On Memory-Bound Functions for Fighting Spam

Cynthia Dwork!, Andrew Goldberg!, and Moni Naor?*

1 Microsoft Research, SVC
1065 L’ Avenida
Mountain View, CA 94043
{dwork, goldberg}@microsoft.com
2 Weizmann Institute of Science
Rehovot 76100, Israel
naor@wisdom.weizmann.ac.il

Abstract. In 1992, Dwork and Naor proposed that e-mail messages be accompanied by easy-to-check proofs of
computational effort in order to discourage junk e-mail, now known as spam. They proposed specific CPU-bound
functions for this purpose. Burrows suggested that, since memory access speeds vary across machines much less
than do CPU speeds, memory-bound functions may behave more equitably than CPU-bound functions; this ap-
proach was first explored by Abadi, Burrows, Manasse, and Wobber [8].
We further investigate this intriguing proposal. Specifically, we
1. Provide a formal model of computation and a statement of the problem;
2. Provide an abstract function and prove an asymptotically tight amortized lower bound on the number of mem-
ory accesses required to compute an acceptable proof of effort; specifically, we prove that, on average, the
sender of a message must perform many unrelated accesses to memory, while the receiver, in order to verify
the work, has to perform significantly fewer accesses;
. Propose a concrete instantiation of our abstract function, inspired by the RC4 stream cipher;
. Describe techniques to permit the receiver to verify the computation with no memory accesses;
. Give experimental results showing that our concrete memory-bound function is only about four times slower
on a 233 MHz settop box than on a 3.06 GHz workstation, and that speedup of the function is limited even if
an adversary knows the access sequence and uses optimal off-line cache replacement.

[T SOV

1 Introduction

Unsolicited commercial e-mail, or spam, is more than just an annoyance. At two to three billion daily spams world-
wide, or close to 50% of all e-mail, spam incurs huge infrastructure costs, interferes with worker productivity, devalues
the internet, and is ruining e-mail.

This paper focuses on the computational approach to fighting spam, and, more generally, to combating denial of
service attacks, initiated by Dwork and Naor [13] (also discussed by back Back; see [20, 11]). The basic idea is:

“If I don’t know you and you want to send me a message, then you must prove that you spent, say, ten seconds
of CPU time, just for me and just for this message.”

The “proof of effort” is cryptographic in flavor; as explained below, it is a moderately hard to compute (but very
easy to check) function of the message, the recipient’s address, and a few other parameters. Dwork and Naor called
such a function a pricing function because the proposal is fundamentally an economic one: machines that currently
send hundreds of thousands of spam messages each day, could, at the 10-second price, send only eight thousand. To
maintain the current 2-3 billion daily messages, the spammers would require 250,000-375,000 machines.

CPU-bound pricing functions suffer from a possible mismatch in processing speeds among different types of ma-
chines (desktops vs. servers), and in particular between old machines and the presumed new, top of the line, machines
that could be used by a high-tech spam service. In order to remedy these disparities, Burrows proposed an alternative
computational approach, first explored in [8], based on memory latency. His creative suggestion is to design a pric-
ing function requiring a moderately large number of scattered memory accesses. Since memory latencies vary much
less across machines than do clock speeds, memory-bound functions should prove more equitable than CPU-bound
functions.

* Incumbent of the Judith Kleeman Professorial Chair. Research supported in part by a grant from the Israel Science Foundation.
Part of this work was done while visiting Microsoft Research, SVC.

Our Contributions. In the current paper we explore Burrows’ suggestion. After reviewing the computational approach
(Section 2) and formalizing the problem (Section 3), we note that the known time/space tradeoffs for inverting one-way
functions [23, 16] (where space now refers to cache) constrain the functions proposed in [8] (Section 4). We propose an
abstract function, using random oracles, and give a lower bound on the amortized complexity of computing an accept-
able proof of effort (Section 5)3. We suggest a very efficient concrete implementation of the abstract function, inspired
by the RC4 stream cipher (Section 6). We present experimental results showing that our concrete memory-bound func-
tion is only about four times slower on a 233 MHz settop box than on 3.06 GHz workstation, and, interestingly, that
speedup of the function is limited even if an adversary knows the access sequence and uses optimal off-line cache
replacement (Section 7). Finally, we modify our concrete proposal to free the receiver from having to make memory
accesses, with the goal of allowing small-memory devices to be protected by our computational anti-spam protocol.

2 Review of the Computational Approach

In order to send a message m, software operating on behalf of the sender computes a proof of computational effort z =
f(m, sender, receiver, date) for a moderately hard to compute “pricing” function f. The message m is transmitted
together with the other arguments to f and the resulting proof of effort z*. Software operating on behalf of the receiver
checks that the proof of effort has been properly computed; a missing proof can result in some user-prespecified action,
such as placing the message in a special folder, marking it as spam, subjecting it to further filtering, and so on. Proof
computation and verification should be performed automatically and in the background, so that the typical user e-mail
experience is unchanged.
The function f is chosen so that

1. fis not amenable to amortization; in particular, computing f(m, sender, Alice, date) does not help in computing
f(m, sender, Bob, date). This is key to fighting spam: the function must be recomputed for each recipient (and
for any other change of parameters).

2. Thereis a “hardness” parameter to vary the cost of computing f, allowing it to grow as necessary to accommodate
Moore’s Law.

3. There is an important difference in the costs of computing f and of checking f: the cost of sending a message
should grow much more quickly as a function of the hardness parameter than the cost of checking that a proof
of effort is correct. This allows us to keep verification very cheap, ensuring that the ability to wage a denial
of service attack against a receiver is not exacerbated by the spam-fighting tool. In addition, if verification is
sufficiently cheap, then it can be carried out by the receiver’s mail (SMTP) server.

Remark 1. With the right architecture, the computational approach permits single-pass send-and-forget e-mail: To the
sender, single-pass sender-and-forget means that the standard e-mail experience — including the routing of the e-mail
message — is unchanged: the sender need only compose the message, perform the computation, and mail the results; it
is not necessary to have round-trip communication with a third-party server (which may or may not be accessible); it is
not necessary to have round-trip communication with the receiver or a server acting on the receiver’s behalf. When the
sender sends the message, he knows it will be received if the receiver checks her mail (at least, to the extent that this is
known in e-mail today). To the receiver, single-pass send-and-forget means that once the message has arrived the proof
of effort can be checked immediately, with a local computation, and the message can be handled accordingly, again
without contacting a server which may or may not currently be accessible, and without further contact with the sender.
Nothing needs to be stored pending (possible) future action on the part of the sender. To the Internet, single-pass
send-and-forget means no additional load on the system.

In other words, single-pass send-and-forget means that e-mail, the killer application of the Internet, is minimally
disturbed.

Remark 2. We briefly remark on our use of the date as an argument to the pricing function. The receiver temporarily
stores valid proofs of effort. The date is used to control the amount of storage needed. When a new proof of effort,

3 None of [13,20, 11, 8] obtains a lower bound.

4 Having m as an argument to the function introduces some practical difficulties in real mail systems. One can instead use the
following three arguments: receiver’s e-mail address, date, and a nonce. However, the intuition is more clear if we include the
message.

together with its parameters, is received, one first checks the date: if the date is, say, over a week old, then the proof is
rejected. Otherwise, the receiver checks the saved proofs of effort to see if the newly received proof is among them. If
so0, then the receiver rejects the message as a duplicate. Otherwise, the proof is checked for validity.

In [13], f is a forged signature in a careful weakening of the Fiat-Shamir signature scheme. Back’s proposal, called
HashCash, is based on finding hash collisions. It is currently used to control access to bulletin boards [20]; verification
is particularly simple in this scheme.

3 Computational Model and Statement of the Problem

The focus on memory-bound functions requires specification of certain details of a computational model not common
in the theory literature. For example, in real contemporary hardware there is (at least) two kinds of space: ordinary
memory (the vast majority) and cache — a small amount of storage on the same integrated circuit chip as the central
processing unit’. Cache can be accessed roughly 100 times more quickly than ordinary memory, so the computational
model needs to differentiate accordingly. In addition, when a desired value is not in cache (a cache miss), and an access
to memory is made, a small block of adjacent words (a cache line), is brought into the cache simultaneously. So in
some sense values nearby the desired one are brought into cache “for free”. Our model is an abstraction that reflects
these considerations, among others.

When arguing the security of a cryptographic scheme one must specify two things: the power of the adversary
and what it means for the adversary to have succeeded in breaking the scheme. In our case defining the adversary’s
power is tricky, since we have to consider many possible architectures. Nevertheless, for concreteness we assume the
adversary is limited to a “standard architecture” as follows:

1. There is a large memory, partitioned into m blocks (also called cache lines) of b bits each;

2. The adversary’s cache is small compared to the memory. The cache contains at most s (for “space”) words; a
cache line typically contains a small number (for example, 16) of words;

3. Although the memory is large compared to the cache, we assume that m is still only polynomial in the largest
feasible cache size s;

4. Each word contains w bits (commonly, w = 32);

5. To access a location in the memory, if a copy is not already in the cache (a cache miss), the contents of the block
containing that location must be brought into the cache — a fetch; since every cache miss results in a fetch, we use
these terms interchangeably;

6. We charge one unit for each fetch of a memory block. Thus, if two adjacent blocks are brought into cache, we
charge two units (there is no discount for proximity at the block level).

7. Computation on data in the cache is essentially free. By not (significantly) charging the adversary for this compu-
tation, we are increasing the power of the adversary; this strengthens the lower bound.

Thus, the challenge is to design a pricing function f as described in Section 2, together with algorithms for com-
puting and checking f, in which the costs of the algorithms are measured in terms of memory fetches and the “real”
time to compute f on currently available hardware is, say, about 10 seconds (in fact, f may be parameterized, and the
parameters tuned to obtain a wide range of target computation times).

The adversary’s goal is to maximize its production of (message, proof of computational effort) pairs while mini-
mizing the number of cache misses incurred. The adversary is considered to have won if it has a strategy that produces
many (message, proof) pairs with an amortized number of fetches (per message plus proof) which is substantially less
than the expected number of fetches for a single computation obtained in the analysis of the algorithm. We do not care
if the messages are sensical or not.

We remark that it may be possible to defeat a memory-bound function with specific parameters by building a
special-purpose architecture, such as a processor with a huge, fast, on-chip cache. However, since the computational
approach to fighting spam is essentially an economic one, it is important to consider the cost of designing and building
the new architecture. These issues are beyond the scope of this paper.

> In fact, there are multiple levels of cache; Level 1 is on the chip.

4 Simple Suggestions and Small-Space Cryptanalyses

In the full paper we show that pricing functions based on the following two problems can be computed with very few
memory access, and hence do not solve our problem:

Meet in the Middle. The sender solves a partially specified instance of double encryption:
Input. Two 64-bit strings x and y and 56 — k bits for each of two keys K1 and K5 (k is a hardness parameter).
Output. 56-bit keys K1 and Ko such that Ex,(Ex, (x)) = y. Here, E is any keyed encryption scheme, such as DES.

Subset Sum. The sender solves an instance of subset sum:

Input. Random 2k-bit numbers a1, . . . , as) and integer target T.
Output. Subset S C {1,...,2k} suchthat), g a; = T mod 2%k,
In these proceedings we confine our attention to the proposal in [8], described next.

Easy-to-Compute Functions. These functions are essentially iterates of a single basic “random-looking” function g.
They vary in their choice of basic function. The basic function has the property that a single function inversion is more
expensive than a memory look-up.

Let n and ¢ be parameters and let g : {0,1}™ — {0, 1}"™. Let gy be the identity function and fori = 1...¢, let
the function ¢;(x) = g(g;—1(x)) @ 1.

Input. y = ge(x) for some x € {0,1}" and o, a hash of the string of values x, g1(x), . . ., ge(x).

Output. ' € g; ' (y) such that the string ', g1 ('), .. ., ge(2') hashes to a.

The hope is that the best way to resolve the challenge is to build a table for g~ and to work backwards from y,
exploring the tree of pre-images®. Since forward computation of g is assumed to be quite easy, constructing the inverse
table should require very little total time compared to the memory accesses needed to carry out the proof of effort.

The number of possible preimages for an element in the range of g, is fairly large (on the order of £). Intuitively, the
sender must search through many of these possible preimages in order to find one that yields a path that hashes to a.
The total size of the tree of pre-images is on the order of ©(¢?), so in the best case (for the memory-bound approach)
the required number of cache misses would also be ©(¢?). In contrast, verification would require no memory access,
and ¢ forward computations of g.

The limitation of this approach is that, since g can be computed (in the forward direction) with no memory accesses,
there is a time/space tradeoff for inverting g in which no memory accesses are performed. General time-memory
tradeoffs to invert one-way functions were first explored by Hellman [23], and the approach was made more rigorous
by Fiat and Naor [16]. Let T be the time it will take the scheme invert g, and let S be the memory available to carry
out the inversion. In the setting of memory-bound functions, the amount of memory S would be the size of the cache
(we are trying to prove we don’t need to go to main memory, so we are interested in what can be done when the only
space available for the computation is the cache).

Let cpu, be the number of CPU cycles needed to carry out a forward computation of g: that is, the computation
g(x) requires at most cpu 4 CPU cycles. Let N = 2" be the size of the domain of g. The tradeoft is:

1

T-S? = O(NQ)cpug

after preprocessing (which is purely CPU-bound)’.

For the parameters in [8] we have, roughly, N = S/2, so for those functions an inversion can be computed with
about four forward computations of g, without no memory fetches. Thus, in order to make table lookup “preferable”
to inversion via the trade-off, cpu 4 cannot be too small: otherwise, it would be faster to circumvent the table lookups,
and resolving the computational challenge would become CPU-bound.

As clock speeds increase, it will be necessary to modify g so that it remains faster to invert g via table lookups than
via the time-space tradeoff. Thus, the class of functions proposed in [8] is ultimately CPU-bound as well. However,

® The root of the tree is labelled with 3. A vertex at distance d > 0 from the root having label z € Range(g¢—4) has one child
labeled with each 2’ € g7! (2 @ (¢ — d)) € Range(ge—da—1)-

7 This is the cost of finding a single inverse. Also, the construction in [16] ensures probabilistic domain coverage. The construction
is easily modified to enable the finding of all preimages, and to ensure that the domain is completely covered.

the structure of these functions — the fact that challenges can be resolved using scattered memory accesses instead of
CPU cycles — dampens the effect of Moore’s Law: the memory-intensive solution will require less real time than the
CPU-intensive solution until CPUs become very fast. Until that point, the functions of [8] are more egalitarian for the
senders than purely CPU-intensive functions.

Finally, we note (1) verification costs rise exponentially as the CPU cost of the function cpu,, is altered to keep
pace with Moore’s Law and (2) the time/space tradeoff in [23, 16] is not tight, and any improvement to the tradeoff
will mandate an increase in cpu,. Indeed, a recent result of Oechslin improves the tradeoff by a factor of two [31].

The analysis of easy-to-compute functions suggests basing computational challenges on functions that are (in some
sense) hard in both directions.

5 An Abstract Function and Lower Bound on Cache Misses

In this section we describe an “abstract” pricing function and prove a tight lower bound on the number of memory
accesses that must be made in order to produce a message acceptable to the receiver, in the model defined in Sec-
tion 3. The function is “abstract” in that it uses idealized hash functions, also known as random oracles. A concrete
implementation is proposed in Section 6.

Meaning of the Model and the Abstraction: Our computational model implicitly constrains the adversary by con-
straining the architecture available to the adversary. Our use of random oracles for the lower bound argument similarly
constrains the adversary, as there are some things it cannot compute without accessing the oracles. We see two ad-
vantages in such modelling: (i) It provides rationale to the design of algorithms such as those of Section 6, this is
somewhat similar to what Luby and Rackoff [26] did for the application of Feistel Permutations in the design of DES;
(ii) If there is an attack on the simplified instantiation of the algorithm of Section 6, then the model provides guidelines
for modifications. Note that we assume that the arguments to the random oracle must be in cache in order to make the
oracle call.

The inversion techniques of [23, 16] do not apply to truly random functions, as these have large Kolmogorov
complexity (no short representation). Accordingly, our function involves a large fixed forever table T of truly random
w-bit integers®. The table should be approximately twice as large as the largest existing caches, and will dominate the
space needs of our memory-bound function.

We want to force the legitimate sender of a message to take a random walk “through 7'’ that is, to make a series
of random accesses to T, each subsequent location determined, in part, by the contents of the current location.

Such a walk is called a path. The algorithm forces the sender to explore many different paths until a path with
certain desired characteristics is found. We call this a successful path. Once a successful path has been identified,
information enabling the receiver to check that a successful path has been found is sent along with the message.
Verification requires work proportional to the path length, determined by a parameter ¢. Each path exploration is
called a frial. The expected number of trials to find a successful path is 2¢, where e (for “effort”) is a parameter. The
expected amount of work performed by the sender is proportional to 2¢ times the path length.

5.1 Description of the Abstract Algorithm

The algorithm uses a modifiable array A, initialized for each trial, of size |A|w > b bits (recall that b is the number of
bits in a memory block, or cache line)°.

Before we present the abstract algorithm, we introduce a few hash functions Hg, Hy, Ho, H3, of varying domains
and ranges, that we model as idealized random functions (random oracles). The function Hy is only used during
initialization of a path. It takes as input a message m, sender’s name (or address) S, receiver’s name (or address) R,
and date d, together with a trial number k, and produces an array A. The function H; takes an array A as input and
produces an index c into the table 7". The function H takes as input an array A and an element of 7" and produces a
new array, which gets assigned to A. Finally, the function H3 is applied to an array A to produce a string of 4w bits.

8 “Fixed forever” means fixed until new machines have bigger caches, in which case the function must be updated.
° The intuition for requiring | A|w > b is that, since A cannot fit into a single memory block, it is more expensive to fetch A into
cache than it is to fetch an element of 7" into cache.

A word on notation: For arrays A and T, we denote by | A| (respectively, |T'|) the number of elements in the array.
Since each element is a word of w bits, the numbers of bits in these arrays are |A|w and |T'|w, respectively.
The path in a generic trial is given by:
Initialization:
A = Hyo(m,R,S,d, k)

Main Loop: Walk for ¢ steps (¢ is the path length):
C < H1 (A)
A — Hy(A,T|[c])

Success occurs if after ¢ steps the last e bits of H3(A) are all zero.

Path exploration is repeated for £k = 1, 2, ... until success occurs. The information for identifying the successful path
is simply all five parameters and the final H3(A) obtained during the successful trial'°.

Verification that the path is indeed successful is trivial: the verifier simply carries out the exploration of the one path
and checks that success indeed occurs with the given parameters and that the reported hash value H3(A) is correct.

The connection to Algorithm MBound, described in Section 6, will be clear: need only specify the four hash
functions. To keep computation costs low in MBound, we will not invoke full-strength cryptographic functions in
place of the random oracles, nor will we even modify all entries of array A at each step.

The size of A also needs consideration. If A is too small, say, a pointer into 7", then the spammer can mount
an attack in which many different paths (trials for either the same or different messages) can be explored at a low
amortized cost, as we now informally describe. At any point, the spammer can have many different A’s (that is, A’s
for different trials) in the cache. The spammer then fetches a memory block containing several elements of 7', and
advances along each path for which some element in the given memory block was needed. This allows exploitation of
locality in 7. Thus, intuitively, we should choose | A| sufficiently large that it is infeasible to store many different A’s
in the cache.

5.2 Lower Bound on Cache Misses

We now prove a lower bound on the amortized number of block transfers that any adversary constrained as described in
Section 3 must incur in order to find a successful path. Specifically, we show that the amortized complexity (measured
in the number of memory fetches per message) of the abstract algorithm is asymptotically tight.

The computation on each message must follow a specific sequence of oracle calls in order to make progress. The
adversary may make any oracle calls it likes; however, to make progress on a path it must make the specified calls. By
watching an execution unfold, we can observe when paths begin, and when they make progress. Calls to the oracle that
make progress (as determined by the history) are called progress calls.

A path begins when a call Hy(m, S, R, d, k) is first made. The path is completely identified by the five parameters
to Hy.

Theorem 1. Consider an arbitrarily long but finite execution of the adversary’s program — we don’t know what the
program is, only that the adversary is constrained to use an architecture as described in Section 3. Under the following
additional conditions, the amortized complexity of generating a proof of effort that will be accepted by a verifier is

0(2¢0):

|T| > 2s (recall that the cache contains s words of w bits each)

|Ajw > bs'/® (recall that b is the block size, in bits).

£ > 8|4

The total amount of work by the spammer (measured in oracle calls) per successful path is no more than 2°(*)2¢¢.
— U is large enough so that the spammer cannot call the oracle 2° times.

Remark 3. First note that | A| is taken to be much larger than b/w. We already noted that if |A| is very small than a
serious attack is possible. However, even if | A| is roughly b/w, it is possible to attack the algorithm by storing many
copies of T" under various permutations. In this case the adversary can hope to concurrently be exploring about log s
paths for which a single memory block contains the value in 7" needed by all log s paths. Hence, if (for some reason)
it is important that | A| < O(b/w) we can only get a lower bound of the form 2(2¢¢/ log s).

10 The value of Hs (A) is added to prevent the spammer from simply guessing k, which has probability 1/2° of success.

Proof. (of Theorem 1) We start with an easy lemma regarding the number of oracle calls needed to find a successful
path.

Lemma 1. The amortized number of calls to Hy and Hy per proof of effort that will be accepted by a verifier is
0(2¢0).

The following lemma is a completely elementary preliminary used in our lower bound proof.

Lemma 2. Let by ... by, be independent unbiased random bits and let k < m. Suppose we have a system that, given
a hint of length B < k (which may be based on the value of by . . . by,), produces a subset S of k indices and a guess of
the values of {b; | i € S}. Then the probability that all k guesses are correct is at most 27 /2F, where the probability
is over the random variables and the coin flips of the hint generation and the guessing system.

Proof. Each hint yields an assignment to the indicated bits. The probability, over choice of b1, . . ., b,,, that the assign-
ment is consistent with the values of the elements of S is 27%. Thus on average each hint yields the correct answer
with probability 25,

We now get to the main content of the lower bound and to the key lemma (Lemma 3): We break the execution into
intervals in which, we argue, the adversary is, forced to learn a large number of elements of 7. That is, there will be a
large number of scattered elements of 7" which the adversary will need in order to make progress during the interval,
and very little information about these elements is in the cache at the start of the interval'!.

We first motivate our definition of an interval. We want to think of each A as incompressible, since it is the output
of a random function. However, if, say, this is the beginning of a path eploration, and A = Hy(m, S, R, d, k), then it
may require less space simply to list the arguments to Hy; since our model does not charge (much) for oracle calls, the
adversary incurs no penalty for this. For this reason, we will focus on the values of A only in the second half of a path.
Recall that A is modified at each step of the Main Loop; intuitively, since these modifications require many elements
of T', these “mature” A’s cannot be compressed. Our definition of an interval will allow us to focus on progress on
paths with “mature” A’s.

Let n = s/|AJ; it is helpful to think of n as the number of A’s that can simultaneously fit into cache (assuming
they are incompressible). A progress call is mature if it is the jth progress call of the path, for j > £/2 (recall that £
is the length of a path). An interval is defined by fixing an arbitrary starting point in an execution of the adversary’s
algorithm (which may involve the simultaneous exploration of many paths), and running the execution until 8n mature
progress calls (spread over any number of paths) have been made to oracle H; .

Lemma 3. The average number of memory accesses made during an interval is (2(n), where the average is taken
over the choice of T, the responses of the random oracles, and the random choices made by the adversary.

It is an easy consequence of this lemma that the amortized number of memory accesses to find a successful path
is £2(2¢¢). This is true since by Lemma 1, success requires an expected (2(2¢¢) mature progress calls to Hy, and the
number of intervals is the total number of mature progress calls to H; during the execution, divided by 8n, which is
£2(2¢¢/n). (Note that we have made no attempt to optimize the constants involved.)

Proof. (of Lemma 3) Intuitively, the spammer’s problem is that of asymmetric communication complexity between
memory and the cache. Only the cache has access to the functions H; and Hs (the arguments must be brought into
cache in order to carry out the function calls). The goal of the (spammer’s) cache is to perform any 8n mature progress
calls. Since by definition the progress calls to H; are calls in which the arguments have not previously been given to
Hj in the current execution, we can assume the values of H;’s responses on these calls are uniform over 1,. .., |T|
given all the information currently in the system (memory and cache contents and queries made so far). The cache must
tell the memory which blocks are needed for the subsequent call to H,. Let 3 be the average number of blocks sent
by the main memory to the cache during an interval, and we assume for the sake of contradiction that 3 = o(n) (the
lemma asserts that 3 = {2(n)). We know that the cache sends the memory (3 log m bits to specify the block numbers
(which is by assumption o(n log m) bits), and gets in return (3b bits altogether from the memory. The key to the lemma

"' In fact, our proof will hold even if the adversary is allowed during each interval, to remember “for free” the contents of all
memory locations fetched during the interval, provided that at the start of the subsequent interval the state is reduced to sw bits
once again.

is, intuitively, that the relatively few possibilities in requesting blocks by the cache imply that many different elements
of T' indicated by the indices returned by the 8n mature calls to H; have to be stored in the same set of blocks. We
will argue that this implies that a larger than s part of 7" can be reconstructed from the cache contents alone, which is
a contradiction given the randomness of 7.

We now proceed more formally. Lemma 3 will follow from a sequence of claims. The first is that there are many
entries of 7" for which many possible values are consistent with the cache contents at the beginning of the interval.
That is, T is largely unexplored from the cache’s point of view.

Claim 1. There exist v,8 > 1/2 such that: given the cache contents at the beginning of the interval, it is expected that
there exists a subset of the entries of T, called T', of size at least §|T'| such that for each entry i in T’ there is a set S;
of 27 possible values for T'[i] and all the S;’s are mutually consistent with the cache contents.

Proof. we want to apply Sauer’s Lemma to show that, given the cache content, at the start of the interval, there are
many words with high entropy, i.e., with lots of possibilities. We know that the cache size is s words of width w, or
sw bits total. Consider an assignment to 7" as a binary vector of length sw.

The expected number of assignments to 7" consistent with a given cache content is 2(71=5) Each of these is
described by a binary vector of length |T'|w. Sauer’s Lemma (described in Alon and Spencer [9]) says that in such
a large collection of vectors there must be d variables (bit positions) that appear in all 2¢ combinations, where d
satisfies ((‘dTJ‘:{’)) > 2(71=9)w (more precisely S0 (7]") > 20TI=)w)) Thus, if s = |T|/2 then we have that

((‘CITJ‘FT)) > 2IT1w/2_Since ((ldTlll“)) < (#)d we have that dlog(e|T|w/d) > |T|w/2 and d > 1/2|T'|w. So for some

T’ of size 1/2 times |T'| there are |T”| entries in T where the number of possibilities to the entry is at least 2/2 (i.e.,
~v > 1/2). In the sequel, we will concentrate solely on these |7”| entries. If there is a mature progress call with an
element among these entries, we call this an element to be learned.

From now on we assume that we have cache content consistent with a large number of possibilities for 7" as in the
claim and use this cache configuration to show that it is possible to extract many entries of 7.

Claim 2. If the number (3 of memory accesses is o(n), then the number of different paths on which a mature progress
call is made during an interval is at most 3n.

Proof. When a mature progress call is made with a value A, this A can come from three sources: 1) it was stored in
the cache at the start of the start of the interval; 2) it was developed from a previous call to Hs where the value of A for
that call was itself stored in the cache; 3) it was developed “from scratch” i.e., all (at least £/2) points on the path are
computed during the interval. Given an execution it is easy to classify each progress call into one of these three types.
Consider first all the calls of types (1) and (2), that is, calls where at least one point on the path is not accessed in H1
in the interval. Suppose that there are at least 2n of them, so that at on at least 2n different paths calls of types (1) or
(2) are made. Let’s examine the first calls to H; in on all the paths for which the preceding call to Hs is not present.
Together, the inputs to these calls require at least 2n|A|w bits of information. Since the cache holds only n|A|w bits
and the A’s are incompressible (from the randomness of H), for the algorithm to have non-negligible probability of
being correct it must obtain at least n|A|w bits from memory during the interval. Since | A|w > b (where b is the block
size in bits), this means at least {2(n) memory accesses, contradicting the assumption that 3 = o(n).

Consider now type (3) progress calls, i.e., calls on paths that are explored from scratch during the interval. Since a
mature progress call requires that £/2 calls have been made to H (in bringing the path to maturity), it follows that the
values stored in the locations of T" appearing as arguments in these calls must be known during the interval. However,
we argued in Claim 1 that a large part (in fact, half) of 7', called T’, is missing almost fully from the cache. Suppose
there are n paths of type (3), requiring together n¢/2 accessses to T'. There are two possibilities: Either the total
number of elements of 7" accessed in these n¢/2 accesses to T" exceeds |T”’|/2, or not. If this number exceeds |1”|/2,
then we need to retrieve (2(|T”|w~y/2b), which is greater than {2(n), blocks of memory (by information theory). If this
number is less than |7"|/2, then the adversary has witnessed an unlikely event: All the elements accessed in the length
/2 prefixes of the n paths fall into a set of size at most |T'| — |T”| 4+ |T”|/2 < 3|T|/4. Fix such a set. The probability
of this event is (3/ 4)"”/ 2. There are at most 2!71 such sets. Suppose that the spammer has examined z paths. Then the
probability that in these z paths there is such an n-collection is multiplied by (z) Given that we assumed that 2¢ is not
a feasible number for the adversary we know that fn >> |T'| and we get that (?) - 2171 is < (4/3)™*/2. So with high
probability the spammer cannot find 2 such paths.

So we have at most 2n paths of types (1) and (2) combined, and at most n paths of type (3), for a total of at most
3n paths.

It therefore follows that in a typical interval there are at least 8n — 3n = 5n pairs of consecutive mature progress
calls to H1 on a common path. Thus, for example, one path may experience 5n + 1 mature progress calls, or each
of n paths may experience at least 6 mature progress calls, or something in between. Each such pair of calls to H; is
separated by a call to Hy which requires the contents of the location of 7" specified by the first H; call in the pair. It is
these interstitial calls to Ho» that are of interest to us: because their preceding calls to H; first occur during the interval,
and H; is random, it cannot be known at the start of the interval which elements of 7" will be needed as arguments to
these calls to Ho. Intuitively, the adversary must go to main memory to find an expected (|T'| — s)/|T’| > 1/2 of them.

Claim 3. In a typical interval there are at least 5n pairs of consecutive mature progress calls to H1 on a common
path. Thus there are also 5n pairs of calls to Hy and then to Hy on the same path.

Consider the set of 8n-tuples over {1,...,|T|} as the set of possible answers H; returns on the mature progress
calls in the interval; there are |T|8” such tuples. Fix all other random choices: the value of T, the previous calls to H;
and H» and the random tape of the spammer). The spammer’s behavior in an interval is now determined solely by this
8n-tuple. If the spammer can defeat our algorithm, then, for some fixed ¢ > 0, the spammer completes the interval
retrieving at most 23 blocks with at least e probability, over the choice of 8n-tuple. Call these tuples the good ones. By
Markov’s inequality, for at least half of these good 8n-tuples the spammer retrieves at least 3 blocks. We first claim
that in most of those tuples the spammer goes frequently into Hy with values T'[i] where i € T".

Claim 4. Let T' be any subset of the entries of T of size at least on. Consider the set of good 8n-tuples over
{1,...,|T|} as the set of possible answers Hy. Then except for at most an exponential in n fraction of them the
spammer must use an entry in T’ for a call to at Hs least n times during an interval.

Proof. By definition, an interval contains 8n mature progress calls to H1, and we argued in Claim 2 that these occur
in at most 3n paths. When the spammer calls H; and gets a value c, there is probability at least 6 = 1/2 that this ¢
is in T". The spammer may decide to pursue this ¢ (that is, to try to learn T'[c]) in this interval or not. If he decides
not to pursue it, then the current path will make no further progress in the interval. This can happen at most 3n times
(since there are at most 3n paths of interest). Therefore, if (608n) — 3n > n then we get that at least n (not necessarily
distinct) values of T’ have to be retrieved from main memory during the interval for the subsequent call to Hs.

Claim 5. Suppose that we have subset X of size x of entries in T. Then the probability over Hy that a 8n-tuple
contains more than n/2 entries in X is at most (28z/|T|)"/2.

Proof. This is by simple computation: for a fixed set of n/2 entries out of the 8n this probability is (z/|T])"/? and
there are at most (572) < 287/2 quch subsets.

Claim 6. Suppose that we have a collection of good 8n-tuples and we want to cover at least x values in T' using only
a few members of the collection, say 2x /n (assume that the collection is at least that large). If this is impossible then
there is a set X C T' of size x such that every member of the collection has at least n/2 entries in X.

Proof. We prove the contrapositive. If there is no set X C 7" of size « such that every member of the collection has
at least n/2 entries in X, then we can build a large coverage in a greedy manner, each time adding at least n/2 new
entries in 7”. At any point during the process the union X of all tuples we added should be of size less than = and
hence there should be a tuple in the collection with n/2 entries in 7" but not in X . So after 2 /n steps we have covered
x entries of T".

The idea for deriving the contradiction to the fact that only 3 = o(n) blocks are brought from memory to cache is
that there should be many good 8n-tuples that share the same set of blocks (that is, by retrieving one set of blocks all
elements appearing in many good 8n-tuples can be reconstructed in the cache). In fact, since the memory size is m,
al/ (;’Zj) fraction of them share the same set of blocks (the factor of 2 comes from the definition of a good 8n-tuple).
Consider such a collection and suppose that there are 22 /n tuples in this collection whose union covers z entries in
T’. Then the "memory” can use these 2z /n tuples to transfer the value of x entries in T’ by sending the 23b bits
describing the content of the common blocks and in addition for each tuple in the cover:

1. Specifying the 8n-tuple: this takes 8n log |T'| bits.
2. Specifying which calls to Ho in the execution have the correct parameters (there may be some “bogus” calls to

H> in which the wrong values for elements of T" are used as parameters). If the interval contains z calls to H5 then
this takes log (an) bits which is O(n log 2).
So altogether it suffices for 28b + 162 log |T'| + 2 log z bits to be sent from the memory to the cache. In return, the
cache learns yw bits for each of x entries in T”, or zyw bits altogether. To derive the contradiction, since w was taken
to be much larger than log |T| and 2/2 much larger than the amortized number of oracle calls per interval, log z is
much smaller than w and we only have to worry about the 23b term.

Assume that 3 < 1/20n = s/20|A| and, for simplicity that m, the memory size is |T'|? (recall that in our model
m is polynomial in s, and in our theorem |T'| = ©(s)). Set x = 48b/w. Of all good tuples, pick the largest collection
agreeing with a set of 3 blocks, i.e., consisting of at least a 1/ (T;) fraction of the good tuples. We now claim that this
collection has 2x /n 8n-tuples whose union is of size at least x (this will be sufficient for a contradiction).

Suppose that this is not the case and the 22 /n tuples covering = do not exist. Then as we have seen above in Claim
6 there is a set X of size = where each tuple in the collection has at least n/2 entries in X . But we know from Claim 5
that the fraction (among all tuples) of such a collection can be at most (28x/|T'|)™/2. Taking into account ¢ (the faction
of all tuples that are good) we must compare ((28z/|T|)"/?)(1/e) to 1/(5;) and if the latter is larger we know that
the collection is too large to be compressed into X . For simplicity take ¢ = 1. Indeed

(2SI/|T|)7L/2 (2839)”/2

iy T

taking logs we get that we need to compare log 28z and (log T)% = (log T)W = (log T') 2. But since
r = 48b/w = 4sb/(20|Ajw) and |A| > s'/°b/w we get that z < 1/55%/° and indeed 8 + logz is smaller than
4/51og |T.

This concludes the proofs of Lemma 3 and Theorem 1

6 A Concrete Proposal

In this section we describe a concrete implementation of the abstract algorithm of Section 5, which we call Algo-
rithm MBound. As in the abstract algorithm, our function involves a large fixed forever array T, now of 2%2 truly
random 32-bit integers'2. In terms of the parameters of Section 5, we have |T| = 222 and w = 32. This array requires
16 MB and dominates the space needs of our memory-bound function, which requires less than 18 MB total space.'?
The algorithm requires in addition a fixed-forever truly random array A containing 256 32-bit words. Ay is used in
the definition of Hy. Note that A is incompressible.

6.1 Description of MBound

Our proposal was inspired by the (alleged) RC4 pseudo-random generator (see, e.g., the descriptions of RC4 in [18,
27,29]).

Description of Hy. Recall that we have a fixed-forever array Ag of 256 truly random 32-bit words. At the start of the
kth trial, we compute A = Hy(m, S, R, d, k) by first computing (using strong cryptography) a 256-word mask and
then XORing Aj together with the mask. Here is one way to define Hy:

1. Let a, = h(m, S, R, d, k) (Jax| = 128), for a cryptographically strong hash function h such as, say, SHA-1.

12 “Fixed forever” means fixed until new machines have bigger caches, in which case the function must be updated.
13 To send mail, a machine must be able to handle a program of this size.

2. Let n(ay) be the 2'-bit string obtained by concatenating the 27-bit v, with itself 2° times'#. Treating the array
A as a 2'3-bit string (by concatenating its entries in row-major order), we let A = Ao @ n(ay). Note that, unlike
in the case of RC4, our array A is not a permutation of elements {1, 2,...,256}, and its entries are 32 bits, rather
than 8 bits.

We initialize ¢, the current location in T', to be the last 22 bits of A (when A is viewed as a bit string). In the sequel,
whenever we say A[i] we mean A[i mod 2%]; similarly, by T'[c] we mean T'[c mod 222].
The path in a generic trial is given by:

Initialize Indices:

1i=0; 7=0

Walk for ¢ steps (¢ is the path length):
i=1+1
j =3+ Al

Ali] = Ali] + T[]
Ali] = RightCyclicShift(Ali],11) (shift forces all 32 bits into play)
Swap(Ali], L))
c=Tlc] ® A[A]i] + Alj]]
Success occurs if the last e bits of h(A) are all 0.
In the last line, the hash function /& can again be SHA-1. It is applied to A, treated as a bit string.
The principal difference with the RC4 pseudo-random generator is in the use of 7" bits from 7" are fed into
MBound’s pseudo-random generation procedure, both in the modification of A and in the updating of c.
In terms of the abstract function, we can tease our proposal apart to obtain, roughly:

Description of H1 (updates c, leaves A unchanged). The function H; is essentially
1=1+1
i =3+ Al
v=A[i]|+Tlc] (v is a temporary variable)
v = RightCyclicShift(v,11)
¢ =Tl & A[A[j] + v]

Description of Hs (updates A).
Ali] = Ali] + T[]
Ali] = RightCyclicShift(Ali], 11)
Swap(A[il, A[j])

Description of Hs. The hash function H3(A) is simply some cryptographically strong hash function with 128 bits of
output, such as SHA-1.

This all but completes the description of Algorithm MBound and its connection to our abstract function; it remains
to choose the parameters.

6.2 Parameters for MBound

We can define the computational puzzle solved by the sender as follows.

Input. A message m, a sender’s alias S, a receiver’s alias R, a time ¢, the table 7" and the auxiliary table Ag.
Output. m, S, R,d,i and « such that 1 < 7 < 2e and the ¢th path (that is, the path with trial number £ = 7), is
successful and « is the result of hashing the final value of A in the successful path.

!4 The reason we concatenate the string in order to generate 1(«), rather than generate a cryptographically strong string of length
2'3 is to save CPU cycles - this is an operation that is done many times and if each bit of (cy) is strong it could make the
scheme CPU bound.

If i > 22¢, the receiver rejects the message (with overwhelming probability one of the first 22¢ trials should be
successful).

To be specific in the following analysis, we make several assumptions. These assumptions are reasonable for
current technology, and our analysis is sufficiently robust to tolerate substantial changes in many of these parameters.
Let P be the desired expected time for computing the proof of effort and let 7 be the memory latency. We assume that
P is 10 seconds and 7 is .2 microseconds. We also assume that the maximum size of the fast cache is 8 MB and that
cache lines (memory blocks) are 64 bytes wide (so blocks contain b = 512 bits).

The output conditions ensure that for a random starting point, the probability of a successful output is 1/2¢. The
expected number of walks to be checked is 2¢. Therefore the expected value of P is

E[P|=2°-¢-T.

The cost of verification by the receiver is essentially ¢ cache misses, by following the right path. (In Section 8 we
discuss how to reduce or eliminate these cache misses.)

We have not yet set the values for e and ¢. Choosing one of these parameters forces the value of the other one.
Consider the choice of e: one possibility might be to make e very large, and the paths short, say, even of length 1.
This would make verification extremely cheap. However, while the good sender will explore the paths sequentially,
a cheating sender may try several paths in parallel, hoping to exploit locality by batching several accesses to T,
one from each of these parallel explorations. In addition, A changes slowly, and to get to the point in which many
“mature” values of A cannot be compressed requires that many entries of A have been modified. For our concrete
proposal, therefore, we let £ = 2048. Then 2¢ = P/{T = 10/(2048 x 2 x 10~7) ~ 24, 414.

7 Experimental Results

In this section we describe several experiments aimed at establishing practicality of our approach and verifying it
experimentally. First we compare our memory-bound function performance to that of the CPU-intensive HashCash
function [20] on a variety of computer architectures. We confirm that the memory-bound function performance is
significantly more platform-independent. We also measure the solution-to-verification time ratio of our function. Then
we run simulations showing how the number of cache misses during the execution of our memory-bound function
depends on the cache size and the cache replacement strategy. We observe that even if an adversary knows future
accesses, this does not help much unless the cache size is close to the size of 7. Finally, we study how the running
time depends on the size of the big array 7'

7.1 Different Architectures

name class model processor CPU clock 0S
P4-3060 |workstation DELL XW8000 Intel Pentium 4 3.06 Ghz Linux
P4-2000 |desktop Compaq Evo W6000 Intel Pentium 4 2.0 Ghz Windows XP
P3-1200 |laptop DELL Latitude C610 Intel Pentium 3M 1.2 Ghz Windows XP
P3-1000 |desktop Compaq DeskPro EN Intel Pentium 3 1.0 Mhz Windows XP
Mac-1000|desktop Power Mac G4 PowerPC G4 1000 Mhz OSX
P3-933 |desktop DELL Dimension 4100 Intel Pentium 3 933 Mhz Linux
SUN-900 |server SUN Ultra 60 UlraSPARC III+ 900 Mhz Solaris
SUN-450 |server SUN Ultra 60 UlraSPARCII 450 Mhz Solaris
P2-266 |laptop Compaq Armada 7800 Intel Pentium 2 266 Mhz Windows 98
S-233 settop GCT-AllWell STB3036N Nat. Semi. Geode GX1 233 Mhz Linux

Table 1. Computational Platforms, sorted by CPU speed.

machine|L2 cache L2 line memory
P4-3060| 256 KB 128 bytes 4 GB
P4-2000(256 KB 128 bytes 512 MB
P3-1200| 256 KB 64 bytes 512 MB
P3-1000| 256 KB 64 bytes 512 MB
P3-933| 256 KB 64 bytes 512 MB
Mac-1000{ 256 KB 64 bytes 512 MB
SUN-900, 8MB 64bytes 8Gb
SUN-450 8 MB 64 bytes 1Gb
P2-266| 512 KB 32 bytes 96 MB
S-233| 16 KB 16 bytes 128 MB
Table 2. Memory hierarchy.

We conducted tests on a variety of platforms, summarized in Table 1. These platforms vary from the popular
Pentium 3 and Pentium 4 systems and a Macintosh G4 to SUN servers with large caches. We even tested our codes
on a settop box, which is an example of a low-power device. The P2-266 laptop is an example of a “legacy” machine
and is representative of a low-end machine among those widely used for e-mail today (that is, in 2003). Table 2 gives
sizes of the relevant components of the memory hierarchy, including L2 cache size, L2 cache line size, and memory
size. With one exception, all machines have two levels of cache and memory. The exception is the Macintosh, which
has a 2 MB off-chip L3 cache in addition to the 256 KB on-chip L2 cache.

7.2 Memory- vs. CPU-Bound

machine |HashCash| MBound
name time|time sol./ver.
P4-3060 1.00{1.01 2.32 E4
P4-2000 1.91{1.33 1.65 E4
P3-1200 2.211.00 2.55 E4
P3-1000 2.67/1.06 2.48 E4
Mac-1000 1.86{1.96 2.61 E4
P3-933 2.15/1.06 2.51 E4
SUN-900 1.82|2.24 2.50 E4
SUN-450 5.3312.94 2.02 E4
P2-266 10.17|2.67 1.84 E4
S-233 43.20(4.62 1.50 E4

Table 3. Program timings. Times are averages over 20 runs, measured in units of the smallest average. For HashCash, the smallest
average is 4.44 sec.; for MBound, it is 9.15 sec.%.

The motivation behind memory-bound functions is that their performance is less dependent on processor speed
than is the case for CPU-bound functions. Our first set of experiments compares an implementation of our memory-
bound function, MBound, to our implementation of HashCash [20]. HachCash repeatedly appends a trial number to
the message and hashes the resulting string, until the output ends in a certain number zero bits (22 in our experiments).
For MBound, with its slower iteration time, we set the required number of zero bits to 15.

Table 3 gives running times for HashCash and MBound, normalized by the fastest machine time. Note that Hash-
Cash times are closely correlated with processor speed. Running times for MBound show less variation. The difference
between the P2-266 laptop and the fastest machine used in our tests for HashCash is a factor of 10.17, while the dif-

ference for MBound is only a factor of 2.67. The HashCash vs. MBound gap is even larger for the S-233 settop
box."

Modern Pentium-based machines perform well in memory-bound computations. The Macintosh does not do so
well; we believe that this is due to its poor handling of the translation lookahead buffer (TLB) misses. SUN servers do
poorly in spite of their large caches. This is due to their poor handling of TLB misses and the penalty for their ability
of handle large memories.

7.3 Work Ratio

Recall that our experiments require 15 last bits of a hash of A to be zero for the memory-bound puzzle to be solved.
The expected number of paths we need to try is 2'°. This is an upper bound on the work ratio between the solver and
the verifier. However, while for the solver initialization (dominated by computing a hash of a string that depends on
the input message and customizing entries of A for the input message) is well-amortized over the work involved in
following the paths, for the verifier, who follows only one path, this work a non-trivial fraction of the running time.

The initialization overhead is a tradeoff between the size of A, the length of the input string, and the path length.
In out experiments, A contain 256 words, the path length is equal to 2048, and the input string contains 64 bytes. The
last column of Table 3 gives the work ratio. Except for the settop box, the work ratio is greater than 2'4, which means
that the work involved in following the path dominates verification. For the settop box, the ratio is slightly less than
2'4_ meaning that initialization and path-following take approximately the same time.

These experimental results show that our parameter choices yield a reasonable work ratio.

Hit or Miss. In the full version of the paper we show that if the adversary is constrained to follow the protocol, then
even optimal off-line cache replacement, in which the cache line used farthest in the future is evicted from cache [7],
does not significantly reduce the adversary’s costs.

8 Freeing the Receiver from Accessing T

Since the spam-protected receiver will sometimes act also as an e-mail sender, he will have access to the array 7.
However, we would like receiving mail not to have to involve accessing T at all. For example, one might wish to be
able to receive mail on a cell phone. In this section we explore the possibility that the sender adds some information
to its message that will permit the receiver to efficiently verify the proof of effort with no accesses to 7.

Hash Trees. A natural suggestion is to try Merkle hash trees [28] (see also [19, 32]). Consider a full binary tree, where
the leaves correspond to the entries of 7" and the value of each internal node is a an appropriately strong one-way hash
of the value of its two children. Assume the receiver knows the value at the root. In order to prove the correctness
of a value T'[c], the sender provides the values at the nodes on and adjacent to the path from the root to the leaf
corresponding to T[c]'®. This is repeated for every entry of 7' that is to be verified (note that many of the root-leaf
paths will have (relatively short) common prefixes).

How expensive is this scheme? First note that we can use universal one-way hash functions (UOWHFs) [30], since
we only need to ensure that it is hard to find second preimages under the hash functions (this is sufficient because
the entries in 7" are not chosen maliciously; only the false ones are). For this kind of one-way hash function a smaller
range (smaller than the one needed for collision-intractable hashing) suffices, resulting in a shorter proof. Assuming
a range of 280 elements and root-leaf path length log |T'| = 22, this means roughly 22 - 80 = 1760 bits per entry of
T in the successful path. Since the path length ¢ is taken to be roughly 1,000-2,000, this is an additional 200400 KB
per message. There are several ways to optimize this approach; for instance, we can assume that the receiver stores
instead of just the root all nodes of depth, say 10, i.e., roughly 1,000 of them. This almost cuts in half the number
of additional bits to be transmitted. Under this approach, verification requires ¢ log |T'| evaluations of a one-way hash
function.

!5 Note that $-233 is a special-purpose device and code produced by the C compiler may be poorly optimized of the processor.
This may be one of the reasons why this machine was so slow in our tests.

16 This is a path in the Merkle tree, not a path in the sense of our algorithm; to avoid confusion and emphasize the distinction we
call these root-leaf paths.

Signature Schemes. The conceptually simplest method for freeing R from accessing 7' is for the creator of 7" to sign
all the elements of T (more precisely, the signature is on the pair (¢, T'[c]), to disallow permuting the table). However,
this requires too much storage at the sender, even using the signature scheme yielding the shortest signatures [10].

Compressed RSA Signatures. Here we use properties of the RSA scheme previously exploited in the literature [15, 14].
Let (IV, e) be the public key of an RSA signature scheme chosen by the creator of 77, Let F be a function mapping
pairs (¢, T'[c]) into Z}%, that is, a mapping from 32 4 22 = 54-bit strings into Z . In our analysis we will model F’
as a random oracle. For all 1 < ¢ < |T'| let v, = F(¢,T[c]) and let w. = ve’® mod N. Thus, v, is a hash of the pair
(¢, T[c]) and w is a signature on the string v,.

The sender’s protocol contains, in addition to 7, the public modulus N, the description of F, and the w,’s. The
receiver’s protocol uses only the description of F' and the public key (NN, e), together with a description of the sender’s
path exploration algorithm (minus the array 7' itself).

Let the sender’s successful path be the sequence cy, ca, . . . ¢c¢ of locations in 7. The proof of effort contains two
parts:

1. T[e1], T[cz], - .-, Ted], (atotal of about 4 KB), and
2. w =[]\, we, mod N (about 1 KB).

Note that there is no need to include the indices cy, ..., ¢, in the first part, as these are implicit from the algorithm.
Similarly, there is no need to send the v.’s, since these are implicit from F' and the (c¢;, T[c;]) pairs. Let ¢y, ..., t; be
the first part of the proof, and w the second part (each ¢; is supposed to be T'[¢;], but the verifier cannot yet be certain
this is the case). The proof is checked as follows.

/

!/ !/ [
1. Compute v;. , vy, - - - Vg, Where v, = F(c;, t;).

2. Check whether w® = (]_[f=1 Ve,) mod N.

The security of the scheme rests on the fact that it is possible to translate a forged signature on

(Cl7 T[Cl]), . (Cg, T[Cg])

into an inversion of the RSA function on a specific instance. This is summarized as follows:

Theorem 2. If F' is a random oracle, then any adversary attempting to produce a set of claimed values
Tle1], Tlea], - - Tle)

that is false yet acceptable to the receiver can be translated into an adversary for breaking RSA with the same run
time and probability of success (to preserve probability of success we need that e be a prime larger than ?).

Although transmission costs are low, the drawback of the compressed RSA scheme is again the additional storage
requirements for the sender: each w, is at least 1, 000 bits (note, however, that these extra values are not needed until
after a successful path has been found). This extra storage requirement might discourage a user from embracing the
scheme. We address this next.

Storage-Optimized Compressed RSA. We optimize storage with the following storage / communication / computation
tradeoff: Think of T as an a X b matrix where a - b = |T'|; the amount of extra communication will be a elements of
T. The amount of extra storage required by the sender will be b signatures.

At a high level, given a path using values T'[c1], T[c2], . .., T[ce], values in the same row of T" will be verified
together as in the compressed RSA scheme. The communication costs will therefore be at most a elements, one per
row of T'. However, as we will see below, there is no need to store the w.’s explicitly. Instead, we can get away
with storing a relatively small number of signatures (one per column), from which it will be possible to efficiently
reconstruct the w, values as needed.

'7 The signing key d is a valuable secret!

Instead of a single exponent e, both sending and receiving programs will contain a (common) list of primes
€1,€2,...6q. For 1 < ¢ < a, e; is used for verifying elements of row ¢ of the table. Although we don’t need to
store the w, values explicitly, for elements v, appearing in row ¢ we define w. = vé/ “ mod N.

The compressed RSA scheme is applied to the entries in each row independently. It only remains to describe how
the needed w, values are constructed on the fly.

The b “signatures”, one per column, used in the sending program are computed by the creator as follows. For each
column 1 < j < b, the value for column j is u; = []7_; we;, mod N. Here, cj, is the index of the element T,],
when T is viewed as a matrix rather than as an array (that is, assuming row-major order, ¢;, = (i —1)a+ j — 1). Thus,
ve;,, =T[(i —1)a+j—1]and we,;, = (ve,,)1/¢i. As in Batch RSA [15], one can efficiently extract any we;, from u;
using a few multiplications and exponentiations.

Set @ = 16. The number of data bits in a column is 24 - 2° = 2°. The number of “signature bits” is 2'° per column.
Thus storage requirement just more than doubles, rather than increasing by a factor of 5-10, at the cost of sending 16
elements of Z3; (i.e., 2 KB).

9 Concluding Remarks

We have continued the discussion, initiated in [8], of using memory-bound rather than CPU-bound pricing functions
for computational spam fighting. We considered and analyzed several potential approaches. Using insights gained in
the analyses, we proposed a different approach based on truly random, incompressible, functions, and obtained both a
rigorous analysis and experimental results supporting our approach.

From a theoretical perspective, however, the work is not complete. First, we have the usual open question that
arises whenever random oracles are employed: can a proof of security (in our case, a lower bound on the average
number of cache misses in a path) be obtained without recourse to random oracles? Second, much more unusually,
can we prove security without cryptographic assumptions? Note that we did not make cryptographic assumptions in
our analysis.

One of the more interesting challenges suggested by this work is to apply results from complexity theory in order
to be able to make rigorous statements about proposed schemes. One of the more promising directions in recent years
is the work on lower bounds for branching program and the RAM model by Ajtai s [4,5] and Beame et al [6]. It is not
clear how to directly apply such results.

At first blush egalitarianism seems like a wonderful property in a pricing function. However, on reflection it may
not be so desirable. Since the approach is an economic one it may be counterproductive to design functions that
can be computed just as quickly on extremely cheap processors as on supercomputers — after all, we are trying to
force the spammers to expend resources, and it is the volume of mail sent by the spammers that should make their
lives intolerable while the total computational effort expended by ordinary senders remains benign. So perhaps less
egalitarian is better, and users with weak or slow machines, including PDAs and cell phones, could subscribe to a
service that does the necessary computation on their behalf. In any case, small-memory machines cannot be supported,
since the large caches are so very large, so in any real implementation of computational spam fighting some kind of
computation service must be made available.

References

. M. Abadi and M. Burrows, (multiple) private communication(s)

M. Abadi, private communication

. InfoWorld http://www.infoworld.com/articles/hn/xml1/02/08/13/020813hnbrin.xml

. M. Ajtai, Determinism versus Non-Determinism for Linear Time RAMs, STOC 1999, pp. 632-641.

M. Ajtai, A Non-linear Time Lower Bound for Boolean Branching Programs, FOCS 1999: 60-70

. Paul Beame, Michael E. Saks, Xiaodong Sun, Erik Vee, Super-linear time-space tradeoff lower bounds for randomized compu-

tation, FOCS 2000, pp. 169-179.

7. Laszlo A. Belady, A Study of Replacement Algorithms for Virtual-Storage Computer IBM Systems Journal 5(2), pp. 78-101,
1966

8. M. Abadi, M. Burrows, M. Manasse, and T. Wobber, Moderately Hard, Memory-Bound Functions, manuscript paper to appear

in Proceedings of the 10th Annual Network and Distributed System Security Symposium February, 2003.

oA LN~

9. N. Alon, and J. Spencer, The Probabilistic Method, Wiley & Sons, New-York, 1992

10. Dan Boneh, Ben Lynn, Hovav Shacham, Short signatures from the Weil pairing, ASIACRYPT 2001, pp. 514-532.

11. www.camram.org/mhonarc/spam/msg00166.html.

12. W. Diffie and M.E. Hellman, Exhaustive cryptanalysis of the NBS Data Encryption Standard, Computer 10 (1977), 74-84.

13. C. Dwork and M. Naor, Pricing via Processing, Or, Combatting Junk Mail, Advances in Cryptology — CRYPTO’92, Lecture
Notes in Computer Science No. 740, Springer, 1993, pp. 139-147.

14. C. Dwork and M. Naor, An Efficient Existentially Unforgeable Signature Scheme and Its Applications, Journal of Cryptology
11(3): 187-208 (1998)

15. A. Fiat, Batch RSA, . Journal of Cryptology 10(2): 75-88 (1997).

16. A. Fiat and M. Naor, Rigorous Time/Space Tradeoffs for Inverting Functions, STOC’91, pp. 534-541

17. A. Fiat and A. Shamir, How to Prove Yourself, Advances in Cryptoglogy — Proceedings of CRYPTO’84, pp. 641-654.

18. Fluhrer, Mantin and Shamir, Attacks on RC4 and WEP, Cryptobytes 2002.

19. A.J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996. Also available:
http://www.cacr.math.uwaterloo.ca/hac/

20. A. Back, Hashcash - A Denial of Servic Counter-Measure, available at
http://www.cypherspace.org/hashcash/hashcash.pdf.

21. Mihir Bellare, Juan A. Garay and Tal Rabin, Fast Batch Verification for Modular Exponentiation and Digital Signatures,
EUROCRYPT 1998, pp. 236-250.

22. Mihir Bellare, Juan A. Garay and Tal Rabin, Batch Verification with Applications to Cryptography and Checking, LATIN 1998,
pp. 170-191.

23. M. Hellman, A Cryptanalytic Time Memory Trade-Off, IEEE Trans. Infor. Theory 26, pp. 401-406, 1980

24. A.Joux and J. Stern, Lattice Reduction: A Toolbox for the Cryptanalyst, J. Cryptology 11(3), pp. 161-185, 1998

25. J. Lagarias, A. Odlyzko, Solving Low-Density Subset Sum Problems, JACM 32(1), pp. 229-246, 1985

26. M. Luby and C. Rackoff, How to Construct Pseudorandom Permutations and Pseudorandom Functions, SIAM J. Computing
17(2), pp. 373-386, 1988

27. Itsik Mantin, Analysis of the Stream Cipher RC4, Masters Thesis, Weizmann Institute of Science, 2001. Available
www.wisdom.weizmann.ac.il/ itsik/RC4/rc4.html

28. R. Merkle, Protocols for Public Key Cryptography, IEEE Symposioum in Security and Privacy, 1980, pp. 122-134.

29. 1. Mironov, (Not So) Random Shuffles of RC4, Proc. of CRYPTO’02, 2002

30. M. Naor and M. Yung, Universal One-Way Hash Functions and their Cryptographic Applications, STOC 1989, pp. 33-43

31. P. Oechslin, Making a faster Cryptanalytic Time-Memory Trade-Off, these proceedings.

32. P. C. van Oorschot and M. J. Wiener, Parallel Collision Search with Cryptanalytic Applications, Journal of Cryptology, vol.
12, no. 1, 1999, pp. 1-28.

33. R. Schroeppel and A. Shamir, A T = O(2"/?), § = O(2™/Y) Algorithm for Certain NP-Complete Problems, SIAM 1J.
Comput. 10(3): 456-464 (1981). 1979.

