
  

The Solution of the n-body Problem* 
  

The wind scrambles and thunders over hills 
with a voice far below what we can hear. 
Whalesong, birdsongs boom and twitter. 
Sea, air, everything's a chaos of signals 

and even those we've named veer and fall 
in pieces under our neat labels. Waves— 
how to speak of the structure of waves 
when all disperses and there's nothing fixed to tell? 

—Philip Holmes, Background Noise 

Folk-Mathematics 
  

A folk-tale is a popular story uttered from one genera- 
tion to the next. The main source of culture in times of 
old, oral tradition plays a marginal role in spreading sci- 
entific information today. Still, its significance is by no 
means negligible, and all domains of human activity are 
more or less influenced by it. Mathematics is no excep- 
tion. We all know theorems we have never read in books 
or papers or learned about at formal presentations. We 
often don’t know a reference, have no idea who proved 
that result, how, and when. Usually a colleague men- 
tioned it at some conference dinner, during a coffee- 

break, or in a friendly discussion in our Department. It 
is striking, it sticks to our mind, and after a while it is 

part of our mathematical heritage—we just know it. 
Then we tell it further under similar circumstances, and 

so the wheel turns on. We will call this component of 
our knowledge folk-mathematics. 

Without denying the positive role folk-mathematics 
plays in spreading information, we must admit that re- 
sults gathered through it are sometimes misleading or 
misunderstood. A typical example is the Cantor set. 
Everybody knows that the middle-third Cantor set has 
zero Lebesgue measure, and many believe that the mid- 
dle-fifth analogue has positive measure. Intuitively this 
sounds plausible: if we remove each time a smaller seg- 
ment, the remaining quantity should be larger. Unfor- 
tunately, the intuition leads us astray this time. For any 

  

*Dedicated to Philip Holmes, for his deep mathematics, for his warm 
and candid poetry, and for the immense intellectual joy he has in- 

stilled in me during the time our book took shape. 

Florin Diacu 

k, the middle-kth Cantor set has zero measure. Though 
a simple computation would show this, few do it, so the 

mistake propagates from one mathematician to the 

other. We can indeed obtain a Cantor set of positive 
measure by assigning a variable removal step. Delete 
first the middle-third segment, then the middle-ninth, 

then the middle-twenty-seventh, and so on. This algo- 

rithm will lead us to the desired result. 
The above example is easy to check, but what are we 

up against when a more complicated folk-mathematical 
situation appears? Physicists and mathematicians less 
familiar with celestial mechanics, have asked me at dif- 

ferent occasions to provide details about the “impossi- 
bility of solving the n-body problem.” Some had heard 
that Poincaré had proved the result, others recalled only 

that such a theorem exists somewhere in the literature. 
After all, this is a natural question. Since Abel and Galois 
proved the impossibility of solving algebraic equations 
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of degree higher than five through formulae involving 
only roots, why should there not be an impossibility 
proof for solving the n-body problem? 

The astonishment comes when we respond that the 
n-body problem has already been solved. Of course, the 
answer requires explanation, and since this old question 
of celestial mechanics continues to raise interesting chal- 
lenges (as it has for the last three centuries), it is worth 
telling here the intriguing story and the unexpected con- 
sequences the most important attempts to obtain an ex- 
plicit solution. 

King Oscar’s Prize 
  

Having its origins in Newton’s Principia, the n-body 
problem of celestial mechanics is an initial-value prob- 
lem for ordinary differential equations: for given initial 
data qj(0), (0), i= 1,..., 1m (with q(0) # q(0) for mu- 
tually distinct i and j), find the solution of the second- 
order system 

i mimj(qi — qj) 
a? = Lass 

wi lar ai? 
mqi = nN, (+) 

where 11, 1112,..., My are constants representing the 

masses of # point-masses, and qi, q2,..., qn are 3-di- 
mensional vector functions of the time variable t, de- 
scribing the positions of the point-masses. For 1 = 2 the 
problem was completely solved by Johann Bernoulli in 
1710 (see [B], [W], [DH]), but for more than a century 
and a half after Bernoulli's success, the case n = 3 eluded 
the efforts of everyone. 

Interest in the problem grew towards the end of the 
last century, when a special event made the best math- 
ematicians look at celestial mechanics with more con- 
cern than ever before. In volume 7, 1885/86, Acta 
Mathematica announced the establishment of a prize in 
honour of King Oscar II of Sweden and Norway, to be 
awarded on the King’s 60th birthday: 21 January 1889. 
The deadline for submission was set for 1 June 1888. 

Finding a convergent power-series solution of the above 
initial value problem, was the first—and the most im- 
portant—among the four questions proposed by the 
three-member jury: Gésta Mittag-Leffler (the editor-in- 
chief of Acta), Charles Hermite, and Karl Weierstrass. 
The formulation of the first question, due to Weierstrass, 
who had shown growing interest in the problem him- 
self, appeared in German and French as follows in our 

translation (a slightly different translation was given by 
Daniel Goroff in [P]): 

Given a system of arbitrarily many mass points that attract 
each other according to Newton's laws, under the assump- 
tion that no two points ever collide, try to find a represen- 
tation of the coordinates of each point as a series in a vari- 

able that is some known function of time and for all of whose 
values the series converges uniformly. 

This problem, whose solution would considerably extend 

our understanding of the solar system, seems capable of so- 
lution using analytic methods now at our disposal; we can 
at least suppose as much, since Lejeune Dirichlet commu- 
nicated shortly before his death to a geometer of his ac- 
quaintance [Leopold Kronecker] that he had discovered a 
method for integrating the differential equations of 
Mechanics, and that by applying this method, he had suc- 
ceeded in demonstrating the stability of our planetary sys- 
tem in an absolutely rigorous manner. Unfortunately, we 
know nothing about this method, except that the theory of 
small oscillations would appear to have served as his point 
of departure for this discovery. We can nevertheless sup- 
pose, almost with certainty, that this method was based not 

on long and complicated calculations, but on the develop- 
ment of a fundamental and simple idea that one could rea- 
sonably hope to recover through persevering and penetrat- 
ing research. 

In the event that this problem remains unsolved at the 
close of the contest, the prize may also be awarded for a 
work in which some other problem of Mechanics is treated 
as indicated and solved completely. 

Out of the 12 papers eventually submitted for the 
competition, 5 treated the n-body problem; none of 
them, however, obtained the required power-series so- 

lution. Under these circumstances the jury decided to 
award the prize to the 35-year-old Henri Poincaré, for 
his remarkable contribution to the understanding of the 
equations of dynamics (called Hamiltonian systems to- 
day) and for the many new ideas he brought into math- 
ematics and mechanics. Indeed, Poincaré’s memoir, 

later developed into his monumental 3-volume work Les 
Méthodes Nouvelles de la Mécanique Céleste, laid the foun- 
dations of several branches of mathematics and—most 
important—opened the way to qualitative methods, as 
opposed to the quantitative ones that had reigned in 
analysis since Newton and Leibniz. 

Published in volume 12, 1890, of Acta Mathematica, 
Poincaré’s memoir offered the first example of chaotic 
behavior in a deterministic system (it involved homo- 
clinic orbits in a first-return map in the restricted 3-body 
problem). In fact Poincaré understood the complicated 
behavior of those orbits only after the prize was 
awarded to him. The first version of his paper, the one 
actually awarded the prize, incorrectly claimed that 
such orbits were stable, by missing the important fact 
that the homoclinic intersection might be transversal. 
Assaulted with questions by Edvard Phragmén, the as- 
sistant editor at Acta in charge of preparing the manu- 
script for publication, Poincaré finally discovered and 
corrected the mistake. 

Phragmén had found Poincaré’s work very hard to 
read. The initial version almost doubled in size after 
Phragmén’s repeated requests for clarification. Writing 
about the subsequent 1895 paper entitled Analysis Situs, 
Jean Dieudonné [Di] characterized Poincaré’s style in 

the following words: 
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As in so many of his papers, he gave free rein to his imag- 
inative powers and his extraordinary intuition, which only 
very seldom led him astray; in almost every section is an 
original idea. But we should not look for precise definitions, 
and it is often necessary to guess what he had in mind by 
interpreting the context. For many results he simply gave 
no proof at all, and when he endeavored to write down a 

proof, hardly a single argument does not raise doubts. The 
paper is a blueprint for future developments of entirely new 
ideas, each of which demanded the creation of a new tech- 

nique to put it in a sound basis. 

Unfortunately Poincaré’s correction came only after 
the memoir had been printed and some of Acta’s issues 
delivered to subscribers. As editor-in-chief of Acta, as a 

member of the jury, and as a favorite of the King, Mittag- 
Leffler was put in a delicate position. To defend the 
honor of the prize and his own credibility and position, 
he decided to recall the published issues and print the 
correct version. Poincaré agreed to bear the costs of the 
first printing: 3585 Swedish crowns and 63 Gre, more 
than the 2500 crowns he had received for the prize (to 
understand the figures, bear in mind that Mittag- 
Leffler’s annual salary as a professor at the University 
of Stockholm had been 7000 crowns in 1882) [A],[BG]. 

I do not go further into the history and the scandal 
that followed (the interested reader can find the histor- 
ical and mathematical details in [DH], our forthcoming 
book about the origins and the development of chaos 
and stability). What matters now is the negative result 
proved by Poincaré in the prize memoir, a result that 
does show the impossibility of solving the n-body prob- 
lem, but only by use of a certain method. 

Is this Problem Unsolvable? 
  

First integrals (or simply integrals) for systems of differ- 
ential equations are functions that remain constant 
along any given solution of the system, the constant de- 

pending on the solution. In other words, integrals pro- 
vide relations between the variables of the system, so 

each scalar integral would normally allow the reduction 
of the system’s dimension by one unit. Of course, this 

reduction can take place only if the integral is an alge- 
braic—not very complicated—function with respect to 
its variables, such that one variable can be expressed as 
a function of the others. If the integral is transcendent, 
any attempt to obtain such an expression is pointless. 

At the time of Poincaré, the method of solving sys- 
tems of differential equations by finding first integrals 
was much in use. It had been known for a long time that 
the n-body problem had 10 independent algebraic first 
integrals: 3 for the center of mass, 3 for the linear mo- 
mentum, 3 for the angular momentum, and one for the 

energy (see, e.g., [W], [D1], [D2]). This allowed the re- 
duction of the primitive system from 6n variables (each 
point-mass is represented in space by 3 position and 3 

68 THE MATHEMATICAL INTELLIGENCER VOL. 18, NO. 3, 1996 

velocity components) to 61 — 10. Jacobi had shown that 

using a so-called reduction of nodes (some symmetries), 

the dimension of the system could be further reduced 
to 61 — 12, but this was not enough to understand even 
the 3-body problem—it still left a complicated 6-di- 
mensional first-order system unsolved—not to mention 
higher values of 1. 

In 1887 the 39-year-old German mathematician Ernst 
Heinrich Bruns published in Acta Mathematica a surpris- 
ing result [Bru]: the n-body problem has no integrals—alge- 
braic with respect to the time, the position, and the velocity 
coordinates—except the 10 known ones. Though some gaps 
were subsequently discovered in Bruns’s proof, Poincaré 
had no doubt that the result was true. In his prize paper 
he proved an even stronger theorem: there are no inte- 
grals—algebraic with respect to the time, the position, and the 
velocities only—other than the 10 known ones. In other 

words, these negative results showed it is impossible to 
solve the equations of motion of the n-body problem by 
reducing the dimension of the system with the help of 
first integrals. 

This does not mean that the n-body problem is un- 
solvable, just that a certain method fails to solve it. In 

fact, standard results of differential equations theory 
show that any initial value problem for the equations (*), 
with initial data not starting from collisions, leads to the 
existence of a unique solution defined on a maximal in- 
terval, which is the whole real line if singularities do not 
occur. So the problem posed by King Oscar's prize made 
sense and could be solved, in principle. Unfortunately, 
the folk-mathematical tradition retained only one aspect 
of these results and perpetuated the wrong message that 
the n-body problem was unsolvable. 

After a digression into the foundations of mathemat- 
ics, I will tell how the n-body problem was later solved 
in the spirit of King Oscar's prize. 

Brouwer’s Attack 
  

All active mathematicians have opinions about what 
problems have importance, what branches are difficult, 

and what directions are promising in their own field. 
But unlike other sciences, whatever differences of opin- 
ion arise, all mathematicians agree that a result proved 

two millennia, two centuries, or two years ago, remains 
true forever. The progress of mathematics has little to 
do with the foundations. In spite of this, some promi- 
nent mathematicians have dedicated time and energy 
towards understanding the roots of their discipline. 
Sometimes, their efforts have raised polemics and dis- 

putes as sharp as those frequently met in other domains 
of human activity. 

In 1913, the 32-year-old Luitzen Brouwer launched an 

attack against a well established mathematical method 
of reasoning. As an editor of the prestigious Mathe- 
matische Annalen, he rejected all submitted papers that



used reductio ad absurdum as a method of proof. This led 
to a scandal. The editorial board held an emergency 
meeting to save the reputation of the journal. The board 
resigned as a whole and reelected itself, except Brouwer. 
Offended by his colleagues’ attitude and supported by 
his government, Brouwer immediately established a ri- 
val journal in Holland [G]. 

That embarrassing incident marked the beginning of 
a long fight between intuitionism and formalism, the main 
schools of mathematical-philosophical thought at the 
beginning of our century, each claiming to have found— 
against the other—the only viable way of laying the 
foundations of mathematics. The building of founda- 
tions had come to seem urgent due to the antinomies, 
known already by the Greeks, but which had now 

started to embarrass the recently established set theory. 
The main objection of Brouwer’s intuitionism against 

Hilbert’s formalism concerned existence theorems. 

Brouwer considered that a nonconstructive argument 
cannot be accepted as proof of existence, so reductio ad 
absurdum seemed to him a good point to start the 
polemic. On the other hand Hilbert, who took Brouwer’s 
action personally, attempted to show that every theo- 
rem can be deduced by logical steps from the postulates 
of a given axiomatic system. Unfortunately, in this re- 
spect the German mathematician was wrong. 

In 1931, Hilbert’s formalism received a sharp blow 
when the Austrian logician Kurt Gédel published his 
incompleteness theorem [G6]. Godel proved that any 
sufficiently rich, sound, and recursively axiomatizable theory 
is incomplete. A recent paper [CJZ] goes even further by 
showing that, in a quite general topological sense, in- 
completeness is a common phenomenon: with respect to 

any reasonable topology, the set of true and unprovable state- 
ments is dense in the set of all statements. This re- 
sult has persuaded some mathematicians that the fu- 
ture of mathematics is not with proving theorems but 
with trying to estimate the probability that a result is true. 

On the other hand, Brouwer’s intuitionism—though 
never fully refuted by any other theory and still the ob- 
ject of some research—fell into oblivion, because it 

raised barriers which the mathematical community re- 
fused to acknowledge. Mathematics has developed al- 
most undisturbed by the fight for its foundations. 

We will further see, however, that the main idea of 
intuitionism is off target. In certain cases a constructive 
proof of existence brings no more information than a 
nonconstructive one. This is surprising, and the exam- 
ple I offer is the n-body problem. 

The Series Solution 
  

In 1913, when he launched the attack that would de- 
prive him of editorial membership at the Mathematische 

Annalen, Brouwer was not aware of a paper published 

in Acta Mathematica a few months before by a Finn of 
Swedish origin, Karl Sundman. If he had known and 
understood Sundman’s work, Brouwer would probably 
never have developed his intuitionism. 

Sundman’s paper [Su3] revisited and republished 
some of his own results (inspired by a previous work 
of the Italian mathematician Giulio Bisconcini [Bi]) that 
had appeared in 1907 [Sul] and 1909 [Su2] in a Finnish 
journal of lesser fame and circulation. One of Sundman’s 
achievements was to find, for almost all admissible ini- 
tial data, a series solution of the 3-body problem. If he 
had gotten this result 22 years earlier, he would have 
probably been awarded King Oscar's prize. 

Reading Sundman’s paper we see that he obtained 
a series solution in powers of f!/> for the 3-body prob- 
lem, a series convergent for all real t, except for a neg- 
ligible set of initial conditions, namely, those for which 
the angular momentum is zero. Indeed, Sundman proved 
first the convergence of the series as long as no colli- 
sions take place. (The importance of the method devel- 
oped in that paper, which is based on the theory of func- 
tions of a complex variable, is analyzed in a nice article 
by Donald Saari [S].) Sundman also surmounted the 

impediment of binary collisions through a process 
he called regularization, which means to analytically ex- 
tend the solution beyond the collision singularity, and 

which physically corresponds to an elastic bounce. In 
this case, his series still proves convergent for all real 

values of the time variable. Unfortunately he could not 
apply the same method if a triple collision occurs, but 
he showed that such a collision can take place only if 
the angular momentum cancels, hence for a set of ini- 
tial data having measure zero. (Even within this set, the 

subset of initial data leading to triple collisions has mea- 
sure zero, as one of Saari’s students has shown in his 

Ph.D. thesis [U].) In 1941, Carl Ludwig Siegel proved 
that such a regularization is possible only for a negligi- 
ble set of masses, so indeed, the analytic continuation 
of triple collisions is generically impossible [Si]. 
Sundman’s method failed to apply to the n-body 

problem for n > 3. It took about 7 decades until the gen- 
eral case was solved. In 1991, a Chinese student, 

Quidong (Don) Wang, published a beautiful paper 
[Wal], [D1], in which he provided a convergent power 
series solution of the n-body problem. He omitted only 
the case of solutions leading to singularities—collisions 
in particular. (To understand the complications raised 
by solutions with singularities, see [D2].) 

Did this mean the end of the n-body problem? Was 
this old question—unsuccessfully attacked by the great- 
est mathematicians of the last 3 centuries—merely 
solved by a student in a moment of rare inspiration? 
Though he provided a solution as defined in sophomore 
textbooks, does this imply that we know everything 
about gravitating bodies, about the motion of planets 
and stars? Paradoxically, we do not; in fact we know 

nothing more than before having this solution. 

THE MATHEMATICAL INTELLIGENCER VOL. 18, NO. 3, 1996 69



The following section deals with this apparent para- 
dox. 

The Foundations of Mathematics 
  

What Sundman and Wang did is in accord with the way 
solutions of initial value problems are defined; every- 
thing is apparently all right; but there is a problem, a 
big one: these series solutions, though convergent on the 
whole real axis, have very slow convergence. One 
would have to sum up millions of terms to determine 
the motion of the particles for insignificantly short in- 
tervals of time. The round-off errors make these series 
unusable in numerical work. From the theoretical point 
of view, these solutions add nothing to what was pre- 
viously known about the n-body problem. 

This unusual situation makes us think once more about 
the foundations of our discipline. First of all, it illustrates 
that even a constructive solution can be useless from the 
practical point of view. Then why stick to it, why give in- 
tuitionism any concern? Well, this difficulty would still 
not keep us from sleeping soundly. How many of us re- 
ally care about intuitionism when doing mathematics? 

Unfortunately, doubt is also cast on the definition of 

a solution for an initial value problem attached to a dif- 
ferential equation. If our definition is meaningful, then 
shouldn’t it exclude totally useless solutions? In certain 
cases all our efforts toward finding and writing down 
solutions might be as futile as Sisyphus’s work; more- 
over, we have no way of knowing in advance when this 

will be the case. What to do then? Eliminate power se- 
ries solutions from our definition? This would mean to 
negate two centuries of mathematics and throw many 
achievements away. Clearly there is no simple answer. 

The third problem is connected to what “good” math- 
ematics means. Consciously or not, we usually under- 
stand by this the mathematics promoted by famous 
mathematicians. No one would doubt that the mathe- 
matics of Weierstrass, for example, was and remains 

“good.” But Weierstrass stated the first problem of King 
Oscar’s prize, a problem tackled by the sharpest minds 
of the time. It was eventually solved exactly as the 
German mathematician had wished; still, a hundred 

years later, its solution presents only historical interest. 
Fortunately, the genius of Poincaré steered our disci- 
pline in the right direction—at least this is what we be- 
lieve today. But how will mathematicians think a hun- 
dred years from now? 

The n-body problem—a bulwark against the flow of 
time, a reliable landmark on the map of mathematics— 
has posed and continues to pose new challenges. Almost 
untouched, mysterious as in the beginning, it has sur- 
vived 300 years of siege. It has kindled and witnessed 
a few revolutions: the beginnings of calculus, of quali- 

tative methods, of relativity, of chaos; tackled numeri- 
cally, it has contributed to the launch of satellites and 
to the first human step on the moon. Now it is disturb- 
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ing the fundamentals of differential equations theory, 
the structure on which a significant part of modern sci- 
ence and technology is based. Do we have an answer to 
this last challenge? 

  

References 

[Al K.G. Andersson, Poincaré’s discovery of homoclinic 

points, Archive for History of Exact Sciences 48 (1994), 
133-147. 

[BG] J. Barrow-Green, Oscar II’s prize competition and the 
error in Poincaré’s memoir on the three body prob- 
lem, Archive for History of Exact Sciences 48 (1994), 
107-131. 

[B] J. Bernoulli, Opera Omnia, vol. I, Georg Olms 

Verlagsbuchandlung, Hildesheim, 1968. 

[Bi] G. Bisconcini, Sur le probleme des trois corps, Acta 

Mathematica 30 (1906), 49-92. 
[Br] E.H. Bruns, Uber die Integrale des Vielk6rper- 

Problems, Acta Mathematica 11 (1887), 25-96. 
[CJZ] CC. Calude, H. Jiirgensen and M. Zimand, Is inde- 

pendence an exception? Applied Math. Comput. 66 
(1994), 63-76. 

[D1] F.N. Diacu, Singularities of the N-Body Problem, Les 

Publications CRM, Montréal, 1992. 

[D2] F.N. Diacu, Painlevé’s conjecture, The Mathematical 

Intelligencer 15 (1993), no. 2, 6-12. 
[DH] _ E.N. Diacu and P. Holmes, Celestial Encounters—The 

Origins of Chaos and Stability, Princeton University 
Press (to appear in August 1996). 

[Di] Dieudonné, J., A History of Algebraic and Differential 

Topology 1900-1960, Birkhauser, Boston, Basel, 1989. 

[G] R.L. Goodstein, Essays in the Philosophy of Mathe- 
matics, Leicester University Press, 1965. 

K. Gédel, Uber formal unentscheidbare Satze der 
Principia Mathematica und verwandter Systeme, 
Monatshefte fiir Mathematik und Physik 38 (1931), 
173-198. 

[IP] H. Poincaré, New Methods of Celestial Mechanics (with 

an introduction by D.L. Goroff), American Institute 
of Physics, 1993. 

[S] D.G. Saari, A visit to the Newtonian N-body prob- 
lem via elementary complex variables, The American 
Mathematical Monthly 97 (1990), 105-119. 

[Si] CLL. Siegel, Der Dreiersto8, Annals of Mathematics 42 

(1941), 127-168. 
K. Sundman, Recherches sur le probléme des trois 
corps, Acta Societatis Scientiarum Fennicae 34 (1907), 

no. 6. 

K. Sundman, Nouvelles recherches sur le probleme 
des trois corps, Acta Societatis Scientiarum Fennicae 35 

(1909), no. 9. 
K. Sundman, Mémoire sur le probleme des trois 
corps, Acta Mathematica 36 (1912), 105-179. 

[U] J.B. Urenko, Improbability of collisions in Newtonian 

gravitational systems of specified angular momen- 
tum. SIAM J. Appl. Math. 36 (1979), 123-147. 

[G6] 

[Sul] 

[Su2] 

[Su3] 

[Wa] Q. Wang, The global solution of the n-body problem, 
Celestial Mechanics 50 (1991), 73-88. 

[Ww] A. Wintner, The Analytical Foundations of Celestial 

Mechanics, Princeton University Press, Princeton, NJ, 

1941. 

Department of Mathematics and Statistics 
University of Victoria 
Victoria, British Columbia V8W 3P4 
Canada


