
On Memory-Bound Functions for Fighting Spam

Cynthia Dwork1, Andrew Goldberg1, and Moni Naor2⋆

1 Microsoft Research, SVC

1065 L’Avenida

Mountain View, CA 94043

{dwork,goldberg}@microsoft.com
2 Weizmann Institute of Science

Rehovot 76100, Israel

naor@wisdom.weizmann.ac.il

Abstract. In 1992, Dwork and Naor proposed that e-mail messages be accompanied by easy-to-check proofs of

computational effort in order to discourage junk e-mail, now known as spam. They proposed specific CPU-bound

functions for this purpose. Burrows suggested that, since memory access speeds vary across machines much less

than do CPU speeds, memory-bound functions may behave more equitably than CPU-bound functions; this ap-

proach was first explored by Abadi, Burrows, Manasse, and Wobber [8].

We further investigate this intriguing proposal. Specifically, we
1. Provide a formal model of computation and a statement of the problem;

2. Provide an abstract function and prove an asymptotically tight amortized lower bound on the number of mem-

ory accesses required to compute an acceptable proof of effort; specifically, we prove that, on average, the

sender of a message must perform many unrelated accesses to memory, while the receiver, in order to verify

the work, has to perform significantly fewer accesses;

3. Propose a concrete instantiation of our abstract function, inspired by the RC4 stream cipher;

4. Describe techniques to permit the receiver to verify the computation with no memory accesses;

5. Give experimental results showing that our concrete memory-bound function is only about four times slower

on a 233 MHz settop box than on a 3.06 GHz workstation, and that speedup of the function is limited even if

an adversary knows the access sequence and uses optimal off-line cache replacement.

1 Introduction

Unsolicited commercial e-mail, or spam, is more than just an annoyance. At two to three billion daily spams world-

wide, or close to 50% of all e-mail, spam incurs huge infrastructure costs, interferes with worker productivity, devalues

the internet, and is ruining e-mail.

This paper focuses on the computational approach to fighting spam, and, more generally, to combating denial of

service attacks, initiated by Dwork and Naor [13] (also discussed by back Back; see [20, 11]). The basic idea is:

“If I don’t know you and you want to send me a message, then you must prove that you spent, say, ten seconds

of CPU time, just for me and just for this message.”

The “proof of effort” is cryptographic in flavor; as explained below, it is a moderately hard to compute (but very

easy to check) function of the message, the recipient’s address, and a few other parameters. Dwork and Naor called

such a function a pricing function because the proposal is fundamentally an economic one: machines that currently

send hundreds of thousands of spam messages each day, could, at the 10-second price, send only eight thousand. To

maintain the current 2-3 billion daily messages, the spammers would require 250,000–375,000 machines.

CPU-bound pricing functions suffer from a possible mismatch in processing speeds among different types of ma-

chines (desktops vs. servers), and in particular between old machines and the presumed new, top of the line, machines

that could be used by a high-tech spam service. In order to remedy these disparities, Burrows proposed an alternative

computational approach, first explored in [8], based on memory latency. His creative suggestion is to design a pric-

ing function requiring a moderately large number of scattered memory accesses. Since memory latencies vary much

less across machines than do clock speeds, memory-bound functions should prove more equitable than CPU-bound

functions.
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Our Contributions. In the current paper we explore Burrows’ suggestion. After reviewing the computational approach

(Section 2) and formalizing the problem (Section 3), we note that the known time/space tradeoffs for inverting one-way

functions [23, 16] (where space now refers to cache) constrain the functions proposed in [8] (Section 4). We propose an

abstract function, using random oracles, and give a lower bound on the amortized complexity of computing an accept-

able proof of effort (Section 5)3. We suggest a very efficient concrete implementation of the abstract function, inspired

by the RC4 stream cipher (Section 6). We present experimental results showing that our concrete memory-bound func-

tion is only about four times slower on a 233 MHz settop box than on 3.06 GHz workstation, and, interestingly, that

speedup of the function is limited even if an adversary knows the access sequence and uses optimal off-line cache

replacement (Section 7). Finally, we modify our concrete proposal to free the receiver from having to make memory

accesses, with the goal of allowing small-memory devices to be protected by our computational anti-spam protocol.

2 Review of the Computational Approach

In order to send a message m, software operating on behalf of the sender computes a proof of computational effort z =
f(m, sender, receiver, date) for a moderately hard to compute “pricing” function f . The message m is transmitted

together with the other arguments to f and the resulting proof of effort z4. Software operating on behalf of the receiver

checks that the proof of effort has been properly computed; a missing proof can result in some user-prespecified action,

such as placing the message in a special folder, marking it as spam, subjecting it to further filtering, and so on. Proof

computation and verification should be performed automatically and in the background, so that the typical user e-mail

experience is unchanged.

The function f is chosen so that

1. f is not amenable to amortization; in particular, computing f(m, sender, Alice, date) does not help in computing

f(m, sender, Bob, date). This is key to fighting spam: the function must be recomputed for each recipient (and

for any other change of parameters).

2. There is a “hardness” parameter to vary the cost of computing f , allowing it to grow as necessary to accommodate

Moore’s Law.

3. There is an important difference in the costs of computing f and of checking f : the cost of sending a message

should grow much more quickly as a function of the hardness parameter than the cost of checking that a proof

of effort is correct. This allows us to keep verification very cheap, ensuring that the ability to wage a denial

of service attack against a receiver is not exacerbated by the spam-fighting tool. In addition, if verification is

sufficiently cheap, then it can be carried out by the receiver’s mail (SMTP) server.

Remark 1. With the right architecture, the computational approach permits single-pass send-and-forget e-mail: To the

sender, single-pass sender-and-forget means that the standard e-mail experience – including the routing of the e-mail

message – is unchanged: the sender need only compose the message, perform the computation, and mail the results; it

is not necessary to have round-trip communication with a third-party server (which may or may not be accessible); it is

not necessary to have round-trip communication with the receiver or a server acting on the receiver’s behalf. When the

sender sends the message, he knows it will be received if the receiver checks her mail (at least, to the extent that this is

known in e-mail today). To the receiver, single-pass send-and-forget means that once the message has arrived the proof

of effort can be checked immediately, with a local computation, and the message can be handled accordingly, again

without contacting a server which may or may not currently be accessible, and without further contact with the sender.

Nothing needs to be stored pending (possible) future action on the part of the sender. To the Internet, single-pass

send-and-forget means no additional load on the system.

In other words, single-pass send-and-forget means that e-mail, the killer application of the Internet, is minimally

disturbed.

Remark 2. We briefly remark on our use of the date as an argument to the pricing function. The receiver temporarily

stores valid proofs of effort. The date is used to control the amount of storage needed. When a new proof of effort,

3 None of [13, 20, 11, 8] obtains a lower bound.
4 Having m as an argument to the function introduces some practical difficulties in real mail systems. One can instead use the

following three arguments: receiver’s e-mail address, date, and a nonce. However, the intuition is more clear if we include the

message.



together with its parameters, is received, one first checks the date: if the date is, say, over a week old, then the proof is

rejected. Otherwise, the receiver checks the saved proofs of effort to see if the newly received proof is among them. If

so, then the receiver rejects the message as a duplicate. Otherwise, the proof is checked for validity.

In [13], f is a forged signature in a careful weakening of the Fiat-Shamir signature scheme. Back’s proposal, called

HashCash, is based on finding hash collisions. It is currently used to control access to bulletin boards [20]; verification

is particularly simple in this scheme.

3 Computational Model and Statement of the Problem

The focus on memory-bound functions requires specification of certain details of a computational model not common

in the theory literature. For example, in real contemporary hardware there is (at least) two kinds of space: ordinary

memory (the vast majority) and cache – a small amount of storage on the same integrated circuit chip as the central

processing unit5. Cache can be accessed roughly 100 times more quickly than ordinary memory, so the computational

model needs to differentiate accordingly. In addition, when a desired value is not in cache (a cache miss), and an access

to memory is made, a small block of adjacent words (a cache line), is brought into the cache simultaneously. So in

some sense values nearby the desired one are brought into cache “for free”. Our model is an abstraction that reflects

these considerations, among others.

When arguing the security of a cryptographic scheme one must specify two things: the power of the adversary

and what it means for the adversary to have succeeded in breaking the scheme. In our case defining the adversary’s

power is tricky, since we have to consider many possible architectures. Nevertheless, for concreteness we assume the

adversary is limited to a “standard architecture” as follows:

1. There is a large memory, partitioned into m blocks (also called cache lines) of b bits each;

2. The adversary’s cache is small compared to the memory. The cache contains at most s (for “space”) words; a

cache line typically contains a small number (for example, 16) of words;

3. Although the memory is large compared to the cache, we assume that m is still only polynomial in the largest

feasible cache size s;

4. Each word contains w bits (commonly, w = 32);

5. To access a location in the memory, if a copy is not already in the cache (a cache miss), the contents of the block

containing that location must be brought into the cache – a fetch; since every cache miss results in a fetch, we use

these terms interchangeably;

6. We charge one unit for each fetch of a memory block. Thus, if two adjacent blocks are brought into cache, we

charge two units (there is no discount for proximity at the block level).

7. Computation on data in the cache is essentially free. By not (significantly) charging the adversary for this compu-

tation, we are increasing the power of the adversary; this strengthens the lower bound.

Thus, the challenge is to design a pricing function f as described in Section 2, together with algorithms for com-

puting and checking f , in which the costs of the algorithms are measured in terms of memory fetches and the “real”

time to compute f on currently available hardware is, say, about 10 seconds (in fact, f may be parameterized, and the

parameters tuned to obtain a wide range of target computation times).

The adversary’s goal is to maximize its production of (message, proof of computational effort) pairs while mini-

mizing the number of cache misses incurred. The adversary is considered to have won if it has a strategy that produces

many (message, proof) pairs with an amortized number of fetches (per message plus proof) which is substantially less

than the expected number of fetches for a single computation obtained in the analysis of the algorithm. We do not care

if the messages are sensical or not.

We remark that it may be possible to defeat a memory-bound function with specific parameters by building a

special-purpose architecture, such as a processor with a huge, fast, on-chip cache. However, since the computational

approach to fighting spam is essentially an economic one, it is important to consider the cost of designing and building

the new architecture. These issues are beyond the scope of this paper.

5 In fact, there are multiple levels of cache; Level 1 is on the chip.



4 Simple Suggestions and Small-Space Cryptanalyses

In the full paper we show that pricing functions based on the following two problems can be computed with very few

memory access, and hence do not solve our problem:

Meet in the Middle. The sender solves a partially specified instance of double encryption:

Input. Two 64-bit strings x and y and 56− k bits for each of two keys K1 and K2 (k is a hardness parameter).

Output. 56-bit keys K1 and K2 such that EK2
(EK1

(x)) = y. Here, E is any keyed encryption scheme, such as DES.

Subset Sum. The sender solves an instance of subset sum:

Input. Random 2k-bit numbers a1, . . . , a2k and integer target T .

Output. Subset S ⊆ {1, . . . , 2k} such that
∑

i∈S ai = T mod 22k.

In these proceedings we confine our attention to the proposal in [8], described next.

Easy-to-Compute Functions. These functions are essentially iterates of a single basic “random-looking” function g.

They vary in their choice of basic function. The basic function has the property that a single function inversion is more

expensive than a memory look-up.

Let n and ℓ be parameters and let g : {0, 1}n −→ {0, 1}n. Let g0 be the identity function and for i = 1 . . . ℓ, let

the function gi(x) = g(gi−1(x))⊕ i.
Input. y = gℓ(x) for some x ∈ {0, 1}n and α, a hash of the string of values x, g1(x), . . . , gℓ(x).
Output. x′ ∈ g−1

ℓ (y) such that the string x′, g1(x
′), . . . , gℓ(x

′) hashes to α.

The hope is that the best way to resolve the challenge is to build a table for g−1 and to work backwards from y,

exploring the tree of pre-images6. Since forward computation of g is assumed to be quite easy, constructing the inverse

table should require very little total time compared to the memory accesses needed to carry out the proof of effort.

The number of possible preimages for an element in the range of gℓ is fairly large (on the order of ℓ). Intuitively, the

sender must search through many of these possible preimages in order to find one that yields a path that hashes to α.

The total size of the tree of pre-images is on the order of Θ(ℓ2), so in the best case (for the memory-bound approach)

the required number of cache misses would also be Θ(ℓ2). In contrast, verification would require no memory access,

and ℓ forward computations of g.

The limitation of this approach is that, since g can be computed (in the forward direction) with no memory accesses,

there is a time/space tradeoff for inverting g in which no memory accesses are performed. General time-memory

tradeoffs to invert one-way functions were first explored by Hellman [23], and the approach was made more rigorous

by Fiat and Naor [16]. Let T be the time it will take the scheme invert g, and let S be the memory available to carry

out the inversion. In the setting of memory-bound functions, the amount of memory S would be the size of the cache

(we are trying to prove we don’t need to go to main memory, so we are interested in what can be done when the only

space available for the computation is the cache).

Let cpug be the number of CPU cycles needed to carry out a forward computation of g: that is, the computation

g(x) requires at most cpug CPU cycles. Let N = 2n be the size of the domain of g. The tradeoff is:

T · S2 = O(N2)cpug

after preprocessing (which is purely CPU-bound)7.

For the parameters in [8] we have, roughly, N = S/2, so for those functions an inversion can be computed with

about four forward computations of g, without no memory fetches. Thus, in order to make table lookup “preferable”

to inversion via the trade-off, cpug cannot be too small: otherwise, it would be faster to circumvent the table lookups,

and resolving the computational challenge would become CPU-bound.

As clock speeds increase, it will be necessary to modify g so that it remains faster to invert g via table lookups than

via the time-space tradeoff. Thus, the class of functions proposed in [8] is ultimately CPU-bound as well. However,

6 The root of the tree is labelled with y. A vertex at distance d ≥ 0 from the root having label z ∈ Range(gℓ−d) has one child

labeled with each z′ ∈ g−1(z ⊕ (ℓ − d)) ∈ Range(gℓ−d−1).
7 This is the cost of finding a single inverse. Also, the construction in [16] ensures probabilistic domain coverage. The construction

is easily modified to enable the finding of all preimages, and to ensure that the domain is completely covered.



the structure of these functions – the fact that challenges can be resolved using scattered memory accesses instead of

CPU cycles – dampens the effect of Moore’s Law: the memory-intensive solution will require less real time than the

CPU-intensive solution until CPUs become very fast. Until that point, the functions of [8] are more egalitarian for the

senders than purely CPU-intensive functions.

Finally, we note (1) verification costs rise exponentially as the CPU cost of the function cpug is altered to keep

pace with Moore’s Law and (2) the time/space tradeoff in [23, 16] is not tight, and any improvement to the tradeoff

will mandate an increase in cpug . Indeed, a recent result of Oechslin improves the tradeoff by a factor of two [31].

The analysis of easy-to-compute functions suggests basing computational challenges on functions that are (in some

sense) hard in both directions.

5 An Abstract Function and Lower Bound on Cache Misses

In this section we describe an “abstract” pricing function and prove a tight lower bound on the number of memory

accesses that must be made in order to produce a message acceptable to the receiver, in the model defined in Sec-

tion 3. The function is “abstract” in that it uses idealized hash functions, also known as random oracles. A concrete

implementation is proposed in Section 6.

Meaning of the Model and the Abstraction: Our computational model implicitly constrains the adversary by con-

straining the architecture available to the adversary. Our use of random oracles for the lower bound argument similarly

constrains the adversary, as there are some things it cannot compute without accessing the oracles. We see two ad-

vantages in such modelling: (i) It provides rationale to the design of algorithms such as those of Section 6, this is

somewhat similar to what Luby and Rackoff [26] did for the application of Feistel Permutations in the design of DES;

(ii) If there is an attack on the simplified instantiation of the algorithm of Section 6, then the model provides guidelines

for modifications. Note that we assume that the arguments to the random oracle must be in cache in order to make the

oracle call.

The inversion techniques of [23, 16] do not apply to truly random functions, as these have large Kolmogorov

complexity (no short representation). Accordingly, our function involves a large fixed forever table T of truly random

w-bit integers8. The table should be approximately twice as large as the largest existing caches, and will dominate the

space needs of our memory-bound function.

We want to force the legitimate sender of a message to take a random walk “through T ,” that is, to make a series

of random accesses to T , each subsequent location determined, in part, by the contents of the current location.

Such a walk is called a path. The algorithm forces the sender to explore many different paths until a path with

certain desired characteristics is found. We call this a successful path. Once a successful path has been identified,

information enabling the receiver to check that a successful path has been found is sent along with the message.

Verification requires work proportional to the path length, determined by a parameter ℓ. Each path exploration is

called a trial. The expected number of trials to find a successful path is 2e, where e (for “effort”) is a parameter. The

expected amount of work performed by the sender is proportional to 2e times the path length.

5.1 Description of the Abstract Algorithm

The algorithm uses a modifiable array A, initialized for each trial, of size |A|w > b bits (recall that b is the number of

bits in a memory block, or cache line)9.

Before we present the abstract algorithm, we introduce a few hash functions H0, H1, H2, H3, of varying domains

and ranges, that we model as idealized random functions (random oracles). The function H0 is only used during

initialization of a path. It takes as input a message m, sender’s name (or address) S, receiver’s name (or address) R,

and date d, together with a trial number k, and produces an array A. The function H1 takes an array A as input and

produces an index c into the table T . The function H2 takes as input an array A and an element of T and produces a

new array, which gets assigned to A. Finally, the function H3 is applied to an array A to produce a string of 4w bits.

8 “Fixed forever” means fixed until new machines have bigger caches, in which case the function must be updated.
9 The intuition for requiring |A|w > b is that, since A cannot fit into a single memory block, it is more expensive to fetch A into

cache than it is to fetch an element of T into cache.



A word on notation: For arrays A and T , we denote by |A| (respectively, |T |) the number of elements in the array.

Since each element is a word of w bits, the numbers of bits in these arrays are |A|w and |T |w, respectively.

The path in a generic trial is given by:

Initialization:

A = H0(m, R, S, d, k)
Main Loop: Walk for ℓ steps (ℓ is the path length):

c← H1(A)
A← H2(A, T [c])

Success occurs if after ℓ steps the last e bits of H3(A) are all zero.

Path exploration is repeated for k = 1, 2, . . . until success occurs. The information for identifying the successful path

is simply all five parameters and the final H3(A) obtained during the successful trial10.

Verification that the path is indeed successful is trivial: the verifier simply carries out the exploration of the one path

and checks that success indeed occurs with the given parameters and that the reported hash value H3(A) is correct.

The connection to Algorithm MBound, described in Section 6, will be clear: need only specify the four hash

functions. To keep computation costs low in MBound, we will not invoke full-strength cryptographic functions in

place of the random oracles, nor will we even modify all entries of array A at each step.

The size of A also needs consideration. If A is too small, say, a pointer into T , then the spammer can mount

an attack in which many different paths (trials for either the same or different messages) can be explored at a low

amortized cost, as we now informally describe. At any point, the spammer can have many different A’s (that is, A’s

for different trials) in the cache. The spammer then fetches a memory block containing several elements of T , and

advances along each path for which some element in the given memory block was needed. This allows exploitation of

locality in T . Thus, intuitively, we should choose |A| sufficiently large that it is infeasible to store many different A’s

in the cache.

5.2 Lower Bound on Cache Misses

We now prove a lower bound on the amortized number of block transfers that any adversary constrained as described in

Section 3 must incur in order to find a successful path. Specifically, we show that the amortized complexity (measured

in the number of memory fetches per message) of the abstract algorithm is asymptotically tight.

The computation on each message must follow a specific sequence of oracle calls in order to make progress. The

adversary may make any oracle calls it likes; however, to make progress on a path it must make the specified calls. By

watching an execution unfold, we can observe when paths begin, and when they make progress. Calls to the oracle that

make progress (as determined by the history) are called progress calls.

A path begins when a call H0(m, S, R, d, k) is first made. The path is completely identified by the five parameters

to H0.

Theorem 1. Consider an arbitrarily long but finite execution of the adversary’s program – we don’t know what the

program is, only that the adversary is constrained to use an architecture as described in Section 3. Under the following

additional conditions, the amortized complexity of generating a proof of effort that will be accepted by a verifier is

Ω(2eℓ):

– |T | ≥ 2s (recall that the cache contains s words of w bits each)

– |A|w ≥ bs1/5 (recall that b is the block size, in bits).

– ℓ > 8|A|
– The total amount of work by the spammer (measured in oracle calls) per successful path is no more than 2o(w)2eℓ.

– ℓ is large enough so that the spammer cannot call the oracle 2ℓ times.

Remark 3. First note that |A| is taken to be much larger than b/w. We already noted that if |A| is very small than a

serious attack is possible. However, even if |A| is roughly b/w, it is possible to attack the algorithm by storing many

copies of T under various permutations. In this case the adversary can hope to concurrently be exploring about log s
paths for which a single memory block contains the value in T needed by all log s paths. Hence, if (for some reason)

it is important that |A| ≤ O(b/w) we can only get a lower bound of the form Ω(2eℓ/ log s).

10 The value of H3(A) is added to prevent the spammer from simply guessing k, which has probability 1/2e of success.



Proof. (of Theorem 1) We start with an easy lemma regarding the number of oracle calls needed to find a successful

path.

Lemma 1. The amortized number of calls to H1 and H2 per proof of effort that will be accepted by a verifier is

Ω(2eℓ).

The following lemma is a completely elementary preliminary used in our lower bound proof.

Lemma 2. Let b1 . . . bm be independent unbiased random bits and let k ≤ m. Suppose we have a system that, given

a hint of length B < k (which may be based on the value of b1 . . . bm), produces a subset S of k indices and a guess of

the values of {bi | i ∈ S}. Then the probability that all k guesses are correct is at most 2B/2k, where the probability

is over the random variables and the coin flips of the hint generation and the guessing system.

Proof. Each hint yields an assignment to the indicated bits. The probability, over choice of b1, . . . , bm, that the assign-

ment is consistent with the values of the elements of S is 2−k. Thus on average each hint yields the correct answer

with probability 2B−k.

We now get to the main content of the lower bound and to the key lemma (Lemma 3): We break the execution into

intervals in which, we argue, the adversary is, forced to learn a large number of elements of T . That is, there will be a

large number of scattered elements of T which the adversary will need in order to make progress during the interval,

and very little information about these elements is in the cache at the start of the interval11.

We first motivate our definition of an interval. We want to think of each A as incompressible, since it is the output

of a random function. However, if, say, this is the beginning of a path eploration, and A = H0(m, S, R, d, k), then it

may require less space simply to list the arguments to H0; since our model does not charge (much) for oracle calls, the

adversary incurs no penalty for this. For this reason, we will focus on the values of A only in the second half of a path.

Recall that A is modified at each step of the Main Loop; intuitively, since these modifications require many elements

of T , these “mature” A’s cannot be compressed. Our definition of an interval will allow us to focus on progress on

paths with “mature” A’s.

Let n = s/|A|; it is helpful to think of n as the number of A’s that can simultaneously fit into cache (assuming

they are incompressible). A progress call is mature if it is the jth progress call of the path, for j > ℓ/2 (recall that ℓ
is the length of a path). An interval is defined by fixing an arbitrary starting point in an execution of the adversary’s

algorithm (which may involve the simultaneous exploration of many paths), and running the execution until 8n mature

progress calls (spread over any number of paths) have been made to oracle H1.

Lemma 3. The average number of memory accesses made during an interval is Ω(n), where the average is taken

over the choice of T , the responses of the random oracles, and the random choices made by the adversary.

It is an easy consequence of this lemma that the amortized number of memory accesses to find a successful path

is Ω(2eℓ). This is true since by Lemma 1, success requires an expected Ω(2eℓ) mature progress calls to H1, and the

number of intervals is the total number of mature progress calls to H1 during the execution, divided by 8n, which is

Ω(2eℓ/n). (Note that we have made no attempt to optimize the constants involved.)

Proof. (of Lemma 3) Intuitively, the spammer’s problem is that of asymmetric communication complexity between

memory and the cache. Only the cache has access to the functions H1 and H2 (the arguments must be brought into

cache in order to carry out the function calls). The goal of the (spammer’s) cache is to perform any 8n mature progress

calls. Since by definition the progress calls to H1 are calls in which the arguments have not previously been given to

H1 in the current execution, we can assume the values of H1’s responses on these calls are uniform over 1, . . . , |T |
given all the information currently in the system (memory and cache contents and queries made so far). The cache must

tell the memory which blocks are needed for the subsequent call to H2. Let β be the average number of blocks sent

by the main memory to the cache during an interval, and we assume for the sake of contradiction that β = o(n) (the

lemma asserts that β = Ω(n)). We know that the cache sends the memory β log m bits to specify the block numbers

(which is by assumption o(n log m) bits), and gets in return βb bits altogether from the memory. The key to the lemma

11 In fact, our proof will hold even if the adversary is allowed during each interval, to remember “for free” the contents of all

memory locations fetched during the interval, provided that at the start of the subsequent interval the state is reduced to sw bits

once again.



is, intuitively, that the relatively few possibilities in requesting blocks by the cache imply that many different elements

of T indicated by the indices returned by the 8n mature calls to H1 have to be stored in the same set of blocks. We

will argue that this implies that a larger than s part of T can be reconstructed from the cache contents alone, which is

a contradiction given the randomness of T .

We now proceed more formally. Lemma 3 will follow from a sequence of claims. The first is that there are many

entries of T for which many possible values are consistent with the cache contents at the beginning of the interval.

That is, T is largely unexplored from the cache’s point of view.

Claim 1. There exist γ, δ ≥ 1/2 such that: given the cache contents at the beginning of the interval, it is expected that

there exists a subset of the entries of T , called T ′, of size at least δ|T | such that for each entry i in T ′ there is a set Si

of 2γw possible values for T [i] and all the Si’s are mutually consistent with the cache contents.

Proof. we want to apply Sauer’s Lemma to show that, given the cache content, at the start of the interval, there are

many words with high entropy, i.e., with lots of possibilities. We know that the cache size is s words of width w, or

sw bits total. Consider an assignment to T as a binary vector of length sw.

The expected number of assignments to T consistent with a given cache content is 2(|T |−s)w. Each of these is

described by a binary vector of length |T |w. Sauer’s Lemma (described in Alon and Spencer [9]) says that in such

a large collection of vectors there must be d variables (bit positions) that appear in all 2d combinations, where d

satisfies
( |T |w
(d+1)

)

≥ 2(|T |−s)w (more precisely
∑d

i=0

(

|T |w
i

)

≥ 2(|T |−s)w.) Thus, if s = |T |/2 then we have that
( |T |w
(d+1)

)

≥ 2|T |w/2. Since
( |T |w
(d+1)

)

≤ ( e|T |w
d )d we have that d log(e|T |w/d) ≥ |T |w/2 and d ≥ 1/2|T |w. So for some

T ′ of size 1/2 times |T | there are |T ′| entries in T where the number of possibilities to the entry is at least 2w/2 (i.e.,

γ ≥ 1/2). In the sequel, we will concentrate solely on these |T ′| entries. If there is a mature progress call with an

element among these entries, we call this an element to be learned.

From now on we assume that we have cache content consistent with a large number of possibilities for T ′ as in the

claim and use this cache configuration to show that it is possible to extract many entries of T ′.

Claim 2. If the number β of memory accesses is o(n), then the number of different paths on which a mature progress

call is made during an interval is at most 3n.

Proof. When a mature progress call is made with a value A, this A can come from three sources: 1) it was stored in

the cache at the start of the start of the interval; 2) it was developed from a previous call to H2 where the value of A for

that call was itself stored in the cache; 3) it was developed ”from scratch” i.e., all (at least ℓ/2) points on the path are

computed during the interval. Given an execution it is easy to classify each progress call into one of these three types.

Consider first all the calls of types (1) and (2), that is, calls where at least one point on the path is not accessed in H1

in the interval. Suppose that there are at least 2n of them, so that at on at least 2n different paths calls of types (1) or

(2) are made. Let’s examine the first calls to H1 in on all the paths for which the preceding call to H2 is not present.

Together, the inputs to these calls require at least 2n|A|w bits of information. Since the cache holds only n|A|w bits

and the A’s are incompressible (from the randomness of H2), for the algorithm to have non-negligible probability of

being correct it must obtain at least n|A|w bits from memory during the interval. Since |A|w > b (where b is the block

size in bits), this means at least Ω(n) memory accesses, contradicting the assumption that β = o(n).
Consider now type (3) progress calls, i.e., calls on paths that are explored from scratch during the interval. Since a

mature progress call requires that ℓ/2 calls have been made to H2 (in bringing the path to maturity), it follows that the

values stored in the locations of T appearing as arguments in these calls must be known during the interval. However,

we argued in Claim 1 that a large part (in fact, half) of T , called T ′, is missing almost fully from the cache. Suppose

there are n paths of type (3), requiring together nℓ/2 accessses to T . There are two possibilities: Either the total

number of elements of T ′ accessed in these nℓ/2 accesses to T exceeds |T ′|/2, or not. If this number exceeds |T ′|/2,

then we need to retrieve Ω(|T ′|wγ/2b), which is greater than Ω(n), blocks of memory (by information theory). If this

number is less than |T ′|/2, then the adversary has witnessed an unlikely event: All the elements accessed in the length

ℓ/2 prefixes of the n paths fall into a set of size at most |T | − |T ′|+ |T ′|/2 ≤ 3|T |/4. Fix such a set. The probability

of this event is (3/4)nℓ/2. There are at most 2|T | such sets. Suppose that the spammer has examined z paths. Then the

probability that in these z paths there is such an n-collection is multiplied by
(

z
n

)

. Given that we assumed that 2ℓ is not

a feasible number for the adversary we know that ℓn >> |T | and we get that
(

z
n

)

· 2|T | is≪ (4/3)nℓ/2. So with high

probability the spammer cannot find n such paths.



So we have at most 2n paths of types (1) and (2) combined, and at most n paths of type (3), for a total of at most

3n paths.

It therefore follows that in a typical interval there are at least 8n− 3n = 5n pairs of consecutive mature progress

calls to H1 on a common path. Thus, for example, one path may experience 5n + 1 mature progress calls, or each

of n paths may experience at least 6 mature progress calls, or something in between. Each such pair of calls to H1 is

separated by a call to H2 which requires the contents of the location of T specified by the first H1 call in the pair. It is

these interstitial calls to H2 that are of interest to us: because their preceding calls to H1 first occur during the interval,

and H1 is random, it cannot be known at the start of the interval which elements of T will be needed as arguments to

these calls to H2. Intuitively, the adversary must go to main memory to find an expected (|T | − s)/|T | > 1/2 of them.

Claim 3. In a typical interval there are at least 5n pairs of consecutive mature progress calls to H1 on a common

path. Thus there are also 5n pairs of calls to H1 and then to H2 on the same path.

Consider the set of 8n-tuples over {1, . . . , |T |} as the set of possible answers H1 returns on the mature progress

calls in the interval; there are |T |8n such tuples. Fix all other random choices: the value of T , the previous calls to H1

and H2 and the random tape of the spammer). The spammer’s behavior in an interval is now determined solely by this

8n-tuple. If the spammer can defeat our algorithm, then, for some fixed ǫ > 0, the spammer completes the interval

retrieving at most 2β blocks with at least ǫ probability, over the choice of 8n-tuple. Call these tuples the good ones. By

Markov’s inequality, for at least half of these good 8n-tuples the spammer retrieves at least β blocks. We first claim

that in most of those tuples the spammer goes frequently into H2 with values T [i] where i ∈ T ′.

Claim 4. Let T ′ be any subset of the entries of T of size at least δn. Consider the set of good 8n-tuples over

{1, . . . , |T |} as the set of possible answers H1. Then except for at most an exponential in n fraction of them the

spammer must use an entry in T ′ for a call to at H2 least n times during an interval.

Proof. By definition, an interval contains 8n mature progress calls to H1, and we argued in Claim 2 that these occur

in at most 3n paths. When the spammer calls H1 and gets a value c, there is probability at least δ = 1/2 that this c
is in T ′. The spammer may decide to pursue this c (that is, to try to learn T [c]) in this interval or not. If he decides

not to pursue it, then the current path will make no further progress in the interval. This can happen at most 3n times

(since there are at most 3n paths of interest). Therefore, if (δ8n)− 3n ≥ n then we get that at least n (not necessarily

distinct) values of T ′ have to be retrieved from main memory during the interval for the subsequent call to H2.

Claim 5. Suppose that we have subset X of size x of entries in T . Then the probability over H1 that a 8n-tuple

contains more than n/2 entries in X is at most (28x/|T |)n/2.

Proof. This is by simple computation: for a fixed set of n/2 entries out of the 8n this probability is (x/|T |)n/2 and

there are at most
(

8n
n/2

)

≤ 28n/2 such subsets.

Claim 6. Suppose that we have a collection of good 8n-tuples and we want to cover at least x values in T ′ using only

a few members of the collection, say 2x/n (assume that the collection is at least that large). If this is impossible then

there is a set X ⊂ T ′ of size x such that every member of the collection has at least n/2 entries in X .

Proof. We prove the contrapositive. If there is no set X ⊂ T ′ of size x such that every member of the collection has

at least n/2 entries in X , then we can build a large coverage in a greedy manner, each time adding at least n/2 new

entries in T ′. At any point during the process the union X of all tuples we added should be of size less than x and

hence there should be a tuple in the collection with n/2 entries in T ′ but not in X . So after 2x/n steps we have covered

x entries of T ′.

The idea for deriving the contradiction to the fact that only β = o(n) blocks are brought from memory to cache is

that there should be many good 8n-tuples that share the same set of blocks (that is, by retrieving one set of blocks all

elements appearing in many good 8n-tuples can be reconstructed in the cache). In fact, since the memory size is m,

a 1/
(

m
2β

)

fraction of them share the same set of blocks (the factor of 2 comes from the definition of a good 8n-tuple).

Consider such a collection and suppose that there are 2x/n tuples in this collection whose union covers x entries in

T ′. Then the ”memory” can use these 2x/n tuples to transfer the value of x entries in T ′ by sending the 2βb bits

describing the content of the common blocks and in addition for each tuple in the cover:



1. Specifying the 8n-tuple: this takes 8n log |T | bits.

2. Specifying which calls to H2 in the execution have the correct parameters (there may be some “bogus” calls to

H2 in which the wrong values for elements of T are used as parameters). If the interval contains z calls to H2 then

this takes log
(

z
n/2

)

bits which is O(n log z).

So altogether it suffices for 2βb + 16x log |T |+ 2x log z bits to be sent from the memory to the cache. In return, the

cache learns γw bits for each of x entries in T ′, or xγw bits altogether. To derive the contradiction, since w was taken

to be much larger than log |T | and 2w/2 much larger than the amortized number of oracle calls per interval, log z is

much smaller than w and we only have to worry about the 2βb term.

Assume that β ≤ 1/20n = s/20|A| and, for simplicity that m, the memory size is |T |2 (recall that in our model

m is polynomial in s, and in our theorem |T | = Θ(s)). Set x = 4βb/w. Of all good tuples, pick the largest collection

agreeing with a set of β blocks, i.e., consisting of at least a 1/
(

T 2

β

)

fraction of the good tuples. We now claim that this

collection has 2x/n 8n-tuples whose union is of size at least x (this will be sufficient for a contradiction).

Suppose that this is not the case and the 2x/n tuples covering x do not exist. Then as we have seen above in Claim

6 there is a set X of size x where each tuple in the collection has at least n/2 entries in X . But we know from Claim 5

that the fraction (among all tuples) of such a collection can be at most (28x/|T |)n/2. Taking into account ǫ (the faction

of all tuples that are good) we must compare ((28x/|T |)n/2)(1/ǫ) to 1/
(

T 2

2β

)

and if the latter is larger we know that

the collection is too large to be compressed into X . For simplicity take ǫ = 1. Indeed

(28x/|T |)n/2

(

T 2

2β

) =
(28x)n/2

T n/2−4β

taking logs we get that we need to compare log 28x and (log T )n−4β
n = (log T ) s/|A|−4s/20|A|

s/|A| = (log T ) 4
5 . But since

x = 4βb/w = 4sb/(20|A|w) and |A| ≥ s1/5b/w we get that x ≤ 1/5s4/5 and indeed 8 + log x is smaller than

4/5 log |T |.

This concludes the proofs of Lemma 3 and Theorem 1

6 A Concrete Proposal

In this section we describe a concrete implementation of the abstract algorithm of Section 5, which we call Algo-

rithm MBound. As in the abstract algorithm, our function involves a large fixed forever array T , now of 222 truly

random 32-bit integers12. In terms of the parameters of Section 5, we have |T | = 222 and w = 32. This array requires

16 MB and dominates the space needs of our memory-bound function, which requires less than 18 MB total space.13

The algorithm requires in addition a fixed-forever truly random array A0 containing 256 32-bit words. A0 is used in

the definition of H0. Note that A0 is incompressible.

6.1 Description of MBound

Our proposal was inspired by the (alleged) RC4 pseudo-random generator (see, e.g., the descriptions of RC4 in [18,

27, 29]).

Description of H0. Recall that we have a fixed-forever array A0 of 256 truly random 32-bit words. At the start of the

kth trial, we compute A = H0(m, S, R, d, k) by first computing (using strong cryptography) a 256-word mask and

then XORing A0 together with the mask. Here is one way to define H0:

1. Let αk = h(m, S, R, d, k) (|αk| = 128), for a cryptographically strong hash function h such as, say, SHA-1.

12 “Fixed forever” means fixed until new machines have bigger caches, in which case the function must be updated.
13 To send mail, a machine must be able to handle a program of this size.



2. Let η(αk) be the 213-bit string obtained by concatenating the 27-bit αk with itself 26 times14. Treating the array

A as a 213-bit string (by concatenating its entries in row-major order), we let A = A0 ⊕ η(αk). Note that, unlike

in the case of RC4, our array A is not a permutation of elements {1, 2, . . . , 256}, and its entries are 32 bits, rather

than 8 bits.

We initialize c, the current location in T , to be the last 22 bits of A (when A is viewed as a bit string). In the sequel,

whenever we say A[i] we mean A[i mod 28]; similarly, by T [c] we mean T [c mod 222].

The path in a generic trial is given by:

Initialize Indices:

i = 0; j = 0
Walk for ℓ steps (ℓ is the path length):

i = i + 1
j = j + A[i]
A[i] = A[i] + T [c]
A[i] = RightCyclicShift(A[i], 11) (shift forces all 32 bits into play)

Swap(A[i], A[j])
c = T [c]⊕A[A[i] + A[j]]

Success occurs if the last e bits of h(A) are all 0.

In the last line, the hash function h can again be SHA-1. It is applied to A, treated as a bit string.

The principal difference with the RC4 pseudo-random generator is in the use of T : bits from T are fed into

MBound’s pseudo-random generation procedure, both in the modification of A and in the updating of c.

In terms of the abstract function, we can tease our proposal apart to obtain, roughly:

Description of H1 (updates c, leaves A unchanged). The function H1 is essentially

i = i + 1
j = j + A[i]
v = A[i] + T [c] (v is a temporary variable)

v = RightCyclicShift(v, 11)
c = T [c]⊕A[A[j] + v]

Description of H2 (updates A).

A[i] = A[i] + T [c]
A[i] = RightCyclicShift(A[i], 11)
Swap(A[i], A[j])

Description of H3. The hash function H3(A) is simply some cryptographically strong hash function with 128 bits of

output, such as SHA-1.

This all but completes the description of Algorithm MBound and its connection to our abstract function; it remains

to choose the parameters.

6.2 Parameters for MBound

We can define the computational puzzle solved by the sender as follows.

Input. A message m, a sender’s alias S, a receiver’s alias R, a time t, the table T and the auxiliary table A0.

Output. m, S, R, d, i and α such that 1 ≤ i ≤ 2e and the ith path (that is, the path with trial number k = i), is

successful and α is the result of hashing the final value of A in the successful path.

14 The reason we concatenate the string in order to generate η(αk), rather than generate a cryptographically strong string of length

213 is to save CPU cycles - this is an operation that is done many times and if each bit of η(αk) is strong it could make the

scheme CPU bound.



If i > 22e, the receiver rejects the message (with overwhelming probability one of the first 22e trials should be

successful).

To be specific in the following analysis, we make several assumptions. These assumptions are reasonable for

current technology, and our analysis is sufficiently robust to tolerate substantial changes in many of these parameters.

Let P be the desired expected time for computing the proof of effort and let τ be the memory latency. We assume that

P is 10 seconds and τ is .2 microseconds. We also assume that the maximum size of the fast cache is 8 MB and that

cache lines (memory blocks) are 64 bytes wide (so blocks contain b = 512 bits).

The output conditions ensure that for a random starting point, the probability of a successful output is 1/2e. The

expected number of walks to be checked is 2e. Therefore the expected value of P is

E[P ] = 2e · ℓ · τ.

The cost of verification by the receiver is essentially ℓ cache misses, by following the right path. (In Section 8 we

discuss how to reduce or eliminate these cache misses.)

We have not yet set the values for e and ℓ. Choosing one of these parameters forces the value of the other one.

Consider the choice of e: one possibility might be to make e very large, and the paths short, say, even of length 1.

This would make verification extremely cheap. However, while the good sender will explore the paths sequentially,

a cheating sender may try several paths in parallel, hoping to exploit locality by batching several accesses to T ,

one from each of these parallel explorations. In addition, A changes slowly, and to get to the point in which many

“mature” values of A cannot be compressed requires that many entries of A have been modified. For our concrete

proposal, therefore, we let ℓ = 2048. Then 2e = P/ℓτ = 10/(2048 ∗ 2 ∗ 10−7) ≈ 24, 414.

7 Experimental Results

In this section we describe several experiments aimed at establishing practicality of our approach and verifying it

experimentally. First we compare our memory-bound function performance to that of the CPU-intensive HashCash

function [20] on a variety of computer architectures. We confirm that the memory-bound function performance is

significantly more platform-independent. We also measure the solution-to-verification time ratio of our function. Then

we run simulations showing how the number of cache misses during the execution of our memory-bound function

depends on the cache size and the cache replacement strategy. We observe that even if an adversary knows future

accesses, this does not help much unless the cache size is close to the size of T . Finally, we study how the running

time depends on the size of the big array T .

7.1 Different Architectures

name class model processor CPU clock OS

P4-3060 workstation DELL XW8000 Intel Pentium 4 3.06 Ghz Linux

P4-2000 desktop Compaq Evo W6000 Intel Pentium 4 2.0 Ghz Windows XP

P3-1200 laptop DELL Latitude C610 Intel Pentium 3M 1.2 Ghz Windows XP

P3-1000 desktop Compaq DeskPro EN Intel Pentium 3 1.0 Mhz Windows XP

Mac-1000 desktop Power Mac G4 PowerPC G4 1000 Mhz OSX

P3-933 desktop DELL Dimension 4100 Intel Pentium 3 933 Mhz Linux

SUN-900 server SUN Ultra 60 UlraSPARC III+ 900 Mhz Solaris

SUN-450 server SUN Ultra 60 UlraSPARC II 450 Mhz Solaris

P2-266 laptop Compaq Armada 7800 Intel Pentium 2 266 Mhz Windows 98

S-233 settop GCT-AllWell STB3036N Nat. Semi. Geode GX1 233 Mhz Linux

Table 1. Computational Platforms, sorted by CPU speed.



machine L2 cache L2 line memory

P4-3060 256 KB 128 bytes 4 GB

P4-2000 256 KB 128 bytes 512 MB

P3-1200 256 KB 64 bytes 512 MB

P3-1000 256 KB 64 bytes 512 MB

P3-933 256 KB 64 bytes 512 MB

Mac-1000 256 KB 64 bytes 512 MB

SUN-900 8 MB 64 bytes 8 Gb

SUN-450 8 MB 64 bytes 1 Gb

P2-266 512 KB 32 bytes 96 MB

S-233 16 KB 16 bytes 128 MB

Table 2. Memory hierarchy.

We conducted tests on a variety of platforms, summarized in Table 1. These platforms vary from the popular

Pentium 3 and Pentium 4 systems and a Macintosh G4 to SUN servers with large caches. We even tested our codes

on a settop box, which is an example of a low-power device. The P2-266 laptop is an example of a “legacy” machine

and is representative of a low-end machine among those widely used for e-mail today (that is, in 2003). Table 2 gives

sizes of the relevant components of the memory hierarchy, including L2 cache size, L2 cache line size, and memory

size. With one exception, all machines have two levels of cache and memory. The exception is the Macintosh, which

has a 2 MB off-chip L3 cache in addition to the 256 KB on-chip L2 cache.

7.2 Memory- vs. CPU-Bound

machine HashCash MBound

name time time sol./ver.

P4-3060 1.00 1.01 2.32 E4

P4-2000 1.91 1.33 1.65 E4

P3-1200 2.21 1.00 2.55 E4

P3-1000 2.67 1.06 2.48 E4

Mac-1000 1.86 1.96 2.61 E4

P3-933 2.15 1.06 2.51 E4

SUN-900 1.82 2.24 2.50 E4

SUN-450 5.33 2.94 2.02 E4

P2-266 10.17 2.67 1.84 E4

S-233 43.20 4.62 1.50 E4

Table 3. Program timings. Times are averages over 20 runs, measured in units of the smallest average. For HashCash, the smallest

average is 4.44 sec.; for MBound, it is 9.15 sec.%.

The motivation behind memory-bound functions is that their performance is less dependent on processor speed

than is the case for CPU-bound functions. Our first set of experiments compares an implementation of our memory-

bound function, MBound, to our implementation of HashCash [20]. HachCash repeatedly appends a trial number to

the message and hashes the resulting string, until the output ends in a certain number zero bits (22 in our experiments).

For MBound, with its slower iteration time, we set the required number of zero bits to 15.

Table 3 gives running times for HashCash and MBound, normalized by the fastest machine time. Note that Hash-

Cash times are closely correlated with processor speed. Running times for MBound show less variation. The difference

between the P2-266 laptop and the fastest machine used in our tests for HashCash is a factor of 10.17, while the dif-



ference for MBound is only a factor of 2.67. The HashCash vs. MBound gap is even larger for the S-233 settop

box.15

Modern Pentium-based machines perform well in memory-bound computations. The Macintosh does not do so

well; we believe that this is due to its poor handling of the translation lookahead buffer (TLB) misses. SUN servers do

poorly in spite of their large caches. This is due to their poor handling of TLB misses and the penalty for their ability

of handle large memories.

7.3 Work Ratio

Recall that our experiments require 15 last bits of a hash of A to be zero for the memory-bound puzzle to be solved.

The expected number of paths we need to try is 215. This is an upper bound on the work ratio between the solver and

the verifier. However, while for the solver initialization (dominated by computing a hash of a string that depends on

the input message and customizing entries of A for the input message) is well-amortized over the work involved in

following the paths, for the verifier, who follows only one path, this work a non-trivial fraction of the running time.

The initialization overhead is a tradeoff between the size of A, the length of the input string, and the path length.

In out experiments, A contain 256 words, the path length is equal to 2048, and the input string contains 64 bytes. The

last column of Table 3 gives the work ratio. Except for the settop box, the work ratio is greater than 214, which means

that the work involved in following the path dominates verification. For the settop box, the ratio is slightly less than

214, meaning that initialization and path-following take approximately the same time.

These experimental results show that our parameter choices yield a reasonable work ratio.

Hit or Miss. In the full version of the paper we show that if the adversary is constrained to follow the protocol, then

even optimal off-line cache replacement, in which the cache line used farthest in the future is evicted from cache [7],

does not significantly reduce the adversary’s costs.

8 Freeing the Receiver from Accessing T

Since the spam-protected receiver will sometimes act also as an e-mail sender, he will have access to the array T .

However, we would like receiving mail not to have to involve accessing T at all. For example, one might wish to be

able to receive mail on a cell phone. In this section we explore the possibility that the sender adds some information

to its message that will permit the receiver to efficiently verify the proof of effort with no accesses to T .

Hash Trees. A natural suggestion is to try Merkle hash trees [28] (see also [19, 32]). Consider a full binary tree, where

the leaves correspond to the entries of T and the value of each internal node is a an appropriately strong one-way hash

of the value of its two children. Assume the receiver knows the value at the root. In order to prove the correctness

of a value T [c], the sender provides the values at the nodes on and adjacent to the path from the root to the leaf

corresponding to T [c]16. This is repeated for every entry of T that is to be verified (note that many of the root-leaf

paths will have (relatively short) common prefixes).

How expensive is this scheme? First note that we can use universal one-way hash functions (UOWHFs) [30], since

we only need to ensure that it is hard to find second preimages under the hash functions (this is sufficient because

the entries in T are not chosen maliciously; only the false ones are). For this kind of one-way hash function a smaller

range (smaller than the one needed for collision-intractable hashing) suffices, resulting in a shorter proof. Assuming

a range of 280 elements and root-leaf path length log |T | = 22, this means roughly 22 · 80 = 1760 bits per entry of

T in the successful path. Since the path length ℓ is taken to be roughly 1,000–2,000, this is an additional 200–400 KB

per message. There are several ways to optimize this approach; for instance, we can assume that the receiver stores

instead of just the root all nodes of depth, say 10, i.e., roughly 1, 000 of them. This almost cuts in half the number

of additional bits to be transmitted. Under this approach, verification requires ℓ log |T | evaluations of a one-way hash

function.

15 Note that S-233 is a special-purpose device and code produced by the C compiler may be poorly optimized of the processor.

This may be one of the reasons why this machine was so slow in our tests.
16 This is a path in the Merkle tree, not a path in the sense of our algorithm; to avoid confusion and emphasize the distinction we

call these root-leaf paths.



Signature Schemes. The conceptually simplest method for freeing R from accessing T is for the creator of T to sign

all the elements of T (more precisely, the signature is on the pair (c, T [c]), to disallow permuting the table). However,

this requires too much storage at the sender, even using the signature scheme yielding the shortest signatures [10].

Compressed RSA Signatures. Here we use properties of the RSA scheme previously exploited in the literature [15, 14].

Let (N, e) be the public key of an RSA signature scheme chosen by the creator of T 17. Let F be a function mapping

pairs (c, T [c]) into Z∗
N , that is, a mapping from 32 + 22 = 54-bit strings into Z∗

N . In our analysis we will model F

as a random oracle. For all 1 ≤ c ≤ |T | let vc = F (c, T [c]) and let wc = v
1/e
c mod N . Thus, vc is a hash of the pair

(c, T [c]) and wc is a signature on the string vc.

The sender’s protocol contains, in addition to T , the public modulus N , the description of F , and the wc’s. The

receiver’s protocol uses only the description of F and the public key (N, e), together with a description of the sender’s

path exploration algorithm (minus the array T itself).

Let the sender’s successful path be the sequence c1, c2, . . . cℓ of locations in T . The proof of effort contains two

parts:

1. T [c1], T [c2], . . . , T [cℓ], (a total of about 4 KB), and

2. w =
∏ℓ

i=1 wci
mod N (about 1 KB).

Note that there is no need to include the indices c1, . . . , cℓ in the first part, as these are implicit from the algorithm.

Similarly, there is no need to send the vc’s, since these are implicit from F and the (ci, T [ci]) pairs. Let t1, . . . , tℓ be

the first part of the proof, and w the second part (each ti is supposed to be T [ci], but the verifier cannot yet be certain

this is the case). The proof is checked as follows.

1. Compute v′
c1

, v′c2
, . . . v′cℓ

, where v′
ci

= F (ci, ti).

2. Check whether we = (
∏ℓ

i=1 vci
) mod N.

The security of the scheme rests on the fact that it is possible to translate a forged signature on

(c1, T [c1]), . . . (cℓ, T [cℓ])

into an inversion of the RSA function on a specific instance. This is summarized as follows:

Theorem 2. If F is a random oracle, then any adversary attempting to produce a set of claimed values

T [c1], T [c2], . . . T [cℓ]

that is false yet acceptable to the receiver can be translated into an adversary for breaking RSA with the same run

time and probability of success (to preserve probability of success we need that e be a prime larger than ℓ).

Although transmission costs are low, the drawback of the compressed RSA scheme is again the additional storage

requirements for the sender: each wc is at least 1, 000 bits (note, however, that these extra values are not needed until

after a successful path has been found). This extra storage requirement might discourage a user from embracing the

scheme. We address this next.

Storage-Optimized Compressed RSA. We optimize storage with the following storage / communication / computation

tradeoff: Think of T as an a × b matrix where a · b = |T |; the amount of extra communication will be a elements of

T . The amount of extra storage required by the sender will be b signatures.

At a high level, given a path using values T [c1], T [c2], . . . , T [cℓ], values in the same row of T will be verified

together as in the compressed RSA scheme. The communication costs will therefore be at most a elements, one per

row of T . However, as we will see below, there is no need to store the wc’s explicitly. Instead, we can get away

with storing a relatively small number of signatures (one per column), from which it will be possible to efficiently

reconstruct the wc values as needed.

17 The signing key d is a valuable secret!



Instead of a single exponent e, both sending and receiving programs will contain a (common) list of primes

e1, e2, . . . ea. For 1 ≤ i ≤ a, ei is used for verifying elements of row i of the table. Although we don’t need to

store the wc values explicitly, for elements vc appearing in row i we define wc = v
1/ei
c mod N .

The compressed RSA scheme is applied to the entries in each row independently. It only remains to describe how

the needed wc values are constructed on the fly.

The b “signatures”, one per column, used in the sending program are computed by the creator as follows. For each

column 1 ≤ j ≤ b, the value for column j is uj =
∏a

i=1 wcji
mod N . Here, cji

is the index of the element T [i, j],
when T is viewed as a matrix rather than as an array (that is, assuming row-major order, cji

= (i−1)a+ j−1). Thus,

vcji
= T [(i− 1)a + j − 1] and wcji

= (vcji
)1/ei . As in Batch RSA [15], one can efficiently extract any wcji

from uj

using a few multiplications and exponentiations.

Set a = 16. The number of data bits in a column is 24 · 25 = 29. The number of “signature bits” is 210 per column.

Thus storage requirement just more than doubles, rather than increasing by a factor of 5-10, at the cost of sending 16
elements of Z∗

N (i.e., 2 KB).

9 Concluding Remarks

We have continued the discussion, initiated in [8], of using memory-bound rather than CPU-bound pricing functions

for computational spam fighting. We considered and analyzed several potential approaches. Using insights gained in

the analyses, we proposed a different approach based on truly random, incompressible, functions, and obtained both a

rigorous analysis and experimental results supporting our approach.

From a theoretical perspective, however, the work is not complete. First, we have the usual open question that

arises whenever random oracles are employed: can a proof of security (in our case, a lower bound on the average

number of cache misses in a path) be obtained without recourse to random oracles? Second, much more unusually,

can we prove security without cryptographic assumptions? Note that we did not make cryptographic assumptions in

our analysis.

One of the more interesting challenges suggested by this work is to apply results from complexity theory in order

to be able to make rigorous statements about proposed schemes. One of the more promising directions in recent years

is the work on lower bounds for branching program and the RAM model by Ajtai s [4, 5] and Beame et al [6]. It is not

clear how to directly apply such results.

At first blush egalitarianism seems like a wonderful property in a pricing function. However, on reflection it may

not be so desirable. Since the approach is an economic one it may be counterproductive to design functions that

can be computed just as quickly on extremely cheap processors as on supercomputers – after all, we are trying to

force the spammers to expend resources, and it is the volume of mail sent by the spammers that should make their

lives intolerable while the total computational effort expended by ordinary senders remains benign. So perhaps less

egalitarian is better, and users with weak or slow machines, including PDAs and cell phones, could subscribe to a

service that does the necessary computation on their behalf. In any case, small-memory machines cannot be supported,

since the large caches are so very large, so in any real implementation of computational spam fighting some kind of

computation service must be made available.
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