.)

8.2.1 Proximity and Similarity

Neural representation learning typically places semantically similar entities
near one another and unrelated entities far apart. Embedding NL words works
well enough to be useful, yet its utility is impaired by polysemy and other
ambiguities of natural language.! By construction, native embedding-based
representations minimize these difficulties.

8.2.2 Graded Semantic Differences

The direction and magnitude of incremental displacements in embedding
spaces can represent graded, incremental differences in properties among
similar entities: The direction of a displacement axis encodes the kind of differ-
ence, the magnitude of the displacement along that axis encodes the magnitude
of the corresponding difference,? and the (commutative) addition of displace-
ments composes multiple differences without recourse to syntactic constructs.

1. When a single word (e.g., “match”) has multiple unrelated meanings (homonymy), it
corresponds to multiple, potentially widely scattered points in a natural semantic space; when
a word (e.g., “love”) has a range of related meanings (polysemy) representations that map
word-meanings to points (rather than semantic regions) become problematic. See Vicente
(2018).

2. When different regions of a vector space represent things of distinct kinds, the meanings
of directions may vary with position: In other words, because different kinds of things have
different kinds of properties, it is natural for mappings of directions to properties to be a
function of kinds, and hence of location. Indeed, the literature describes discrete-word models
of NL semantics in which the meanings of adjectives are a function of their associated nouns;
see, for example, Baroni and Zamparelli (2010) and Blacoe and Lapata (2012). In this general
approach, the meanings of verbs are also a function of their associated nouns, and the meanings
of adverbs are functions of their associated verbs.
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By avoiding difficulties arising from the discrete words and word-sequences
of NL, the use of continuous, commutative vector offsets can substantially
regularize and disentangle lexical-level semantic representations.

8.2.3 Relationships Between Entities of Distinct Kinds

Distinctions between entities of different kinds! can be represented as discrete
displacement vectors, which can encode degrees of similarity in distances
and cluster things of similar kinds (animals with animals, machines with
machines, etc., as seen in the geometry of word embeddings).

Displacement directions can also encode information about kinds. Word
embeddings trained only on measures of co-occurrence in text have been
found to represent relationships between entities in displacement vectors, and
analogies in vector differences and sums (Allen and Hospedales 2019). In
neural knowledge graphs,? relationships between entities can be encoded in
geometries that are deliberately constructed or induced by learning.® Lexical-
level QNR labels can provide similar representational functionality.

8.3 Expressing Higher-Level Structure and Semantics

The discussion above addressed the vector semantics of embeddings that
play lexical-level roles (e.g., nouns and verbs with modifiers); the present
discussion considers roles for embeddings in the semantics of higher-level
(supra-lexical) QNR expressions. Some of these roles are definitional: in these
roles, embeddings modify the meanings of higher-level constructs.* In other
roles, embeddings are abstractive: Their semantic content may corresponds to
(quasi)cognitive results of reading higher-level constructs, and are therefore
semantically optional (in effect, they cache and make available computational
results).

As usual, the aim here is to describe available representational functionality,
not to predict or propose specific representational architectures. Representa-

1. Where “entity” is intended to include (at least) different things (horses, cows, photons,
telescopes, gravitation, integers) and different actions (walk, run, observe, report).

2. “[A] graph of data intended to accumulate and convey knowledge of the real world, whose
nodes represent entities of interest and whose edges represent relations between these entities”
(Hogan etal. 2021).

3. Jietal (2021) and Ali etal. (2021)

4. Expression-level definitional embeddings are not sharply distinguished from lexical
embeddings, e.g., those corresponding to function words.
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tion learning within a QNR framework need not (and likely will not) respect
these conceptual distinctions.

8.3.1 Expression-Level Modifiers (Definitional)

Although lexical-level embeddings can condense (analogues of) phrases that
include modifiers of (analogues of) words, some lexical-level modifiers operate
on supra-lexical expressions that cannot be condensed in this way. These
modifiers may resemble adjectives, but are attached to units more complex
than words. Epistemic qualifiers (Section A3.4) provide examples of this
functionality.

Syntactically, definitional modifiers of this kind could be applied to expres-
sions as vector attributes of their root nodes; semantically, expression-level
modifiers act as functions of a single argument: an expression as a whole.

8.3.2 Expression-Level Relationships (Definitional)

In NL, conjunctive elements (often function words) can compose and modify
the meanings of combined expressions. Some can operate on either lexical-
level units or complex expressions (examples include and, or, and/or, both-and);
others (for example, however, because, and despite') typically compose meaning
across substantial syntactic spans, operating not only at the level of clauses
and sentences, but at the level of paragraphs and beyond.

Syntactically, a relationship between expressions could be applied through
vector attributes of the root node of a composition of syntactic structures
(subgraphs of a tree, DAG, etc.); semantically, expression-level relationships
correspond to functions of two or more arguments: the expressions they relate.

8.3.3 Expression-Level Roles (Definitional)

Expressions and the things they describe have roles (frequently with graded
properties) in larger contexts; features of roles may include purpose, impor-
tance, relative time, epistemic support, and so on. As with expression-level
modifiers and relationships, role descriptions of this kind could be applied to
an expression through vector attributes of its root node.

In general, however, a role may be specific to a particular context. If an
expression is contained (referenced, used) in multiple contexts, it may have
multiple roles, hence representations of those roles must syntactically stand

1. See also: punctuation.
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above root-nodes and their attributes. More concretely, multiple contexts
may link to an expression through nodes that represent the corresponding
contextual roles.

8.3.4 Content Summaries (Abstractive)

In human cognition, the act of reading a text yields cognitive representations—
in effect, abstractive summaries—that can contribute to understanding di-
rectly, or by helping to formulate (what are in effect) queries that directly
enable retrieval of relevant long-term memories, or indirectly enable retrieval
of relevant texts.! In a QNR context, dynamically generated summary embed-
dings can play a similar, direct role at inference time. When stored, however,
summaries can do more:

* Amortize reading costs for inference tasks.
* Enable efficient skimming.
* Stretch the semantic span of attention windows.?

* Provide keys for scalable associative memory.

The nature of a summary may depend on its use, potentially calling for
multiple, task-oriented summaries of a single expression.>

Semantically, content summaries are not expression-level modifiers: Sum-
maries approximate semantics, but modifiers help define semantics. Content
summaries may depend on contextual roles, placing them in syntactic posi-
tions above the roots of summarized expressions. A natural auxiliary training
objective would be for the similarity of pairs of content-summary vectors to
predict the unification scores (Section A1.4.3) of the corresponding pairs of

expressions.*

8.3.5 Context Summaries (Abstractive)

Context summaries (e.g., embeddings that summarize context-describing
QNRs) represent information that is potentially important to interpreting and

1. In processing with access to QNR corpora, the analogues of long-term memory and text
converge.

2. For an analogous application of summarization in Transformers, see Rae et al. (2019).

3. E.g., representations of substantive content (potential answers to questions) vs. represen-
tations of the kinds of questions that the substantive content can answer (potentially useful as
keys).

4. Summaries with this property seem well suited for use as keys in search guided by
semantic similarity.
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using a QNR expression.!

* What are the general and immediate topics of the context?

* Is the context a formal or an informal discussion?

* How does the context use the expression?

* Does the context support or criticize the content of the expression?

At inference time, context summaries could direct attention to relevant com-
monsense knowledge regarding a particular field or the world in general.?
Interpreting an expression correctly may require contextual information that
is distributed over large spans; providing (quasi)cognitive representations of
contexts can make this information more readily available. Like content sum-
maries, context summaries are semantically optional, but the potential scale
and complexity of contexts (local, domain, and global) may make some form
of context-summarization unavoidable, if extended contexts are to be used
at all. Syntactically (and to some extent semantically), context summaries
resemble contextual roles.

8.3.6 Origin Summaries (Abstractive)

Origin summaries (potentially summarizing origin-describing QNRs) can
indicate how an expression was derived and from what information:

* What inputs were used in constructing the expression?
* What was their source?

* What was their quality?

* What inference process was applied?

A structurally distinct QNR expression can be viewed as having a single source
(its “author”), and hence its root node can be linked to a single origin summary.
Origins and their summaries are important to the construction, correction,
and updating of large corpora.

1. The considerations here are quite general; for example, context representations are
also important in understanding/recognizing objects in scenes (Tripathi etal. 2019; Carion
etal. 2020).

2. Standard Transformers represent a span of immediate context in their activations, while
representing both relevant and irrelevant global context in their parameters. Both of these
representations are subject to problems of scaling, cost, compositionality, and interpretability.
Models (potentially Transformer-based) that write and read QNRs could benefit from exter-
nalized representations of wide-ranging, semantically indexed contextual knowledge. The
application of very general knowledge, however, seems continuous with interpretive skills that
are best embodied in model parameters.
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8.4 Regularizing, Aligning, and Combining Semantic Representa-
tions

Disentangling and regularizing semantic representations—a theme that runs
through Section 8.1 and Section 8.2—has a range of benefits. In conjunction
with basic QNR affordances, regularization can facilitate the alignment of
representations, which in turn can facilitate systematic inference, compari-
son, combination, and related forms of semantic processing at the level of
collections of expressions.

8.4.1 Regularizing Representations

In natural languages, expressions having similar meanings may (and often
must) take substantially different forms. Words are drawn from discrete,
coarse-grained vocabularies, hence incremental differences in meaning force
discrete changes in word selection. Further, small differences in meaning
are often encoded in structural choices—active vs. passive voice, parallel
vs. non-parallel constructs, alternative orderings of lists, clauses, sentences,
and so on. These expressive mechanisms routinely entangle semantics with
structure in ways that impose incompatible graph structures on expressions
that convey similar, seemingly parallel meanings.

The nature of QNR expressions invites greater regularization: Meanings of
incommensurate kinds may often be encoded in substantially different graph
topologies, while expressions with meanings that are similar—or quite differ-
ent, yet abstractly parallel—can be represented by identical graph topologies
in which differences are encoded in the continuous embedding spaces of node
attributes.

Humans compare meanings after decoding language to form neural rep-
resentations; natively disentangled, regularized, alignable representations
can enable comparisons that are more direct. By facilitating alignment and
comparison, regularization can facilitate systematic (and even semi-formal)
reasoning.

8.4.2 Aligning Representations

Section 7.2.4 took note of neural algorithms that can align graphs in which
parallel subgraphs carry corresponding attributes. Given a pair of aligned
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graphs, further processing can exploit these explicit correspondences.!

8.4.3 Alignment for Pattern-Directed Action

By triggering pattern-dependent actions, graph alignment can establish rela-
tionships between other entities that do not themselves align. For example,
reasoning from facts to actions can often be formulated in terms of produc-
tion rules® that update a representation-state (or in some contexts, cause an
external action) when the pattern that defines a rule’s precondition matches
a pattern in a current situation: Where patterns take the form of graph-
structured representations, this (attempted) matching begins with (attempted)
graph alignment. Potential and actual applications of production rules range
from perceptual interpretation to theorem proving.

8.4.4 Comparing, Combining and Extending Content

Alignment facilitates comparison. When graphs align, natural distance met-
rics include suitably weighted and scaled sums of distances between pairs of
vector attributes.> When alignment is partial, subgraphs in one expression
may be absent from subgraphs in the other (consistent with compatibility), or
subgraphs may overlap and clash. Clashes may indicate mutual irrelevance or
conflict, depending on semantic contents and problem contexts.

Overlapping graphs can (when compatible) be merged to construct ex-
tended, consistent descriptions of some entity or domain. In formal systems,
this operation corresponds to unification (Section A1.1.1); in general QNR
contexts, formal unification can be supplemented or replaced by soft, learned
approximations (Section A1.4.3).

Expressions that are similar and compatible yet not identical may pro-
vide different information about a single object or abstraction; unification
mechanisms then can enrich representations by merging information from

1. In this connection, consider potential generalizations of the image-domain algorithm
described in Sarlin et al. (2020), which employs end-to-end training to recognize, represent,
and align features in pairs of data objects through GNN processing followed by differentiable
graph matching. Analogous processing of QNR representations would enable semantics-based
alignment even in the absence of strict structural matches.

2. In recent work on neural image interpretation, Goyal et al. (2021) employed propositional
knowledge in the form of production rules (condition-action pairs) that are represented by
model parameters and selected at inference time by attention mechanisms based on similarity
between condition and activation vectors.

3. Distance metrics may result from neural computations that condition on broader semantic
content, or on other relationships beyond simple pairwise sums and differences.
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multiple sources. For example, unification of multiple, related abstractions
(e.g., derived from uses of a particular mathematical construct in diverse
domains of theory and application) could produce representations with richer
semantics than could be derived from any single NL expression or document—
representations that capture uses and relationships among abstractions, rather
than merely their formal structures.

Alternatively, expressions that are similar yet not fully compatible may
describe different samples from a single distribution. The dual of unification,
anti-unification (a.k.a. generalization, Section A1.1.2), provides the most spe-
cific representation that is compatible with a pair of arguments, encompassing
their differences (including clashes) and retaining specific information only
when it is provided by both. Anti-unification of multiple samples! yields
generalizations that can (perhaps usefully) inform priors for an underlying
distribution.

Like unification, generalization yields an expression at the same semantic
level as its inputs, but to represent analogies calls for an output that contains
representations of both input graphs and their relationships. Alignment can
provide a basis for representing analogies as first-class semantic objects that
can be integrated into an evolving corpus of QNR content

Looking back for a moment, prospects that were motivated by the most basic
considerations—upgrading words and syntax to machine-native embeddings
and graphs—have naturally led to prospects that go far beyond considerations
of expressiveness per se. QNR/NL* frameworks lend themselves to applica-
tions that can subsume yet are qualitatively different from those enabled by
natural language.

1. The lattice axioms (Section A1.2) ensure that pairwise combination extends to multiple
arguments in a natural way.
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9 Scaling, Refining, and Extending QNR Corpora

Scalable QNR systems with NL*-level expressive capacity could be used
to represent, refine, and integrate both linguistic and non-linguistic
content, enabling systems to compile and apply knowledge at internet

scale.

Preceding sections discussed vector/graph representations and their potential
use in constructing QNR frameworks that are powerful and tractable enough
to meet the criteria for NL*. The present section explores the potential scaling
of QNR/NL™* systems to large corpora, then considers how scalable, fully
functional systems could be applied to include and integrate both linguistic,
and non-linguistic content while refining and extending that content through
judgment, unification, generalization, and reasoning.

9.1 Organizing and Exploiting Content at Scale

A core application of language-oriented QNR systems will be to translate and
digest large NL corpora into tractable, accessible NL* representations, a task
that makes scalability a concern. Current practice suggests that this will be
practical. NL — NL* translation will likely employ components that resemble
today’s translation systems. Potentially analogous NL — NL translation tasks
are performed at scale today, while ubiquitous internet-scale search suggests
that large corpora of NL* knowledge can be exploited for practical use.

9.1.1 Learning by Reading Can Be Efficient at Scale

To estimate the magnitude of required computational tasks, we can roughly
equate the incremental costs of building a corpus by reading NL texts and
translating them to NL* representations with the incremental costs of training
a language model by reading NL texts and (in some sense) “translating” their
content to model parameters. According to this estimate, training GPT-3 was
roughly equivalent to translating ~300 billion words! to NL* representations—
about 30 times the content of the 1.8 million papers on the arXiv (arXiv 2021)
or 10% of the 40 million books scanned by Google (H. Lee 2019). As an
alternative and perhaps more realistic estimate, we can roughly equate the cost

1. Summing over products of training epochs and corpus sizes (Brown et al. 2020).
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of NL — NL* translation to the cost of NL — NL translation; the throughput
of Google Translate (>3 trillion words per year!) is then an indicator of
affordable throughput (~40 million books/month). These comparisons concur
in suggesting the feasibility of translating NL information to NL* corpora at
scale.?

Translating NL content into accessible, quasicognitive NL* is a form of
learning that is distinct from training. Unlike training model parameters,
the task of reading, translating, and expanding corpora is by nature fully
parallelizable and scalable. The products are also more transparent: Exploit-
ing external, compositional representations of information can enable facile
interpretation, correction, redaction, and update of a system’s content.3

9.1.2 Semantic Embeddings Enable Semantic Search

NL* expressions can be indexed by summary embeddings that associate
similar expressions with near-neighbor points in a semantic space.* Using
these embeddings as keys in near-neighbor retrieval can provide what is in
effect “associative memory” that supports not only search, but tasks involving
knowledge comparison and integration (see Section 9.4 below).

Different embeddings of an expression can serve as keys suited for different
search tasks. In some use-contexts, we care about the physical properties of an
object; in others, we care about its cost and functionality. In some use-contexts,
we care about a city’s geography; in others, about its nightlife. Accordingly,

1. Reported in (Turovsky 2016).

2. Contributing to efficiency and scalability, computations that both write and read NL*
corpora can, as noted above, avoid problems that stem from representing knowledge solely in
trained model parameters. Large language models learn not only knowledge of language per se
and general features of the world, but also a range of specific facts about people, places, etc.
The striking improvements that have resulted from scaling language models have stemmed,
not only from improvements in broadly applicable, immediately available syntactic, semantic,
and reasoning skills (K. Lu et al. 2021), but from memorization of specific, seldom-used facts
about the world (Yian Zhang et al. 2020). For example, GPT-2 uses its 1.5 billion parameters to
memorize names, telephone numbers, and email addresses, as well as the first 500 digits of 1t
(Carlini et al. 2021). Encoding factual information of this sort in billions of model parameters—
all used in computing each output step—is problematic: Both training and inference are
expensive, and the results are opaque and difficult to correct or update. Parameter counts
continue to grow (Brown et al. 2020; Fedus, Zoph, and Shazeer 2021).

3. For related work, see Verga etal. (2020), Lewis et al. (2020), Guu et al. (2020), and Févry
etal. (2020).

4. Wang and Koopman (2017), Schwenk and Douze (2017), and Tran et al. (2020). Note that
retrieval based on similarity between semantic embeddings can be effective across modalities
(e.g., Miech et al. 2021). Pairwise similarity between vector keys could potentially reflect the
unification scores (Section A1.4.3) of the corresponding pairs of expressions.
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what might be represented as a single span of content may naturally be
associated with multiple domain-oriented summaries and keys. We find this
general pattern in Transformers, where multi-head attention layers project
each value to multiple key and query vectors. A quite general distinction is
between representing the content of an expression and representing the kinds
of questions that its content can answer—between what it says and what it is
about.

The role of semantic search overlaps with the role of links in large-scale
NL* structures (for example, generalizations of citation networks), but differs
in designating regions of semantic space through query-embeddings rather than
designating specific expressions through graph links. Conventional references
and syntactic relationships are represented by links, but looser relationships
can be represented by “query embeddings” within expressions, where these
embeddings are taken to denote soft graph links to a potential multiplicity of
target expressions in an indexed corpus.!

9.1.3 Semantic Search Extends to Non-Linguistic Content

By proposed construction, any item that can be described by NL can be
(better) described by NL*. Examples include code, engineering designs, legal
documents, biomedical datasets, and the targets of current recommender
systems—images, video, apps, people, products, and so on. Embeddings that
represent (descriptions of) non-linguistic content (Section 9.2.2) are relevant
to NL* in part because they can be directly referenced by NL* expressions, and
in part because these NL* descriptions can provide a basis for semantically
rich content embeddings.

9.1.4 NL*-Mediated Embeddings Could Potentially Improve NL Search

Systems trained to map NL to NL* can support the production of NL embed-
dings (NL — NL* — embedding) that are based on disentangled, contextually
informed semantic representations. If so, then co-learned, NL*-mediated key
and query embeddings could potentially improve kNN semantic search over
corresponding NL items at internet scale.

1. Note that this mechanism provides a differentiable and potentially fluid graph representa-
tion; see Section 7.2.3.
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9.1.5 Semantic Search Can Be Efficient at Scale

Exact k-nearest neighbor search in generic high-dimensional spaces is costly,!
but approximate nearest neighbor search (which usually finds the keys nearest
to a query) have been heavily researched and optimized; efficient, practical,
polylogarithmic-time algorithms can support (for example) billion-scale rec-
ommender systems,? and can do likewise for retrieval of semantic content in
NL* systems at scale.

9.2 Incorporating General, Non-Linguistic Content

Human knowledge includes extensive nonlinguistic content, yet we use natu-
ral language to describe, discuss, index, and provide instructions on how to
create and use that content. Language-linked nonlinguistic content sprawls
beyond the boundaries of an NL-centric concept of NL*—boundaries that do
not constrain language-inspired QNR/NL™* applications.

Examples of non-linguistic information content include:

* Non-linguistic lexical-level units (e.g., image embeddings)

» Expressions in formal languages (e.g., mathematical proofs)

* Precise descriptions of objects (e.g., hardware designs)

* Formal graph-structured representations (e.g., probabilistic models)

9.2.1 Using “Words” Beyond the Scope of Natural Language

“Nouns” represent things, but vector embeddings can represent things in
ways that are in no sense translations of word-like entities in NL: Image
embeddings, for example, can serve as “nouns”,? though the content of an
image embedding need not resemble that of an NL noun phrase. Embeddings
that represent datasets or object geometries have a similar status.

Similar considerations apply to verbs and relationships: Words and phrases

have a limited capacity to describe motions, transformations, similarities,

1. Scaling as ~O(n), but learned, structured key spaces can improve scaling to O(n!/?)
(Lample etal. 2019).

2. ]J. Wang etal. (2018), Fu etal. (2018), Johnson, Douze, and Jégou (2019), Jayaram Subra-
manya et al. (2019), and Sun (2020)

3. Note that representation of images through relationship-graphs among objects blurs
the boundary between opaque image embeddings and syntactic structures; See for example
Bear etal. (2020). Image-embedding spaces can also be aligned with text (e.g., in Patashnik
etal. 2021).
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and differences.! As with nouns, embeddings (and a wide range of other
information objects) can again subsume aspects of NL expressive capacity and
extend representations to roles beyond the scope of practical NL descriptions.
This expressive scope may often be difficult to describe concretely in NL.?
QNR “verbs” could express transformations of kinds not compactly express-
ible in conventional NL: For example, displacements of physical objects can
be represented by matrices that quantitatively describe displacements and
rotations, and a more general range of transformations can be expressed by
displacement vectors in a suitable latent space. Stretching the conceptual
framework further, verb-like transformations can be specified by executable

functions.?

9.2.2 Referencing Non-Linguistic Objects

References to linguistic and non-linguistic objects are not sharply demarcated,
but some information objects are both complex and opaque, while physical
objects are entirely outside the information domain. All these (indeed, essen-
tially anything) can nonetheless be referenced within the syntactic frameworks
of QNR expressions.

As a motivating case, consider how embedded hyperlinks and more gen-
eral URIs expand the expressive power of online documents: The ability to
unambiguously reference not only text, but arbitrary information objects, is
powerful, and on the internet, this capability meshes smoothly with NL.

Examples of non-linguistic information objects include images, websites,
data repositories, and software. Beyond the domain of information objects,
domain-appropriate reference modalities can act as proper nouns in desig-
nating physical objects, people, places, and the like. A natural pattern of use
would place a reference in a QNR wrapper that might include (for example)
a summary embedding, conventional metadata, descriptions, and documen-
tation, all of which can exploit the representational capacity of NL*. QNR
wrappers can facilitate indexing, curation, and the selection or rejection of
entities for particular uses.

1. For example, an NL phrase can compactly say that “face_1 strongly resembles face_2”,
while a lexical-level embedding can compactly say that: “face_1, with a specific set of
embedding-space offsets in shape, color, and expression, looks like face_2 with some quantified
but approximate residual differences.”

2. Hence the value of using interpretable yet non-linguistic image embeddings as examples.

3. In this connection, note that QNR expressions are data, that neural functions can be of
type QNR — QNR, and that “apply”, “eval” and “quote” functions can play quite general roles
(e.g., in languages like Scheme that can express and operationalize high-level abstractions).
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Information objects include executable code, and when accessed remotely,
executable code is continuous with general software and hardware services.
Interactive models! can complement NL descriptions of systems. Access to
documented instances of the computational models used to produce particular
NL* items can contribute to interpreting the items themselves: Connections
between products and their sources often should be explicit.

9.2.3 Embedding Graph-Structured Content

Human authors routinely augment sequential NL text with graph structures.
Even in basically sequential text (e.g., this document), we find structures
that express deep, explicit nesting and internal references. Documents often
include diagrams that link text-labeled elements with networks of arrows, or
tables that organize text-labeled elements in grids. These diagrams and tables
correspond to graphs.

Further afield, graph-structured representations can describe component
assemblies, transportation systems, and biological networks (metabolic, reg-
ulatory, genetic, etc.) Text-like descriptions of statistical and causal relation-
ships become probabilistic models and causal influence diagrams. In ML,
we find formal knowledge graphs in which both elements and relationships
are represented by vector embeddings,” while augmenting language-oriented
Transformer-tasks with explicit representations of relationships has proved
fruitful.® Distinctions between these and NL* representations blur or disap-
pear when we consider generalizations of conventional syntax to graphs, and
of symbols and text to embeddings and general data objects. Some potential
use-patterns can be conceptualized as comprising restricted, graph-structured
representations (e.g., formal structures that support crisply defined inference
algorithms), intertwined with fully general graph-structured representations
(informal structures that support soft inference, analogy, explication of appli-
cation scope, and so on).

9.2.4 Integrating Formal Quasilinguistic Systems

Programming languages and mathematics are formal systems, typically based
on quasilinguistic representations.* In these systems, the word-like entities

1. E.g., the models presented in Distill pages (Distill Team 2021).
2. Kazemi and Poole (2018) and Hogan et al. (2021)
3. Currey and Heafield (2019), Schlag etal. (2020), and Nguyen et al. (2020)

4. In a QNR context, formal graph representations (such as diagrams in category theory)
can be regarded as languages that generalize text-based syntax.
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(symbols) have minimal semantic content, yet syntactic structures in conjunc-
tion with an interpretive context specify semantic or operational meanings
that endow these systems with descriptive capabilities beyond the conven-
tional scope of NL.

How are formal systems connected to NL, and by extension, to NL* frame-
works? NL cannot replace formal systems, and experience suggests that no
conventional formal system can replace NL. What we find in the wild are
formal structures combined with linguistic descriptions: mathematics inter-
leaved with explanatory text in papers and textbooks, programs interleaved
with comments and documentation in source code, and so on. Experience
with deciphering such documents suggests the value of intimate connections
between NL-like descriptions and embedded formal expressions.! In one
natural pattern of use, formal systems (e.g., mathematics, code, and knowl-
edge representation languages) would correspond to distinguished, formally
interpretable subsets of networks of NL* expressions.

Formal languages can describe executable operations to be applied in the
informal context of neural computation. Conversely, vector embeddings can
be used to guide premise selection in the formal context of theorem proving.?

9.3 Translating and Explaining Across Linguistic Interfaces

Proposed NL* content has both similarities to NL and profound differences.
It is natural to consider how NL might be translated into NL* representations,
how NL* representations might be translated or explained in NL, and how
anticipated differences among NL* dialects might be bridged.

9.3.1 Interpreting Natural Language Inputs

NL* frameworks are intended to support systems that learn through interac-
tion with the world, but first and foremost, are intended to support learning
from existing NL corpora and language-mediated interactions with humans.
Translation from NL sources to NL™ is central both to representation learning
and to key applications.

It is natural to expect that encoders for NL — NL* translation will share a
range of architectural characteristics and training methods with encoders for
NL — NL translation and other NLP tasks (Section 10.2). Translation to NL*

1. Szegedy (2020) suggests an NL-translation approach to formalizing mathematics papers.
2. M. Wang et al. (2017) and Minervini et al. (2018)
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could be applied both to support immediate tasks and (more important) to
expand corpora of NL*-encoded knowledge.

Transformer-based NL — NL translation systems can learn language-agnostic
representations,' a capability which suggests that NL — NL* translation will
be tractable.

9.3.2 Translating Among NL* Dialects

Because NL* corpora could span many domains of knowledge—and be en-
coded by multiple, independently trained systems—it would be surprising to
find (and perhaps challenging to develop) universally compatible NL* repre-
sentations. In neural ML, different models learn different embeddings, and
the representations learned by models with different training sets, training
objectives, and latent spaces may diverge widely. In an NL* world, we should
expect to find a range of NL* “dialects” as well as domain-specific languages.

Nonetheless, where domain content is shared and representational capac-
ities are equivalent, is reasonable to expect facile NL* — NL* translation.
Further, regarding interoperability in non-linguistic tasks, the concrete details
of differing representations can be hidden from clients by what is, in effect, an
abstraction barrier.> Domain-specific languages may resist translation at the
level of representations, yet contribute seamlessly to shared, cross-domain
functionality.

Lossless translation is possible when the semantic capacity of one repre-
sentation fully subsumes the capacity of another. Given the computational
tractability of NL* representations, we can expect translation between similar
NL* dialects to be more accurate than translation between natural languages.
In translation, spaces of lexical-level embeddings can be more tractable than
discrete vocabularies in part because vector-space transformations can be

smooth and one-to-one.3

9.3.3 Translating and Explaining NL* Content in NL

It is reasonable to expect that, for a range of NLP tasks, conventional NL —
(opaque-encoding) — NL pipelines can be outperformed by NL — NL* —

1. Y. Liu etal. (2020), Tran et al. (2020), and Botha, Shan, and Gillick (2020)
2. Object-oriented programming exploits this principle.

3. Even projections of sets of high-dimensional vectors into spaces of substantially lower di-
mensionality can preserve key geometric relationships quite well: The Johnson-Lindenstrauss
lemma implies good preservation of both distances and cosine similarities between vectors.
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NL pipelines;! this would imply effective translation of the intermediate NL*
representations to NL.

If NL* frameworks fulfill their potential, however, NL* corpora will con-
tain more than translations of NL expressions. Content will typically draw on
information from multiple sources, refined through composition and infer-
ence, and enriched with non-linguistic word-like elements. There is no reason
to expect that the resulting representations—which will not correspond to
particular NL expressions or any NL vocabularies—could be well-translated
into NL. If NL* is more expressive than NL, it follows that not all NL* content
can be expressed in NL.

How, then, might NL* content be accessed through NL, either in general or
for specific human uses?

* Some NL* expressions will correspond closely to NL expressions; here,
we can expect to see systems like conditional language models (Keskar
etal. 2019) applied to produce fluent NL translations.

* NL* descriptions that are detailed, nuanced, complex, and effectively
untranslatable can inform NL descriptions that provide contextually
relevant information suitable for a particular human application.

* Similarly, a general abstraction expressed in NL* might be effectively
untranslatable, yet inform narrower, more concrete NL descriptions of
contextually relevant aspects of that abstraction.

* To the extent that NL expressions could—if sufficiently extensive—
convey fully general information (a strong condition), NL could be used
to describe and explain NL* content in arbitrary detail; this approach is
continuous with verbose translations.

* NL* content in effectively non-linguistic domains could in some in-
stances be expressed in diagrams, videos, interactive models, or other
human-interpretable modalities.

Relative to the opaque representations common in current neural ML, NL*
representations have a fundamental advantage in interpretability: Because
QNRs are compositional, their components can be separated, examined, and
perhaps interpreted piece by piece. Even when components cannot be fully
interpreted, they will often refer to some familiar aspect of the world, and
knowing what an expression is about is itself informative.

1. Particularly when intermediate NL* processing can draw on relevant NL* corpora. Suc-
cessful augmentation of Transformers with external memory (e.g., for question answering)
provides evidence for the potential power of this approach (Koncel-Kedziorski et al. 2019; Fan
etal. 2021; Min et al. 2020; Thorne et al. 2020).
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9.4 Integrating and Extending Knowledge

Graph-structured representations in which some vector attributes designate
regions in semantic spaces! lend themselves to operations that can be inter-
preted as continuous relaxations of formal unification and anti-unification,
which in turn can support reasoning and logical inference by (continuous
relaxations of) familiar algorithms. These operations can help extend corpora
by combining existing representations along lines discussed from a somewhat
different perspective in the preceding section.

9.4.1 Combining Knowledge Through (Soft) Unification

Compatible representations need not be identical: Alignment and (successful)
soft unification (Appendix Al) indicate compatibility, and the successful
unification of two expressions defines a new expression that may both combine
and extend their graph structures and semantically narrow their attributes.
Soft unification could potentially be used to refine, extend, compare, and link
QNR/NL™ representations. Where QNR graphs partially overlap, successful
unification yields a consistent, extended description.? Attempts to unify
incompatible representations fail and could potentially yield a value that
describes their semantic inconsistencies.?

In refining content through soft unification, relatively unspecific structures

in one QNR* may be replaced or extended by relatively specific structures®

1. A simple example would be regions implied by implicit, contextual uncertainty in a vector
value; richer, more formal examples include spaces in which vector values (points) explicitly
correspond to regions in lower-dimensional spaces, or in which points are semantically related
by taxonomic or set-inclusion relationships. In a limiting case, vector values correspond either
to points (which, through comparison by equality, can model mathematical symbols) or to
unknowns (which, through co-reference, can model mathematical variables).

2. As a non-linguistic analogy, consider overlapping fragments of an image: Where overlaps
match well enough, the fragments can be glued together to form a more comprehensive
image of a scene, combining information from both fragments and potentially revealing new
relationships.

3. Section 10.6.7 suggests generically applicable training objectives that would favor repre-
sentations and operations that (approximately) satisfy the axioms (Section A1.2) for unification
and anti-unification; in this approach, operations may be performed by contextually informed
neural functions.

4. E.g., embeddings that represent uncertain values; nodes that lack links to optional con-
tent; leaf-level nodes that in effect summarize the content of some range of potential graph
extensions.

5. E.g., embeddings that represent narrower values; links to graph structure that may be
modified by conditioning on a compatible leaf-level embedding.
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from an aligned QNR. Embeddings that contain different information may
commbine to yield a semantically narrower embedding.

Products of successful unification (new, more informative expressions and
relationships) are candidates for addition to an NL* corpus. Records of failed
unifications—documenting specific clashes—can provide information impor-
tant to epistemic judgment. These successful and unsuccessful unification-
products may correspond to nodes in a semantically higher-level graph that
represents relationships among expressions.

9.4.2 Generalizing Knowledge Through (Soft) Anti-Unification

While unification of two expressions can be regarded as combining their infor-
mation content, anti-unification (generalization) can be regarded as combining
their uncertainties, spanning their differences, and discarding unshared in-
formation. Generalization in this sense may represent a useful prior for
generative processes within distributions that include the inputs.

9.4.3 Constructing Analogies

Operations based on generalization and unification could be applied to iden-
tify, construct, and apply analogies and abstractions in QNR corpora:

* A range of latent analogies will be reflected in recognizably parallel
structures between or among concrete descriptions.1

» Alignment of parallel concrete descriptions can establish concrete analo-
gies, potentially reified as graphs.

* Generalization over sets of parallel descriptions can abstract their com-
mon structures as a patterns.

* Unification of a concrete description with a pattern can indicate its anal-
ogy to a set of similar concrete descriptions without requiring pairwise
comparison.

Analogies have powerful applications. For example, if a description of A
includes features of a kind absent from the analogous description of B, then
it is reasonable to propose A-like features in B. Analogies among mammals,
for example, underlie the biomedical value of discovery in animal models.

1. The scope of recognizable parallels will depend on learned representations and com-
parison operators. Regularization (Section 8.4) can make representations more comparable;
useful comparison operators could potentially resemble relaxed unification and generalization
operators.
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Indeed, analogy permeates science, guiding both hypotheses and research
planning.

Analogy has been identified as central to cognition,! and reified networks
of analogies can form graphs in which relationships among abstractions are
themselves a domain of discourse. With suitable annotations, products of
generalization and analogy—new abstract expressions and relationships—are
candidates for addition to an NL* corpus.

9.4.4 Extending Knowledge Through (Soft) Inference

Natural language inference (NLI) is a major goal in NLP research, and recent
work describes a system (based on a large language model) in which NL state-
ments of rules and facts enable answers to NL questions (Clark, Tafjord, and
Richardson 2020). Inference mechanisms that exploit NL* — NL* operations
could potentially be useful in NLI pipelines, and in refining and extending
NL* corpora NL* — NL* inference could play a central role.

Regularizing and normalizing QNR representations (Section 8.4) can en-
able a kind of “soft formalization” based on continuous relaxations of formal
reasoning (modeled, for example, on logic programming, Section A1.4.1).
Rules can be represented as “if-then” templates (in logic, expressions with
unbound variables) in which successful unification of an expression with an
“if-condition” template narrows the values of attributes that, through corefer-
ence, then inform expressions constructed from “then-result” templates.?

Advances in neural mechanisms for conventional symbolic theorem-proving
(e.g., guiding premise selection) have been substantial.® Tt is reasonable to
expect that wrapping formal expressions in NL* descriptions—including
embeddings and generalizations of potential use contexts—could facilitate
heuristic search in automated theorem proving.

9.5 Credibility, Consensus, and Consilience

Humans examine, compare, contrast, correct, and extend information repre-
sented in NL literatures. Machines can do likewise with NL* content, and for

1. See Hofstadter (2009) and Gentner and Forbus (2011).

2. Unification-based machinery of this kind can implement Prolog-like computation with
applications to natural language inference (Weber etal. 2019).

3. Rocktédschel and Riedel (2016, 2017), Minervini et al. (2018), and Minervini et al. (2019)
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similar purposes,! a process that can exploit unification (and failure), together
with generalization and analogy.

9.5.1 Modeling and Extending Scholarly Literatures

The strategy of using NL as a baseline suggests seeking models for NL* corpora
in the scholarly literature, a body of content that includes both structures
that are broadly hierarchical (e.g., summary/body and section/subsection
relationships) and structures that correspond to more general directed graphs
(e.g., citation networks).

In abstracts, review articles, and textbooks, scholarly literatures summarize
content at scales that range from papers to fields. Proposed NL* constructs can
support similar patterns of expression, and can extend content summarization
to finer granularities without cluttering typography or human minds.

Scholarly citations can link to information that is parallel, supportive,
problematic, explanatory, or more detailed; in NL* syntax, analogous citation
functionality can be embodied in graphs and link contexts.

Through indexing, citations in scholarly literatures can be made bidirec-
tional,? enabling citation graphs to be explored through both cites-x and
cited-by-x relationships. For similar reasons, NL* links in fully functional
systems should (sometimes) be bi-directional.® In general, the structure and
semantics of citations and citing contexts can vary widely (document-level
remote citations are continuous with sentence-level coreference), and the
structure of NL* representations makes it natural to extend cites and cited-by
relationships to expressions finer-grained than NL publications.

Steps have been taken toward applying deep learning to improve the inte-
gration of scholarly literatures.* It will be natural to build on this work using
NL* tools to enrich NL* content .

9.5.2 Using Credibility, Consensus, and Consilience to Inform Judgments

As with NL, not all NL* content will be equally trustworthy and accurate. The
origin of information—its provenance—provides evidence useful in judging

1. Argumentation mining points in this direction (Moens 2018; Galassi et al. 2020; Slonim
etal. 2021).

2. In an awkward coarse-grained manner.

3. Note, however, that cited-by relationships can have massive fanout, a pattern of use that
may call for backward-facing structures richer than link-sets.

4. Jaradeh etal. (2019), M. Jiang et al. (2020), and Cohan et al. (2020)
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epistemic quality, a consideration that becomes obvious when considering
information derived from heterogeneous NL sources. Judgments of epistemic
quality can reflect not only judgments of individual sources (their credibility),
but also the consistency of information from different sources, considering
both consensus among sources of similar kind, and consilience among sources
that differ in kind.

Search by semantic similarity and comparison through structural and
semantic alignment provide a starting point, but where epistemic quality is
in question, provenance will often be key to resolving disagreements. Some
broad distinctions are important.

9.5.2.1 Informing judgments through provenance and credibility
Provenance is an aspect of context that calls for summarization. In a fully

functional system, embeddings (and potentially extended QNRs!) can summa-
rize both information sources and subsequent processing, providing descrip-
tive information that can be linked and accessed to derived content for deeper
examination. Provenance information helps distinguish broad concurrence
from mere repetitions—without tracking sources, repetitions may wrongly be
counted as indicating an informative consensus.

By analogy with (and leveraging) human judgment, systems can with some
reliability recognize problematic content that can range from common mis-
conceptions through conspiracy theories, fake news, and computational pro-
paganda.? Problematic content should be given little weight as a source of
information about its subject, yet may itself be an object of study.® Judg-
ments of quality can be iterative: The quality and coherence of content can be
judged in part by the quality and coherence of its sources, and so on, a process
that may converge on descriptions of more-or-less coherent but incompatible
models of the world together with accounts of their clashes.

Judging source quality in generally sound NL literatures is a familiar hu-
man task. In the experimental sciences, for example, we find a spectrum of
epistemic status that runs along these lines:

¢ Uncontroversial textbook content
¢ Reviews of well-corroborated results

1. Summaries (like other expressions) can be embodied in QNRs that provide increasing
detail with increasing syntactic depth.

2. See Martino et al. (2020).

3. In this context, the difference between toxic text and discussions that embed examples
of toxic text illustrates the importance of recognizing use-mention distinctions. Social media
filters today may suppress both advocates and critics of offensive views.
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* Reports of recent theory-congruent results

* Reports of recent surprising results

* Reports of recent theory-incongruent results
* Reports of actively disputed results

* Reports of subsequently retracted results

All of these considerations are modulated by the reputations of publishers
and authors.

Broadly similar indicators of quality can be found in history, economics,
current affairs, and military intelligence. The reliability of sources is typically
domain-dependent:! Nobel laureates may speak with some authority in their
fields, yet be disruptive sources of misinformation beyond it; a conspiracy
theorist may be a reliable source of information regarding software or restau-
rants. Although information about credibility can be propagated through a
graph, credibility is not well-represented as a scalar.

9.5.2.2 Informing judgments through consensus
In judging information, we often seek multiple sources and look for areas

of agreement or conflict—in other words, degrees of consensus. Relevant
aspects of provenance include the quality of individual sources, but also their

diversity and evidence of their independence.?

What amount to copying
errors may be indicated by sporadic, conflicting details. Lack of independence
can often be recognized by close similarity in how ideas are expressed.’

In judging information from (what are credibly considered to be) direct
observations, experiments, and experience, the quality of human sources may
play only a limited role. Established methods of data aggregation and statisti-
cal analysis will sometimes be appropriate, and while NL* representations
may be useful in curating that data, subsequent methods of inference may
have little relationship to NL* affordances. Inference processes themselves,
however, constitute a kind of algorithmic provenance relevant to downstream

representation and assessment of results.

9.5.2.3 Informing judgments through consilience
More powerful than consensus among sources of broadly similar kinds is con-

1. Domain-based assessments of credibility have been used in constructing knowledge
graphs from social-media sources: Abu-Salih etal. (2021).

2. Some of this evidence is found in surface features of NL texts (e.g., uses of specific words
and phrases); other evidence is found in features of semantic content.

3. Here, links to NL source text can be valuable: Literal wording may convey signals of
shallow repetition.
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silience, agreement of evidence from sources of qualitatively different kinds—
for example, agreement between historical records and radiocarbon dating,
or between an experimental result and a theoretical calculation. Judgment of
what constitutes “a difference in kind” is a high-level semantic operation, but
potentially accessible to systems that can recognize similarities and differences
among fields through their citation structures, focal concerns, methodologies,
and so on. Distinguishing consilience from mere consensus is a judgment
informed in part by provenance, and is key to robust world modeling. It calls
for modeling the epistemic structures of diverse areas of knowledge.

10 Architectures and Training

Extensions of current neural ML methods can leverage architectural
inductive bias and multitask learning to support the training of quasilin-
guistic neural systems with NL*-level expressive capacity.

The preceding sections suggest that QNR frameworks can implement power-
ful, tractable NL* functionality, provided that suitable representations can
be learned; the present section outlines potentially effective approaches to
learning based on adaptations of familiar architectures and training meth-
ods. Vector-labeled graph bottlenecks can provide a strong inductive bias,
while multitask learning and auxiliary loss functions can shape abstract rep-
resentations that are anchored in, yet substantially decoupled from, natural
languages. The final section outlines potential architectures for components
that control inference strategies.

10.1 General Mechanisms and Approaches

Following neural ML practice, the development of QNR-centered systems
calls, not for hand-crafting features, but for architectures that provide suit-
able components, capacity, and inductive bias, in conjunction with training
tasks that provide suitable datasets, objectives, and loss functions. General
mechanisms and approaches include:

* Employing NL — QNR interfaces to ensure QNR representations

* Employing QNR intermediate representations in NL — NL training
tasks

* Decoupling QNR representations from NL encodings

* Employing semantically rich training tasks with QNR objectives
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* Structuring QNR semantics through auxiliary, lattice-oriented training
* Applying QNR-domain inference to exploit QNR repositories

These mechanisms and approaches should be seen as facets of multitask
learning in which a key goal is to develop NL — QNR — NL systems! that
support broad applications. Pretrained NL — embedding — NL models (e.g.,
BERT and friends) are perhaps today’s closest analogues.

10.2 Basic Information Flows

Developing QNR-centered systems calls for encoders and decoders that can
link input and output channels to QNR-based representation and inference
mechanisms (Figure 10.1).

inputs j> QNR j> QNR j> outputs
i MPUS 571 encoder decoder [1/i OUPU'S

Figure 10.1: Information flows in minimalistic, QNR-bottleneck sys-
tems. Inputs and outputs may be multimodal.

* Potential inputs to encoders include text, but also images, symbolic
expressions, multimodal data streams,? and so forth.

* Potential outputs from decoders include translations, summaries, an-
swers to questions, retrieved content, classifications, and various prod-
ucts of downstream processing (images, engineering designs, agent
behaviors, and so on).

* Potential QNR operations range from simple pass-through (implement-
ing a QNR bottleneck® without QNR-domain inference) to inference
mechanisms that could employ QNR-based unification, generalization,
and reasoning methods* while drawing on stored QNR content (Fig-
ure 10.2).

1. Together with generalizations to multimodal inputs and outputs.
2. See for example J. Lu et al. (2019) and Desai and Johnson (2021).

3. Itis at least questionable whether the inductive bias provided by a simple QNR-bottleneck
architecture would outperform an otherwise similar but unconstrained encoder/decoder archi-
tectures in stand-alone NL — NL tasks. The use of a QNR-like bottleneck in Bear et al. (2020)
has led to strong performance, but small-scale QNR representations can be interchangeable
with vector embeddings that lack explicit graph structure (Section 7.3.1).

4. Note that open-ended reasoning likely calls for conditional computation; potentially
relevant architectural components and training methods are discussed in Cases et al. (2019),
Rosenbaum etal. (2019), and Banino, Balaguer, and Blundell (2021).
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Potential architectural building blocks range from MLPs and convolutional
networks to Transformers and the many varieties of graph neural networks.!
Architectures can employ building blocks of multiple kinds that collectively
enable differentiable end-to-end training (Section 7.2.3 discusses differentiable
representations of graph topology).

The current state of the art suggests Transformer-based building blocks
as a natural choice for encoding NL inputs and generating NL outputs.
Transformer-based models have performed well in knowledge-graph — text
tasks, (Ribeiro etal. 2020), and can in some instances benefit from training
with explicit syntax-graph representations.?

Encoders like those developed for scene-graph representation learning?
are natural candidates for QNR-mediated vision tasks. In both NL and vision
domains, encoders can produce vector/graph representations that, through
training and architectural bias, serve as QNRs. GNNs or graph-oriented
Transformers are natural choices both for implementing complex operations
and for interfacing to task-oriented decoders. Simple feed-forward networks
are natural choices for transforming and combining the vector components
of vector-labeled graphs. Systems that read and write expressions in QNR
corpora could employ scalable near-neighbor lookup in repositories indexed
by QNR-derived semantic embeddings (Section 9.1.2).

{ data, H\| QNR QNR QNR P\
: ; ] : i outputs
i queries encoder inference decoder B

e

QNR repository

Figure 10.2: Information flows in generic QNR systems augmented
by access to a repository of QNR content. In the general case, “QNR
inference” includes read/write access to repositories, producing models
that are in part pre-trained, but also pre-informed.

1. Reviewed in J. Zhou etal. (2020) and Wu etal. (2021). Transformers in effect operate
on fully connected graphs, but on sparse graphs, GNNs can provide greater scalability and
task-oriented inductive biases (Addanki et al. 2021), as well as more direct compatibility with
QNRs.

2. Currey and Heafield (2019) and Akoury, Krishna, and Iyyer (2019)

3. Including both image and joint image-language models; see Zellers et al. (2018), J. Yang
etal. (2018), Lee etal. (2019), and Bear et al. (2020).
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The analysis presented in previous sections suggests that QNRs can in
principle meet the criteria for representing NL*-level semantics, while the
capabilities of current neural systems suggest that architectures based on
compositions of familiar building blocks can implement the operations re-
quired for NL"-mediated functionality. The next question is how to train
such systems—how to combine tasks and inductive bias to produce encoders,
decoders, and processing mechanisms that provide the intended functionality.

10.3 Shaping QNR Semantics

Basic aspects of intended QNR semantics include non-trivial syntax in conjunc-
tion with NL-like representational capacity and extensions to other modalities.
These goals can be pursued through architectural inductive bias together with
training tasks in familiar domains.

10.3.1 Architectural Bias Toward Quasilinguistic Representations

Architectural inductive bias can promote the use of syntactically nontrivial
QNRs (rather than flat sequences of embeddings) to represent broadly NL-like
content. If learned representations follow the general pattern anticipated in
Section 8, QNR syntax would typically employ (at least) DAGs of substantial
depth (Section 8.1); leaf attributes would typically encode (at least) lexical-
level semantic information (Section 8.2), while attributes associated with
internal nodes would typically encode relationships, summaries, or modifiers
applicable to subsidiary expressions (Section 8.3).

Encoders and decoders could bias QNRs toward topologies appropriate
for expressing quasilinguistic semantics. Architectures can pass information
through QNR-processing mechanisms with further inductive biases—e.g.,
architected and trained to support soft unification—to further promote the
expression of computationally tractable, disentangled, quasilinguistic content.

10.3.2 Anchoring QNRs Semantic Content in NL

Although QNR representations have broader applications, it is natural to focus
on tasks closely tied to language. Transformers trained on familiar NL — NL
objectives (e.g., language modeling and sentence autoencoding) have produced
flat vector representations (vectors and vector-sequences) that support an
extraordinary range of tasks.! Training QNR-bottleneck architectures (NL —

1. X. Liu etal. (2019), Brown et al. (2020), and Y. Liu etal. (2020)
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QNR — NL) on the same NL — NL objectives should produce comparable (and
potentially superior) QNR representations and task performance. Potential
tasks include:

* Autoencoding NL text

* NL language modeling

* Multilingual translation

* Multi-sentence reading comprehension

+ Multi-scale cloze and masked language tasks'

It seems likely that developing NL*-level representations and mechanisms
would best be served, not by a pretraining/fine-tuning approach, but by
concurrent multitask learning. In this approach, optimization for individual
tasks is not an end in itself, but a means to enrich gradient signals and learned

representations.?

10.3.3 Extending QNR Representations Beyond Linguistic Domains

A further class of tasks, X — QNR— NL, would map non-linguistic inputs X
to NL, again mediated by (and training) QNR-based mechanisms. Potential
examples include:

* Predicting descriptions of images
* Predicting descriptions of human actions
* Predicting comments in code

A quite general class of tasks would encode information from a domain, de-
code to a potentially different domain, and train QNR — QNR components to
perform intermediate reasoning steps. Potential examples include the control
of agent behavior involving instruction, communication, and planning.?

10.4 Abstracting QNR Representations from NL

If NL* is to be more than a representation of NL, the training of QNR models
may require an inductive bias toward representations that are deliberately
decoupled from NL. Lexical-level vector embeddings already provide a useful

1. Re. multi-scale masking, see Joshi et al. (2020).

2. See McCann etal. (2018), X. Liu etal. (2019), Alex Ratner etal. (2018), and Alexander
Ratner et al. (2020).

3. Analogous language-infused mechanisms are described in Shah et al. (2018), Luketina
etal. (2019), and Lazaridou and Baroni (2020).
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bias in that they decouple representations from the peculiarities of NL vocab-
ularies. Massively multilingual tasks (translation, efc.) can further encourage
the emergence of representations that abstract from the features of particular
languages.! In current practice, combinations of multitask learning and ar-
chitectural bias have been employed to separate higher-level and lower-level
semantic representations.? It may be useful, however, to seek additional mech-
anisms for learning representations that are abstracted from NL.3 Supporting
this idea, recent work has found that disentangling semantics from NL syntax
is practical and can provide advantages in performing a range of downstream
tasks (Huang, Huang, and Chang 2021).

10.4.1 Abstracting QNR Representations From Word Sequences

Tasks and architectures can be structured to favor separation of abstract from
word-level representations.* A general approach would be to split and recom-
bine information paths in NL — NL tasks: An abstract QNR path could be
trained to represent predominantly high-level semantics and reasoning, while
an auxiliary path carries lexical-level information. To recombine these paths,
the high-level semantic path could feed a decoder that is also provided with
a set of words from the target expression permuted together with decoys.>
By reducing the task of producing correct NL outputs to one of selecting
and arranging elements from a given set of words, this mechanism could
shift a lexical-level, NL-specific burden—and perhaps the associated low-level
semantic content—away from the abstract, high-level path. To strengthen
separation, the gradient-reversal trick for domain adaptation® could be ap-
plied to actively “anti-train” the availability of word-specific information in
abstract-path representations.

1. See, for example, Arivazhagan etal. (2019), Y. Liu et al. (2020), and Tran et al. (2020).
2. Sanh, Wolf, and Ruder (2018) and Tamkin, Jurafsky, and Goodman (2020)

3. Fine-tuning to reintroduce NL-specific information would likely be useful for some
NL — NL applications.

4. For example, Wieting, Neubig, and Berg-Kirkpatrick (2020) separates semantic informa-
tion from language-specific information in a dual-language sentence-embedding task. See also
Bousmalis et al. (2016).

5. Alternatively, a deep, high-level path could be trained to refine a distribution over words
provided by a shallow, pretrained, high-perplexity language model.

6. Ganin and Lempitsky (2015) and Cai et al. (2019)
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10.4.2 Strategies for Learning Higher-Level Abstractions

Objective functions in NLP often score outputs by their correspondence to
specific sequences of target words. This objective is embedded in the defini-
tions of language modeling, masked language modeling, and typical cloze
tasks, while similar objectives are standard in NL translation. However, as
the size of target outputs increases—from single-word cloze tasks to filling
gaps on the scale of sentences, paragraphs, and beyond—predicting specific
word sequences becomes increasingly difficult or effectively impossible. When
the actual research objective is to manipulate representations of meaning,
lexical-level NL training objectives fail the test of scalability.

complete NL complete QNR
i expression j> :> (actual)
R - QNR v S Lidifference)
encoding “

j> QNR j> complete QNR
inference (predicted)

e

QNR repository

masked NL f>
expression

Figure 10.3: A semantic-completion task in which loss is based on
correspondence between QNR representations rather than decoded
text. QNR-completion objectives can provide semantic, NL-based com-
pletion tasks, e.g., describing (not replicating) the missing components
of an explanation, argument, story, proof, program, or neural archi-
tecture. To avoid collapsing representations, QNR encoders could
be frozen or concurrently shaped by additional training tasks (e.g.,
QNR-mediated NL autoencoding, translation, etc.; see Section 10.3.2)

Completion tasks! formulated in the QNR domain itself would better serve
this purpose. Useful QNR-domain completion tasks require QNR targets that
represent rich task-domain semantics, but we have already seen how NLP
tasks can be used for this purpose (Section 10.3.2). Products of such training
can include NL — QNR encoders that raise both inference processes and their
targets to the QNR domain (Figure 10.3).

1. In a general sense, completion tasks can include not only sequence prediction and cloze
tasks, but also question answering and other capabilities shown by language models in response
to prompts (see Brown et al. (2020)); prediction in abstracted (latent space) domains can also
support a range of tasks. See Oord, Li, and Vinyals (2019).
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With targets raised from NL to QNR representations, it should become prac-
tical to compare outputs to targets even when the targets represent complex
semantic objects with an enormous range of distinct yet nearly equivalent NL
representations. While it seems difficult to construct useful semantic-distance
metrics over word sequences, semantic-distance metrics in the QNR domain
can be relatively smooth.! Ambitious examples of completion tasks could
include completion of (descriptions of) code with missing functions, or of
mathematical texts with missing equations or proofs.

10.5 Training QNR x QNR — QNR Functions to Respect Lattice
Structure

The semantic-lattice properties discussed in Appendix Al correspond to an
algebra of information, but QNRs need not automatically respect this algebra.
In particular, absent suitable training objectives, operations on QNRs may
strongly violate the lattice axioms that constrain unification and generaliza-
tion.? Learning representations and functions that approximately satisfy the
lattice-defining identities (Section A1.2) can potentially act both as a regu-
larizer and as a mechanism for training operations that support principled
comparison, combination, and reasoning over QNR content.

Because the existence of (approximate) lattice operations over QNR repre-
sentations implies their (approximate) correspondence to (what can be inter-
preted as) an information algebra, we can expect that (approximately) enforc-
ing this constraint can improve the semantic properties of a representational
system. In addition, prediction of soft-unification scores (Section A1.4.3) can
provide an auxiliary training objective for content summaries (Section 8.3.4),
providing a distance measure with potential applications to structuring latent
spaces for similarity-based semantic retrieval (Section 9.1.2).

10.6 Processing and Inference on QNR Content

The above discussion outlined coarse-grained information flows and general
training considerations using block diagrams to represent units of high-level
functionality. The present section examines the potential contents of boxes

1. Aided by structural regularity (Section 8.4.) A similar approach might prove fruitful in
training models that produce flat vector representations, which naturally have smooth distance
metrics. This basic approach (predicting learned representations rather than raw inputs) is
applied in Larsen et al. (2016) and related work.

2. E.g., they may map approximately lattice-respecting to strongly lattice-incompatible sets
of representations.
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Figure 10.4: Outline of multitask architectures that include access to
external and QNR-based information repositories (e.g., the internet).
More arrows could be added.

labeled “QNR inference”. The aim here is not to specify a design, but to
describe features of plausible architectures for which the implementation
challenges would be of familiar kinds.

10.6.1 Control, Selection, and Routing

Tasks of differing complexity will call for different QNR inference mechanisms.
The null case is the identity function, single-path pass-through in a QNR-
bottleneck architecture. A more interesting case would be a single-path system
that performs QNR — QNR transformations (e.g., using a GNN) based on
a conditioning input. More powerful inference mechanisms could perform
QNR x QNR — QNR operations, potentially by means of architectures that
can learn (forms of) soft unification or anti-unification.

Toward the high end of a spectrum of complexity (far from entry level!),
open-ended QNR-based inference will require the ability to learn task- and
data-dependent strategies for storing, retrieving, and operating on QNRs
in working memory and external repositories. This complex, high-end func-
tionality could be provided by a controller that routes QNR values to operators
while updating and accessing QNR values by means of key and query based
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Figure 10.5: Block diagram decomposing aspects of architectures for
complex, open-ended QNR inference functionality. Both working
memory and an external repository store key-value pairs, and given a
query, will return one or more values associated with near-neighbor
keys in a semantic embedding space. Arrows labeled q and k (shown
explicitly in connection with external operations) represent query and
key embeddings used in storing and retrieving QNR values (v). An
elaboration of Figure 10.4 would show similar QNR inference func-
tionality in connection, not only with “QNR inference systems”, but
also with “reader-encoders” (which need not be distinct components).
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storage and retrieval.! Keys and queries, in turn, can be products of abstrac-
tive operations on QNRs. (In discussions of retrieval, argument passing, efc.,
“a QNR” is operationally a reference to a node in a graph that may be of
indefinite extent.)

Note that “reasoning based on QNRs” can employ reasoning about QNR
processing by means of differentiable mechanisms that operate on flat vector
representations in a current task context.? Reinforcement learning in con-
junction with memory retrieval has been effective in multi-step reasoning
(Banino et al. 2020), as have models that perform multi-step reasoning over
differentiable representations and retrieve external information to answer
queries (Bauer, Wang, and Bansal 2018).

10.6.2 Encoders

QNR encoders accept task inputs (word sequences, images, etc.) and produce
sparse-graph outputs. Natural implementation choices include Transformer-
like attention architectures that initially process information on a fully con-
nected graph (the default behavior of attention layers) but apply progressively
sharpened gating functions in deeper layers. Gating can differentiably weight
and asymptotically prune arcs to sparsen graphs that can then be read out as
discrete structures. A range of other methods could be applied to this task.
Optional discretization at a sparse-graph readout interface breaks differen-
tiability and cannot be directly optimized by gradient descent. This difficulty
has been addressed by means that include training-time graph sampling with
tools from reinforcement learning (Kazi et al. 2020) and other mechanisms
that learn to discretize or sparsen through supervision from performance
on downstream tasks (Malinowski etal. 2018; Zheng etal. 2020). Systems
with potentially relevant mechanisms learn dynamic patterns of connectiv-
ity on sparse graphs (Velickovic et al. 2020) and address problems for which
the solution space consists of discrete graphs (Cappart etal. 2021). Because

1. In considering how this functionality might be structured, analogies to computer architec-
tures (both neural and conventional) may be illuminating. For example, analogies with stored-
program (i.e., virtually all) computers suggest that memory stores can usefully contain QNRs
that describe executable inference procedures. See related work in Gulcehre etal. (2018), Le,
Tran, and Venkatesh (2020), and Malekmohamadi, Safi-Esfahani, and Karimian-kelishadrokhi
(2020).

2. A psychological parallel is the use of general, fundamental “thinking skills” in reasoning
about declarative memory content. Skills in this sense can be implicit in a processing mecha-
nism (an active network rather than a repository) and are applied more directly than explicit
plans.
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arcs in QNRs can define paths for information flow in computation (e.g., by
graph neural networks), methods for training computational-graph gating
functions in dynamic neural networks! are potentially applicable to learning
QNR construction.

10.6.3 Decoders

Standard differentiable neural architectures can be applied to map QNRs to
typical task-domain outputs. A natural architectural pattern would employ
GNNs to process sparse graphs as inputs to downstream Transformer-like
attention models. Where the intended output is fluent natural language,
current practice suggests downstream processing by large pretrained language
models adapted to conditional text generation;? potentially relevant examples
include models that condition outputs on sentence-level semantic graphs.>

10.6.4 Working and External Memory Stores

Working memory and external repositories have similar characteristics with
respect to storage and retrieval, but differences in scale force differences in
implementation. In particular, where stores are large, computational consider-
ations call for storage that is implemented as an efficient, scalable, potentially
shared database that is distant (in a memory-hierarchy sense) from task-
focused computations.* In the approach suggested here, both forms of storage
would, however, retrieve values based on similarity between key and query
embeddings.

10.6.5 Unary Operations

Unary operations apply to single graphs. Popular node-convolutional GNNs
use differentiable message-passing schemes to update the attributes of a graph,
and can combine local semantic information to produce context-informed
representations. Different networks could be applied to nodes of different
semantic types. The values returned by unary operations may be QNRs or
embeddings (e.g., keys, queries, or abstractive summaries).

1. Reviewed in Han etal. (2021)
2. E.g., Keskar etal. (2019).
3. E.g., Mager etal. (2020).

4. Fu etal. (2018), J. Wang etal. (2018), Johnson, Douze, and Jégou (2019), and Jayaram
Subramanya et al. (2019)
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Unary operations may also transform graphs into graphs of a different
topology by pruning arcs (a local operation), or by adding arcs (which in
general may require identifying and linking potentially remote nodes).! Ex-
amples of neural systems with the latter functionality were noted above.? A
local topology-modifying operation could (conditionally) pass potential arcs
(copies of local references) as components of messages.>

10.6.6 Graph Alignment

Graph alignment (“graph matching”) is a binary operation that accepts a pair
of graphs as arguments and (when successful) returns a graph that repre-
sents a (possibly partial) node-correspondence relationship between them
(Section 7.2.4). Return values could range in form from a node that designates
a pair of corresponding nodes in the arguments, to a representation that in-
cludes a distinguished set of arcs (potentially labeled with vector embeddings)
that represent relationships among all pairs of corresponding nodes.

Several neural matching models have been demonstrated, some of which
are relatively scalable.* Graph alignment could be a pretrained and fine-tuned
function.

10.6.7 Lattice Operations

Lattice operations (unification and generalization, Appendix Al). are binary
operations that include mechanisms for graph alignment and combination.
Soft lattice operations differ from matching in that they return what is se-
mantically a single graph. Like graph alignment, lattice operations could
be pretrained and fine-tuned, or could serve as auxiliary training tasks in
learning QNR inference. Neural modules pretrained to mimic conventional

1. A related operation would accept a graph referenced at one node and return a graph
referenced at another, representing the result of a graph traversal.

2. Velickovié et al. (2020) and Cappart et al. (2021)

3. This is the fundamental topology-modifying operation employed by object capability
systems (Noble etal. 2018): A node A with message-passing access to nodes B and C can pass
its node-B access (a “capability”) to node C; node A may or may not retain its access to C
afterward. This operation can be iterated to construct arcs between what are initially distant
nodes in a graph. Intuitively, access-passing is semantically well motivated if the “need” for a
more direct connection from B to C can be communicated through messages received by A. See
also Velickovi¢ et al. (2020).

4.Y. Lietal (2019), Sarlin et al. (2020), Y. Bai et al. (2020), and Fey et al. (2020)
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algorithms for unification and generalization could potentially serve as build-
ing blocks for a range of inference algorithms that operate on soft lattices and

rich semantic representations.!

11 Potential Application Areas

Potential applications of QNR/NL* functionality include and extend ap-
plications of natural language. They include human-oriented NLP tasks
(translation, question answering, semantic search), but also inter-agent
communication and the integration of formal and informal represen-
tations to support science, mathematics, automatic programming, and
AutoML.

QNR/NL™ frameworks are intended to support wide-ranging applications
both within and beyond the scope of natural language. The present section
sketches several potential application areas: first, applications to tasks nar-
rowly centered on language—search, question answering, writing, translation,
and language-informed agent behavior—and then a range of applications in
science, engineering, mathematics, software, and machine learning, including
the general growth and mobilization of knowledge in human society. The dis-
cussion will assume success in developing high-level QNR/NL* capabilities.

11.1 Language-Centered Tasks

Tasks that map NL inputs to NL outputs are natural applications of NL*-based
models. These tasks include internet search, question answering, translation,
and writing assistance that ranges from editing to (semi)autonomous content
creation.

11.1.1 Search and Question Answering

In search, NL* representations can provide a semantic bridge between NL
queries and NL documents that employ different vocabularies. Search and
question-answering (QA) models can jointly embed queries and content, en-
abling retrieval of NL content by semantic similarity search? anchored in the

1. See Velickovi¢ and Blundell (2021) and included references.
2. Reviewed inYe Zhang et al. (2017) and Mitra and Craswell (2018).
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NL* domain; beyond comparing embeddings, direct NL* to NL* comparisons
can further refine sets of potential search results.

Alternatively, language models conditioned on queries (and potentially on
models of readers’ style preferences) can translate retrieved NL* semantic
content to fluent NL answers. QA fits well with document search, as illustrated
by Google’s information boxes: The response to a search query can include
not only a set of documents, but information abstracted from the corpus.

In a broader application, NL*-based models could generate extended an-
swers that are more comprehensive, more accurate, and more directly respon-
sive to a query than any existing NL document. With the potential for dense
linking (perhaps presented as in-place expansion of text and media), query-
responsive information products could enable browsing of internet-scale
knowledge corpora through presentations more attractive and informative
than conventional web pages.

11.1.2 Translation and Editorial Support

Translating and editing, like QA, call for interpreting meaning and producing
results conditioned on corpus-based content and priors. Differences include a
greater emphasis on lengthy inputs and on outputs that closely parallel those
inputs, with access to specific knowledge playing a supporting rather than
primary role. During training, massively multilingual translation tasks have
produced language-invariant intermediate representations (interlinguas');
we can expect similar or better interlingua representations—and associated
translations—in systems that employ NL — NL* — NL architectures. Priors
based on the frequency of different patterns of semantic content (not phrases)
can aid disambiguation of NL source text.

The task of machine-aided editing is related to translation: Reproducing
semantic content while translating from language to language has much in
common with transforming a rough draft into a refined text; stretching the
notion of reproducing semantic content, a system might expand notes into
text while retaining semantic alignment.? It is again natural to exploit priors
over patterns of expression to help interpret inputs and generate outputs.
Access to knowledge from broad, refined corpora could greatly enrich content
when expanding notes. The graph structure of hypertext makes QNRs a good
fit to NL*-supported authoring of online NL content.

1. See Y. Lu etal. (2018) and Arivazhagan etal. (2019).

2. A limiting case of this task would be semi-autonomous production of content, potentially
on a large scale, guided by only the most general indications of purpose; see Section 12.2.
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As a specific, high-leverage application, such tools could help contributors
expand and improve Wikipedia content. Systems that compile, refine, and
access a QNR translation of Wikipedia would be a natural extension of current
research on the use of external information stores.! Human contributors could
play the roles that they do today, but aided by generative models that draw on
refined NL* corpora to suggest corrected and enriched content.

Most of what people want to express either repeats what has been said
elsewhere (but rephrased and adapted to a context), or expresses novel con-
tent that parallels or merges elements of previous content. Mechanisms for
abstraction and analogy, in conjunction with examples and priors from ex-
isting literatures, can support interactive expansion of text fragments and
hints to provide what is in effect a more powerful and intelligent form of
autocomplete.

Similar functionality can be applied at a higher semantic level. Responsible
writers seek to avoid factual errors, which could be identified (provisionally!)
by clashes between the NL* encoding of a portion of a writer’s draft and
similar content retrieved from an epistemically high-quality NL* corpus.?
Writers often prefer, not only to avoid errors, but to inform their writing with
knowledge that they do not yet have. Filling semantic gaps, whether these
stem from omission or error removal, can be regarded as a completion task
over abstract representations (Section 10.4.2). Semantically informed search
and generative models could retrieve and summarize candidate documents for
an author to consider, playing the role of a research assistant;> conditional lan-
guage models, prompted with context and informed by external knowledge*
could generate substantial blocks of text, playing the role of a coauthor.

11.1.3 (Semi)Autonomous Content Creation

Social media today is degraded by the influence of MIsinformed and un-
sourced content, a problem caused (in part) by the cost of finding good infor-

1. Verga etal. (2020), Guu etal. (2020), and Xu etal. (2020) discuss Wikipedia-oriented
systems.

2. To enable retrieval of similar yet potentially clashing content, (some) embeddings should
represent, not the concrete semantic content of expressions (in effect, answers to potential
questions), but the kinds of questions that the content can answer, an important distinction
noted above. Relevant clashes would then be indicated by failures of partially successful
attempts at soft unification between new and retrieved content.

3. Because statements may provide support for other statements, providing such material
is related to argumentation, where automated, corpus-based methods are an area of active
research; for example, see Lawrence and Reed (2020) and Slonim et al. (2021).

4. A process illustrated by Xu et al. (2020).
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mation and citing sources, and (in part) by fact-indifferent actors with other
agendas. Well-informed replies are relatively costly and scarce, but mob-noise
and bot-spew are abundant.

As a human-mediated countermeasure, responsible social media partic-
ipants could designate targets for reply (perhaps with a hint to set direc-
tion) and take personal responsibility for authorship while relying on semi-
autonomous mechanisms for producing (drafts of) content. As a fully auto-
nomous countermeasure, bots created by responsible actors could scan posts,
recognize problematic content, and reply without human intervention. Ac-
tors that control social media systems could use analogous mechanisms in
filtering, where a “reply” might be a warning or deletion. Acceptable, fully
effective countermeasures to toxic media content are difficult to imagine, yet
substantial improvements at the margin may be both practical and quite
valuable.

11.2 Agent Communication, Planning, and Explanation

Human agents use language to describe and communicate goals, situations,
and plans for action; it is reasonable to expect that computational agents can
likewise benefit from (quasi)linguistic communication.! If NL* representa-
tions can be strictly more expressive than NL, then NL* can be strictly more
effective as a means of communication among computational agents.
Internal representations developed by neural RL agents provide another
point of reference for potential agent-oriented communication. Some systems
employ memories with distinct, potentially shareable units of information
that can perhaps be viewed as pre-linguistic representations (e.g., see Ban-
ino etal. (2020)). The limitations inherent in current RL-agent representa-
tions suggest the potential for gains from language-like systems in which the
compositional elements express durable, shareable, strongly compositional
abstractions of states, conditions, actions, effects, and strategies.
QNR/NL*-based representations can combine unnamable, lexical-level ab-
stractions with lexical-level elements that describe semantic roles, confidence,
relative time, deontic considerations, and the like—in other words, semantic
elements like those often expressed in NL by function words and TAM-C
modifiers (Section 5.3.3, Section 5.3.4, and Section A3.3). The role of NL in
human communication and cognition suggests that NL* representations can

1. For examples of related work, see Shah et al. (2018) and Abramson et al. (2021). Relatively
simple linguistic representations have emerged spontaneously; see Mordatch and Abbeel (2018)
and Lazaridou and Baroni (2020).
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contribute to both inter- and intra-agent performance, sometimes competing
with tightly coupled, task-specific neural representations.

Communication between humans and RL agents can benefit from language.
Although reinforcement learning can enable unaided machines to outperform
human professionals even in complex games,! human advice conveyed by NL
can speed and extend the scope of reinforcement learning.? Conversational
applications provide natural mechanisms for clarification and explanation—
in both directions—across machine-human interfaces, potentially improving
the human value and interpretability of Al actions.

Given suitable NL* descriptions and task-relevant corpora, similarity search
could be applied to identify descriptions of similar situations, problems, and
potentially applicable plans (including human precedents); mechanisms like
those proposed for knowledge integration and refinement (Section 9.4) could
be applied to generalize through analogy and fill gaps through soft unifica-
tion. Widely used content would correspond to “common sense knowledge”
and “standard practice”.® Like natural language, NL* representations could
support both strategic deliberation and concrete planning at multiple scales.

Agents with access to large knowledge corpora resemble humans with
access to the internet: Humans use search to find solutions to problems
(mathematics, travel, kitchen repairs); computational agents can do likewise.
Like human populations, agents that are deployed at scale can learn and pool
their knowledge at scale. Frequent problems will (by definition) seldom be
newly encountered.

11.3 Science, Mathematics, and System Design

Although research activities in science, mathematics, engineering, and soft-
ware development differ in character, they share abstract tasks that can be
framed as similarity search, semantic alignment, analogy-building, clash de-
tection, gap recognition, and pattern completion. Advances in these fields
involve an ongoing interplay between:

1. Including games that require long-term planning (Vinyals et al. 2019; OpenAl et al. 2019).

2. Luketina et al. (2019) reviews progress and calls for “tight integration of natural language
understanding into RL”.

3. As noted above, it is reasonable to expect that the most general and frequently used kinds
of knowledge would be encoded, not in declarative representations that enable multi-step
inference, but in model parameters that enable direct decision and action; this distribution
of functionality would parallel Kahneman’s System-1/System-2 model of human cognition
(Kahneman 2011).
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* Tentative proposals (hypotheses in science, proof goals in mathematics,
design concepts in engineering and software development),

* Domain-specific constraints and enablers (evidence in science, theorems
in mathematics, requirements and available components in engineering
and software development), and

* Competition between alternative proposals judged by task-specific cri-
teria and metrics (maximizing accuracy of predictions, generality of
proofs, performance of designs; minimizing relevant forms of cost and
complexity).

These considerations highlight the ubiquitous roles of generative processes
and selection criteria, and a range of fundamental tasks in science, mathemat-
ics, engineering, and software development can be addressed by generative
models over spaces of compositional descriptions. These can be cast in terms
of QNR affordances:

Given a problem, if a corpus of QNRs contains descriptions of related
problems together with known solutions, then similarity search on problem-
descriptions! can retrieve sets of potentially relevant solutions. Joint semantic
alignment, generalization, and analogy-building within problem/solution sets
then can suggest a space of alternatives that is likely to contain solutions—or
near-solutions—to the problem at hand. In conjunction with an initial problem
description, such representation spaces can provide priors and constraints on
generative processes,” and generated candidate solutions can be tested against
task-specific acceptance criteria and quality metrics. These considerations
become more concrete in the context of specific task domains.

11.3.1 Engineering Design

[T |hink of the design process as involving, first, the generation of
alternatives and, then, the testing of these alternatives against a whole
array of requirements and constraints. There need not be merely a
single generate-test cycle, but there can be a whole nested series of such

cycles.
y — Herbert Simon?

1. Along with filtering based on detailed comparisons.

2. Pattern completions may suggest structures; sampling guided by embeddings may suggest
components.

3. Simon (1988). Note that Simon describes planning as a design process.
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Typical engineering domains are strongly compositional, and aspects of
compositionality—modularity, separation of functions, standardization of
interfaces—are widely shared objectives that aid not only the design and mod-
eling of systems, but also production, maintenance, and reuse of components
across applications. Representations used in the design and modeling of engi-
neering systems typically comprise descriptions of components (structures,
circuits, motors, power sources...) and their interactions (forces, signals,
power transmission, cooling...). In engineering practice, natural language
(and prospectively, NL") is interwoven with formal, physical descriptions of
system-level requirements, options, and actual or anticipated performance.
As Herbert Simon has observed, design can be seen as a generate-and-test
process—a natural application of generative models.! A wide range of pro-
posed systems can be tested through conventional simulation.?

In engineering, even novel systems are typically composed (mostly or en-
tirely) of hierarchies of subsystems of familiar kinds.> The affordances of QNR
search and alignment are again applicable: Embedding and similarity search
can be used to query design libraries that describe options at various levels of
abstraction and precision; descriptions can be both physical and functional,
and can integrate formal and informal information. Semantic alignment and
unification provide affordances for filling gaps—here, unfilled functional
roles in system architectures—to refine architectural sketches into concrete
design proposals. The generation of novelty by soft-lattice generalization and
combination operations (Appendix A1) could potentially enable fundamental
innovation.

Because engineering aims to produce systems that serve human purposes,
design specifications—requirements, constraints, and optimization criteria—
must fit those purposes. The development of formal specifications is an
informal process that can benefit from QNR affordances that include anal-
ogy, pattern completion, and clash detection, as well as applications of the
commonsense knowledge needed to choose obvious defaults, reject obvious
mistakes, and identify considerations that call for human attention.

1. See discussions in Kahng (2018), Liao etal. (2019), and Oh et al. (2019). Machine-aided
interactive design (Deshpande and Purwar 2019) and imitation learning can also help to
generate proposals; see Raina, McComb, and Cagan (2019), Raina, Cagan, and McComb (2019),
and Ganin etal. (2021).

2. Or using ML-based simulation methods, which are of increasing scope and quality. In
particular, advances in ML-based molecular simulation (reviewed in Noé et al. 2020) can be
expected to facilitate molecular systems engineering.

3. Illustrated by work in Stump et al. (2019), Mo etal. (2019), and Chen and Fuge (2019).
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11.3.2 Scientific Inquiry

Science and engineering often work closely together, yet their epistemic tasks
are fundamentally different: Engineering seeks to discover multiple options
for achieving purposes, while science seeks to discover uniquely correct de-
scriptions of things that exist. Science and engineering intertwine in practice:
Scientists exploit products of engineering (telescopes, microscopes, particle
accelerators, laboratory procedures...) when they perform observations and
experiments, while engineers engage in science when they ask questions that
cannot be answered by consulting models.
Potential applications of QNR affordances in science include:

* Translating NL publications into uniform, searchable representations
* Applying unification to combine and extend partial descriptions

* Applying unification to identify clashes between descriptions

* Applying analogies from developed fields to identify gaps in new fields
* Applying analogies to suggest hypotheses that fill those gaps

* Matching experimental objectives to experimental methods

* Matching questions and data to statistical methods

* Assessing evidence with attention to consensus

* Assessing evidence with attention to consilience

* Enabling ongoing updates of inferential dependency structures

Applications like these need not automate scientific judgment: To provide
value, they need only provide useful suggestions to human scientists. Devel-
opments along these lines would extend current directions in applying ML to

scientific literatures.!

11.3.3 Mathematics

You have to guess a mathematical theorem before you prove it; you

have to guess the idea of the proof before you carry through the details.

You have to combine observations and follow analogies; you have to try
dt .

ane Ty agam —George Pélya?

In mathematical applications, proposed QNR/NL* frameworks could wrap

formal, symbolic structures in soft descriptions® that can be applied to help

1. E.g., M. Jiang et al. (2020) and Raghu and Schmidt (2020)
2. Pélya (1990)
3. Szegedy (2020) suggests deriving formal expressions from NL text.
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recognize analogies and express purpose, and these capabilities can operate at
multiple levels of granularity. Pélya observes that discovery in mathematics
involves generate-and-test cycles guided by soft considerations, and modern
deep learning confirms the value of soft matching in guiding theorem proving.
Better neural representations can improve ML-informed premise selection,’
slowing the explosive growth of deep proof trees by improving the success rate
of generate-and-test cycles. Graph neural networks that operate on syntactic
structures can provide useful embeddings (M. Wang et al. 2017), and enrich-
ing formal symbolic representations with soft semantic descriptions (e.g., of
known use-contexts) should enable further gains. Pélya emphasizes the im-
portance of analogy, a kind of soft, structured generalization (Section A1.1.2).
The formal (hence more restrictive) lattice operation of generalization by anti-
unification has been applied to analogical reasoning in symbolic mathematics
(Guhe etal. 2010); embedding symbolic structures in soft representations
could extend the scope of potential generalizations.

11.4 Software Development and AutoML

Applications of neural ML to software development are under intense explo-
ration.? Language models can support interactive, text-based code completion
and repair;’ recent work has demonstrated generation of code based on doc-
strings.* GNNs could operate on structured representations (syntactic and
semantic graphs) while also exploiting function names, variable names, com-
ments, and documentation as sources of information and targets for prediction
in representation encoding and decoding. QNRs can provide affordances for
enriching syntactic structures with semantic annotations and the results of
static program analysis,” and for wrapping code objects (both implemented
and proposed) in descriptions of their requirements and functionality.

1. See Kucik and Korovin (2018), Bansal et al. (2019), and Ferreira and Freitas (2020).

2. See for example Polosukhin and Skidanov (2018), Camacho and Mcllraith (2019), Wang
and Christodorescu (2019), and Odena et al. (2020). IBM recently released a training set that
includes 14 million code samples comprising about 500 million lines of code (Puri 2021).

3. W. Wang et al. (2020), Feng et al. (2020), Tarlow et al. (2020), and Svyatkovskiy et al. (2021)

4. Transformer-based models trained on GitHub Python code are good enough to be of
practical value, but they are error-prone and success rates decline exponentially with increasing
docstring length Chen et al. (2021); worse, 40% of the code has been found to contain potentially
exploitable bugs (Pearce etal. 2021).

5. A thorough exploitation of pre-processing in the symbolic domain would provide neural
networks with graph-structured inputs that encode not only syntax trees, but data structures,
inferred types, data flow, and flow of control. See Allamanis, Brockschmidt, and Khademi
(2018), Cummins et al. (2020), and Guo etal. (2021), and the discussion in Tarlow et al. (2020).
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QNR representations have a different (and perhaps closer) relationship
to automated machine learning (AutoML!), because neural embeddings and
graphs seem particularly well-suited to representing the soft functionality
of neural components in graph-structured architectures. Again, generate-
and-test processes guided by examples, analogies, and pattern completion
could inform search in design spaces,” while the scope of these spaces can
embrace not only neural architectures, but their training methods, software
and hardware infrastructures, upstream and downstream data pipelines, and
more.

12 Aspects of Broader Impact

The breadth of potential applications of QNR-based systems makes
it difficult to foresee (much less summarize) their potential impacts.
Leading considerations include the potential use and abuse of linguistic
capabilities, of agent capabilities, and of knowledge in general. Systems
based on QNR representations promise to be relatively transparent and
subject to correction.

Potential roles for QNR/NL*-enabled capabilities are extraordinarily broad,
with commensurate scope for potential benefits and harms.?> Channels for
potential QNR/NL* impacts can be loosely divided into core semantic func-
tionalities (applications to knowledge in a general sense), semantic function-
alities at the human interface (processing and production of natural language
content), and potential roles in Al agent implementation and alignment. Most
of the discussion here will be cast in terms of the NL* spectrum of potential
QNR functionality.

12.1 Broad Knowledge Applications

Many of the potential benefits and harms of QNR/NL*-enabled developments
are linked to large knowledge corpora and their applications. Several areas
of potential impact are closely related to proposed core functionalities of
knowledge integration and access.

1. Real etal. (2020) and He, Zhao, and Chu (2021)
2. You, Ying, and Leskovec (2020), Radosavovic et al. (2020), and Ren et al. (2021)

3. For a survey of a range of potential harms, see Brundage et al. (2018).
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12.1.1 Integrating and Extending Knowledge

Translation of content from NL corpora to corresponding NL* can enable the
application of QNR-domain mechanisms to search, filter, refine, integrate, and
extend NL-derived content, building knowledge resources for wide-ranging
applications. To the extent that improving the quality of knowledge is on the
whole beneficial (or harmful), we should expect net beneficial (or harmful)
impacts.

12.1.2 Mobilizing Knowledge

Translation of NL expressions (statements, paragraphs, documents...) to
corresponding NL* representations promises to improve semantic embed-
dings and similarity search at scale (Section 9.1.5), helping search systems
“to organize the world’s information and make it universally accessible and
useful” (Google 2020) through higher-quality semantic indexing and query
interpretation. Generation of content through knowledge integration could
go beyond search to deliver information that is latent (but not explicit) in
existing corpora. It is reasonable to expect beneficial first-order impacts.

12.1.3 Filtering Information

To the extent that NL — NL* translation is effective in mapping between NL
content and more tractable semantic representations, filtering of information’
in the NL* domain can be used to filter NL sources. Potential applications
span a range that includes both reducing the toxicity of social media and
refining censorship in authoritarian states. In applications of language models,
filtering based on disentangled representations of knowledge and outputs

could mitigate leakage of private information.>

12.1.4 Surveillance and Intelligence Analysis

Surveillance and intelligence analysis are relatively direct applications of QNR-
enabled knowledge mobilization and integration, and the balance of impacts
on security, privacy, and power relationships will depend in part on how

1. E.g., based on multi-source consistency, consensus, coherence, consilience, and prove-
nance (Section 9.5.2). Current filtering methods appear to rely heavily on judgments of source
quality (a domain-insensitive, non-content-based proxy for epistemic reliability), perhaps the
simplest use of provenance.

2. A problem discussed in Carlini et al. (2021).
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information is filtered, shared, and applied. Mapping raw information into
structured semantic representations could facilitate almost any application,
with obvious potential harms. To mitigate harms, it will be important to
explore how filtering of raw information could be applied to differentially
enable legitimate applications: For example, disentangled compositional
representations could be more easily redacted to protect sensitive information
while providing information necessary for legitimate tasks.

12.2 Producing QNR-Informed Language Outputs at Scale

We should expect to see systems that translate NL* content into NL text! with
fluency comparable to models like GPT-3, and do so at scale. Automated,
NL*-informed language production, including support for human writing
(Section 11.1.2), could expand quantity, improve quality, and customize the
style and content of text for specific groups or individual readers. These
capabilities could support a range of applications, both beneficial and harmful.

12.2.1 Expanding Language Output Quantity

Text generation enabled by language models has the potential to produce
tailored content for social media economically and at scale: Human writers are
typically paid ~0.20 US$/word,?) about 1,000,000 times the cost of querying
an efficient Transformer variant.? It is reasonable to expect that NL*-informed
outputs will have broadly similar costs, orders of magnitude less than the
costs of human writing, whether these costs are counted in money or time.
Put differently, text output per unit cost could be scaled by a factor on the
rough order of 1,000,000. Even when constrained by non-computational costs
and limitations of scope, the potential impact of automated text generation is
enormous.

12.2.2 Improving Language Output Quality

Applications of language-producing systems will depend in part on domain-
dependent metrics of output quality: Higher quality can both expand the
scope of potential applications and decrease the costs of human supervision,

1. Translation would be subject to semantic imprecision due to differences in expressive
capacity.
2. Approximately—range of compensation is substantial (e.g., see Tee (2021).

3. An optimized (“FastFormer”) model derived from BERT can perform inference at a cost
of about 18 US$/100 million queries (Kim and Hassan 2020).
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while changing the nature and balance of potential impacts. Relative to
opaque language models, systems informed by NL* corpora can improve
abilities:

* To judge, incorporate, and update factual content
* To perform multi-step, multi-source inference
* To apply inference to refine and expand knowledge stores

Current models based on opaque, learned parameters have difficulties in all
these areas; overcoming these difficulties could greatly expand the scope of
potential applications.

12.2.3 Potentially Disruptive Language Products

The most obvious societal threats from NL*-based language capabilities
stem from their ability to produce coherent content that draws on extensive
(mis)information resources—content that mimics the markers of epistemic
quality without the substance. The magnitude of this threat, however, must
be judged in the context of other, broadly similar technologies.

Systems based on large language models are becoming fluent and poten-
tially persuasive while remaining factually unreliable: They can more easily
be applied to produce plausible misinformation than informed content. Un-
fortunately, the current state of social media suggests that fluent, persuasive
outputs based on false, incoherent information—whether from conspiracy
fans or computational propaganda—can be disturbingly effective in degrading
the epistemic environment.! This suggests that the marginal harms of mak-
ing misinformation more coherent, better referenced, etc., may be relatively
small.? To the extent that capabilities are first deployed by responsible actors,
harms could potentially be mitigated or delayed.

1. Existing language models have spurred concerns regarding abuse, including scaling of
social-engineering attacks on computer security and of computational propaganda in public
discourse (See Woolley and Howard (2017) and Howard (2021)). In part as a consequence of
such concerns (Solaiman et al. (2019), and Brown et al. (2020), Section 6.1), OpenAl restricted
access to its GPT-3 model.

2. One may hope that influential audiences that have in the past been susceptible to docu-
ments with misleading but apparently high-quality content (e.g., academics and policymakers)
would also respond to prompt, well-targeted, high-quality critiques of those documents. Re-
sponding promptly would leave less time for misleading information to spread unchecked and
become entrenched as conventional wisdom.
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12.2.4 Potentially Constructive Language Products

Generating low-quality content is easy for humans and machines, and argu-
ments (whether for bad conclusions or good) can cause collateral damage
when they inadvertently signal-boost false information; conversely, argu-
ments (regardless of the merits of their conclusions) can produce what might
be described as “positive argumentation externalities” when their content
signal-boosts well-founded knowledge Although the potential harms of facil-
itating the production of (apparently) high-quality misinformation may be
marginal, the potential benefits of facilitating the production of high-quality
information seem large.

It would be difficult to exaggerate the potential value of even moderate
success in damping pathological epistemic spirals and enabling information
to gain traction based on actual merit. Authors who employ freely available
tools to produce better-written, better-supported, more abundant content
(drawing audiences, winning more arguments) could raise the bar for others,
driving more widespread adoption of those same tools. Epistemic spirals can
be positive.!

12.3 Agent Structure, Capabilities, and Alignment

Section 11.2 discussed NL* representations as potential enablers for agent
performance—for example, by supporting the composition of plan elements,
retrieval of past solutions, and advice-taking from humans. In considering
potential impacts, opportunities for improving transparency and alignment
become particularly important.

12.3.1 Agent Structure

A long-standing model of advanced Al capabilities takes for granted a central
role for general, unitary agents, often imagined as entities that learn much as
a human individual does. The Al-services model® challenges this assumption,
proposing that general capabilities readily could (and likely will) emerge
through the expansion and integration of task-oriented services that—crucially
for potential generality—can include the service of developing new services.

In the Al-services model, broad knowledge and functionality need not be
concentrated in opaque, mind-like units, but can instead emerge through

1. Effective altruists please take note.
2. Drexler (2019)
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aggregation over large corpora of knowledge and tools, potentially informed
both by pre-existing human-generated corpora and by massively parallel
(rather than individual) experience of interaction with the world. The AlI-
services model fits well with the QNR/NL* model of scalable, multimodal
knowledge aggregation and integration.

12.3.2 Agent Capabilities

Also in alignment with the Al-services model of general intelligence, the
ability of relatively simple agents to access broad knowledge and tool sets!
could amplify their capabilities. This prospect lends credence to long-standing
threat models in which agents rapidly gain great and potentially unpredictable
capabilities; the mechanisms differ, but the potential results are similar.

Classic Al-risk scenarios commonly focus on Al capabilities that might
emerge from an immense, opaque, undifferentiated mass of functionality,
a situation in which agents might pursue unexpected goals by unintended
means. It may be safer to employ task-oriented agents (and compositions
of agents) that operate within action- and knowledge-spaces that are bet-
ter understood and do not grossly exceed task requirements.” Basing func-
tionality on bounded, differentiated resources provides affordances for observ-
ing “what a system is thinking about” and for constraining “what an agent can
know and do”, potentially powerful tools for interpreting and constraining an
agent’s plans.? Accordingly, developers could seek to bound, shape, and pre-
dict behaviors by exploiting the relative semantic transparency of proposed
QNR/NL* corpora to describe and structure the knowledge, capabilities,
constraints, and objectives of task-oriented agents.

12.3.3 Agent Alignment

Many of the anticipated challenges of aligning agents” actions with human
intentions hinge on the anticipated difficulty of learning human preferences.*
The ability to read, interpret, integrate, and generalize from large corpora of
human-generated content (philosophy, history, news, fiction, court records,

discussions of Al alignment...) could support the development of richly

1. E.g., through internet-scale search and cloud services.

2. An application of the “Principle of Least Privilege” in system design.
3. See Drexler (2019, Section 9.7).

4. Bostrom (2014) and Russell (2019)
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informed models of human preferences, concerns, ethical principles, and legal
systems—and models of their ambiguities, controversies, and inconsistencies.!

Conversational systems could be used to test and refine predictive models
of human concerns by inviting human commentary on actual, proposed, and
hypothetical actions. NL* systems that fulfill their promise could model these
considerations more effectively than human language itself, in a way that is
not fully and directly legible, yet open to inspection though the windows of

query and translation.

13 Conclusions

Current neural ML capabilities can support the development of systems
based on quasilinguistic neural representations, a line of research that
promises to advance a range of research goals and applications in NLP

and beyond.

Natural language (NL) has unrivaled generality in expressing human knowl-
edge and concerns, but is constrained by its reliance on limited, discrete
vocabularies and simple, tree-like syntactic structures. Quasilinguistic neu-
ral representations (QNRs) can generalize NL syntactic structure to explicit
graphs (Section 8.1) and can replace discrete NL vocabularies with vector
embeddings that convey richer meanings than words (Section 5.3, Section 8.2).
By providing affordances for generalizing and upgrading the components
of NL—both its structure and vocabulary—QNR systems can enable neural
systems to learn “NL*” representations that are strictly more expressive than
NL.

Machines with human-like intellectual competence must be fully literate,
able not only to read, but to write things worth reading and retaining as
contributions to aggregate knowledge. Literate machines can and should
employ machine-native QNR/NL™ representations (Section 8) that are both
more expressive and more computationally tractable than sequential, mouth-
and-ear oriented human languages.

Prospects for QNR/NL™ systems make contact with a host of fields. These
include linguistics (Section 5), which offers insights into the nature of expres-
sive constructs in NL (a conceptual point of departure for NL*), as well as

1. Along lines suggested by Stuart Russell (Wolchover 2015); see also discussion in Drexler
(2019, Section 22).
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current neural ML, in which vector/graph models and representation learning
provide a concrete basis for potential QNR implementations (Section 10).
Considerations that include local compositionality (Section 4.3) suggest that
vector/graph constructs can provide computationally tractable representa-
tions of both complex expressions and the contexts in which they are to be
interpreted (Section 8.3).

Drawing on existing NL corpora, QNR-based systems could enable the
construction of internet-scale NL* corpora that can be accessed through scal-
able semantic search (Section 9.1), supporting a powerful ML analogue of
long-term memory. In addition, QNR/NL™ frameworks can support unifica-
tion and generalization operations on (soft, approximate) semantic lattices
(Appendix Al), providing mechanisms useful in knowledge integration and
refinement (Section 9.4, Section 9.5).

Applications of prospective QNR/NL™ functionality could support not
only epistemically well-informed language production (Section 11.1), but the
growth and mobilization of knowledge in science, engineering, mathematics,
and machine learning itself (Section 11.3). The fundamental technologies
needed to implement such systems are already in place, incremental paths
forward are well-aligned with research objectives in ML and machine intel-
ligence, and their potential advantages in scalability, interpretability, cost,
and epistemic quality position QNR-based systems to complement or displace
current foundation models (Bommasani et al. 2021) at the frontiers of machine
learning.
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A1 Unification and Generalization on Soft Semantic
Lattices

QNR representations can support operations that combine, contrast,
and generalize information. These operations—soft approximations of
unification and anti-unification—can be used to implement continuous

relaxations of powerful mechanisms for logical inference.

A range of formal representations of meaning, both in logic and language,
have the structure of mathematical lattices. Although the present proposal
for QNR systems (and aspirational NL* systems) explicitly sets aside the
constraint of formality, approximate lattice structure emerges in NL and will
(or should, or readily could) be a relatively strong property of QNRs/NL*.
Because lattices can provide useful properties, it is worth considering the
potential roles and applications of lattice structure in QNR-based systems.

Note that the fundamental goals of NL*—general superiority to NL in ex-
pressiveness and computational tractability—do not require lattice properties
beyond those that NL itself provides. The ability to provide stronger lattice
properties is a potential (further) strength of NL*, not a requirement. In other
words, lattice properties are natural and useful, yet optional.

The following sections begin by discussing the motivation for considering
and strengthening lattice properties—supporting meet and join, a.k.a. unifi-
cation and generalization—in light of their potential roles and utility. A brief
review of approximate lattice structure in NL provides an initial motivation
for applying lattice structure in NL* within the scope of a methodology that
avoids commitment to formal models. Consideration of lattices in logic and
in constraint logic programming further motivates the pursuit of approxima-
tions, and introduces a discussion, in part speculative, regarding inductive
bias and prospective, emergent lattice-oriented QNR representations.

This topic is adjacent to many others, creating a large surface area that
precludes any compact and comprehensive discussion relationships to existing
work.! A sketch of these relationships and pointers into relevant literatures
provide starting points for further reading.

1. In particular, studies of lattice semantics in NL, unification and generalization in symbolic
computation, and lessons learned in the broader study of neuro-symbolic ML.
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Al1.1 Motivation

Typical expressions can be regarded as approximate descriptions of things,
whether ambiguous (pet, rather than cat) or partial (grey cat, rather than big
grey cat). Given two expressions, one may want to combine them to form
either a narrower description (by combining their information) or a broader
description (by combining their scope). Although many other operations are
possible (averaging, perhaps, or extrapolation), narrowing and broadening
are of fundamental importance, and in many semantic domains, quite useful.
They can be construed as operations on a formal or approximate semantic
lattice.

A1.1.1 Why Unification (Meet, Intersection, Narrowing, Specialization)?

In symbolic logic, expressions correspond to points in a lattice (defined below),
and unification is an operation that combines two expressions to form a more
specific expression by combining their compatible information.! In generic
lattices, the corresponding operation is termed meet, which in many contexts
can be regarded as an intersection of sets or regions. Unification combines
compatible information; failures of unification identify clashes.? The Prolog
language illustrates how unification and failures can enable reasoning and
proof.

A1.1.2 Why Anti-Unification (Join, Union, Broadening, Generalization)?

Alternatively, two expressions may provide (partial) descriptions of two enti-
ties of the same kind. Here, a natural goal is to describe properties common to
all things of that kind; clashes between aspects of their descriptions indicate
that those aspects are not definitional.

In a lattice of expressions, this form of generalization is termed anti-
unification,® which increases generality by discarding clashing or unshared
information. In generic lattices, the corresponding operation is termed join,

1. More precisely, unification is an operation that yields the most general instance of such
an expression. For an application-oriented overview, see Knight (1989).

2. When unification attempts to combine partial information about a single entity, it is natural
for inconsistent information to imply failure.

3. More precisely, among potential more general expressions, anti-unification yields the
most specific instance.
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which in many instances corresponds to a union of sets or regions.! Anti-
unification has applications in NLP and can be used to form generaliza-
tions and analogies in mathematics.? In neural ML, approximations of anti-
unification could potentially inform priors for a distribution of unseen in-
stances of a class.

Al1.1.3 Hypotheses Regarding Roles in QNR Processing

Considerations explored in this appendix suggest a range of hypotheses re-
garding potential roles for approximate lattice representations and operations
in QNR processing:

* That lattice representations and operations (“lattice properties”) can, in
fact, be usefully approximated in neural systems.

* That learning to approximate lattice properties need not impair general
representational capacity.

* That approximations of meet and join operations will have broad value
in semantic processing.

* That lattice properties can be approximated to varying degrees, provid-
ing a smooth bridge between formal and informal representations.

* That lattice properties can regularize representations in ways that are
useful beyond enabling approximate meet and join.

* That approximations of lattice representations and operations are best
discovered by end-to-end learning of neural functions.

 That explicit, approximate satisfaction of lattice identities can provide
useful auxiliary training tasks.

A1.2 Formal Definitions

A mathematical lattice is a partially ordered set that can in many instances be
interpreted as representing the “inclusion” of “subsumption” of one element
by another. Axiomatically, a lattice has unique meet and join operations, A
and V: the meet operation maps each pair of elements to a unique greatest
lower bound (infimum), while join maps each pair of elements to a unique
least upper bound (supremum).

Like the Boolean A and V operators (or the set operators N and U), meet
and join are associative, commutative, idempotent, and absorptive. A bounded

1. Here, larger sets are less specific and hence provide less information.
2. Guhe etal. (2010), Martinez et al. (2017), and Amiridze and Kutsia (2018)
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lattice will include a unique bottom element, “_1L” (in the algebra of sets, &;
here a universally incompatible meaning, “<nil>"), and a unique top element,
“T” (in the algebra of sets, U; here, an all-embracing generalization, “<any>").

Figure A1.1: A Boolean lattice over sets and subsets.

In a formal infix notation, operators on a bounded lattice satisfy these

identity axioms:

Idempotence: ANA=AVA=A

Commutativity: AAB=BAA, AVB=BVA

Associativity: ANBAC)=(AAB)AC,AV(BVC)=(AVB)vC
Absorptivity: ANAVB)=AV(AAB)=A

Boundedness: AAT=AAVT=T,AVL=AAANL=1

If A and V are implemented as functions (rather than as structural features of
a finite data structure), A A B — C and A V B — D will necessarily satisfy the
unique-infimum and unique-supremum conditions. Commutativity can be
ensured by algorithmic structure, independent from learned representations
and operations; idempotence, associativity and absorptivity perhaps cannot.

Boundedness is straightforward.!

1. Clark et al. (2021) provides a more extensive and formal presentation of lattice semantic
structure in domains closely aligned with those considered here.
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A1.3 Lattice Structure in NL Semantics

The fit between lattice orders and NL semantic structures is well known,! and
the term “semantic lattice” has been applied not only to word and symbol-
based representations, but to neural representations of images.? In studies
of NL, both “concepts” and “properties” have been modeled in lattice frame-
works, applications that speak in favor of explicit lattice structure in NL*
frameworks.

A1.3.1 Models of NL Semantics: A Lattice of Concepts

Formal concept analysis® can recover “concept lattice” structures from text
corpora, and these structures have been argued to be fundamental to infor-
mation representation. Set-theoretic approaches associate formal objects with
formal attributes, and construct a subsumption lattice over sets of defining
attributes. Formal concept analysis has been extended to fuzzy structures in
which possession of an attribute is a matter of degree.*

Note that lattice relationships depend on context: In the context of house-
holds, the join of “cat” and “dog” might be “pet”, but in the context of taxon-
omy, the join would be “carnivora”. In practice, expressions containing “cat”
and “dog” would be considered not in isolation, but in some context; in NLP,
context would typically be represented dynamically, as part of a computa-
tional state; in QNR processing, context could be included as an abstractive
vector attribute (see Section 8.3.5).

A1.3.2 Models of NL Semantics: A Lattice of Properties

Properties of things may have values distributed over a continuous range, and
properties associated with something may themselves specify not a precise
value, but a range within the range: In NL, “light gray” does not denote a pre-
cise color, and inference from an description of a “light gray object” may only

1. “Feature structure” representations are particularly relevant to QNRs; Knight (1989)
reviews feature-structure unification and generalization in NL semantics.

2. Tousch, Herbin, and Audibert (2008), Velikovich etal. (2018), and Wannenwetsch
etal. (2019)

3. Cimiano, Hotho, and Staab (2005)

4. Ganter and Wille (1997, 1999), Cimiano, Hotho, and Staab (2005), Belohlavek (2011),
Eppe etal. (2018), and Clark etal. (2021)

108



loosely constrain its reflectance. Relationships among descriptions that specify
ranges of properties may correspond to an interval lattice (Section A1.5.3).!

Al.4 Logic, Constraint Systems, and Weak Unification

The previous section focused on lattice relationships among individual en-
tities, but such entities can also serve as attributes in expressions or general
graphs, enabling the definition of expression-level lattice operations. Lattices
over expressions in which attributes themselves have non-trivial lattice or-
ders can provide powerful, tractable representations in logic and constraint
programming. Computation over such representations can be extended to
include weak unification.

A1.4.1 Logical Expressions, Logic Programming

Logic programming performs reasoning based on syntactic unification of
expression-trees in which symbols represent attributes of leaf nodes (variables
or constants) or interior nodes (e.g., functions, predicates, relations, and
quantifiers). In Prolog, expressions are limited to a decidable fragment of
first-order logic; more powerful unification-based systems include A terms
and can support proof in higher-order logics.?

Informally, first-order terms A and B unify to yield an expression C pro-
vided that all components of A (subexpressions and their attributes) unify
with corresponding features or variables of B; C is the expression that results
from the corresponding substitutions. Function and predicate symbols unify
only with identical symbols; constants unify with variables or identical con-
stants; variables unify with (and in the resulting expression, are replaced by)
any structurally corresponding constant, variable, or subtree.? Aside from
variables that match subtrees, tree structures must match. As required, unifi-
cation of two expressions then either fails or yields the most general expression
that specializes both.

Informally, expressions A and B anti-unify, or generalize, to yield C pro-
vided that C contains all features that A and B share, and contains variables
wherever A and B differ in attributes or structure, or where either contains
a variable. C is the unique, most specific expression that can unify with any

1. Lattices can also be constructed based on intervals with non-sharp boundaries; see
Kehagias (2011) and Singh, Aswani Kumar, and Li (2016).

2. Paulson (1986) and Felty and Miller (1988)

3. Excluding subtrees that contain the same symbol when cyclic graphs are disallowed.

109



expression that can unify with either A or B. Thus, join/anti-unification of
two expressions yields the most specific expression that generalizes both.

Relevance to QNR systems:

QNR frameworks can embed (at least) first-order logic expressions and en-
able their unification, provided that some attributes (representing constants,
functions, etc.) can be compared for equality, while others (acting as vari-
ables!) are treated as features that match any leaf-attribute or subexpression.
Accordingly, QNR frameworks augmented with appropriate algorithms can
support logical representation and reasoning. This is a trivial consequence of
the ability of QNRs to represent arbitrary expressions, in conjunction with
freedom of interpretation and the Turing completeness of suitable neural
models. Logical expressions and logic programming are, however, instances
of richer systems—also within the potential scope of QNRs—that represent
constraint systems and support constraint logic programming.

Al1.4.2 Constraints and Constraint Logic Programming

In constraint logic programming,? representations are extended to include
constraints more general than equality of components and binding to uncon-
strained variables, and unification is extended to (or replaced by) constraint
satisfaction. The application of constraints narrows the variable domains, and
unification fails when domains become empty. The attributes of constraint ex-
pressions have a lattice structure, as do the expressions that contain them, and
constraint expressions can be narrowed and generalized though unification
and anti-unification (Yernaux and Vanhoof 2019).

The potential complexity of constraints spawns a vast menagerie of con-
straint systems, algorithms, and constraint logic programming algorithms.
Provided that expressions can include both single-element domains and vari-
ables able to bind subexpressions, constraint logic programming can subsume
conventional logic programming.

Relevance to QNR systems:

As with logic and logic programming, the generality of QNR represen-
tations and neural computation implies the ability to represent constraint

1. Convergent arcs in DAG expressions model the behavior of named variables that occur
in multiple locations. It should be noted that unification can produce and operate on cyclic
graphs unless this is specifically excluded; see Smolka (1992).

2. Jaffar and Maher (1994)
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systems and constraint-based computation, including constraint logic pro-
gramming. The generalization from logic to constraints is important to seman-
tic representational capacity: Expressions can often be interpreted as denoting
regions in a semantic space,' and combinations of expressions can combine
constraints. Constraint logic programming provides an exact formal model of
computation based on this semantic foundation.

A1.4.3 Weak and Soft Lattice Operations

“Never express yourself more clearly than you are able to think”
—Niels Bohr

The literature describes a range of models of NL semantics and reasoning
based on a range of approximate unification operations. These typically re-
place equality of constants (functions, etc.) with similarity: In “soft unification”
(as the term is typically used in the literature) the operation succeeds if simi-
larity (for example, cosine similarity between vectors, Arabshahi et al. (2021))
is above some threshold, and success may yield either conventional binding of
variables to values (Campero et al. 2018), or merged representations of values
(Cingillioglu and Russo 2020). “Weak unification” may produce a “unification
score” that indicates the quality of unification; these scores can be carried
forward and combined to score the quality of multi-step inference operations.?

As used in the present context, the term “soft unification” subsumes both
“weak” and “soft” unification as used in the literature, and entails combining
representations of values in a way that approximates unification operations
in constraint logic programming. Thus, “softness” allows operations that

violate strict lattice identities.? The intended class of QNR (soft-)unification

1. For example, ranges of compatible meanings with respect to various properties, implying
what are in effect interval constraints on those properties, a familiar (if perhaps too rigid)
constraint structure (see Benhamou 1995).

2. E.g., in Sessa (2002), Medina, Ojeda-Aciego, and Vojtas (2004), Weber et al. (2019), and
Minervini et al. (2020).

3. In addition, lattice operations may be mixed: In combining information, differences of
some kinds should lead to rejection or narrowing, while differences of other kinds should lead
to generalization. For example if we are combining pieces of evidence about a cat (perhaps
from two photographs), some properties should be unified (pictures of spots that differ only in
visibility and angle of view should narrow possible models of coloration, while a difference of
orange vs. black should lead to failure and reject the hypothesis “same cat”). By contrast, if
one photo shows a sleeping cat and the other an alert cat, the combined description should
represent a cat that is not always asleep. Differences between kinds of differences should be
learned from and conditioned on tasks.
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operations follows constraint logic programming in generalizing from the
binding of constants to named (in effect, shared) unconstrained variables to
include the narrowing of shared (in effect named), potentially constrained
attributes. As in logic programming, QNR unification will permit the uni-
fication of subexpressions with variable-like attributes, but differs in that
constrained attributes (unlike variables) may impose semantically non-trivial
constraints on permissibility and on the content of resulting subexpressions
(Section A1.6.4).

Al1.5 Exact Lattice Operations on Regions

Although embeddings in vector/graph representations denote points in se-
mantic spaces, their semantic interpretations will typically correspond to
regions in lower-dimensional spaces. Comparisons to symbolic and more
general constraint representations can provide insights into potential QNR
representations and reasons for expecting their lattice properties to be inexact.

A1.5.1 Conventional Symbolic Expressions

In conventional expression graphs, attributes comprise symbols that represent
points together with symbols that represent unbounded regions in the space
of expressions. Thus, individual attribute subspaces are simple, have no
spatial structure, and accordingly exhibit trivial behavior under unification
and anti-unification.

A1.5.2 General Region Representations and Operations

Leaf attributes can represent regions in R”, but options for their unifica-
tion and generalization may be representation-dependent. The conceptually
straightforward definition is both trivial and problematic: Treating regions as
sets of points (A V B = A U B) in effect discards spatial structure, and with it
the potential for non-trivial generalization. Further, if region representations
have limited descriptive capacity, then the result of generalizing a pair of
attributes by set union cannot in general be represented as an attribute.!
Alternatively, the generalization of two volumes might be defined as their
convex hull. Generalization of convex regions yields convex regions, and
inclusion of points outside the initial volumes reflects spatial structure and a

1. Consider the union of disjoint volumes, each already at the limit of representable com-
plexity. Intersections can (but do not necessarily) suffer from a similar difficulty.
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plausible notion of semantic generalization. Unfortunately, this definition can
also fall afoul of limited descriptive capacity, because the convex hull of two
regions can be more complex than either.!

A1.5.3 Interval (Box) Representations and Operations

There are region-representations for which lattice operations are exact, for
example, one-dimensional intervals in R? and their generalization to axis-
aligned boxes in R™.3 Unification of a pair of box-regions yields their intersec-
tion; anti-unification yields the smallest box that contains both. Axis-aligned
box regions can be represented by vectors of twice the spatial dimensionality
(for example, by pairing interval centers with interval widths), and lattice
operations yield representations of the same form. Interval-valued attributes
have been applied in constraint logic programming.* Generalization through
anti-unification of intervals has a natural semantic interpretation: Points in a
gap between intervals represent plausible members of the class from which
the intervals themselves are drawn.

Box regions Meets Joins

<nil>

Figure A1.2: Exact meets and joins of interval (box) regions.

1. To illustrate, the convex hull of two spheres need not be a sphere, and the convex hull of
two polytopes may have more facets than either. Intersections can also become more complex
(see Jaulin 2006).

2. Discussed for example in Clark et al. (2021).

3. Affine (and other) transformations of a space and its regions can of course maintain these
properties.

4. Benhamou and Older (1997) and Older and Vellino (1990)
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Al.6 Approximate Lattice Operations on Regions

If box lattices are exact, why consider approximate operations on more general
regions? The basic intuition is that representations entail trade-offs, and that
greater flexibility of form is worth some degree of relaxation in the precision
of unification and generalization. Boxes have sharp boundaries, flat facets,
and corners; natural semantic representations may not. Intervals in a space of
properties may correspond to natural semantic concepts, yet orthogonality
and global alignment of axes may not.

In the present context, it is important to distinguish two kinds of ap-
proximation: As discussed in Section A3.4, effective QNR frameworks must
be able to express, not only precise meanings, but ranges or constraints on
meaning—a kind of approximation in the semantic domain that differs from
approximation of lattice properties. Ranges of meanings can be represented
as regions in semantic spaces, while region-representations that approximate
precise meanings can precisely satisfy the lattice axioms.

Regions ~Joins

Figure A1.3: Approximate meets and joins of regions from a less-
constrained family of region shapes.

A1.6.1 Continuous-Valued Functions

In addition, general considerations motivate representing the membership
of points in semantic classes with continuous-valued functions, rather than
functions having values restricted to {1, 0}. Such representations invite further
approximations of lattice properties.
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A1.6.2 Region Shapes and Alignment

It is natural to exploit the flexibility of neural network functions to represent
generalized region shapes, and to use the ability of fully connected layers
to free representations from preferred axis alignments and thereby allow
exploitation of the abundance of nearly orthogonal directions in high dimen-
sional spaces. Learned attribute representations need not describe box-like
regions or share meaningful alignment in different regions of a semantic
space.

Al1.6.3 Satisfaction of Lattice Axioms as an Auxiliary Training Task

Given the value of lattice structure in representations, it is natural to speculate
that promoting lattice structure through inductive bias may aid performance
in a range of semantic tasks. Auxiliary training tasks in which losses explicitly
measure violations of lattice properties may therefore be useful components
of multitask learning.!

A1.6.4 Unifying Attributes with Expressions

As noted above, conventional symbolic expressions allow unification of un-
constrained variables with subexpressions, while in the QNR context, it is
natural to seek to unify subexpressions with constrained variables—attributes
that represent semantic regions. The outlines of desirable behavior are clear,
at least in some motivating cases:

Consider a pair of graphs with subexpressions A and B in corresponding
locations. Let A be a vector representation (e.g., describing a generic grey-
striped animal with sharp claws), while a corresponding subexpression B is
a vector/graph representation (e.g. that contains components that describe
a cat’s temperament, ancestry, and appearance). Unification should yield a
vector/graph representation in which the properties described by vector A
constrain related properties described anywhere in expression B (e.g., the cat’s
appearance, paws, and some aspects of its ancestry) If some component of B
specifies a black cat, unification fails. In this instance, generalization should
yield a vector representation that does not clash with properties described in
either A or B, while discarding properties that are not shared.

1. Note that adherence to lattice properties in representational vector spaces is important
only in those regions/manifolds that are actually used for representation.
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A1.6.5 Learning Lattice-Oriented Algorithms

Classic algorithms for unification and generalization implement particular
patterns of information flow, intermediate representations, and iterative, con-
ditional computation. Work on supervised neural algorithmic learning il-
lustrates one potential approach to adapting such algorithms to neural com-
putation, an approach that supervises the learning of algorithmic structure
while allowing end-to-end learning of rich representations and corresponding

decision criteria.!

Al1.7 Summary and Conclusions

Lattice structure is found in formal systems and (to some extent) in NL, and
it seems both natural and desirable in QNR/NL™ representations. Although
lattice structure is not a criterion for upgrading NL to NL* representations,
substantial adherence to lattice structure could potentially improve expressive
capacity in a systemic sense and need not imply the rigidity of fully formal
representations.

Because linguistic representations and reasoning are themselves approxi-
mate, there seems little reason to sacrifice representational flexibility in order
to enforce exact and universal satisfaction of the lattice axioms. A QNR frame-
work that embraces both precise and approximate lattice relationships can
enable both formal and informal applications of those relationships to for-
mal and informal reasoning. The literatures on conventional and constraint
logic programming illustrate the power and computational tractability of
algorithms based on systems of this kind.

The potential benefits of approximate lattice structure may emerge spon-
taneously, but can also be pursued by inductive bias, including training that
employs satisfaction of lattice axioms as an auxiliary task in multitask learn-
ing.

1. See Velickovi¢ and Blundell (2021) and included references.

116



A2 Tense, Aspect, Modality, Case, and Function Words

Tables of examples illustrate expressive constructs of natural languages
that do not reduce to nouns, verbs, and adjectives.

Natural languages express a range of meanings through closed-class (“func-
tion”) words, and express distinctions of tense, aspect, modality, and case
though both function words and morphological features. Section 5.3 discusses
the roles and importance of these constructs; this appendix provides several
brief tables of examples.

Table A2.1: Classes and Examples of Function words. The examples below
cover about one third of the function-word vocabulary of the English language.
In strongly inflected languages, the roles of some of these function words are
performed by morphological distinctions.

Determiners: the, a, this, my, more, either
Prepositions: at, in, on, of, without, between
Qualifiers: somewhat, maybe, enough, almost
Modal verbs: might, could, would, should

Auxiliary verbs:

be, do, got, have

Particles: up, down, no, not, as

Pronouns: she, he, they, it, one, anyone

Question words: who, what, where, why, how
Conjunctions:

— coordinating: for, so, and, nor, but, or, yet

— subordinating:  if, then, thus, because, however

— temporal: before, after, next, until, when, finally
— correlative: both/and, either/or, not/but
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Table A2.2: Examples of Tense/Aspect Distinctions. Languages can use
inflection or function words to express distinctions that describe (e.g.) relative
time, duration, or causation. Languages differ in the distinctions that they

can compactly express, while properties like “remoteness”, “completion”, and
“causation” invite continuous representations.)

Perfect tenses — completed in past, present, or future
(“had/has/will have” finished)

Continuous tenses — ongoing in past, present, or future
(“was/am/will be” working)

Past perfect continuous — previously ongoing in the past
(“had been working”)

Future perfect continuous — previously ongoing in the future
(“will have been working”)

Remote perfect — completed in the remote past
(Bantu languages')

Resultative perfect — completed past action causing present state
(Bantu languages)

Table A2.3: Examples of Modality Distinctions. Languages can express
modalities by inflection or function words. The existence of graded degrees
and overlaps within and between modalities suggests the potential value of
continuous vector-space representations.

Interrogative ~ — Question

Imperative — Command

Indicative — Unqualified statement of fact

Inferential — Qualified (inferred) fact

Subjunctive — Tentative or potential fact

Potential — Possible condition

Conditional — Possible but dependent on another condition
Hypothetical =~ — Possible but counterfactual condition
Optative — Desired condition

Deontic — Ideal or proper condition

1. Bantu languages include unusually complex and expressive systems of tense and aspect
(Nurse and Philippson 2006; Botne and Kershner 2008).
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Table A2.4: Examples of Case Distinctions. Case distinctions can express
the roles of words in a sentence (in a familiar grammatical sense) or the roles
of what they denote in a situation. The number of inflectional case distinctions
varies widely among languages; English has three, Tsez has dozens, many
of which are locative. As with modalities, blurred boundaries and overlaps
between cases suggest the potential value of continuous vector-space repre-
sentations.

Nominative — subject of a verb

Accusative — object of a verb

Dative — indirect object of a verb
Genitive — relationship of possession
Comitative — relationship of accompaniment
Lative — movement to something
Ablative — movement away from something
Orientative — orientation toward something
Locative — location, orientation, direction
Translative — becoming something
Instrumental ~— means used for an action
Causal — cause or reason for something
Benefactive — beneficiary of something
Terminative ~ — limit or goal of an action
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A3 From NL Constructs to NL*

Condensing, regularizing, and extending the scope of semantic represen-
tations can improve expressive capacity and compositionality, and can
support theoretically grounded methods for comparing and combining

semantic information.

Section 6 discussed QNR architectures as a framework, considering potential
components, syntactic structures, and their semantic roles. The present sec-
tion extends this discussion to explore in more detail how anticipated QNR
frameworks could subsume and extend the expressive capabilities of natural
languages to fulfill the criteria for NL*. Key considerations include facilitating
representation learning, upgrading expressiveness, improving regularity, and
enabling more tractable reading, interpretation, and integration of content at
scale.

Potential NL/NL™ relationships discussed here are not proposals for hand-
crafted representations, nor are they strong or confident predictions of the
results of representation learning. The aim is instead to explore the scope
and strengths of QNR expressive capacity, with potential implications for
design choices involving model architectures, inductive bias, and training
tasks. Where neural representation learning provides NL* functionality by
different means, we should expect those means to be superior.

A3.1 Upgrading Syntactic Structure

To be fit for purpose, NL* syntactic structures must subsume and extend their
NL counterparts while improving computational tractability:

* To subsume NL syntactic structures, NL* frameworks can embed NL
syntax; as already discussed, this is straightforward.

* To extend NL syntactic structures, NL* frameworks can support addi-
tional syntactic structure; as already discussed, this can be useful.

* To improve tractability in learning and inference, NL* frameworks
can improve semantic compositionality, locality, and regularity. This
potential NL/NL* differential will call for closer examination.
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A3.1.1 Making Syntactic Structure Explicit

Explicit representations avoid the computational overhead of inferring struc-
ture from strings, as well as costs (and potential failures) of non-local disam-
biguation, e.g., by using DAGs to represent coreference. Improved locality and
tractability follow.

A3.1.2 Extending the Expressive Scope of Syntactic Structure

Explicit graphs can enable the use of structures more diverse and complex
than those enabled by natural language and accessible to human cognition.!
Writers grappling with complex domains may employ supplementary rep-
resentations (diagrams, formal notation), or may simply abandon attempts
to explain systems and relationships that involve deeply nested structures,
heterogeneous patterns of epistemic qualification, and complex patterns of
coreference—all of which must in NL be encoded and processed as sequences.
More general representations can directly describe relationships that are more

complex yet readily accessible to machines.

A3.1.3 Extending the Concept of “Syntactic Structure”

“Natural language syntax” as understood by linguists is often in practice sup-
plemented with visually parsable structures such as nested text (outlines,
structured documents) and tables that represent grids of relationships. Dia-
grams may embed text-labels as attributes of graphs that represent networks of
typed relationships (taxonomy, control, causation, enablement, etc.); program
code is adjacent to NL, yet goes beyond NL concepts of syntax. Implemen-
tations that support explicit bidirectional links can model the structure of
literatures that support not only “cites” but also “cited by” relationships.

A3.1.4 Collapsing Syntactic Structure

In neural-network computation, vector operations are basic, while graph
operations may impose additional computational overheads. This motivates
the use of embeddings in preference to graph expressions,” which in turn

1. What is in some sense accurate linguistic encoding does not ensure successful communi-
cation: For example, as a consequence of working-memory constraints, humans suffer from
“severe limitations” in sentence comprehension (Lewis, Vasishth, and Van Dyke 2006).

2. When feasible, of course. Another reason is the natural (and often semantically appropri-
ate) commutativity implicit in vector representations viewed as sums of components.
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highlights the value of highly expressive lexical-level units. In addition,
encoding different meanings as differences in syntactic structure can impede
alignment and comparison of expressions; When individual embeddings can
express a range of meanings that NL would represent with different syntactic
structures, those syntactic differences disappear.

A3.2 Upgrading Lexical-Level Expressive Capacity

Where possible, we would like to replace the syntactic compositionality of
words with the simpler, arithmetic compositionality of vectors. Because the
best syntax is no syntax, it is worth considering what kinds of semantic content
can be represented in vector spaces without relying on graph structure.

The following discussion notes several kinds of semantic structure that exist
in NL, can be represented by embeddings, and have emerged (spontaneously
and recognizably) in neural models.

A3.2.1 Subsuming and Extending Content-Word Denotations

As careful writers know, there often is no single word that accurately conveys
an intended meaning, while to unpack an intended meaning into multiple
words may be too costly in word-count or complexity. Lexical-level embed-
dings can shift the ambiguity/verbosity trade-off toward expressions that are

both less ambiguous and more concise.!

Embeddings can place content-word meanings in spaces with useful seman-
tic structure.

Word embeddings demonstrate learnable structure in lexical-level semantic
spaces. The geometry of learned word embeddings can represent not only
similarity, but analogy,? and representations of semantic differentials across

vocabularies?

can be identified in language models.

Unfortunately, the role of NL word embeddings—which must represent
polysemous, context-dependent words—precludes clean representation of
word-independent semantic structure. Vector spaces that represent mean-

ings rather than words can provide semantic structure that is more reliable

1. Concise expression is of course less necessary in the context of indefatigable machine
intelligence.

2. As discussed in Chen, Peterson, and Griffiths (2017).

3. Daniel Kahneman’s doctoral dissertation examines semantic differentials (Kahneman
1961). Semantic structure embeddable in vector spaces has been extensively studied by both
linguists and ML researchers (e.g., see Messick (1957), Sagara et al. (1961), Hashimoto, Alvarez-
Melis, and Jaakkola (2016), and Schramowski et al. (2019)).
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and useful, hence patterns observed in vector representations of natural lan-
guage provide only limited insight into the potential generality and utility of
semantically structured vector spaces.

Embeddings can disambiguate, interpolate, and extend vocabularies of con-
tent words.

Because points in an embedding space could be used to directly designate
every word in every NL vocabulary—with vast capacity to spare—embeddings
can be strictly more expressive than NL words. Again taking NL as a baseline,
embeddings offer the advantage of avoiding polysemy, maladaptive word
ambiguity,! and a large (even comprehensive?) range of recognizably missing
word meanings (the frustrating-thesaurus problem). In suitable semantic
spaces, points within and beyond the rough equivalents of NL word clusters
can, at a minimum, interpolate and extend the rough equivalents of NL
vocabularies.

Embeddings can extend vocabularies by folding modifier-expressions into
noun and verb spaces.

The ability to collapse a range of multi-word expressions into embeddings is
equivalent to extending vocabularies: In a straightforward example, adjec-
tives and adverbs can modify the meanings of nouns and verbs to produce
different lexical-level meanings. These modifiers often represent cross-cutting
properties? that can describe things and actions across multiple (but not all)
domains. Although words with modifiers can be viewed as extensions of NL
vocabularies, expressions of limited size necessarily leave gaps in semantic
space; continuous vector embeddings, by contrast, can fill regions of semantic
space densely.

As a consequence of the above considerations, a function of the form NL-
encode: (lexical-NL-expression) — (lexical-embedding) can exist, but not its
inverse. NL-encode is neither injective nor surjective: Multiple NL expres-
sions may be equivalent, and typical NL* expressions will have no exact NL
translation.

Directions in embedding spaces can have interpretable meanings.

Linguists find that NL words can with substantial descriptive accuracy

3

be positioned in spaces in which axes have conceptual interpretations” or

1. And conversely, maladaptive precision in the form of (for example) forced number and
gender distinctions.

2. E.g., color, mass, temperature, frequency, speed, color, loudness, age, beauty, and danger.
3. Gardenfors (2000) and Lieto, Chella, and Frixione (2017)
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reflect semantic differentials. In NL, modifiers commonly correspond to
displacements with components along these same axes.

It is natural to interpret modifier-like vector components differently in
different semantic domains.! As noted previously, the interpretation of direc-
tions in a (sub)space that corresponds to differentials applicable to entities would
naturally depend on location—on which regions of a (sub)space correspond
to which kinds of entities.> In a semantic region that describes persons, for
example, directions in a subspace might express differences in health, tem-
perament, age, and income, while in a semantic region that describes motors,
directions in that same subspace might express differences in power, torque,
size, and efficiency.

Lexical level and syntactic compositionality are complementary.

As suggested above, vector addition of modifiers and other differentials can
express compositional semantics within embeddings. Exploiting this capacity
does not, of course, preclude syntactic compositionality: QNRs can support
compositional representations through both vector-space and syntactic struc-
ture. Without predicting or engineering specific outcomes, we can expect that
neural representation learning will exploit both mechanisms.

A3.2.2 Image Embeddings Illustrate Vector Compositionality in Seman-
tic Spaces

Image embeddings can provide particularly clear, interpretable examples of
the expressive power—and potential compositionality—of continuous vector
representations. (Section 9.2 discusses image and object embeddings, not as
examples of representational power, but as actual lexical units.)

Humans are skilled in perceiving systematic similarities and differences
among faces. Diverse architectures (e.g., generative adversarial networks, vari-
ational autoencoders, and flow-based generative models®) can produce face
embeddings that spontaneously form structured semantic spaces: These mod-
els can represent faces in high-dimensional embedding spaces that represent

1. Adjective meanings have been modeled as functions of nouns (Baroni and Zamparelli
(2010); see also Blacoe and Lapata (2012)).

2. Setting aside, for the moment, useful relationships between these differentials and differ-
ences of kind. In practice, descriptions of both kinds and properties can naturally be folded
into a single embedding, with no need to explicitly or cleanly factor representations into kind-
and property-spaces.

3. Klys, Snell, and Zemel (2018), Kingma and Dhariwal (2018), R. Liu et al. (2019), and Shen
etal. (2020)
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kinds of variations that (qualitatively, yet clearly) are both recognizable and
systematic.1 Many papers present rows or arrays of images that correspond to
offsets along directions in embedding spaces, and these naturally emphasize
variations that can be named in captions (gender, age, affect...), but a closer
examination of these images also reveals systematic variations that are less
readily described by words.

Words or phrases of practical length cannot describe ordinary faces such
that each would be recognizable among millions. A single embedding can.?
Similar power can be brought to bear in a wider range of lexical-level repre-

sentations.?

A3.3 Subsuming and Extending Function-Word/TAM-C Semantics

As noted in Section 5.3.4 TAM-C meanings can be encoded in either word
morphology or function (closed-class) words. Some TAM-C modifiers are
syntactically associated with lexical-level units; others are associated with
higher-level constructs.

TAM-C modifiers that represent case (e.g., nominative, accusative, instru-
mental, benefactive; see Table A2.4) can directly describe the roles of things
denoted by words (e.g., acting vs. acted upon vs. used), but case also can
indirectly modify the meaning of a word—a rock regarded as a geological
object differs from a rock regarded as a tool.*

Other TAM-C modifiers express semantic features such as epistemic con-
fidence, sentiment, and use/mention distinctions. In NL, statement-level
meanings that are not captured by available TAM-C modifiers may be emer-
gent within an expression or implied by context; by compactly and directly
expressing meanings of this kind, expression-level embeddings can provide
affordances for improving semantic locality, compositionality, and clarity.’

1. A good recent example is Shen et al. (2020), which finds that diverse faces can be well-
represented in 100-dimensional spaces (Harkoénen et al. 2020).

2. In principle, to distinguish among millions of faces requires distinguishing on the order
of 10 gradations on each of 6 dimensions, but typical embeddings are far richer in both
distinctions and dimensionality.

3. Within the domain of concrete, interpretable images, ~100 dimensional embeddings
can represent not only faces, but also diverse object classes and their attributes, thereby
representing (in effect) interpretable “noun-and-adjective” combinations, few of which can be
compactly and accurately described in NL; e.g., see Harkonen et al. (2020).

4. Is the rock hard and sharp, or a piece of fine-grained ultramafic basalt?

5. On the internet, emoji have emerged to compactly express expression-level sentiment
(e.g., © and @), and these can express meanings distributed over more than one dimension
(consider &, &, and ©@).
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Some function words connect phrases: These include words and combinations
that express a range of conjunctive relationships (and, or, and/or, therefore,
then, still, however, because, despite, nonetheless. ..) and capability/intention
related relationships (can, could, should, would-if, could-but, would-if-could,
could-but-shouldn’t...). Consideration of the roles of these words and con-
structs will show that their meanings are distributed over semantic spaces,
and the above remarks regarding the use of embeddings to interpolate and
extend NL meanings apply.!

In NL, tense/aspect modifiers express distinctions in the relative time
and duration of events, and because these modifiers reference a continuous
variable—time—they can naturally be expressed by continuous representa-
tions. Likewise, epistemic case markers in NL (indicative, inferential, poten-
tial) implicitly reference continuous variables involving probability, evidence,
and causality.

Note that much of function-word/TAM-C space represents neither kinds
nor properties of things, and is sparsely populated by NL expressions. The use
of embeddings to interpolate and extend meanings in these abstract semantic
roles could greatly improve the expressive capacity of QNR/NL* frameworks
relative to natural languages.

A3.4 Expressing Quantity, Frequency, Probability, and Ambiguity

Discrete NL constructs express a range of meanings that are more naturally
expressed in continuous spaces: These include number, quantity, frequency,
probability, strength of evidence, and ambiguity of various kinds.

NL can express specific cardinal, ordinal, and real numbers, and absolute
concepts such as none or all, but many other useful expressions are either
crude (grammatical singular vs. plural forms) or ambiguous (e.g., several,
few, many, some, most, and almost all, or rarely, frequently, and almost always).
Note that intentional ambiguity is useful: Few does not denote a particular
number, but a range of “small” numbers, either absolute (about 2 to 5, Munroe
(2012)) or relative to expectations regarding some set of entities. This range
of meanings (likewise for unlikely, likely, possibly, almost certainly, etc.) invites
continuous representations in QNR frameworks.?

1. E.g., embeddings that generalize NL conjunctive/causal expressions could presumably
express meanings like “object X, (probably) together with and (possibly) because of Y”, and do
so with graded degrees of probability or epistemic confidence.

2. It is natural to want semantic spaces that express joint probability distributions as well
as relationships in Pearl’s do-calculus; the blurry distinction between these and the NL-like
semantic spaces outlined above points to the soft boundaries of NL-centric conceptions of NL*.

126



Similar remarks apply to qualitative and probabilistic hedges (mostly, par-
tially, somewhat, to some extent) qualifiers and often agent-centered epistemic
qualifiers (presumably, if I recall correctly, it seems to me, as far as I know, in
my opinion, etc.).! One would also like to be able to compactly express quali-
fiers like illustrative but counterfactual simplification, approximate description
of a typical case, and unqualified statement but with implied exceptions: Today,
the absence of universal idioms for expressing these meanings gives rise to
gigabytes of fruitless, argumentative noise in internet discussions.

The discussion above implicitly frames the expression of ambiguity (etc.)
as a task for lexical units in phrases, following the example of NL. There
are advantages, however, to folding ambiguity (efc.) into embeddings that
represent, not points, but regions in a semantic space. A shift from point-
to region-oriented semantics allows systems of representations that can ap-
proximate mathematical lattices (Appendix A1) and lattice-based inference
mechanisms like Prolog and constraint logic programming (Section Al.4).
These mechanisms, in turn, provide semi-formal approaches to matching,
unification, and generalization of representations, with applications outlined
below and explored further in Section 8.4.3.

A3.5 Facilitating Semantic Interpretation and Comparison

Relative to NL, NL* frameworks offer potential advantages that include

1. Greater expressive capacity
2. More tractable interpretation
3. More tractable comparison.

The preceding sections have discussed advantages of type (1) that stem
largely from improvements at the lexical level. The present section will
consider how condensation, localization, regularization of expression-level
representations can provide advantages of types (2) and (3). A central theme
is the use of tractable, uniform, embedding-based representations to provide
expressive capacity of kinds that, in NL, are embodied in less tractable—and
often irregular—syntactic constructs.

1. Expressions that are frequently reduced to abbreviations are likely to represent broadly
useful, lexical-level meanings: IIRC, ISTM, AFAIK, IMO, etc.
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A3.5.1 Exploiting Condensed Expressions

As noted above, embeddings can condense many noun-adjective, verb-adverb,
and function word constructs, facilitating interpretation by making their
semantic content available in forms not entangled with syntax. Further,
embeddings can be compared through distance computations,! potentially
after projection or transformation into task- and context-relevant semantic
spaces. These operations are not directly available in NL representations.

A3.5.2 Exploiting Content Summaries

Content summaries (Section 8.3.4) can cache and amortize the work of in-
terpreting expressions. The value of summarization increases as expressions
become larger: An agent can read a book (here considered an “expression”) to
access the whole of its information, but will typically prefer a book accompa-
nied by a summary of its topic, scope, depth, quality, and so on. Semantically
optional summaries (perhaps of several kinds) can facilitate both associative
memory across large corpora (Section 9.1.2) and shallow reading (“skimming”)
of retrieved content. Shallow reading, in turn, can enable quick rejection of
low-relevance content together with fast, approximate comparison and rea-
soning that can guide further exploration. Where uses of information differ
across a range of tasks, useful summaries of an expression may likewise differ.

A3.5.3 Exploiting Context Summaries

Although context summaries (Section 8.3.5), like content summaries, are in
principle semantically redundant, they are substantially different in practice:
Expressions are bounded, but an interpretive context may be of any size,
for example, on the scale of a book or a body of domain knowledge. Thus,
absent summarization, contextual information—and hence the meaning of
an expression—may be far from local; with context summarization, meaning
becomes more local and hence more strongly compositional.?

1. Or intersection- and union-like operations in region-oriented semantics, see Appendix Al.

2. As noted elsewhere, current language models typically encode (costly to learn, difficult
to share) summaries of global context—as well as knowledge of narrower contexts and even
specific facts—while their inference-time activations include (costly to infer) summaries of
textually local context. Learning and sharing task-oriented summaries of both broad and
narrow contexts could provide complementary and more efficient functionality. Embeddings
can provide the most compact summaries, but more general QNRs could provide richer yet
still abstractive information.
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Some use-patterns would place specific semantic content in narrow con-
text representations, and schematic semantic content in expressions that can
contribute to descriptions in a wide range of contexts. In interpreting an
expression, the effective, interpreted meanings of its embeddings would be
strongly dependent on its current context. A programming language analogy
would be the evaluation of expressions conditioned on binding environments,
but in the QNR case, employing embeddings in place of conventional values
and variables,! and employing neural models in place of symbolic interpreters.

A3.5.4 Aligning Parallel and Overlapping Expressions

Content summaries can facilitate comparison and knowledge integration in
the absence of full structural alignment. In the limiting case of a complete
structural mismatch between QNR expressions, their summary embeddings
can still be compared. To the extent that high-level structures partially align,
comparison can proceed based on matching to some limited depth. At points
of structural divergence, comparison can fall back on summaries: Where
subexpressions differ, their summaries (whether cached or constructed) can
be compared; likewise, a subexpression summary in one expression can be
compared to a lexical embedding in the other. Appendix A1l discusses how
matches can be rejected or applied through soft unification.

Upgrading the expressive power of lexical-level embeddings can facilitate
structural alignment by shifting burdens of semantic expressiveness away
from syntax: Condensing simple expressions into embeddings avoids a po-
tential source of irregularity, the sequential order of lexical-level elements
need not be used to encode emphasis or semantic priority, and the semantic
differences between active and passive voice need not be encoded through
differences in syntax and grammar. Accordingly, similar meanings become
easier to express in parallel syntactic forms.

If expressions with similar semantic content—representing similar things,
properties, relationships, roles—are cast in a parallel syntactic form, they
become easier to compare. Regularizing structure need not sacrifice expres-
sive capacity: Expression-level nuances that in NL are expressed through
alternative syntactic forms can quite generally be represented by embeddings
that modify expression-level meaning.

1. While blurring the distinction between values and variables; see Section A1.4.3, which
notes potential relationships between constraint-based unification and variable binding in
logic programming.
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Thus, structural regularization, enabled by expressive embeddings and
explicit graphs, can facilitate structural alignment and semantic comparison
of related expressions. In addition, however, structural regularization can
facilitate transformations among alternative canonical forms, potentially fa-
cilitating translation between representational dialects in heterogeneous NL*
corpora. Regularization need not adhere to a uniform standard.

A4 Compositional Lexical Units

Embeddings with explicit compositional structure may offer advantages

in efficient learning and generalization.

Section 7.1.3 noted that the properties of vector addition can enable semantic
compositionality without recourse to syntax; the present discussion exam-
ines the potential role of explicit forms of compositionality in learning and
representation. Among the considerations are:

* Efficiently representing large vocabularies

* Parallels to natural language vocabularies

* Parallels to NLP input encodings

* Inductive bias toward efficient generalization

The usual disclaimer applies: The aim here is neither to predict nor prescribe
particular representations, but to explore what amounts to a lower bound
on potential representational capabilities. Explicit vector compositionality,
would, however, require explicit architectural support.

A4.1 Motivation and Basic Approach

Because few neural models write and read large stores of neurally encoded
information, prospects for building large QNR corpora raise novel questions
of storage and practicality. Section A5.5 outlines an approach (using dictio-
naries of composable vector components) that can be compact, efficient, and
expressive. The present discussion considers how and why explicit compo-
sitionality within vector representations may be a natural choice for reasons
other than efficiency.

A key intuition is that sets of lexical components (like morphemes in natural
languages) can be composed to represent distinct lexical units (like words
and phrases that represent objects, actions, classes, relationships, functions,
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etc.!), and that composite lexical units can best be regarded and implemented
as single vectors in QNRs. For concreteness, the discussion here will assume
that lexical-component embeddings are concatenated to form lexical-unit
embeddings,? then melded by shallow feed-forward transformations to form
unified representations.

A key underlying assumption is that discrete vocabularies are useful,
whether to encode embeddings compactly (Appendix A5), or to provide an
inductive bias toward compositional representations. (Note that compact
encodings can combine discrete vectors with continuous scalars to designate
points on continuous manifolds; see Section A5.5.4).

A4.2 Efficiently Representing Vast Vocabularies

The on-board memories of GPUs and TPUs can readily store >10” embeddings
for fast access.® This capacity is orders of magnitude beyond the number of
English words, yet using these embeddings as components of lexical units can
provide much more.

If sets of potential lexical-unit embeddings are Cartesian products of sets
of lexical-component embeddings, then potential vocabularies are enormous.
Cartesian-product spaces in which (for example) 2 to 4 components are drawn
from 107 options would offer 1014 to 1028 potential lexical-unit embeddings;
of these, one can expect that a tiny fraction—yet an enormous number—would
be potentially useful in describing the world. To represent expressions as
strings (Appendix A5), 3 bytes of key information per lexical component
would be ample.

A4.3 Parallels to Natural Language Vocabularies

Lexical units in NL vocabularies are commonly built of multiple morphemes,
including roots, affixes,* and words embedded in compounds or multiword
units.’

1. As already noted, this use of “lexical units” abuses standard terminology in linguistics.

2. Concatenation can be modeled as addition of blockwise-sparse vectors, and addition of
dense vectors would arguably be superior. However, using addition in place of concatenation
would (in application) increase storage costs by a small factor, and would (at present) incur a
substantial explanatory cost.

3. See Section A5.5.5.
4. English builds on >1300 roots and affixes (prefixsuffix.com 2008).

5. Here used in the standard linguistic sense (also termed “lexical items”).
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If we view NL as a model for potential NL* constructs, then it is natu-
ral to consider analogues of morphemes in embedding spaces, and to seek
lexical-level semantic compositionality through explicit composition of build-
ing blocks in which the meanings of components are, as in NL, a joint result
of their combination. This approach can make lexical components them-
selves targets of learning and thereby expand the scope of useful, accessible
vocabulary.

Medical terminology illustrates the role of lexical-level compositionality in
building a language adapted to a rich domain.! Most medical terms are built
of sequences of parts (“cardio+vascular”) or words (“primary visual cortex”).
Wikipedia (2021) lists 510 word parts (prefixes, roots, and suffixes) used
in medical terminology, while a large medical dictionary defines ~125,000
distinct, often multi-word terms (Dorland 2007), a number that approaches
an estimate (~200,000) of the number of words in the English language as a
whole.?

Refining and expanding the store of applicable lexical components from
hundreds or thousands to millions or more would greatly increase the poten-
tial semantic resolution of medical language at a lexical level. Medicine, of
course, occupies only a corner of a semantic universe that embraces many
fields and extends far beyond what our words can readily describe.

A4.4 Parallels to NLP Input Encodings

There are substantial parallels and contrasts between input encodings in
current NLP and compositional embeddings in potential QNR processing
systems Table A4.1):

* In the proposed mode of QNR processing, inputs are lexical components
concatenated to form lexical units; in Transformer-based NL process-
ing, inputs are words and subwords extracted from strings through
tokenization.

* In the QNR case, a very large vocabulary of lexical components is com-
posed to form a vast Cartesian-product space of lexical units; in the NLP
case, a smaller vocabulary of lexical units is built from word fragments
and common words (in BERT, ~30,000 “wordpieces”).

1. A vocabulary which describes structures, functions, relationships, processes, observations,
evidence, interventions and causality in systems of extraordinary complexity and human
importance.

2. A count that omits, for example, inflected forms (Brysbaert et al. 2016).
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* In the QNR case, the composition of lexical units is determined by
representation learning; In the NLP case, the decomposition of strings is
determined by a tokenization algorithm.

* NLP models dynamically infer (and attempt to disambiguate) lexical-
level representations from tokenized text; in QNR processing, input
embeddings are explicit lexical-level products of previous representa-
tion learning. Thus, lexical-level QNR inputs are roughly comparable to
hidden-layer representations in an NLP model.

Table A4.1: Input representations used in current NLP and prospective QNR

processing.
Typical NLP models Proposed QNR models
Input units: wordpiece tokens component embeddings
Vocabulary size: ~10%-103 ~107-10%8

Embedding origins: learned representations  learned representations
Initial processing: ~ multiple attention layers MOoE blending layer!

A4.5 Inductive Bias Toward Efficient Generalization

The ability to represent specific lexical units as compositions of more general
semantic components could potentially support both systematic generaliza-
tion and efficient learning, including improved sample efficiency. An impor-
tant lexical component will typically occur far more frequently than the lexical
units that contain it, and learning about a component can provide knowledge
regarding lexical units that have not yet been encountered.? Indeed, without
the inductive bias provided by composition, it might be difficult to learn truly
large vocabularies that form well-structured semantic spaces.

As an NL illustration of this principle, consider “primary visual cortex”
again: A reader who knows little or nothing of neuroanatomy will know the
general meanings of “primary” and “visual” and “cortex”, having encountered

1. MoE = mixture of experts (see Fedus, Zoph, and Shazeer 2021).

2. In addition to these considerations, note that components could potentially occupy
relatively simple and well-structured semantic spaces, facilitating their interpretation even
in the absence of specific training examples. Improving the interpretability of novel lexical
components would feed through to improvements in the interpretability of novel elements of a
lexical-unit vocabulary.
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these terms in diverse contexts. With this knowledge, one can understand
that “primary visual cortex” is likely to mean something like “the part of
the brain that first processes visual information”, even if this term has never
before been seen. A more refined understanding can build on this.

This familiar principle carries over to the world of potential QNR represen-
tations, where exploitation of compositional lexical-level semantics promises
to support learning with broad scope and effective generalization.

A4.6 A Note on Discretized Embeddings

In typical applications, reading is far more frequent than writing, hence map-
ping continuous internal representations to discrete external representations
need not be computationally efficient. This output task can be viewed as
either translation or vector quantification. Lexical components that are dis-
tant from existing embeddings may represent discoveries worth recording in
an expanded vocabulary. Because components populate continuous vector
spaces, discretization is compatible with differentiable representation learning
of components and their semantics.

A5 Compact QNR Encodings

String representations of QNRs, in conjunction with discretized vec-
tor spaces and graph-construction operators, can provide compact and
efficient QNR encodings.

“Premature optimization is the root of all evil.” .
— Donald Knuth

NL* expressions can be implemented compactly by combining operator-based
representations of graph structures with extensible dictionaries of discretized
embeddings; the latter provide mechanisms for what can be regarded as
lossy compression, but can also be regarded as providing a useful inductive
bias (Section A4.5). The content of QNR corpora can be represented as byte

1. Knuth (1974). Because compression is (at most) a downstream research priority, Knuth’s
warning against premature optimization is relevant and suggests that the value of this appendix
is questionable. There is, however, good reason to explore the scope for efficient, scalable
implementations: A sketch of future options can help to free exploratory research from
premature efficiency concerns—or worse, a reluctance to consider applications at scale.
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strings approximately as compact as NL text by exploiting key—value stores of
embeddings and graph-construction operators.! The memory footprint these
stores need not strain the low-latency memory resources of current machines.

The purpose of this appendix is not to argue for a particular approach, but
to show that a potential challenge—the scale of QNR storage footprints—can
be met in at least one practical way.

Note that the considerations here have nothing to do with neural compu-
tation per se, but are instead in the domains of algorithm and data-structure
design (often drawing on programming language implementation concepts,
e.g., environments and variable binding). From a neural computation per-
spective, the mechanisms must by design be transparent, which is to say,
invisible.

A5.1 Levels of Representational Structure

Prospective QNR repositories include representational elements at three levels
of scale:

* Embeddings: vector attributes at a level comparable to words
* Expressions: graphs at a level comparable to sentences and paragraphs
* References: graph links at the level of citations and document structures

In brief, expressions are graphs that bear vector attributes and can include
reference-links to other expression-level graphs. There is no important seman-
tic distinction between expression-level and larger-scale graph structures; the
key considerations involve interactions between scale, anticipated patterns of
use, and implementation efficiency.

A formal notation would distinguish between QNRs as mathematical ob-
jects (graph and attributes), QNRs as computational objects (inference-time
data structures that represent graphs and attributes), and encodings that
represent and evaluate to QNR objects in a computational environment. The
following discussion relies on context to clarify meaning.

1. The set of mechanisms outlined here is intended to be illustrative rather than exhaustive,
detailed, or optimal. The discussion touches on tutorial topics for the sake of readers who may
notice computational puzzles without immediately recognizing their solutions.
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A5.2  Explicit Graph Objects vs. String Encodings

A relatively simple computational implementation of QNRs would represent
embeddings as unshared numerical vectors,! and graphs as explicit data
structures.? Repositories and active computations would share this direct,
bulky representational scheme.

Natural language expressions are more compact: NL words in text strings
are far smaller than high-dimensional vector embeddings, and graph struc-
tures are implicit in NL syntax, which requires no pointer-like links.

Inference-time representations of NL* expressions may well be bulky, but
so are the inference-time representations of NL expressions in neural NLP.
And as with NL, stored QNR expressions can be represented compactly as
byte strings.

A5.3 Compact Expression Strings

A QNR corpus can be represented as a key—value store that contains embed-
dings (numerical vectors), operators (executable code), and encoded QNR
expressions (strings that are parsed into keys and internal references). In
this scheme, expressions encoded as byte-strings evaluate to expression-level
QNR graphs that can include references that define graphs at the scale of
documents and corpora.

In more detail:

* Keys designate operators, embeddings, or expression-strings in a key—
value store.

o Expression-strings are byte strings® that are parsed into keys and in-
dices.

* Indices designate subexpressions in a string.

s Operators are graph-valued functions? of fixed arity that act on se-
quences of subexpressions (operands).

* Subexpressions are keys, indices or operator-operand sequences.

* Embeddings are graph attributes.

1. “Unshared” in the sense that each attribute-slot would designate a distinct, potentially
unique vector object.

2. “Explicit” in the sense that each arc would be represented by a pointer-like reference.
3. Potentially bit strings.

4. An extended scheme (Section A5.5.4) allows vector-valued operators with vector and
scalar operands.
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* Reference is shorthand for “expression-string key” (typically a stopping
point in lazy evaluation).

A5.3.1 From Strings to Syntax Graphs

Parsing an expression-string is straightforward: Operators are functions of
fixed arity, the initial bytes of an expression-string designate an operator, and
adherence to a standard prefix notation enables parsing of the rest. A first level
of decoding yields a graph in which operator nodes link to child nodes that
correspond to embeddings, operators, and references to other expressions.!

Thus, expression-strings represent graphs in which most intra-expression
links are implicit in the composition of graph-valued operators and their
products,? while the overhead of designating explicit, inter-expression links
(several bytes per reference-key) is in effect amortized over the linked ex-
pressions. Accordingly, QNR graphs on a scale comparable to NL syntactic
structures need not incur per-link, pointer-like overhead.

A5.3.2 Lazy Evaluation

Lazy evaluation enables the piecemeal decoding and expansion of QNR graphs
that are too large to fully decompress. To support lazy evaluation, references
to expression-strings can evaluate to graph objects (presented as a vector of
nodes), or can be left unevaluated. A key—value store then can support lazy
evaluation by returning either an expression-string or, when available, the
corresponding graph object; a server that retrieves objects for processing can
query an expression-store with a key and invoke evaluation if the store returns
a string. This mechanism also supports the construction of shared and cyclic
graphs.

A5.4 Graph-Construction Operators

Parsing associates each construction operator with a sequence of operands
that can be evaluated to produce (or provide a decoded access to) embeddings,
references, and root nodes of graph-objects. Simple construction operators
can treat their arguments as atomic and opaque; more powerful operators can
access the contents of evaluated graph-valued operands or the contents of the
operator’s evaluation-time context.

1. Internal, index-encoded links require a bit of additional bookkeeping (i.e., remembering
subexpression positions) but can describe DAGs and cyclic graphs.

2. Indices (~1 byte?) account for the rest.
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Graph structure can be specified explicitly by using a tree notation in
conjunction with a representation (e.g., node labels and references) that can
distinguish and reference nodes to construct cyclic and convergent paths.
Graph construction operators can augment these explicit mechanisms by
factoring and abstracting common graph patterns (e.g., the equivalent of
common sentence structures); conditional procedural operators can do more.
Comprehensive sets of operators (“graphpieces”?) need not greatly burden
storage capacity.

A5.4.1 Operators Can Combine Opaque Arguments

A simple class of operators would return a copy of a graph-template—an
arbitrarily structured “graph patch”—in which variables are instantiated with
arguments that are treated as opaque, atomic tokens. In this approach, the
products of operator composition are constrained: Links between graph-

patches can target root-nodes returned by operators.!

A5.4.2 Paths Can Select Graph Components

A path through a connected graph can designate the position of any node
relative to any other, provided that links can be distinguished in navigating
from node to node.? Path-based access can be implemented by operators that
have access to decoded graph contexts.

A5.5 Vocabularies of Embeddings

The computational costs of processing NL* expressions will depend in part on
the storage footprint of their vector embeddings, which in turn will depend
on the sizes both of vocabularies and of the vectors themselves.

A5.5.1 Basic Architectural Considerations

Current neural language models tokenize text strings and map a modest vo-
cabulary of tokens? to a corresponding vocabulary of embeddings. Processing

1. Or other nodes if links include an index into a returned node-vector. Note that distin-
guished root nodes are artifacts of encoding that need not be semantically visible. Similar
remarks apply to references that target expression-strings.

2. E.g., sequences of car and cdr operators can navigate arbitrary graphs of Lisp cons cells.
Paths have no fixed size and could be represented by strings in a key-value store.

3. E.g., ~210 byte pairs or ~30,000 word pieces (Devlin etal. 2019).

138



QNRs encoded as expression-strings requires a similar mapping of tokens
(keys) to lexical-component embeddings, but prospective vocabularies are
orders of magnitude larger. The use of large vocabularies mandates the use
of scalable key—value stores; with this choice, vocabulary size affects neither
neural model size nor computational cost.

The use of low-latency storage for frequently used embedding vectors could,
however, impose substantial burdens, with requirements scaling as vocabulary
size x vector dimensionality x numerical precision.! Baseline values for these
parameters can place storage concerns in a quantitative context.

A5.5.2 Vocabulary Size

In a continuous vector space, “vocabulary size” becomes meaningful only
through vector quantization, the use of identical vectors in multiple contexts.?
Discrete vectors can be compared to NL words or word parts, and vectors
produced by concatenating quantized vectors can be compared to words built
of combinations of parts.

A5.5.3 Lexical Component Embeddings

Potential QNR representations and applications (Section 11) are sufficiently
diverse (some far from “linguistic” as ordinarily understood) that it is difficult
to generalize about the appropriate granularity of vector quantization or the
extent to which it should be employed. Different applications will call for
different trade-offs between compression and performance, and quantization
has been found to improve rather than degrade neural representation learning
in some domains.3

More can be said about vocabulary size, however, in the context of NL*
representations that constitute (merely) strong generalizations of NL. To
provide a round-number baseline value, consider an NL* representation that
employs a vocabulary of distinct lexical components* that is 50 times larger

than the vocabulary of distinct words in the English language:> For present

1. Values of other kinds need not impose similar overheads: Sets of operators need not be
large, while expression strings can be retrieved from lower-cost, higher-latency stores.

2. In the literature, the use of low-precision numerical representations is also termed “vector
quantization”.

3. Agustsson et al. (2017), Oord, Vinyals, and Kavukcuoglu (2018), Kaiser and Bengio (2018),
Razavi, Oord, and Vinyals (2019), Lanicucki et al. (2020), and Zhao et al. (2021)

4. Roughly corresponding to morphemes in NL.

5. If lexical units are typically compositions of lexical components (Appendix A4), then the
size of the potential encoded vocabulary is far larger.
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purposes, ~200,000 words is a reasonable estimate of the latter,! implying a
baseline NL* vocabulary of 10 million lexical-component embedding vectors.

A5.5.4 Composing Components

As discussed in Appendix A4, a richer vocabulary of lexical units can be
constructed by composition, for example, by concatenating lexical-component
embeddings. This generative mechanism parallels what we see in natural
languages, where many (even most) words are composed of various word-
parts, TAM-C affixes, or other words.

Discrete composition: Expression-strings can readily describe compos-
ite lexical units: Vector-valued operators with vector arguments can denote
concatenations of any number of components. Considering only discrete
combinations, operators that accept 2 to 4 arguments from a vocabulary of
107 embeddings can define product vocabularies of 10'4 to 10?8 composites.
These are candidates for use as lexical units, and even tiny useful fractions
correspond to vast vocabularies. Appendix A4 explores composite embed-
ding representations from perspectives that include efficiency in learning and
semantics in use.

Weighted combination: Some entities are drawn from distributions charac-
terized by continuous properties that include size, color, age, and probability.
Discrete vocabularies are a poor fit to continuous semantics, but operators that
accept numerical arguments can specify weighted combinations of vectors,
and hence continuous manifolds in semantic spaces.

For example, a key that designates a discrete vector embedding a could be
replaced by keys designating a vector-valued operator f;, a scalar parameter
w, and embeddings ¢ and d, for example, a linear combination:

filw,c,d) =wec+ (1 -w)d.
A suitable range of operators can generalize this scheme to nonlinear functions
and higher-dimensional manifolds.
A5.5.5 Dimensionality, Numerical Precision, and Storage Requirements

Transformer-based models typically map sequences of tokens to sequences of
high-dimensional embeddings (in the baseline version of BERT, 768 dimen-

1. Vocabulary size depends on how “distinct words” are defined; reasonable definitions
and methodologies yield numbers that differ, but not by orders of magnitude. See Brysbaert
etal. (2016).
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sions). Though high dimensionality is perhaps necessary for hidden states
that are used to both represent and support processing of rich, non-local se-
mantic information, one might expect that word-level semantic units could be
represented by embeddings of lower dimensionality. This is empirically true:
Shrinking input (word-level) embeddings by more than an order of magnitude
(from 768 to 64 dimensions) results in a negligible loss of performance (Lan
etal. 2020). In estimating potential storage requirements, 100 (but not 10 or
1000) dimensions seems like a reasonable baseline value for representations of
broadly word-like lexical components. Forming lexical units by concatenation
of components (desirable on several grounds; see Appendix A4) would yield
larger input embeddings without increasing storage requirements.

BERT models are typically trained with 32-bit precision, but for use at
inference time, parameters throughout the model can be reduced to 8-bit
(Prato, Charlaix, and Rezagholizadeh 2020), ternary (Wei Zhang et al. 2020),
and even binary (H. Bai et al. 2020) precision with little loss of performance.
As a baseline, allowing 8-bit precision for embeddings at the input interface
of a QNR-based inference system seems generous.

When combined with the baseline vocabulary size suggested above (107
component embeddings), these numbers suggest a baseline scale for an NL*
key-value store:

Storage = vocabulary size x dimensionality x precision
~ 10,000,000 elements x 100 dimensions x 1 bytes
~1 GB.

For comparison, current GPUs and TPUs typically provide on-board memory
>10 GB, and are integrated into systems that provide terabytes of RAM.
Given the expected power-law (Zif-like) distribution of use frequencies, im-
plementations in which small local stores of embeddings are backed by large
remote stores would presumably experience overwhelmingly local memory
traffic.! In many tasks (e.g., fetching content used to answer human queries),
occasional millisecond-range latencies would presumably be acceptable.

1. As an illustrative NL example, in its first 107 words, the Google Books corpus contains
about 10# distinct words (by a generous definition that includes misspellings), a ratio of one
new word in 103, while in its first 10° words, it contains about 10° distinct words, a ratio of
one in 10%. See Brysbaert et al. (2016).

141



A5.5.6 A Note on Non-Lexical Embeddings

Prospective, fully elaborated NL* systems would employ more than just
lexical-level embeddings; for example, embeddings that in some sense sum-
marize expressions can enable shallow processing (skimming), or can serve as
keys for near-neighbor retrieval that implements semantic associative memory
over large corpora.! The costs of summaries can in some sense be amortized
over the expressions they summarize.

Like natural language, NL* expressions can be represented by compact
byte strings. Stores of discrete embeddings can support large (and through
composition, vast) vocabularies of differentiable semantic representations
within an acceptable footprint for low-latency memory; in other words, NL*
corpora can be represented approximately as efficiently and compactly as cor-
pora of NL text. Neither necessity nor optimality is claimed for the approach
outlined here.

1. To support near-neighbor indexing, embeddings should be unique, not elements of a
“vocabulary”.
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