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Materials and Methods

1. Meta-analyses and selection of education-associated candidate SNPs

The first stage of our two-stage procedure consisted of conducting a GWAS meta-analysis on
years of schooling, using the same analysis plan as Rietveld et al. (1) for the years-of-schooling
variable (referred to in Rietveld et al. as “EduYears”) and the same cohorts, except omitting
the individuals that we include in the Cognitive Performance Sample (all individuals in the
cohorts ALSPAC, ERF, LBC1921, LBC1936, and MCTFR, and subsamples of the cohorts
QIMR and STR) described in section “Cognitive Performance Sample” below. Thus, compared
with the meta-analysis sample size of N = 126,559 in Rietveld et al., the sample size for our
meta-analysis of years of schooling is N = 106,736. We obtained permission to use these data
under the SSGAC data sharing policy
(http://ssgac.org/documents/DatasharingpolicySSGAC.pdf). Our meta-analysis found 927
single-nucleotide polymorphisms (SNPs) meeting the inclusion threshold of p-value < 107,
which was chosen based on power calculations prior to conducting our study (see section 15.E
of this SI Appendix). We pruned this set of SNPs for linkage disequilibrium using the clumping
command in PLINK and the HapMap II CEU (123) data. The physical threshold for clumping
was 1000 kB, and the R? threshold for clumping was 0.01. This pruning procedure resulted in
a set of 69 approximately independent SNPs, which is our set of “education-associated SNPs.”
These are listed in Supplementary Table S4.

We note that the education-associated SNPs (Table S4) are independent from APOE, a gene
that has previously been associated with cognitive decline in older individuals (2-6). The
APOE gene is located on chromosome 19, while none of our education-associated SNPs are
located on that chromosome; thus, APOE status is inherited independently from all of our
education-associated SNPs.

For the polygenic-score analyses in the Health and Retirement Study (HRS) described in
section 14 below, we conducted the same meta-analysis, except that we additionally exclude
the HRS cohort. The sample size of this meta-analysis is N = 98,110.

2. Cognitive Performance Sample

The Cognitive Performance Sample that we use in the second stage of our two-stage procedure
consists of CHIC (the Childhood Intelligence Consortium (7)) and five additionally recruited
GWA samples. CHIC consists of six studies: the Avon Longitudinal Study of Parents and
Children (ALSPAC, N = 5,517), the Lothian Birth Cohorts of 1921 and 1936 (LBC1921, N =
464; LBC1936, N = 947), the Brisbane Adolescent Twin Study subsample of Queensland
Institute of Medical Research (QIMR, N = 1,752), the Western Australian Pregnancy Cohort
Study (Raine, N = 936), and the Twins Early Development Study (TEDS, N = 2,825). The five
additional samples are the Erasmus Rucphen Family Study (ERF, N = 1,076), the Generation
R Study (GenR, N = 3,701), the Harvard/Union Study (HU, N = 389), the Minnesota Center
for Twin and Family Research Study (MCTFR, N = 3,367) and the Swedish Twin Registry
Study (STR, N =3,215). This brings the total sample size to 24,189 individuals from 11 studies.

In most of these cohorts, cognitive performance was elicited before participants completed
schooling (for details, see section 3). Exceptions are ERF and HU, which constitute ~6% of the
Stage 2 sample. In STR, cognitive performance was measured among males during military
conscription at the age of 18. Some of these individuals may have also already completed
schooling. However, some of the individuals in ERF and HU may have still been in school
when cognitive performance was measured.



Participating studies were recruited from January 2013 — March 2013, and summary results
were uploaded before the end of April 2013. All participants provided written informed
consent, and the studies were performed in accordance with the respective Local Research
Ethics Committees or Institutional Review Boards. The descriptive statistics and study designs
are provided in Table S1.

To provide additional data for examining the within-family explanatory power of the polygenic
score (see section 13), an additional cohort was recruited: Generation Scotland (GS). The
sample consists of 1,081 siblings.

3. Cognitive performance measures

Measures of cognitive performance for the studies that are part of CHIC, and the cognitive
performance measures for the other five GWA studies, are as follows:

ALSPAC: Cognitive performance at the age of 8 years was measured with the Wechsler
Intelligence Scale for Children (WISC-III). A short version of the test consisting of alternate
items only (except the Coding task) was applied by trained psychologists. Verbal (information,
similarities, arithmetic, vocabulary, comprehension) and performance (picture completion,
coding, picture arrangement, block design, object assembly) subscales were administered. Each
subtest was age-scaled according to population norms, and a summary score for total cognitive
performance was derived. We calculated the first two principal components of the genome-
wide data using Eigenstrat. As inputs to the analysis reported here, we generated sex- and
principal-component-adjusted Z-standardized cognitive performance scores for unrelated
ALSPAC children for whom total cognitive performance and genome-wide data were
available. To do so, cognitive performance scores within a range of 4 SD relative to the total
ALSPAC sample were regressed on sex and the principal components. The residuals were Z-
transformed. Using the resulting data, genome-wide association analysis was conducted.

ERF: Scores on the following cognitive tests were used to create the fluid-type general
cognitive ability factor: Stroop 3 (time needed to complete Stroop color-word card), TMT-B
(time needed to complete Trailmaking Test part B), phonemic fluency (with D, A, T, number
of words mentioned beginning with each letter, one minute each, sum of the three trials), 15-
word Auditory Verbal Learning Test (AVLT-sum) (sum of immediate (5 iterations) and
delayed recall (once)), WAIS block design test (n of correct answers, Wechsler scoring). The
tests, the method of application, and key references are described in (8). Principal components
analysis was applied to these 5 tests. The first unrotated principal component, which accounted
for 50.1% of the total test variance, is the measure of g. The mean age at reporting is 33.2 (SD
=7.1).

GenR: The phenotype has been constructed using assessments of the Snijders-Oomen Non-
Verbal Intelligence Test (SON-R 2.5-7). The overall cognitive performance score was
calculated based on two subtests: Mosaics (performance) and Categories (reasoning). The
mean age at reporting is 6.17 (SD = 0.50).

GS: Scores on the following cognitive ability tests were used to create the general cognitive
ability factor: Wechsler Digit Symbol Substitution Task, Wechsler Logical Memory Test,
Verbal Fluency (sum of letters C, F, and L), and the Mill Hill Vocabulary Scale. The tests, the
method of application and key references have been described in detail elsewhere (9). The
number of siblings used in the analysis was 1081 (mean age 41.1 (SD 11.0), range 18-77). The
Pearson correlations (rs) among the 4 tests ranged from 0.07 to 0.40 (mean 0.22). Principal
components analysis was applied to these 4 tests. The first unrotated principal component
(FUPC) accounted for 42% of the total test variance. Loadings on the FUPC were as follows:



Wechsler Digit Symbol Substitution Task = 0.56, Wechsler Logical Memory Test = 0.63,
Verbal Fluency = 0.71, Mill Hill Vocabulary Scale = 0.68.

HU: A composite score of several cognitive performance subtests was generated in the
following way. A shortened version of Raven’s Advanced Progressive Matrices (RAPM) (10);
a 10-item vocabulary test; the Vocabulary, Similarities, and Arithmetic subtests of the
Multidimensional Aptitude Battery II; and the number correct in a speeded version of the
Shepard-Metzler Mental Rotation (SMMR) task were administered. RAPM, Arithmetic, and
SMMR were standardized to have mean zero and variance one in the sample. The Vocabulary,
Similarities, and separate 10-item vocabulary test were factor analyzed, and Bartlett’s method
was used to calculate a verbal factor score on the basis of the three observed scores. This verbal
score was then standardized. The standardized verbal, RAPM, Arithmetic, and SMMR scores
were added to form a raw composite, which was itself standardized separately for each sex.
The composite 1Q formed in this way showed a correlation of ~0.70 with self-reported SAT
scores, which is quite good considering the restriction of range in SAT scores (a standard
deviation only two-thirds of that observed in the total population of European-descent SAT
examinees). The mean age at reporting is 25.48 (SD = 6.63).

LBC1921 and LBC1936: The measure of cognitive performance was the Moray House Test
(MHT) No. 12. This is one of a series of tests of cognitive performance devised by Godfrey
Thomson at the Moray House College, University of Edinburgh, from the late 1920s onwards.
The MHT is a group test of cognitive performance with a time limit of 45 minutes. The test has
71 items and a maximum possible score of 76. It was also known as the “Verbal Test” because
the items have a predominance of verbal reasoning. The test has a variety of items, as follows:
following directions (14 items), same—opposites (11), word classification (10), analogies (8),
practical items (6), reasoning (5), proverbs (4), arithmetic (4), spatial items (4), mixed
sentences (3), cypher decoding (2), and other items (4). Mean age at reporting is 10.9 years
(SD =0.28).

MCTFR: Measurement of general cognitive ability in the Minnesota sample was based on an
abbreviated form of the Wechsler Intelligence Scale for Children-Revised (WISC-R) for those
16 years or younger or Wechsler Adult Intelligence Scale-Revised (WAIS-R) for those older
than 16 years. The short forms consisted of two Performance subtests (Block Design and
Picture Arrangement) and two Verbal subtests (Information and Vocabulary), the scaled scores
on which were prorated to determine Full-Scale 1Q (FSIQ). FSIQ estimates from this short
form have been shown to correlate greater than 0.90 with FSIQ from the complete test. The
mean age at reporting is 14.2 (SD =2.7).

QIMR: Cognitive performance was measured using a shortened version of the computerized
Multi-dimensional Aptitude Battery (MAB), a general intelligence test similar to Wechsler
Adult Intelligence Scale-Revised. The shortened MAB includes three verbal subtests
(information, arithmetic, vocabulary) and two performance subtests (spatial, object assembly).
Scaled scores for cognitive performance were computed in accordance with the manual.

Raine: Cognitive performance was estimated based on four cognitive tests carried out at
approximately 10 years of age (Peabody Picture Vocabulary Test, Raven’s Colored Progressive
Matrices, Symbol Digits Modalities Test (SDMT) written score and SDMT oral score. The first
principal component from the four cognitive measures was used for analyses.

STR: Men in the sample were matched to conscription data provided by the Military Archives
of Sweden. Data on cognitive ability are available for most men in the sample born in 1936 or
later. These men were required by law to participate in military conscription around the age of
18. They enlisted at a point in time when exemptions from military duty were rare and typically



only granted to men who could document a serious handicap that would make it impossible to
complete training. For the men born after 1950, the military data have been digitalized. For
men born 1936-1950, we manually retrieved the information from the Military Archives. The
first test of cognitive ability used by the Swedish Military was implemented in 1944, and it has
subsequently been revised and improved on a few occasions. (11) discusses the history of
psychometric testing in the Swedish military and provides evidence that the measure of
cognitive ability is a good measure of g. For men in the sample who did the military
conscription before 1959, the cognitive ability test consisted of 5 subtests: logical, verbal,
mathematical, spatial, and technical. The first subtest about logical ability was called
“Instructions” and measured the ability to understand complicated instructions. The second
subtest about verbal ability was called “Selection,” and in these questions the subjects had to
pick out one out of five words that differed from the four other words. The third subtest was
called “Multiplication” and consisted of multiplying a two-digit number by a one-digit number.
The fourth subtest was called “Levers.” With the guidance of a graph depicting a system of
levers, the subjects answered questions about the effect of a force applied to a specific point in
the system. The final test was called “Technical comprehension,” in which the subjects
answered questions about technical problems with the guidance of graphs. In 1959 the
cognitive ability test was revised, and men in the sample who did the military conscription in
1959 or later took this revised test. The logical and verbal ability subtests were kept. The
mathematical subtest (“Multiplication”) was dropped from the test. The spatial ability test
(“Levers”) was replaced by a test of spatial ability called “Composition,” in which the subjects
had to indicate which pieces fit with a specific figure. The technical ability test (“Technical
comprehension”) was revised (it was modernized). For both men who did the military
conscription before and after 1959, we use data for the 4 subtests of logical, verbal, spatial, and
technical ability (since subtests of these abilities were included at the military conscription both
before and after 1959). We do not include the mathematical ability test since it was only given
to subjects who did the military conscription in 1959 and later. At the military conscription,
each subtest was given a raw score and a standardized 1-9 stanine score. The norm tables for
the stanine scores were updated each year to ensure that there was no trend in the stanine scores
over time. We use the stanine scores of the four subtests of logical, verbal, spatial and technical
ability. We use the first principal component of these four stanine scores as the measure of
cognitive performance.

TEDS: Individuals were tested at 12 years using two verbal and two nonverbal measures:
WISC-III-PI Multiple Choice Information (General Knowledge) and Vocabulary Multiple
Choice subtests (12), the WISC-III-UK Picture Completion (12) and Raven’s Standard
Progressive Matrices (13). Test scores were adjusted for age within each testing period, and
the first principal component was derived.

Within each cohort the cognitive performance measure was adjusted for sex and age and
standardized to have mean 0 and standard deviation 1.

4. Genotyping and imputation

All cohorts were genotyped using commercially available genotyping arrays. The study-
specific details on genotype platform, genotype calling algorithm, imputation software, and
imputation reference dataset are provided in Table S2.

5. Quality control

In CHIC extensive quality control has been performed at the meta-analysis stage (for details,
see (7)). We followed CHIC’s protocol and cleaned each GWA summary file from the five
additionally recruited replication studies. First, the SNPs with a Minor Allele Frequency
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(MAF) < 1%, imputation quality score < 40%, Hardy-Weinberg p-value < 10 and call rate <
0.95 were excluded. Quantile-Quantile plots of the cleaned summary files were visually
inspected, and the genomic control (GC) inflation factor 4 (14) was calculated for each cleaned
summary file. The Quantile-Quantile plots (Supplementary Figure 1) did not reveal
stratification problems. This is confirmed by the values of A’s, which are all close to 1. Second,
following (7), we calculated the average effective sample size per cohort (as a function of the
allele frequency and the standard error of the effect size from the association) and compared it
with the actual sample size. We found that the average effective sample sizes were consistent
with the reported sample sizes in all cohorts.

6. Association analysis

Each cohort was asked to follow a prespecified analysis plan (preregistered on the Open
Science Framework website prior to conducting our study; see https://osf.io/z7fe2/). This plan
requested from each study summary results of the ordinary least squares regression of the
standardized measure of cognitive performance on the imputed SNPs. At least four principal
components of the Identity-by-State (IBS) matrix (to control for subtle population
stratification) were either added as covariates, or used in the standardization of the phenotype.
Only individuals from recent Caucasian descent were included. Association software used by
the studies is reported in Table S2.

7. Meta-analysis

The meta-analysis was performed with inverse-variance weighting using METAL (15). The
necessary inputs from the study-specific GWA summary results were: SNP ID, coded allele
(allele to which regression coefficient refers), non-coded allele, strand, beta (regression
coefficient), standard error, p-value, and allele frequency for the coded allele.

8. Correction of effect sizes for winner’s curse

The “winner’s curse” refers to the fact that the estimated effect size for a SNP (and therefore
the R* associated with the SNP) newly discovered to be statistically significant tends to be
much higher than the unbiased effect size estimated subsequently in replication samples. It
occurs because, although OLS gives an unbiased unconditional estimate of the true parameter
value, the expected value of the estimate is biased away from zero conditional on the parameter
meeting a threshold for statistical significance. This bias is more highly pronounced the more
stringent the significance threshold (and therefore especially pronounced in GWAS because
the significance threshold for “genome-wide significant” is especially stringent). In Subsection
A, we walk through the (well-known) derivation of the analytic form for the expected value of
the winner’s curse. In Subsection B, we discuss several known methods for correcting for it.
Subsection C contains a comparison of these methods in a simulation study of the current
analysis of cognitive performance. We conclude in Subsection D by applying the winner’s
curse corrections to both Rietveld et al.’s (1) findings—a context where we can compare the
winner’s-curse-corrected estimates to the unbiased, replication-sample estimates—and to the
findings from the current analysis of cognitive performance.

A. Derivation of the winner’s curse

We derive the winner’s curse for the simple case where outcome Y is truly related to a SNP’s
genotype g €{0,1,2} in accordance with the simple linear regression model:
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where & ~ N(0,6%), and o’ and the SNP’s MAF m are known. If the sample size n is large

and if the SNP is in Hardy-Weinberg equilibrium, then the OLS estimate is drawn from the
2
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, m, and n are all known). Given statistical significance threshold « , the null hypothesis f =0
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where @ is the cdf of a standard normal distribution (that has corresponding pdf ¢ ). Therefore,
conditional on the SNP having been identified as statistically significant at size o, its
coefficient ﬁ is distributed as a truncated standard normal distribution with the mass removed
in a neighborhood of zero, with pdf:
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The bias due to the winner’s curse is the second term in equation (2). The numerator of this
term signs the bias: if £ >0, then the bias is positive, while if £ <0, then it is negative. The
bias therefore always pushes the estimate away from zero. In order to obtain a more accurate
estimate of the SNP’s effect size, it is necessary to apply a correction procedure that “shrinks”
the OLS estimate toward zero. If @ is smaller (that is, the significance threshold is more
stringent), then the denominator of the bias term is smaller and hence the bias is larger in
magnitude.

B. Correcting for the winner’s curse

There are several methods that one might consider to correct for this bias. Here we briefly
describe four: inverting the conditional expectation of the OLS estimator, maximum likelihood



estimation (MLE), Bayesian estimation, and empirical-Bayes estimation.

B.1. Inverting the conditional expectation of the OLS estimator

One approach is motivated by the seemingly straightforward idea of inverting the above
conditional expectation equation (2) that is a function of the true parameter value:

QT (B - (B)

E(p|p.sig,) = - (AN
(B B.sig,) = g(B) ﬂ+01_[q)(T+(ﬂ))_q>(T (B)]

While g(f) is not analytically invertible, it can be inverted numerically. However,
EB | B.5sig,,) is not observed and so cannot be plugged into g '(-). The feasible version of this
estimator must instead use the observed value /3. Unfortunately, though, the estimator g~'( ,3)
is biased: that is, generically E[g”' (,3) | B,sig, 1# . To see this, note that
g [E(,é | B.sig,)]=f, and Jensen’s inequality implies that E[g~" (,é) | B, sig,,] is generically

not equal to ¢ [EB | B.sig,)] since g(f) is non-linear. Furthermore, it is difficult to assess
the direction and amount of bias.

B.2. Maximum Likelihood Estimation

Some researchers have used MLE to correct for the winner’s curse (16, 17). To estimate a

MLE, we use the pdf of B | (B, sig,), which is equation (1) above. Since we only have one

observation of A, the likelihood function in this case is simply equation (1). Taking the first-

order condition with respect to £ and rearranging terms, the ML estimator S, is implicitly
defined by the equation:
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The right-hand side of this equation is identical to the right-hand side of equation (2) above.
Therefore, the MLE is the same as the estimate obtained from inverting the conditional
expectation of the OLS estimator, and thus the MLE will be biased in an identical manner. Via
simulation, (16) shows that these methods will over-correct when f is large and under-correct

when £ is small.

We note a few observations about the bias correction implied by this estimator; similar points
will hold for the Bayesian estimators that follow, but we make these observations here because
they are particularly straightforward to see for the MLE estimator. First, when the estimated
coefficient is large in magnitude, the bias correction is small; that is, the MLE-corrected
estimate will be approximately equal to the uncorrected estimate. This can be seen in the above



formula: since |]ﬁJim dT(B)—(T (F)=0 and |]ﬁJim (T (B)—D(T (B)) =0, it follows that
‘lj‘m Buie (ﬁ) = ﬁ’ . Intuitively, when the uncorrected estimate is large in magnitude, it is very
B>

likely to have been resulted from a true £ that is large in magnitude and hence very likely that

we would have observed a statistically significant estimate regardless of our sample realization;
therefore, the fact that the observed estimate was statistically significant provides little
additional information about the value of £.

Second and on the flipside, when the estimated coefficient is close to the significance threshold,
the bias correction may be quite large. Intuitively, it is actually fairly likely that a barely
statistically significant estimate resulted from a true /£ that is below the threshold.

B.3. Bayesian and Empirical-Bayes Estimation

Two alternative approaches are Bayesian and are closely related. We follow a derivation
similar to (18), who adjust the winner’s curse of the odds ratio in a binary setting. However,
we consider a more general setting, correcting the underlying f parameters, which are defined

over the real line and therefore require a different class of priors and posteriors (for a closely
related approach, see (19)). For a normally-distributed prior  ~ N(u,7°), the posterior is

given by the pdf
~ 2B+0u v’
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The right-hand side of equation (3) can be evaluated numerically by taking a set of M draws of
the random variable X, {x }, and taking the ratio of the sample means of {g,(x,)} and

{g,(x,)}. In the implementations below, we use M = 10 million.

The Bayesian and empirical Bayes approaches are distinguished by the way that the parameters
of the prior distributions, x# and 7, are chosen. The Bayesian method we consider is to assume
an uninformative prior: 7 — 0 (and in this case, the choice of  does not matter). Using this
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method, equation (3) is evaluated using X ~ N (,3,1)2). Similar to with the MLE correction,

the Bayesian (and empirical Bayes) correction will be small when the uncorrected estimate is
far from the significance threshold and large when it is close. Intuitively, when the observed
estimate is large in magnitude, the probability that the true £ that is below the threshold is

negligible, so the bias correction has very little impact on the posterior mean.

In the empirical Bayes approach, the data are used to estimate appropriate values for # and 7

. To develop intuition, we first consider a method (simpler than the method we use) that would
be appropriate if one had access to OLS estimates for a large random sample of SNPs (for
example, from complete GWAS meta-analysis results), s=1,...,S. Since for each SNP the

choice of reference allele is arbitrary, the mean of the true effects across the S SNPs is zero:
4#=0. Now, note that since BB ~N(B.v}) and B, ~N(©0,z%), it follows that

B. ~ N(0,7° +v}) . Therefore, 7° can be estimated as the variance of all of the ,Bs estimates
minus the mean of the square of their estimated standard errors:

We do not use this approach because assuming =0 would be extremely conservative in our

context, where the SNPs we study are not a random sample—rather, they were selected as
candidates for cognitive performance because they had strong impacts in a previous GWAS on
educational attainment.

The empirical-Bayes approach that we employ exploits information available from the GWAS
results on educational attainment to inform our choice of 1. Specifically, we set 4 equal to
the magnitude of a SNP’s effect that would be needed in order for the SNP to explain the same
fraction of variance in cognitive performance as it explains in educational attainment. To be
more precise, let ,Bedw,s be the estimated effect of SNP s on years of schooling taken from

Rietveld et al. (2013). The fraction of variance in years of schooling explained by the SNP can

2m (1—m_ .
be calculated as R?, . = m, ( mé)ﬁedm,.;

educ,s — 2

O

educ

, where m_ is the MAF of SNP s and o, is the

educ

variance of years of schooling. We can calculate that SNP s would have the same R? for
o

cog

cognitive performance if f. = where ., is the putative effect of SNP s on

cog,s educ,s

educ

.. 2 . . ..
cognitive performance, and o_,, is the variance of cognitive performance. Thus, we set the

8

cog

mean of our prior for the effect of the SNP on cognitive performance as =

educ,s *
educ
While not as conservative as setting a prior of zero, this prior mean is still likely to be
conservative (i.e., too close to zero) to the extent that a SNP’s effect on educational attainment
works through a more direct effect on the mediating phenotype of cognitive performance; in
that case, the SNP would be expected to explain a larger fraction of variance in cognitive

performance than in years of schooling. We calculate the prior parameter 7> similarly as in the
mean-zero empirical-Bayes procedure above (but rather than estimating the variance about
zero, we estimate the variance about the mean of the prior):
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(18) prove that there is no winner’s curse correction that is unbiased for all values of £, but an

advantage of a Bayesian approach is that the estimates will be on average unbiased. As an
intuitive rationale for a choice for a prior, note that the Bayesian method with a diffuse prior
will be unbiased on average across all real-valued effect sizes, while the empirical Bayes
method is unbiased across a weighted average of effect sizes with the weights given by the
prior. Thus, the empirical-Bayes-corrected estimate should be less biased if the true effect size
is local to the mean of the selected prior but more biased if the true value is distant from the
mean.

As a final note on implementation: all of the above approaches require a value for

2
2

vV'E—m
2nm(l1—m)

o’ are not known. For m, we just use the empirical frequency of the minor allele in our data.

, which we have assumed is known, but it is in fact not known because m and

We estimate o iteratively, starting with the naive estimate of /3, bo = ﬂ . Then we calculate
O'(f =var(Y) —2b02m(1—m). Using O'g , we estimate b,(o,). We iterate this procedure until it

converges, giving us estimates of both & and B . (In the implementations below, we ran the
algorithm for ten iterations, but convergence was virtually always apparent after only two.)

C. Simulation Study
We now examine and compare the MLE and Bayesian methods via simulation. To roughly
match the analysis of the top three SNP associations with cognitive performance from the main

text, we set the sample size n = 25,000, MAF m = 0.4734, dependent-variable variance o’ =1
(that is, the dependent variable is standardized), and significance threshold o = 0.05/69 (the
conventional significance threshold after Bonferroni correction for analysis of 69 SNPs). For
each fixed true value of £, in each iteration i of the simulation, we draw an n-length genotype

vector g;, and we draw an n-length error &, ~ N 0,0°1 ,). In each iteration, we estimate the
naive p;, which we keep if it passes the significance threshold and ignore otherwise. If we

keep ﬁ,- , we then estimate ,BMLE,,- using maximum likelihood and ,BBQM,,- using the diffuse-

prior Bayesian method described above. (We do not perform simulations for an empirical
Bayes approach since it is not clear what the right choice should be for an empirical prior for
the simulation.) We perform 1,000,000 replications of this simulation.

Supplementary Figure 3 below shows the winner’s-curse corrected estimate as a function of
the true £, grouped in bins of the true £ that are 0.002 units wide. For each estimate, the light

dotted lines in the corresponding color show the interval that contains 95% of the estimates.
The figure suggests that there can be significant bias from the winner’s curse in this
parameterization when the true £ is less than 0.04, but this bias becomes negligible for higher

values. It is also evident that neither correction procedure gives an unbiased estimate of the
true S for every particular value of £ . In this example, it seems that MLE performs slightly

better when the true £ is very small, while the Bayesian method performs better for medium
values of f. If an empirical-Bayes approach were used, it would perform better than the
Bayesian approach for the more common values of £ and worse elsewhere.
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D. Applications

We now apply these winner’s-curse-correction methods to actual data. We begin with the
findings of (1) for educational attainment, where we can compare the unbiased replication-
stage estimates to the results from applying the winner’s-curse-correction methods to the
inflated discovery-stage estimates. The first and fourth columns of Supplementary Table S5,
respectively, report the discovery-stage estimates and the replication-stage estimates for the
three SNPs that (1) report passed a significance threshold of p < 5 x 1078 (the linear regression
coefficients for the SNP associated with years of education are from (1)’s Table 1, and the
logistic regression coefficients for the SNPs associated with college completion have been
provided by the SSGAC). The second and third columns, respectively, show the discovery-
stage estimates corrected by MLE and by the Bayesian method with a diffuse prior.
Supplementary Table S6 is the same, except that it shows the 10 SNPs that passed a suggestive
significance threshold of p < 10 (including the three that are genome-wide significant). The
results in the tables indicate that in these data, both correction methods do a reasonable job of
predicting the effect size that is estimated in the replication.

Finally, we apply the winner’s-curse-correction methods to the cognitive performance findings
reported in the main text. The first column of Supplementary Table S7 shows the effect size
estimates for the three education-based SNPs that passed the (Bonferroni-corrected)
significance threshold of p <0.05/69. The second, third, and fourth columns, respectively, show
the estimates corrected by MLE, by the Bayesian method with a diffuse prior, and by empirical
Bayes.

There are two reasons why the corrections as applied to the cognitive performance findings are
large relative to the corrections as applied to Rietveld et al.’s (1) findings (despite the fact that
the more stringent significance threshold of genome-wide significance used in (1) would tend
to generate a larger correction, all else equal). First, the sample size on which the uncorrected
estimates are based is much larger in (1) than for the cognitive performance estimates
(approximately 100,000 versus 25,000, respectively). Second and more subtly, simulations (not
reported here) show that the uncorrected estimates for the cognitive performance results fall
within the region around the significance threshold where the corrections are relatively large.

To provide another way of assessing the magnitude of the SNP associations with cognitive
performance, the fifth and sixth columns of Supplementary Table S7 show the R* associated
with the uncorrected estimates and with the empirical-Bayes-corrected estimates. The RZ,
which is defined as the ratio of the variance explained by the SNP to the total phenotypic
variance, is here simply equal to the variance explained by the SNP, because the phenotypic
variance has been normalized to 1:

R> =2m(1-m)f3*,

where £ is either the uncorrected (naive) effect size estimate or the empirical-Bayes-corrected

estimate. The results reported in the table suggest that the winner’s curse adjustment reduces
the SNPs’ R* from ~0.0006 to ~0.0002.

9. Bayesian analysis of the credibility of the SNP associations

Here, we report a heuristic Bayesian calculation along the lines of (20) and (21) to assess the
likelihood that the three individual SNP associations we find with cognitive performance are
false positives attributable to sampling variation. Several simplifying assumptions make the
calculations especially straightforward. First, we assume that each SNP has only two (rather
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than three) possible genotypes. Second, we assume for each of the three SNPs, there are only
two possibilities: either there is no true association (the null hypothesis Ho), or there is a true
association that explains a known fraction of phenotypic variance, R?> (the alternative
hypothesis H1). Let the prior probability of Hi be denoted by x; hence the prior probability of
Hy is 1—x. Third, we assume the information available to us is that for each SNP, using a two-
sided r-test, we rejected the null hypothesis of no association at the standard significance
threshold after Bonferroni correction for testing 69 SNPs, i.e., we rejected Hy at the significance
threshold o = 0.05/69 ~ 0.00072.

By Bayes’ Rule, the probability that there is a true association given that we observed a
significant association is:

P(t|>t,, | H)P(H,) _ (power)(r)
P(tl>t,,|H)PH)+P(t|>1,,|H)PH,) (power)(z)+@)1-7)’

P(H1 ||t|>ta/2):

where “power” (as well as the significance test) is two-sided. Using (22)
(http://pngu.mgh.harvard.edu/~purcell/gpc/qtlassoc.html), we calculate statistical power for
several different values of R? and for the sample size of N = 24,189 (the actual sample size of
the Cognitive Performance Sample).

Supplementary Table S8 shows posterior probabilities that there is a true association, given
specific values for R? and 7. The larger value for R? is 0.0006, which roughly corresponds to
the estimated magnitude of the association in the Cognitive Performance Sample for each of
the three SNPs that are statistically significant after Bonferroni correction (their R*’s are
0.00064, 0.00058, and 0.00056; see Supplementary Table S4). Because this estimate is likely
to be inflated by the winner’s curse, we also examine the smaller value of R* = 0.0002. This
value roughly corresponds to the estimated magnitude of the association for each of the three
SNPs after adjustment for the winner’s curse, as discussed in Supplementary Information
section 8 (these winner’s-curse-adjusted R?’s are 0.00027, 0.00019, and 0.0017; see
Supplementary Table S7).

In the simple set-up here, we view a prior probability 7 in the range of 0.2% to 2% as the right
order of magnitude for an arbitrarily selected SNP to be associated with cognitive performance
with effect sizes of order of magnitude R* = 0.0002. To see why, begin by taking one extreme:
suppose all independent associated SNPs had effect sizes R*> = 0.0002. Since the proportion of
variance in cognitive performance explained by the linear, additive effect of all SNPs jointly is
roughly 0.40 (23, 24), there would be 0.40 / 0.0002 = 2,000 independent associated SNPs.
Given that there are approximately 1 million independent loci in the human genome (25), each
of the loci would have prior probability 2,000 / 1 million = 0.2%. However, in reality, most
SNPs associated with cognitive performance surely have smaller effect sizes than R? = 0.0002.
In this simple set-up with only two hypotheses, if we consider any SNP whose association is
more than an order of magnitude smaller than R* = 0.0002 as consistent with the “null
hypothesis,” then the largest number of independent SNPs that are non-null is 20,000 (because
0.40/0.00002 = 20,000). In that case, each locus has prior probability 20,000 / 1 million =2%.

Since the 69 SNPs we study are not arbitrary but are instead selected from those most strongly
associated with educational attainment, the prior probability for each of those SNPs should be
much higher than for a randomly selected locus in the genome—indeed, this observation is
what motivates the proxy-phenotype method in the first place. Therefore, we view 7 =0.1% as
an extremely conservative lower bound for the prior probability on the three SNPs being true
positives. Since we suspect that a number of the 69 SNPs we study are probably truly associated
with cognitive performance, we believe that priors of 7 = 5% and 7 = 10% are more reasonable.
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Given priors of 7 = 5% or = = 10%, together with a reasonable assumption about the true effect
size (the winner’s-curse-adjusted R*> of 0.0002), Supplementary Table S8 indicates that the
evidence very strongly evidence favors Hi over Ho: the posterior probability of each SNP
association being a true positive is 90% or 95%, respectively. According to the table, a proper
Bayesian thinker should be skeptical only when the prior probability becomes so conservative
that the first stage of selecting SNPs on the basis of their being associated with years of
schooling is treated as uninformative (x less than 1%).

10. Selection of theory-based candidate SNPs

To select a set of SNPs that would fairly represent those that would be nominated as candidates
on theoretical grounds, we required a method of constraining the search. One challenge for
candidate-gene approaches is that any of the thousands of genes that are expressed in the central
nervous system could be selected as a theoretical candidate for association with cognitive
performance. Therefore, we chose to use only SNPs that had at least one published positive
association with IQ, g, or a measure of general cognitive ability, including higher-order facets
of IQ such as verbal or spatial 1Q (but not episodic memory, working memory, dementia,
MMSE, autism, schizophrenia, etc.) in a healthy sample, regardless of whether there are any
published negative associations (non-replications), as of May 2013. PubMed was used for the
searches, and the results were required to be publications in peer-reviewed journals (not
conference abstracts, etc.). This selection method should be biased in favor of “good
candidates” in the sense that they are more likely to be true associations than would be a
randomly chosen set of common SNPs in central-nervous-system-expressed genes. We
excluded SNPs that originated as discoveries in GWAS studies, SNPs that were only significant
in association with IQ as large haplotypes, and polymorphisms that are not SNPs. The first
exclusion was applied because GWAS-discovered SNPs are not traditional candidates, since
they were by definition derived in an atheoretical manner. The latter two were applied so as to
restrict our set of theory-based candidates to individual SNPs that could be compared directly
to the set of SNPs nominated from the results of the years-of-schooling (proxy phenotype)
GWAS. Finally, we confirmed that none of the positive associations reported in the literature
for the theory-based SNPs used a cohort included in the Cognitive Performance Sample. Our
set of theory-based SNPs is listed in Supplementary Table S3.

(While the SNPs comprising the two-SNP haplotype for APOE, rs429358 + rs7412, were
retained on our initial list, these SNPs were not available in the cohort GWAS results.)

11. Testing the Q—Q plots for the education-associated and the theory-
based candidates

To test whether the Q—Q plot for the education-associated SNPs (Figure 2 in the main text)
differs from the null of a uniform distribution, we use as our test statistic

where s indexes the S = 69 education-associated SNPs, and Zf is the squared z-statistic from

the regression of cognitive performance on SNP s. This squared z-statistic captures the strength
of the association between cognitive performance and SNP s (while ignoring the sign of the
association, which depends on the arbitrary choice of reference allele). Under the null

hypothesis, each z, ~ N(0,1), and thus zf ~ 7>(1), which has mean 1 and variance 2.
Therefore, under the null:
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(1/8)*S var(z>) i
2/8 ’

E(Z)=0,var(Z) =

We calculate a p-value for the test of whether the realized value of the test statistic, Z = z,
differs from zero using the inverse cdf of the standard normal distribution. As reported in the
main text, for the education-associated SNPs, we calculate z = 5.98, corresponding to p-value
=1.12x107°.

We test the theory-based SNPs analogously, but with S = 24. As reported in the main text, we
calculate z = 1.19, corresponding to p-value = 0.12.

To calculate the 95% confidence bounds around the null hypothesis shown in Figure 2, we use
the fact that the s™ order statistic out of S from a Uniform(0,1) random variable has a Beta(s,
S—s+1) distribution (33, p. 230). These confidence bounds differ for the two sets of SNPs
because S differs.

12. Biological annotation

In this section, we describe the methods used in our biological annotation analyses. In order to
focus on the SNPs most strongly implicated in cognitive performance, we study a subset of the
69 education-associated SNPs described in Supplementary Information section 1. Specifically,
we analyze the 14 SNPs that reach a nominal significance level of 5% in the meta-analysis of
cognitive performance in the Cognitive Performance Sample. (A more stringent significance
threshold would retain too few SNPs for substantial analysis.) Throughout, we refer to these
SNPs as the Nominally-Significant Education-Associated SNPs (the NSEA SNPs).

We conduct five types of analyses. In Subsection A, we examine which non-synonymous
coding variants are known to be in strong linkage disequilibrium with the NSEA SNPs. In
Subsections B and C, we investigate if the NSEA SNPs are associated with gene expression
levels in, respectively, blood and three distinct brain regions. In Subsection D, to shed light on
the biological function of the genes implicated in our analyses, we conduct a gene function
prediction analysis. Subsection E, which builds on the analysis from Subsection D, tests
whether the loci implicated in our analyses are more enriched for nervous system functioning
than SNPs that are similar to our 14 SNPs in terms of minor allele frequency, gene proximity,
and gene density, but that are otherwise randomly selected from the GWAS data.

Our analyses here differ in a number of ways from those reported in (1), in which similar
biological annotation analyses were conducted in an expanded version of our Education
Sample on SNPs reaching p < 5x10® (genome-wide significance) or p < 10” (suggestive
significance) for association with educational attainment (with the p-value threshold depending
on the biological analysis). First and most importantly, by restricting attention to the NSEA
SNPs, all of our analyses are based on a set of SNPs for which there is especially strong reason
to believe that at least some are related to cognitive performance (as opposed to other
endophenotypes that matter for educational attainment). Second, our eQTL look-ups (in
Subsections B and C) have substantially more statistical power because our gene-expression
databases have larger sample sizes. In particular, the brain sample we work with is four times
larger than the one analyzed in (1). Third, the gene-prediction analyses we conduct (in
Subsection D) are more expansive. Specifically, our analyses include predictions from mouse
models about the phenotypic effects of a gene and inferences about the types of tissue in which
the gene is expressed. Finally, we report (in Subsection E) formal tests of the hypothesis that
the loci implicated in our analyses are more likely than would be expected by chance for
otherwise-similar SNPs to be in the vicinity of genes with neuronal functionality. Such formal
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tests are novel, as far as we are aware. Subsection F provides a summary of the evidence for
biological candidates.

A. Non-Synonymous Variants in Strong LD with Candidate SNPs

We used the software tool HaploReg to identify missense variants in close linkage
disequilibrium (# > 0.5) with at least one of the 14 NSEA SNPs. In total we identified 8 such
non-synonymous variants in the 1000 Genomes database tagged by 6 NSEA SNPs. These 8
variants are within 8 genes: JMJDIC, RECQL4, LRRCI14, SH2B1, SDCCAGS8, DNAJC28,
GART, and SBNOI. See Supplementary Table S9 for more information about these variants.

B. Blood cis-eQTL Lookup

We conducted gene expression analyses from blood using publicly available data
(downloadable from http://genenetwork.nl/bloodeqtlbrowser/) from a recently published paper
by (27). (27) conducted cis-eQTL mapping by testing, for a large set of genes, all SNPs within
250 kb of the transcription start site of the gene for association with total RNA expression level
of the gene. The publicly available data contain, for each gene, a list of all SNPs that were
found to be significantly associated with gene expression using a False Discovery Rate (FDR)
of 5%. For a detailed description of the quality control measures applied to the original data
and an overview of the statistical framework, see (27). Their meta-analysis is based on a pooled
sample of 5,311 individuals with gene expression levels measured from full blood. We looked
up the 14 NSEA SNPs in this publicly available data and found 8 that were significantly
associated with gene expression levels in a total of 19 different genes and transcripts: LRRC24,
GPT/PPPIRI6A, VPS28, MFSD3, TUFM, SPNSI1, CCDC101, SULTIA2/SULTIAI, LAT,
SDCCAGS, GART, ITSN1, RILPL2, SETDS, STK24, TANK, and PSMD14. The effect sizes and
statistical significance for the NSEA SNPs and strongest eQTL signal for each gene are
presented in Supplementary Table S10.
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C. Brain cis-eQTL Lookup

To investigate if any of the NSEA SNPs are associated with gene expression levels in human
neural tissue, we utilized data from the Harvard Brain Tissue Research Center. The total sample
of 742 individuals is comprised of 376 Alzheimer patients, 193 Huntington patients, and 173
individuals without a known neurological disorder. The dataset contains data on expression
probes obtained from postmortem brains and measured in three distinct neural regions:
prefrontal cortex, visual cortex, and cerebellum (28). The probe data on the Huntington patients
have not previously been reported.

The quality control and probe-data normalization steps are each extensive and are described in
detail in Zhang et al. After these steps, 39,579 probes were taken forward as dependent
variables for subsequent eQTL analysis.

As is standard, we tested the probes for association with all of the SNPs in the GWAS data;
below, we report the results from “looking up” our prioritized SNPs in the results. We
eliminated SNPs with a minor allele frequency below 0.01, SNPs that failed a test of Hardy-
Weinberg equilibrium at a nominal p-value < 10, and SNPs with a call rate below 95%. After
quality control, 838,958 SNPs remained. We used a Kruskal-Wallis test to test all SNPs within
one Mb of the transcription start site of each gene for association with gene expression level of
a given probe. We adjusted the resulting p-values to control for testing of many SNPs and
probes. To take into account the correlation structures among the probes and among the SNP
genotypes, we estimated an empirical FDR: the ratio of the average number of eQTLs found
in datasets with randomly permuted sample labels to the number of eQTLs identified in the
original data set. Since the number of tests was large, we found that the empirical null
distribution converges after a relatively small number of permutation runs; thus, we used ten
permutation runs to estimate the empirical FDR. We focus on the associations that survive after
constraining the empirical FDR to be less than 10% (which corresponds to a nominal p-value
cutoff of approximately 5x1072).

In the meta-analytic results for the three different brain regions, we looked up a total of 580
SNPs: the original 14 SNPs together with all SNPs in high linkage disequilibrium (+* > 0.5)
with one of these 14 SNPs. We observed 40 significant cis-effects for 27 of these 580 SNPs
(significant at FDR 10%, as described in the previous paragraph): 13 for prefrontal cortex, 10
for visual cortex, and 15 for cerebellum. These 27 SNPs, which proxy for 6 of the 14 NSEA
SNPs, regulate gene expression for 18 distinct transcripts (some of which are genes and some
of which are non-coding, regulatory RNAs): LRRCI14, LRRC24, KIFC2, AF075035, EIF3C,
LAT, NUPRI,NFATC2IP, TUFM, SDCCAGS, SBNO1, CI20RF65, MPHOSPHY9, TMEM50B,
GART, IFNGR2, AK026896, and AF33979. Supplementary Table S11 lists the effect-sizes, p-
values, LD metrics, and brain regions.

D. Co-expression-driven Gene Functional Prediction

We used a recently developed method (extensively described and implemented by (29)) to gain
insight into the putative functions of the genes in the vicinity of the NSEA SNPs. Gene function
prediction is based on the idea that genes with shared expression profiles are likely to have
related biological functions. For example, if there are 50 genes known to play a role in
apoptosis, then a gene with unknown function that is strongly co-expressed with these 50 genes
is likely to be part of apoptotic pathways as well. The method described in (29) uses data on
co-expression profiles to predict the likely functions of as-of-yet uncharacterized genes and
refine our understanding of the function of other genes (achieving this by reconstituting the
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existing gene sets — described below). In addition to proposing the method, (29) also report
evidence that a prediction coming out of the framework was validated by subsequent wet-lab
experiments.

To apply the method, we queried the co-expression database described by (29) with our list of
genes (our list is explained below). The query for each gene returned the probable function of
the gene or the reconstituted pathway in which it operates (more specific details are given
below). In the remainder of this paragraph, we briefly summarize the information from which
the co-expression database was generated. The database was generated by linking information
about gene expression obtained from published data on approximately 80,000 gene expression
profiles (from the database Gene Expression Omnibus (GEO) (30), which itself was generated
using data from humans, animals, and/or cell lines) with three other distinct types of
information:

1. A list of pathways and gene sets that a given gene is believed to be involved in, obtained
from the databases: REACTOME pathways (31), Gene Ontology terms (32), and KEGG
pathways (33).

2. The phenotypic effects of perturbing the normal functioning of a given gene in mice
(e.g., knock-out models, overexpression), obtained from the Mouse Genetics Initiative
database (http://www.informatics.jax.org).

3. More than 200 specific tissues, organs, or cell types within which a given gene is highly
expressed in the co-expression dataset, for which annotation was obtained from searching the
U.S. National Library of Medicine’s Medical Subject Headings (MeSH) database
(http://www .nlm.nih.gov/mesh/).

(In contrast to the functional prediction analysis that we describe here, the analogous analysis
in (1) was conducted at a time when the co-expression database included only information from
#1 in the above list.)

In our analyses, we queried a list of 83 genes that were derived from the list of 14 NSEA SNPs:
we included every gene that is located within 250 kb of the 14 SNPs; and if the SNP is located
within a gene desert (defined by having no gene located within 250 kb base pairs of the SNP),
we included the nearest gene. Two of the 14 SNPs were located within a gene desert: rs1487441
(nearest annotated gene POU3F?2 is located ~700kb away) and rs1606974 (nearest annotated
gene NRXN1 is located ~600kb away).

Among the 83 genes we queried, we found that 15 genes are in relevant gene sets related to
reconstituted pathways and biological functions (for specific predictions, see Supplementary
Table S12), 23 genes are predicted to cause relevant neuronal phenotypes in mouse models (for
specific predictions, see Supplementary Table S13), and 29 genes are highly expressed in
nervous-system-related tissues and cell types (for specific tissues and cell types, see
Supplementary Table S14). Given that there is overlap between the genes in these three sets,
our co-expression analyses identified 36 genes in total as potential biological candidates for
cognitive performance (see Supplementary Table S15 for a list of these genes). (Note that
APOE, which may be associated with cognitive decline in older individuals (6) is not among
our list of genes. This is perhaps as expected given our results from section ‘Polygenic score
analyses in the Health and Retirement Study’, in which we find that a polygenic score
comprised of our educated-associated SNPs is associated with the level of cognitive function
in older individuals but not with cognitive decline.)
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While the full list of all implicated reconstituted pathways is available online at
http://www.ssgac.org!, we conclude our discussion of this analysis by listing the top 5 most
frequently occurring search terms from the analysis for each category (with the count given in
square brackets) listed in the Supplementary Tables S12, S13 and S14:

1. Gene Ontology: Biological Processes — neuron-neuron synaptic transmission [3];
neurotransmitter secretion [3]; regulation of neurotransmitter levels [3]; synaptic transmission,
glutamatergic [3]; axonogenesis [2].

2. Gene Ontology: Cellular Compound — synapse [6]; dendrite [5]; synapse part [5];
cation channel complex [4]; synaptic membrane [4].

3. Gene Ontology: Molecular Function — cation channel activity [5], gated channel
activity [5]; voltage-gated cation channel activity [5]; voltage-gated channel activity [5];
voltage-gated ion channel activity [5].

4. KEGG — Calcium signaling pathway [4], Neuroactive ligand-receptor interaction [3],
axon guidance [2], Long-term potentiation [2].

5. REACTOME - Neuronal System [6] Potassium Channels [5]; Transmission across
Chemical Synapses [5]; Voltage gated Potassium channels [5]; Ras activation uopn Ca2+ infux
through NMDA receptor [4]; Unblocking of NMDA receptor, glutamate binding and activation

[4].

6. Mouse Genome Informatics — abnormal brain wave pattern [5]; abnormal excitatory
postsynaptic currents [5]; abnormal excitatory postsynaptic potential [5]; abnormal inhibitory
postsynaptic currents [5]; abnormal CNS synaptic transmission [4].

7. Site-specific expression — Prefrontal Cortex [12]; Visual Cortex [12]; Occipital Lobe
[12]; Cerebral Cortex [11]; Entorhinal Cortex [11].

E. Evaluating for Enrichment of Genes Related to Neuronal Function

Our prediction analyses showed that all 12 NSEA SNPs not located in a gene desert were within
250 kb of at least one gene predicted to be related to neuronal function. While this finding
seems impressive, it is well understood that many genes can been linked to neuronal function.
It is therefore important to evaluate whether the 12 non-desert NSEA SNPs in our analysis are
more associated with neuronal function than would be expected by chance. To do so, we
calculated an empirical p-value using a matching procedure that we describe in this section.

As a first step, for each of the 12 non-desert NSEA SNPs, we randomly sampled a vector of
1,000 “matched SNPs” that resembled the NSEA SNPs in terms of minor allele frequency, gene
density, and distance to nearest gene. For each NSEA SNP, we generated the 1,000 matched
SNPs using the following algorithm:

1. We identified the set of all SNPs covered by our GWAS data that have a minor allele
frequency within 5 percentage points of the given NSEA SNP’s minor allele frequency.

! The link will be activated on the day of publication of this article. The materials that will be posted online are included as a
separate appendix to the submitted manuscript.
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2. We discarded SNPs from this set whose gene density differed from the given NSEA
SNP’s gene density by more than 10%, where “gene density” is defined as the total number of
genes containing a SNP that is in LD * > 0.5 with the focal SNP.

3. We then further discarded SNPs from the set whose distance to the nearest gene exceeds
the given NSEA SNP’s distance to nearest gene by more than 20 kb.

4, Finally, from the remaining SNPs in the set, we randomly sampled 1,000 of them. (Up
to this point in the algorithm, there were always more than 1,000 SNPs remaining in the set.)

As a second step, for each of the 12 NSEA SNPs and each of their respective 1,000 matched
SNPs, we coded a SNP as either “enriched for neuronal functioning” or “not enriched for
neuronal functioning.” We did so using a version of the gene function prediction procedure
outlined in section 4, but we modified the procedure in two ways. First, to make our definition
of “enriched for neuronal functioning” in this analysis more stringent and specific to
reconstituted pathways, we only used the type of information listed in bullet point #1 from
section 4: the pathways and gene sets that a given gene is believed to be involved in.
Specifically, we manually annotated all of the 6,004 functionality terms from the relevant
databases (737 REACTOME pathways, 5,083 Gene Ontology terms, and 184 KEGG
pathways), categorizing each as either “related to neuronal function” or “not related to neuronal
function” depending on the direct or indirect involvement in the central nervous system via
anatomy, cellular structure, or physiological processes (information drawn from published
literature). We have posted this annotated list on the following website: http://www.ssgac.org?.
Second, rather than identifying genes in the vicinity of a SNP as those genes containing a SNP
within a window of 250 kb around the focal SNP (as we did in section 4), here we identify
genes in the vicinity of a SNP as those genes containing a SNP that is in LD > > 0.5 with the
focal SNP; this latter definition is generally more stringent and therefore may be considered
more appropriate for the kind of enrichment analysis we conduct here. For each gene in the
vicinity of one of the NSEA SNPs or in the vicinity of one of the matched SNPs, we code the
gene as “related to neuronal function” if and only if at least one of its predicted functionality
terms is categorized as “related to neuronal function.” We then code each NSEA SNP as
“enriched for neuronal functioning” if and only if at least one of the genes in its vicinity is
“related to neuronal function,” and we code each of its respective matched SNPs analogously.

In the final step, we tested the null hypothesis that the 12 NSEA SNPs are no more “enriched
for neuronal functioning” than would be expected by chance. Using the definition of “enriched
for neuronal functioning” from the previous paragraph, 10 out of the 12 NSEA SNPs are
“enriched for neuronal functioning.” For comparison, among the 1,000 random matched sets,
we observed 88 sets with at least 10 out of 12 SNPs “enriched for neuronal functioning.” Hence,
the empirical p-value is 0.088. While this p-value does not reach the standard statistical
significance threshold of 0.05, we nonetheless view it as fairly strong evidence in favor of the
biological significance of the NSEA SNPs: our procedure of matching the SNPs on minor allele
frequency, gene density, and distance to nearest gene leads to a very conservative test because
if the properties of the NSEA SNPs—say, their distance to nearest gene—is typical of functional
SNPs, then the SNPs matched to them are also reasonably likely to be functional. Thus, our
test does not just require that the NSEA SNPs are more likely to be “enriched for neuronal
functioning” than any randomly chosen SNPs, but more likely than SNPs that are already
chosen to be reasonably likely to be functional.

2 The link will be activated on the day of publication of this article. The materials that will be posted online are included as a
separate appendix to the submitted manuscript.
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(We note that our approach is an improvement compared to current standard practice in
enrichment analysis. Instead of investigating only established functions and links to pathways,
we apply functional prediction, which extends over known biology and is likely more accurate
and stringent. It is not common practice yet to conduct the kind of statistical test that we
introduce here, and we suspect that our results are statistically stronger than those that would
be obtained from many published findings using related bioinformatics procedures.)

F. Summary of the Evidence for Biological Candidates

In this section we briefly summarize the cumulative evidence arising from our extensive
bioinformatics annotation analyses regarding which genes are associated with cognitive
performance. In Supplementary Table S15 we outline the positive findings from our 4 different
computational approaches (described above), in total 8 distinct categories: (1) non-
synonomous variants; (2) blood eQTL; (3) brain eQTL—prefrontal; (4) brain eQTL—visual; (5)
brain eQTL—cerebellum; (6) functional prediction-GO, KEGG, REACTOME; (7) functional
prediction—mouse phenotypes; and (8) functional prediction—tissue expression. In the last two
columns of Supplementary Table S15, we additionally report the results from looking for
overlap between our list of 83 genes and the genes implicated in two recent analyses of neural
function:

1. (28) report functional modules constructed using brain-derived gene expression profiles
from three regions (prefrontal cortex, visual cortex and cerebellum). We looked up which if
any of our 83 genes were reported as clustered into any of the 62 network modules containing
at least 50 genetic nodes as defined in (28). Here, we find that six of the genes (POU3F2,
CPSF1, AKT3, NMS, TMED2 and TMEM50B) map to the neuropeptide hormone specific
module (Fisher’s exact test (FET) enrichment p-value = 0.004, analytical framework explained
extensively at (28). Furthermore, we combined all neuronal specific modules (synaptic
transmission; neurogenesis; neuropeptide hormone and/or nerve myelination) from (28): this
approach implicates 12 of the following genes — POU3F2, CPSFI1, KCNMAI, AKT3, KIFC2,
FARPI, NMS, NRXNI, SCRTI, TBRI, TMED2 and TMEM50B, in neuronal-related module
functions (FET enrichment p-value = 0.015).

2. (34) identifies genes that code for proteins isolated from the postsynaptic density from
human neocortex [hPSD]. We looked up which if any of our 83 genes were reported as part of
this protein complex. This exercise implicates the following genes: FARPI, ITSN1, NRXNI1,
and TUFM.

In total we found some supportive evidence for 56 out of the 83 genes. Furthermore, 21 genes
were prioritized by at least 3 of the methods, 12 genes by at least 4 methods, and 6 genes by
up to 5 methods. These 6 genes that have highly convergent evidence of biological functionality
are: LRRCI4, KIFC2, NRXN1, CI20RF65, ITSNI and TMEM50B. Furthermore, the results
from the above two analyses of blood and brain cis-eQTLs indicate that the NSEA SNPs or
respective proxies affect the gene expression levels of almost half of the 21 top-ranking
implicated genes, and hence these analyses may reveal potential regulatory mechanisms. As
noted in the main text, in total 4 of the highly prioritised genes (KCNMA 1, NRXNI, POU3F2,
and SCRT) are predicted (in the analysis in the section “Co-expression-driven Gene Functional
Prediction” above) to be involved in a particular reconstituted neurotransmitter pathway,
labeled in REACTOME as “unblocking of NMDA receptor, glutamate binding and activation.”
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13. Polygenic score analyses in family samples

A. Results from analyses in family samples

We used a polygenic score to explain cognitive performance in MCTFR, QIMR, STR, and in
the additionally recruited cohort Generation Scotland (GS). To construct the weights for the
polygenic score used for each of these cohorts, we performed a meta-analysis on cognitive
performance, excluding respectively MCTFR, QIMR, STR, and no cohorts (for GS, we use the
complete cognitive performance meta-analysis since GS was not included in the meta-
analysis). This resulted in a meta-analysis of N = 20,822 for MCTFR, N = 22,437 for QIMR,
N = 20,974 for STR, and N = 24,189 for GS. We constructed a linear polygenic score by
weighting the 69 education-associated SNPs by the coefficient estimates obtained from these
meta-analyses (in QIMR, the SNP rs2970992 was excluded because it exhibited a very high
number of Mendelian errors and extreme Hardy-Weinberg irregularity: HWE test p = 1.98x10"
17). In MCTEFR the sample is restricted to 1,346 siblings from 673 families. In QIMR the sample
is restricted to 5 siblings from 1 family, 4 siblings from 19 families, 3 siblings from 129
families, and 2 siblings from 479 families, yielding a total of 1469 pseudo-independent
siblings. In STR the sample is restricted to 810 DZ twins from 405 distinct families. In GS
there are 1,081 siblings from 476 independent families. In each regression the standard errors
are clustered (35) at the family level to take into account the non-independence of individuals
within a family. The results are reported in Supplementary Table S16. Using both within-family
and between-family variation (the top panel: “Without family dummies™), pooling the
coefficients across GS, MCTFR, QIMR, and STR with inverse-variance weighting (the right-
most column), we find that the score is significantly protectively associated with cognitive
performance (p-value = 8.17x10™#). Using only within-family variation (the bottom panel:
“With family dummies”), the pooled coefficient has the same sign but is smaller with a larger
standard error, and is thus not statistically significant (p-value = 0.36).

B. Power calculations for within-family analysis

In the main text, we claim that “even without stratification, the non-significance of the within-
family coefficient is not surprising given the low power of this test.” Here we substantiate that
claim.

We estimate the power of this analysis by simulation. We assume that cognitive performance
Y of sibling i from family j is determined according to the following simple model:

Y, =ps;+z,+¢g;,
where s is the polygenic score, z; is a family effect, and ¢ is the residual from a

7 y
projection of ¥; on s; and z; in the population and is therefore uncorrelated with both by
construction. The variables ¥; and s; are standardized to have mean 0 and variance 1. We
assume that ¢, ~ N(0, o) and that the family effects are distributed normally in the
population: z; ~ N(0, o). Since we are interested in testing our power to detect a polygenic
score effect within families under the assumption that the size of the effect is the same as it is

without family effects, we assume that s; is uncorrelated with z;.
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To match the empirical fact that the correlation of cognitive performance between siblings is
about 0.5, we assume that o> = =o~ . Now, note that the explanatory power of the
polygenic score is given by:

R B var(s,) P

- B? var(s;) + var(z,) + var(g;) B +207

In the simulations below, we examine two different values for £, 0.045 and 0.065. For each £,

the value of o is set to satisfy 5% + 26° = 1 (which ensures that Y;; has variance 1 and that R?
= /). Given this, the two values of S correspond to R? equal to 0.20% and 0.42%,
respectively, which roughly correspond to the lower and upper end of the range of R*’s we
estimate for the score across samples (in Table S16).

For each assumed true value of £, we conduct 500 simulation runs. In each run, we generate
data as follows for a sample of 2,182 families that matches the data used in our estimation:
1,950 two-sibling families, 181 three-sibling families, 42 four-sibling families, 4 five-sibling
families, 3 six-sibling families, and 2 seven-sibling families. We generate SNP-level data for
the parents by assuming that the allele frequency for 69 SNPs matches the empirical
frequency measured in our data, that parental genotypes are drawn independently, and that all
SNPs are in Hardy-Weinberg equilibrium. Children are then simulated by drawing one allele
from each parent with equal probability. The weights to calculate the score are drawn from a
normal distribution (with mean 0 and variance scaled such that s;; has variance 1). This data-
generating process produces scores that have a within-family correlation of 0.5.

Given the data in each run, we estimate f in two regressions. In the first, we regress Yj; on s;j
(i.e., we not include family dummies as covariates); this is the “Without family dummies”
model in table S17 discussed below. In the second, we regress Y;; on s;; and z;; this is the
“With family dummies” model in table S17 discussed below. Note that in the second model,
we are estimating the family effect as a fixed effect (even though we model it as a random
effect, which is normally distributed, for the purpose of doing the power calculation) because
in the analysis of the actual data we estimate the family effect as a fixed effect. In both
regressions, we take into account the non-independence of individuals within a family by
clustering standard errors within family (35), just as we do in the analysis of the actual data.

We estimate power as the fraction of the 500 runs in which we reject the null hypothesis f =
0 with a p-value less than 0.05. Table S17 shows the average regression output over the 500
simulations for the two different values of £, 0.045 and 0.065.

As can be seen in table S17, power is much higher in the model estimated without family
dummies; it is very nearly 80% even at the lower end of the range of R*’s. With family
dummies, however, the range of R*’s corresponds to power between 31.2% and 64.2%. Thus,
our power to detect a significant effect in the within-family analysis is relatively low even if
the true effect size is at the upper end of our range of estimates.

14. Polygenic score analyses in the Health and Retirement Study

A. HRS data description
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The Health and Retirement Study (HRS; (36)) is a representative sample of Americans over
the age of 50 who have been surveyed every two years since 1992. The survey data from all 10
waves of the study are publicly available. The total sample size of the HRS is 30,671, including
respondents who entered the sample in wave 1, replenishment samples who entered in
subsequent waves, and spouses of respondents. However, for all analyses using the HRS
described in this section and elsewhere in this paper, the sample is restricted to genotyped
individuals from European ancestry (N = 8,652). Because testing individual SNPs in a sample
of this size would have low power, we instead analyze a polygenic score.

To combine the education-associated SNPs into a linear polygenic score that exploits their joint
explanatory power, we generated a linear combination of the SNPs’ number of reference
alleles, weighted by their coefficient estimates from the GWAS meta-analysis of years-of-
schooling (as in (37)). In particular, we use the results from the meta-analysis that excludes the
HRS; this meta-analysis is described in section 1 above. We construct the score in the HRS
using the 60 out of 69 education-associated candidate SNPs available in the imputed genotype
data.

We obtained the cognitive measures from the HRS datafile as prepared by RAND (RAND v.L,
available at http://hrsonline.isr.umich.edu). This datafile contains cognitive scores harmonized
across all waves of the study in which the data were collected. We use the two summary
cognitive-health measures that are available in more than one wave: Total Word Recall (TWR)
and Total Mental Status (TMS). TWR is the sum of scores on immediate and delayed word-
recall tasks. In each task, the recall list contains 10 words, and scores ranged from 0-20. TMS
is a dementia battery. It is the sum of scores for the following tasks: serial 7’s (repeatedly
subtracting the number 7), backwards counting from 20, and naming objects, the current date,
and the current President and Vice-President. The resulting range is 0-15. Because these
batteries focus on identifying cognitive problems and early signs of dementia (rather than
measuring cognitive ability among healthy individuals), the resulting variables are viewed as
measures of cognitive health (for discussion, see (38) p.10, which is posted online as part of
the HRS data documentation:
http://hrsonline.isr.umich.edu/sitedocs/dmc/Lachman_hrscognitive.pdf). Below, we also
report results for Total Cognition (TC), which is the sum of TWR and TMS, resulting in a range
of 0-35. Consistent measures for TWR, TMS, and TC are available in wave 3-9.

Prior to wave 4, all cognitive tests were administered to all respondents. Starting in wave 4, all
cognitive tests were administered to new respondents, but for those who had participated in a
prior wave, the respondent’s age determined which cognitive measures were administered.
Respondents 65 years or older received the full set of cognitive tests. Respondents under 65
received the full TWR battery but only two of the tasks comprising TMS (serial 7°s and
backwards counting from 20). For this reason, we have more observations for the TWR
measure than for the TMS and TC measures.

B. HRS regression results

For each of the cognitive measures—TWR, TMS, and TC—we run two sets of regressions:
one in which the dependent variable is the cognitive measure itself (the “levels” regressions),
and one in which the dependent variable is the difference between the cognitive measure in the
current wave and the previous wave (the “changes” regressions). All dependent variables are
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standardized to have mean O and standard deviation 1. In all analyses we control for gender
and an age spline. Knots of the age spline are at 60, 70, and 80, except for the changes
regressions for TMS and TC, in which the knots are at 70 and 80 because there are only 9
respondent-wave observations with age < 60. We exclude these nine observations from the
analysis. For each dependent variable we run two regression specifications. The first includes
as a regressor (in addition to gender and the age spline) the polygenic score, and the second
additionally includes as regressors the interactions of the polygenic score with the age spline.
Because the data include observations from the same respondent in multiple waves, we cluster
the standard errors (35) at the respondent level.

Supplementary Table S18 displays the regression results, with each column representing a
different regression specification. The odd-numbered columns include only controls for sex
and an age spline, while the even-numbered columns additionally control for interactions
between the score and the age spline. For each column, the “AR?” row shows the increase from
including the score variables (either just the score, or the score and its interactions, depending
on the specification) in the regression.

In the levels regressions (columns 1-6), the increasingly negative coefficients on the age spline
indicate that cognitive performance is decreasing with age, as expected. The coefficients on the
indicator for being female show that females on average have higher scores in TWR and lower
scores on TMS, with the net effect on TC being higher scores. Turning to the main coefficient
of interest, in all of the levels regressions a higher value for the score is associated with a higher
level of cognitive performance. In terms of magnitude, a one standard-deviation increase in the
score 1s associated with approximately a 0.04 increase in TWR, a 0.06 increase in TMS, and a
0.06 increase in TC.

In the levels regressions that include an interaction between the score and the age spline
(columns 2, 4, and 6), we find that the effect of the score is approximately unaffected by age,
except possibly for the age category >80, where there appears to be some reduction in the
magnitude of the protective effect of the score (but statistically significantly only for TWR).
This pattern is consistent with the results shown in Figure 3 in the main text.

In the changes regressions (columns 7-12), the negative coefficients on the age spline again
reflect that cognitive performance is decreasing with age, and indeed at an increasing rate. The
negative coefficient on the indicator for being female in the ATMS regressions suggests that
the decline is slower for females for this measure, but the coefficients are not statistically
distinguishable from zero for the other measures. The coefficient on the score is not
significantly distinguishable from zero for any of the measures in the changes regressions.
Thus, even though the score is associated with a higher level of cognitive performance, it does
not appear to be protective against declines in cognitive performance.

In the changes regressions that include an interaction between the score and the age spline
(columns 8, 10, and 12), we again find a negative coefficient for the age category >80
(statistically significant for ATWR and ATC). This negative coefficient means that cognitive
performance declines more quickly for those respondents over the age of 80 who have higher
values of the score—and hence had higher cognitive performance on average at younger ages.
This negative coefficient in the changes regressions is thus consistent with the negative
coefficient on the analogous interaction term in the levels regressions.

To probe the robustness of the results to population stratification, we repeated the levels
regressions for TWR, TMS, and TC, omitting the interaction between the polygenic score and
the age spline as a regressor, and instead including different numbers of principal components
of the genome-wide data. For each dependent variable, 20 additional regressions are performed,
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in which principal components are iteratively added. Supplementary Figure S4 shows how the
coefficients for the polygenic score change as principal components are added. The coefficients
for the polygenic score may decline slightly as principal components are added, but the decline
is very small, and the coefficients with 20 principal components and essentially the same as
those without any principal components. Thus, we find no evidence that population
stratification is driving the HRS results.

Table S19 presents the same analyses as those in Table S18, however, in these analyses years
of education (0-17+) is added as control variable to the model. There is a slight decrease in
sample size, because years of education is missing for a few individuals. In the levels
regressions (columns 1-6), the coefficient for the polygenic score remains statistically
significant, but the magnitude of the coefficient is about half as large as when educational
attainment is not included as a control, and AR? is much smaller. In the changes regressions
(columns 7-12), the polygenic score is not statistically significant.

C. HRS sign tests on the education-associated SNPs

We also tested whether the direction of the SNPs’ effects on educational attainment generally
coincide with the direction of their effects on cognitive performance. For each of the three
dependent variables, we ran 60 regressions, using the 60 out of 69 SNPs available in the HRS
data as regressors instead of the polygenic score in regression specifications (2), (4), and (6)
from Table S18. For each SNP, we compared the sign of the SNP’s coefficient with the sign of
the same SNP’s coefficient from the meta-analysis of educational attainment that excludes the
HRS. We computed the p-value using a binomial distribution with probability 50% of matching
the sign. The resulting p-values are: 0.0067 for TWR (39 out of 60 SNPs with identical sign),
0.0775 for TMS (35 out of 60 SNPs with identical sign), and 0.0775 for TC (35 out of 60 SNPs
with identical sign).

15. Statistical Framework for the Proxy-Phenotype Method as Applied
to Cognitive Performance

A. Statistical power of GWAS vs. candidate-SNP (including proxy-phenotype) method
for gene discovery

Consider the problem of estimating the association between a phenotype of interest Y, say
cognitive performance, and the genotype g, of each of k =1, 2, ..., K SNPs. The standard

approach is to estimate K separate linear regressions of Y on each g, . After standardizing Y

and g, so that each has mean 0 and variance 1, the regression equations to be estimated can
be written as

(D) Y=g +&,

fork=1, 2, ..., K. (For simplicity, we omit the covariates, which would typically include age,
sex, and possibly principal components of genetic data, and to avoid cluttering notation, we

suppress indexing variables by individual.) Because Y and g, are standardized, in a large

sample the estimated regression coefficient S is equal to the correlation between Y and g, ,

and the coefficient of determination is R 2Y,gk = ﬁkz .
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In terms of statistical power, the key difference between a GWAS approach to gene discovery
and a candidate-SNP approach is the size and composition of the set of K SNPs. In GWAS, the
set includes all SNPs measured by the dense SNP genotyping platform (typically 0.5-2.5
million). The statistical significance threshold is set at the “genome-wide significance” level
of a = 51078, which can be interpreted as a Bonferroni correction for the effective number of
independent loci in European populations (25, 39). In contrast, in a candidate-SNP approach—
either theory-based or proxy-phenotype-based—K is a much smaller number of SNPs that the
researcher considers to be reasonable candidates for association with the phenotype. In a
theory-based method, the candidates are chosen on the basis of what is known or believed about
their biological function, while in a proxy-phenotype method, the candidates are chosen on the
basis of their association with a proxy phenotype. Either way, in terms of statistical power, the
advantage of a candidate-SNP approach is that the Bonferroni-corrected significance threshold
can be set at the much less stringent level of o = 0.05 / K. The potential disadvantage is that the
effect sizes of the most strongly associated SNPs in a candidate-SNP approach may be smaller
than in a GWAS, since the method of choosing the candidates may not succeed in selecting
those that are most strongly associated with the phenotype of interest.

Table S20 calculates power for GWAS vs. candidate-SNP methods of gene discovery that
could be pursued in our Cognitive Performance Sample of size N = 24,189. The columns show
different effect sizes for a SNP: R? € {0.02%, 0.04%, 0.06%, 0.08%}, a range from the size of
our estimated winner’s-curse-adjusted effect size for cognitive performance of R*> = 0.02% up
to four times that size. The top row shows statistical power to detect each of these effect sizes
at the genome-wide significance threshold, o = 5x10°®. The bottom row shows statistical power
to detect each of these effect sizes at the experiment-wide significance threshold for 69 SNPs,
a=0.05/69 =0.00072.

As explained in the next subsection below, our calculations prior to the study (based on the
results of Rietveld et al., (1)) led us to expect an effect size of R? =~ 0.08% for the strongest
associations in our set of proxy-based candidate SNPs. In that case, our power to detect such
associations would have been 85%. In contrast, a direct GWAS on cognitive performance in
our Cognitive Performance Sample would have had power of 15% to detect these SNPs. Given
our estimated winner’s-curse-adjusted effect size for cognitive performance of R* = 0.02%, our
actual power to detect the largest associations we found was 12%—which in turn suggests that
there are roughly 8 times as many SNPs with the same effect sizes as the 3 significant SNPs
we identified (since 1/0.12 = 8.33). A direct GWAS on cognitive performance in our sample
would have had power of only 0.06% to detect these SNPs. Therefore, even if there are 25
SNPs with associations of magnitude R*> = 0.02% with cognitive performance, a GWAS with
the available sample size would very likely not have detected any of them.

B. Statistical power of proxy-phenotype method under plausible effect sizes for
cognitive performance

Prior to conducting this study, we calculated expected effect sizes using the formal framework
introduced by Rietveld et al. (1) (SOM pp. 22-27) and the results reported in that paper. Here
we sketch a slightly simplified version of that framework (also note that our notation here
differs somewhat). Let s = 1 , ..., S index the SNPs that are causally related to cognitive
performance or any other genetically-influenced factor that matters for educational attainment.
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We assume that cognitive performance is a simple linear function of the individual’s genotype
and determined by:

S
QY =D B8, +¢& ,
s=1

where g is the individual’s genotype at SNP s (as above, normalized to have mean zero and
variance one), Sy is the effect of g on Y, and &, is a random variable with mean zero that
we assume is independent of the g ’s. The error term ey captures all other factors besides the

SNPs, including exogenous environmental factors, that affect cognitive performance.

We assume that the proxy phenotype P, in this context educational attainment, is determined
by a simple linear function of cognitive performance and other factors:

BP=y,Y+y, X+¢,.

X captures genetically-influenced factors that affect educational attainment, including
personality traits (such as perseverance) and early-life health conditions. The error term &,
captures all other factors, including exogenous environmental factors that affect P. We assume
that €, is a random variable with mean zero and is independent of Y and X. We normalize P,

Y, and X so that they have mean zero and variance one (hence regression coefficients are equal
to partial correlation coefficients). Without loss of generality, we assume that both Y and X are

oriented in the direction that increases educational attainment: 7, >0 and y, >0.

To complete the model, we write X as an analogous linear function of the individual’s genotype:
S

DX =2 By.g +Ex,
s=1

where By , is the partial correlation coefficient of g, with X, and &y is a random variable

with mean zero that we assume is independent of the g, ’s. Now, educational attainment P can

be expressed as a function of the SNP genotypes by substituting equations (2) and (4) into
equation (3):

s s
(S)P:Z(yyﬂm +VxPx )8 +(VyEy +¥xEx +Ep) = Zé‘fgs tity,

s=1 s=1
where 6, =(y, By, +7xBx,) is the effect of SNP s on educational attainment, and
u, =y, & +yyEy +&p 1s a mean-zero composite error term that is independent of the g, ’s.
Note that a GWAS of educational attainment P estimates the ¢, ’s in equation (5). Note that if
o, #0, then either B, #0 or B, #0 or both. Therefore, if the GWAS of P credibly

identifies a SNP, then that SNP can serve as a plausible “candidate SNP” for genetically
influenced factors that matter for P.

To generate a first-pass estimate of the effect size of SNPs associated with cognitive
performance, we begin with the special case in which genetic factors matter for educational
attainment exclusively through cognitive performance: 7y = 0. In that case, J, =,/ ;.

Rearranging, the R* from a regression of cognitive performance on SNP s is equal to the R?
from a regression of educational attainment on SNP s is divided by the squared phenotypic
correlation: ;=& /yy . The largest SNP effects on educational attainment are likely to have
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a coefficient of determination of roughly 0.0003 (see Table S20), and since y, =0, these
same SNPs will be the ones with the largest effects on cognitive performance. Using 5. =

0.0003 and an estimated phenotypic correlation of 7, = 0.6 (40, 41) gives ;= 0.0008 (our

reading of the evidence is that estimates of the phenotypic correlation have generally been in
the range 0.4-0.6; our high-end estimate of the correlation yields a lower, and hence more
conservative, estimate of the SNP effect size). As mentioned in the previous subsection, this
was our best guess of the effect size before we conducted our study and was the basis of our ex
ante power calculations. Although we anticipated that the largest SNP effects on cognitive

performance would have A/ = 0.0008, what we found was B; = 0.0006, which became

ﬂyzys = 0.0002 after correction for the winner’s curse (Table S7).

The more realistic case where 7y >0 opens up the possibility that the SNPs most strongly
associated with cognitive performance are not the same SNPs as those most strongly associated
with educational attainment. To see this, note that since J, =y, B, , + 7y By ,, the SNPs with

the largest effect on educational attainment—those most likely to be picked out from a GWAS
of educational attainment as candidate SNPs—will tend to be those for which both S, ; and

By , are positive and large in magnitude. Rietveld et al. use the term “mono-directional” to
refer to such a SNP: a SNP that has pleiotropic effects on Y and X such that it affects P in the

same direction through both pathways. A SNP has a stronger association with educational
attainment than it does with cognitive performance if o, > S, | .

C. Explaining the negative correlation between coefficients for educational attainment
and cognitive performance

As noted in the main text, Figure 1 shows a negative correlation between the coefficients on
educational attainment and the coefficients on cognitive performance. Also as mentioned in the
text, this negative correlation seems somewhat robust to dropping the most conspicuous
possible outlier, although we view the evidence for negative correlation as relatively weak.
Here we note that according to the framework developed in this section, a negative correlation

between o, and f, , implies that B, ; and By , are negatively correlated. In words, SNPs that

affect cognitive performance more strongly tend to affect other factors that matter for
educational attainment (such as personality traits) less strongly, and vice-versa.

D. Relating the genetic correlation between educational attainment and cognitive
performance to the above framework

According to the framework above, a GWAS of educational attainment (EA) generates good
candidate SNPs for cognitive performance (CP) because CP is an important causal factor in
determining EA. Moreover, if CP is the primary genetically-influenced factor that matters for

EA (7, =0), then the effect size of the SNPs on CP is expected to be larger when the

phenotypic correlation between EA and CP (7 ) is smaller, because the smaller phenotypic
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correlation means that the effect of the SNP on EA is more attenuated relative to its more direct
and larger effect on CP.

Intuitively, it might seem that the genetic correlation between EA and CP would be at least as
relevant as the phenotypic correlation. In this subsection, we address the relevance of the
genetic correlation within the context of our formal framework; we conclude that the high
genetic correlation can be viewed as providing a justification for using EA as a proxy
phenotype for EA, but the argument is somewhat loose.

What can be shown formally and straighforwardly is that the statistical power of the proxy-
phenotype approach is increasing in corr(J,, B, ). The assumption that CP is the only

genetically-influenced factor that matters for EA (y7y =0) implies that corr (5,5, ;) =1. If

other genetically-influenced factors also matter for EA (7 >0), then corr(J,, B, ) can be

smaller than 1, and the SNPs with the largest effects on EA may not be those with the largest
effects on CP.
S S
The genetic correlation is a different object: corr (Z 5Sgs,z ,BY’Sgsj . In words, the genetic
s=1 s=1
correlation is the correlation between the population polygenic score for EA and the population
polygenic score for CP. It follows from this definition that if the genetic correlation is high, a
polygenic score estimated from EA is likely to explain more of the variance in CP. However,
the genetic correlation does not have direct implications about the statistical power for
identifying individual SNPs unless the (unconditional) genetic correlation is equal to the
genetic correlation conditional on including only the SNPs with largest effect sizes in the
polygenic score. The evidence discussed in subsection C above casts some doubt on this
assumption. Therefore, while in general we view the high genetic correlation between EA and

CP as supportive of our use of EA as a proxy phenotype, we view our overall framework as
providing a more solid justification.

E. Setting the p-value threshold for the proxy-based SNPs

The power calculations in Table S21 take as given the fact that we included 69 SNPs in the set
of proxy-based candidates. We used 69 SNPs because this is the number that passed our
inclusion threshold of p < 10~ from the first-stage GWAS on educational attainment. In this
subsection, we explain why we chose this particular inclusion threshold.

We chose our inclusion threshold of p < 107 prior to conducting any analyses on cognitive
performance, on the basis of power calculations using the results from the first-stage GWAS
on educational attainment. Our goal was to design the study in a way that would maximize the
expected number of true positive results in the second stage analyses on cognitive performance.
The optimal threshold trades off between two opposing effects. On the one hand, a less
stringent threshold yields a larger number of candidates that are forwarded to the second stage.
A larger set of candidates is more likely to contain true positives. On the other hand, a larger
number of candidates requires that a more stringent experiment-wide significance level needs
to be applied in the second stage to adjust for multiple testing, which decreases power to pick
out the true positives from among the set of candidates.

Our calculations are reported in Table S21. Row (1) reports the number of LD-pruned SNPs in
the first stage GWAS on EA that passed the p-value threshold of the respective column. Row
(2) is the observed average R’ of these SNPs on EA. The R? estimates deviate slightly from
those reported in (1) due to the slightly different set of subjects that were included in the two
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analyses. The ex-post power (i.e., assuming that the observed average R? is the true effect size)
to find such an effect size in our EA sample is reported in row (3), again always for the p-value
threshold of the respective column. Row (4) reports the posterior belief that a randomly chosen
SNP from the set included in the column is truly associated with EA. To calculate this value,
we used Bayes’ formula, with a conservative prior belief equal to 0.01%, power equal to row
(3), and a equal to the respective p-value threshold of the column (see Section 9 for the formula
we use, as well as a discussion of why we consider the larger prior belief of 0.02% to be quite
conservative).

Row (5) reports the Bonferroni-adjusted p-value threshold for stage 2, given a family-wide
significance level of 0.05 and the number of independent hypotheses that will be tested, given
by row (1). Row (6) uses the statistical proxy-phenotype framework reported above to calculate
the expected average R* of SNPs in the second stage on CP. We assumed a phenotypic
correlation of 0.6 between EA and CP, and we assumed that the selected SNPs influence EA
only through their influence on CP. Row (7) calculates the expected power for a two-sided test
given the available sample size in the second stage on CP, as well as the p-value threshold
given by row (5) and the expected effect size given by row (6).

Row (8) reports the expected number of true positive SNPs that would be discovered in the
study overall, given by multiplying the number of candidate SNPs given by row (1), the
posterior belief that these candidates are truly associated with EA (row 4), and the expected
power of stage 2 (row 7). The choice of the p-value threshold we have chosen for our study (p
< 107°) was given by the column that maximized the value of row (8). The optimal p-value
threshold turns out to depend only on the results of the first-stage GWAS on EA, and not on
our assumptions about prior beliefs, phenotypic correlation, or available sample size in stage
2. These assumptions influence the absolute magnitudes in row (8) but not their relative
magnitudes.

Finally, row (9) reports the expected posterior belief that a SNP associated with CP at the
Bonferroni-adjusted p-value is truly associated with CP, using Bayes’ formula, prior beliefs
equal to row (4) and power equal to row (7). These calculations were included with the analysis
plan that was forwarded to cohorts participating in early 2013. The analysis plan was also
posted on Open Science Framework on 14 Apr 2013 (see https://osf.i0/z7fe2/).
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Supplementary Figures

Figure S1. Quantile-Quantile plots and Genomic Control A for the summary results of the five GW A studies after quality control.
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Figure S2. Quantile-Quantile plots of the cognitive performance meta-analysis results for the theory-based and education-associated candidate SNPs. The joint plots show in
black the QQ-plot for the education-associated candidate SNPs, and in red the theory-based candidate SNPs.
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Figure S3. Simulation study of winner’s curse corrections: MLE versus diffuse-prior Bayesian. The x-axis is the
true effect size 3, grouped in bins that are 0.002 standard-deviation units wide. The y-axis is the estimated effect
size. The dots show the naive OLS estimate (red), the MLE-corrected effect size estimate (green), and the
Bayesian-corrected effect size estimate (blue). The light dotted lines are 95% confidence intervals around the
estimates. For the simulation parameters, see section 8.
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Figure S4. Coefficient on the polygenic score in the regressions explaining the level of TWR, TMS, and TC and controlling for an increasing number of principal

components. TWR = Total Word Recall, TMS = Total Mental Score.
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Supplementary Tables

Table S1. Study design, numbers of individuals, and quality control for GWAS cohorts. “Call rate” refers to the genotyping success rate, i.e., the minimum percentage of
successfully genotyped SNPs.

Study

Short name

Full name

Study design Total
sample

size (N)

Sample QC

Call rate

Other exclusions

Sample in
analysis (V)

References

ALSPAC

ERF

GenR

GS

HU

Avon Longitudinal Study of
Parents and Children

Erasmus Rucphen Family study

Generation R

Generation Scotland

Harvard/Union Study

Prospective pregnancy 8,340
cohort

Family-based 3,658

Birth-cohort 6,135

Family-based 10,000

Population-based 415

>97%

>95%

>97.5%

>98%

>93%

1) Gender mismatches
2) Minimal or excessive
heterozygosity
3) Cryptic relatedness (IBD >
0.1 and IBD <0.8)
4) Non-European ancestry
5) Missing cognitive
performance phenotype

1) Failing IBS checks
2) Sex chromosome checks
3) Ethnic outliers removed
4) Age < 45 years
5) Missing cognitive
performance phenotype

1) Duplicate samples
2) Gender mismatch
3) Relatedness
4) Missing cognitive
performance phenotype

1) Sample call rate 0.95
2) SNPs diverging from HWE
with a significance p<1x10-
3) SNPs with a MAF <0.01
4) Missing cognitive
performance phenotype
5) Only siblings

1) Ethnic outliers removed
2) Participants more than 6 SD
away from any of the top 10
principal components

5,517

1,076

3,701

1,081

389

42)

(43)

(44)

(45)

(46)
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LBC1921

LBC1936

MCTFR

QIMR

Raine

STR

TEDS

Lothian Birth Cohort 1921

Lothian Birth Cohort 1936

Minnesota Center For Twin and
Family Research

Brisbane Adolescent Twin Study,
Queensland Institute of Medical
Research

Western Australian Pregnancy
Cohort Study

Swedish Twin Registry

Twins of Early Development Study

Population-based
birth-cohort

Population-based
birth-cohort

Family-based

Population-based
Prospective pregnancy

cohort

Family-based

Family-based

517

1,005

7,438

3,899

1,593

9,836

3,747

>95%

>95%

>99%

>95%

>97%

>97%

Exact
percentage
unknown
(done by

3) Missing cognitive
performance phenotype

1) Unresolved gender
discrepancy

2) Relatedness

3) Non-Caucasian descent
4) Missing cognitive
performance phenotype

1) Unresolved gender
discrepancy

2) Relatedness

3) Non-Caucasian descent
4) Missing cognitive
performance phenotype

1) >5000 uncalled SNPs

2) Low GenCall score

3) Extreme hetero- or
homozygosity

4) Sample mix-up or unable to
confirm known genetic
relationships

5) Missing cognitive
performance phenotype

1) Non-European ancestry
2) Missing cognitive
performance phenotype

1) Gender mismacht

2) Relatedness

3) Low heterozygosity

4) Missing cognitive
performance phentoype

1) Sex-check (heterozygosity of
X-chomosomes)

2) Deviations in heterozygosity
of more then 5 SD from the
population mean

3) Cryptic relatedness check
4) Missing cognitive
performance phenotype

1) Low call rate

2) Heterozygosity outliers
3) Intensity outliers

4) Ancestry outliers

464

947

3,367

1,752

936

3,215

2,825

(47)

(48)

(49)

(50)

(6D

(52)

(53)
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external

genotyping
center)

5) Relatedness/duplicates

6) Gender mismatches

7) Samples were re-genotyped
on a panel of 30 SNPs using
Sequenom and were excluded
because of low concordance
(<90%).

8) Missing cognitive
performance phenotype
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Table S2. Information on genotyping methods, imputation, and assocation analysis.

Study Genotyping platform  Genotyping calling algorithm Imputation software Imputation reference dataset Association software
ALSPAC [llumina HumanHap550 GenomeStudio MACH HapMap 2 CEU Mach2QTL
ERF [Nlumina 318K, Affymetrix GenCall & BRLMM MACH/Minimac 1000Genomes I v3 (GIANT) ProbABEL
250K, Ilumina 350K,
Tllumina 610K
GenR Illumina 610K Quad, 660W GenomeStudio MACH HapMap?2 PLINK
Quad
GS Illumina GenomeStudio MACH HapMap 2 CEU N.A.
HumanOmniExpressExome-
8v1.0
HU Affymetrix 6.0 Birdseed MACH HapMap?2 PLINK
LBC1921 [llumina Human610_Quadv1 GenomeStudio MACH HapMap 2 CEU Mach2QTL
LBC1936 [lumina Human610_Quadvl GenomeStudio MACH HapMap 2 CEU Mach2QTL
MCTFR [lumina 660W Quad BeadStudio Minimac HapMap2 CEU RFGLS (R)
QIMR Illumina 610, Illumina 370, BeadStudio MACH HapMap 2 CEU Merlin
[llumina 317
Raine [llumina Human660W BeadStudio MACH HapMap 2 CEU Mach2QTL
STR Illumina GenomeStudio IMPUTE HapMap2 CEU Merlin-offline
HumanOmniExpress-12v1_A
TEDS Affymetrix GeneChip 6.0 Affymetrix Genotyping IMPUTE2 HapMap 2/3 CEU SNPTEST
Console
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Table S3. Results for the theory-based candidate SNPs; SNPs are ordered according to their p-value in the cognitive performance meta-analysis. The chromosome and basepair
position are from the NCBI genome annotation (build 36). The frequency of the coded allele is from the cognitive performance meta-analysis.

Years of Education Cognitive Performance
SNP ID Chromosome Basepair Coded allele Non-coded Frequency Beta coeff. p-value Beta coeff. p-value
allele coded allele (standardized) (standardized)
rs1042713 5 148186633 a g 0.380 -0.004 4.05%x10"! 0.029 2.65%x1073
rs1800497 11 112776038 a g 0.201 -0.004 5.16x10! -0.025 2.95x1072
1s2830102 21 26456898 t c 0.314 -0.005 2.62x10! 0.021 5.59%x1072
rs1612902 19 56191007 t c 0.566 0.008 7.60x1072 -0.020 5.75%x1072
rs2274185 1 158587804 ¢ g 0.942 -0.001 8.94x10! 0.037 7.95%x1072
1s2251621 8 31007504 a g 0.041 0.010 3.83x10! -0.052 9.09x1072
rs1799990 20 4628251 a g 0.636 0.011 2.16x1072 0.015 1.44x10°!
rs4680 22 18331271 a g 0.522 -0.002 6.10x10! 0.013 1.69x10°!
rs1800855 4 26100215 a t 0.785 -0.007 2.07x10! -0.016 2.35%10°!
rs8191992 7 136351848 a t 0.542 0.001 7.93x10"! -0.012 2.55%10"!
1s237895 3 8782423 t c 0.394 0.006 2.41x10! -0.012 2.70x10"!
rs714939 2 75688615 a g 0.385 -0.006 1.56x10"! 0.009 3.48x10"!
rs821616 1 230211221 a t 0.719 0.010 4.71x102 0.008 4.35%10!
rs6489630 12 5474885 t c 0.191 0.000 9.40x10! 0.009 4.72x10!
rs1130214 14 104330779 a c 0.297 - - 0.008 4.74x10!
rs2725385 8 31047688 t c 0.291 -0.015 1.33x1073 -0.007 4.90x10!
rs2760118 6 24611569 t c 0.349 -0.003 5.61x107! 0.005 6.03x10°!
rs9536314 13 32526138 t g 0.844 -0.009 1.41x107! 0.007 6.03x10°!
rs363043 20 10174146 t c 0.294 -0.002 6.33x107! 0.005 6.19x10!
rs17571 11 1739170 a g 0.081 -0.015 5.80x1072 0.009 6.32x10°!
1s760761 6 15759111 a g 0.212 -0.003 5.56x10°! 0.006 6.51x10"!
1s12239747 1 158587689 a g 0.939 -0.005 6.61x10"! 0.002 9.11x10"!
1s6265 11 27636492 t c 0.186 0.010 7.65x1072 -0.001 9.48x10"!
rs16944 2 113311338 a g 0.347 -0.003 5.43x10"! 0.000 9.71x10"!
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Table S4. Results for the education-associated candidate SNPs; SNPs are ordered according to their p-value in the cognitive performance meta-analysis. The chromosome and
basepair position are from the NCBI genome annotation (build 36). The frequency of the coded allele is from the cognitive performance meta-analysis.

Years of Education Cognitive performance
SNP ID Chromosome Basepair Coded allele Non-coded Frequency Beta coeff. p-value Beta coeff. p-value
allele coded allele (standardized) (standardized)
rs1487441 6 98660615 a g 0.473 0.026 1.78x10° 0.036 1.24x104
1s7923609 10 64803828 a g 0.521 -0.021 1.06x10°¢ -0.034 2.58x10
1s2721173 8 145715237 t c 0.473 -0.020 8.61x10° -0.034 2.88x10
rs8049439 16 28745016 t c 0.595 0.021 1.48x10°® 0.027 4.36x1073
rs1606974 2 51727103 a g 0.124 0.031 5.39x10°¢ 0.042 5.93x1073
rs2970992 2 100688741 a c 0.493 -0.020 8.27x10 -0.025 7.03x1073
rs3127447 10 78923267 a c 0.529 0.020 6.21x106 0.024 9.95x1073
rs7847231 9 117248892 a c 0.620 -0.020 6.73x106 -0.024 1.20x1072
rs4658552 1 241479559 t c 0.632 0.021 2.01x106 0.023 1.61x1072
rs1892700 21 33938007 a g 0.256 -0.023 2.96x10°¢ -0.024 2.39x1072
rs7980687 12 122388664 a g 0.200 0.029 7.14x10°8 0.028 2.66x1072
rs1187220 18 33605724 t c 0.323 -0.024 3.48x107 -0.027 3.47x107
rs3783006 13 97909210 ¢ g 0.457 0.023 3.11x107 0.022 3.84x1072
rs7309 2 161800886 a g 0.491 -0.022 2.21x107 -0.019 4.26x1072
rs10166311 2 162575859 a g 0.326 0.023 9.50x1077 0.019 5.13%1072
rs3789044 1 202855724 a g 0.219 0.028 5.44x108 0.022 5.62x1072
1s2635047 18 42990334 t c 0.483 0.020 5.76x10°° 0.019 5.94x1072
rs17176043 14 36064553 a g 0.946 0.043 7.17x10°° -0.045 5.98x1072
rs1198575 1 98334848 t c 0.189 -0.026 2.37x10°° -0.025 7.17x1072
rs889956 2 57258338 a g 0.397 -0.023 1.52x107 -0.017 7.76x1072
157594192 2 199159337 a g 0.250 0.026 1.28x107 0.018 9.98x1072
rs3753275 1 8348487 t c 0.824 -0.030 3.97x107 -0.020 1.01x10"!
1s9289301 3 128627683 ¢ g 0.155 0.031 7.77x107 0.024 1.03x10"!
rs9858213 3 49706865 t g 0.288 0.028 4.85%107° 0.018 1.05%10"!
rs11191193 10 103792398 a g 0.653 0.023 5.65%107 0.014 1.65x10°!
1s6732189 2 161281027 a g 0.526 -0.023 8.44x1078 0.013 1.66x10"!
rs4073894 7 104254200 a g 0.202 0.024 9.32x10°° 0.017 1.73%10°!
rs2066955 12 80614747 a c 0.237 0.023 4.77x10° 0.015 1.87x107!
rs2966 6 33797498 t c 0.452 0.022 3.60x107 -0.012 1.89x107!
rs188133 15 45489734 a g 0.683 -0.021 9.29x106 -0.013 2.01x10!
rs11742741 5 24198698 a t 0.515 -0.022 2.61x107 -0.012 2.02x10!
rs10783779 12 54778147 t g 0.607 -0.021 6.25x10°6 -0.012 2.05x10!
rs4468007 9 123634160 t c 0.554 0.021 3.38x10°¢ 0.011 2.74x10"!
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rs9940536
rs3731896
rs1970584
rs6712515
rs1478110
rs1239771
rs12640626
rs2955259
rs2053831
rs7788657
rs4451621
rs1056667
rs10028773
rs1360382
rs17013497
rs6984449
rs6882046
rs10519388
rs362987
rs9537938
rs7729356
rs11590526
rs1875714
rs12075
rs1105881
rs10904180
rs13401104
rs4818225
rs334147
rs6025281
rs10500871
rs1995082
rs247929
rs12134600
rs1550582
rs2930713

9

77713418
219854646
125150127
100172946

1711478

75666608
176863266
171110419

84049789

13888666

12471373

26618543
120484707

23369719
207061559

19372239

88004620
113879949

10225452

57551696
107425114
116229090

68590101
157441978

39859822
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0.048
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0.056
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2.74x108
5.61x10°
8.67x10¢
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0.011
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0.009
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0.018

0.008

0.007

0.007
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0.000

2.94%x10!
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9.38x10!
9.97x10!
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Table S5. Winner’s curse corrections (MLE and Bayesian) applied to Rietveld et al.’s (2013) SNPs associated with educational attainment at the genome-wide significance
threshold (p < 5x10%). Standard errors are reported in parentheses.

SNP Discovery-stage estimates Replication- stage estimates

Naive MLE Bayesian (diffuse)

(Uncorrected) Corrected Corrected

rs9320913 0.106 0.070 0.065 0.077

(0.018) (0.034)
rs11584700 -0.014 -0.011 -0.009 -0.016

(0.002) (0.005)
rs4851266 0.012 0.009 0.008 0.011

(0.002) (0.004)

44



Table S6. Winner’s curse corrections (MLE and Bayesian) applied to Rietveld et al.’s (1) SNPs associated with educational attainment at a suggestive significance threshold
(p < 10%). The SNPs are listed in the same order as in (1) Table 1 (the first four in order of increasing p-value for association with years of schooling, and the last six in order
of increasing p-value for association with college completion). SNPs rs9320913, rs11584700, and rs4851266 are also listed in Supplementary Table S5 above (though the
corrected estimates here are different because the significance threshold is different). Standard errors are reported in parentheses.

SNP Discovery-stage estimates Replication- stage estimates
Naive MLE Bayesian (diffuse)
(Uncorrected) Corrected Corrected
rs9320913 0.106 0.096 0.087 0.077
(0.018) (0.034)
rs3783006 0.096 0.035 0.050 0.056
(0.018) (0.035)
rs8049439 0.090 0.008 0.039 0.065
(0.018) (0.033)
rs13188378 -0.136 -0.011 -0.058 0.091
(0.027) (0.067)
rs11584700 -0.014 -0.013 -0.012 -0.016
(0.002) (0.005)
rs4851266 0.012 0.011 0.010 0.011
(0.002) (0.004)
rs2054125 0.023 0.011 0.010 0.006
(0.004) (0.008)
rs3227 0.011 0.008 0.007 0.002
(0.002) (0.004)
rs4073894 0.012 0.008 0.006 0.000
(0.002) (0.005)
rs12640626 0.010 0.001 0.005 0.000
(0.002) 0.096 (0.004)
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Table S7. Winner’s curse corrections (MLE, Bayesian, and empirical Bayes) applied to the cognitive-performance associations that pass the significance threshold (p < .05/69).
Standard errors are reported in parentheses. Since the phenotypic variance has been normalized to 1, the estimated R? is calculated simply as the amount of phenotypic variance
explained: R? = 2m(1-m)f°, where m is the MAF and f is the effect size estimate.

SNP Effect size estimates Estimated R?

Naive MLE Bayesian Empirical Bayes Naive Empirical Bayes
(Uncorrected) Corrected (diffuse) Corrected (Uncorrected) Corrected
Corrected

rs1487441 0.036 0.022 0.023 0.023 0.064% 0.027%
(0.009)

rs7923609 -0.034 -0.013 -0.020 -0.020 0.058% 0.019%
(0.009)

rs2721173 -0.034 -0.008 -0.019 -0.018 0.056% 0.017%
(0.009)
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Table S8. Posterior probability of true association as a function of effect size (R?) and prior probability ().

Effect size (R?)

R?=0.0002 R?=0.0006
(power = .1186) (power = .6658)
0.1% 14% 48%
Prior () 1% 62% 90%
5% 90% 98%
10% 95% 99%
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Table S9. Results for the functional annotation analysis for the 14 NSEA SNPs and respective proxies at consderable LD (2 > 0.5).

SNP ID Proxy SNP LD Coded Allele Non-coded allele Minor allele freqency Gene name Sequence change Amino acid change
rs7923609 rs1935 0.75 C g 0.47 JMJDIC GAG = GAC E [Glu] = D [Asp]
1s2721173 rs4251691 0.9 c t 0.46 RECQLA CGG = CAG R [Arg] = Q [Gln]

rs13277542 0.8 t g 0.47 LRRC14 GAA = GCA E [Glu] = A [Ala]
rs8049439 157498665 0.69 a g 0.34 SH2B1 ACA = GCA T [Thr] = A [Ala]
rs4658552 1s2275155 064 a t 0.33 SDCCAGS GAA = GAT E [Glu] = D [Asp]
rs1892700 15139852262 0.55 caatta c 0.25 DNAJC28 Frameshift

rs8971 0.58 t c 0.25 GART GAT = GGT D [Asp] = G [Gly]
rs7980687 rs1060105 0.95 c t 0.23 SBNOI AGT = AAT S [Ser] = N [Asn]
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Table S10. Results for the gene expression cis-eQTL analysis in blood. SNP ID — nominally significant cognitive performance associated variant; FDR — false discovery rate;
LD — linkage disequilibrium; ArrayID — Illumina probe identifier; * — denotes a probe not annotated; NSEA - Nominally-Significant Education-Associated SNPs: Best eQTL-
SNP — the strongest eQTL SNP for a given probe.

NSEA Best eQTL-SNP
SNP ID ilolii}ed eQTL p-vaule  Zscore FDR (5%) SNP ID eQTL p-vaule  Zscore FDR (5%) Gene name ArraylD
rs7923609 a 3.4x107 4.1 6.1x10* | rs10761725 4.1x107 5.1 5.7x10°° | * 1850242
rs2721173 t 2.1x10% -24.0 <<1.0x107 | rs6989368 7.2x107132 -24.4 <<1.0x107 | LRRC24 2810687
GPT/
-48 _ 7 -56 _ -7
1.2x10 14.7 <<1.0x10 rs750472 1.6x10 15.8 <<1.0x10 PPPIRIGA 3140408
3.4x10% -10.8 <<1.0x107 | rs3735840 9.8x1071%8 34.4 <<1.0x107 | VPS28 1190110
1.0x10°14 7.7 <<1.0x107 | rs3757966 7.5%10°1 7.8 <<1.0x107 | MFSD3 1510703
rs8049439 C 9.8x1071%8 57.7 <<1.0x107 | rs8049439 9.8x1071%8 57.7 <<1.0x107 | TUFM 6370097
9.8x1071%8 35.6 <<1.0x107 | rs8045689 9.8x10'%8 50.8 <<1.0x107 | SPNS1 1230192
2.1x10% -14.8 <<1.0x107 | rs480400 1.9x10% 19.5 <<1.0x107 | ccDbcCliol 1240113
SULTIA2/
4 -3 -7 6
1.2x10 3.8 2.0x10 rs13331691 1.4x10 53 2.5%x10 SULTIAI 7510711
2.5%1073 3.0 0.03 | rs4788115 1.6x107 -4.3 2.8x10* | LAT 3610288
2.9x1073 3.0 0.04 | rs4788115 1.2x108 -5.7 <<1.0x107 | LAT 460259
rs4658552 C 3.1x10°"7 8.4 <<1.0x107 | rs2275155 3.2x1072! 9.5 <<1.0x107 | SDCCAGS8 460458
rs7980687 a 1.1x107 -4.4 1.8x10* | rs1662 4.7x10%3 20.5 <<1.0x107 | RILPL2 1660286
4.3%10* 3.2 6.5%1073 | rs12366872 3.4x10°"7 8.4 <<1.0x107 | SETDS8 2350735
rs1892700 a 2.8x107 12.4 <<1.0x107 | rs2834217 9.8x10°1%8 -34.8 <<1.0x107 | * 4480647
1.3x10°13 -7.4 <<1.0x107 | rs12626309 1.7x1072! 9.5 <<1.0x107 | GART 20544
4.8%x10°10 6.2 <<1.0x107 | rs2251854 1.8x10°102 -21.5 <<1.0x107 | ITSNI 2507
2.1x10° 4.3 3.7x10* | rs2834237 5.0x107 5.0 6.5x10° | GART 3780435
rs3783006 c 6.0x10°° 4.5 1.0x10* | rs4389009 1.7x10%° -13.3 <<1.0x107 | STK24 6180050
1.4x1073 32 0.02 | rs9513427 9.7x10¢ 4.4 1.7x10* | STK24 4480373
rs7309 a 5.8x10°10 -6.2 <<1.0x107 | rs1921310 1.8x10°13 1.4 <<1.0x107 | TANK 2230113
3.2x10* -3.6 4.9%1073 | rs11884495 2.0x10* -3.7 0.003 | PSMDI14 2600025
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Table S11. Results for the gene expression cis-eQTL analysis in brain tissues. SNP ID — nominally significant cognitive performance associated variant; FDR — false
discovery rate; LD — linkage disequilibrium; Distance ArrayID — Affimetrix probe identifier; # — genes not considered as biological candidates in subsequent analysis due to
distance > 250 kb from a NSEA SNP.

SNP ID Proxy SNP LD (r?) Distance (kb) Brain tissue eQTL P-vaule Gene name ArrayID
1s2721173 rs9071 1.00 6 077 Prefrontal cortex 1.3x10%° LRRCI4 10025908411
rs9071 1.00 6 077 Cerebellum 1.3x107° LRRCIi4 10025908411
rs9071 1.00 6 077 Visual cortex 1.5x10%  LRRCIi4 10025908411
rs4532636 0.67 159 994  Prefrontal cortex 8.4x10% LRRCI4 10025908411
rs4532636 0.67 159 994  Cerebellum 1.2x102 LRRCI4 10025908411
rs4532636 0.67 159 994  Visual cortex 1.2x102%* LRRC14 10025908411
rs748193 0.84 62314 Cerebellum 4.3x107 LRRC24 10023828992
rs2721195 0.87 67 418 Cerebellum 4.8x10% LRRC24 10031920304
rs3757966 0.97 189  Prefrontal cortex 1.3x10®  KIFC2 10025905398
1s3757936 0.67 159994  Cerebellum 1.3x10®  KIFC2 10025905398
12958492 0.65 174 698  Visual cortex 2.3x10°%  AF075035 10025934744
rs8049439 rs4788102 0.97 35883 Prefrontal cortex 1.7x10  EIF3C 10025912109
rs12928404 0.97 9731 Prefrontal cortex 9.7x10"'2  EIF3C 10025912109
rs4788102 0.97 35883 Cerebellum 5.4x10'®  EIF3C 10025912109
rs12928404 0.97 9731 Cerebellum 7.6x10""  EIF3C 10025912109
rs4788102 0.97 35883 Visual cortex 1.2x10°  EIF3C 10025912109
rs12928404 0.97 9731 Visual cortex 7.6x10"'""  EIF3C 10025912109
56565259 0.68 61278 Prefrontal cortex 8.0x10°1%  LAT 10023818276
rs12928404 0.97 9731 Prefrontal cortex 1.3x10° LAT 10023818276
rs1968752 0.80 205930 Cerebellum 3.5x10° NUPRI 10023813116
rs12446550 0.76 294 134  Cerebellum 1.4x10® NFATC2IP 10025913085
rs8049439 - — Prefrontal cortex 2.3x10° TUFM 10025905429
rs4658552 rs10926978 0.86 18 718 Prefrontal cortex 5.1x10° SDCCAGS 10025912019
rs2484639 0.54 49 431 Visual cortex 3.2x107 SDCCAGS 10025912019
rs10926975 0.56 15154 Visual cortex 1.0x10° SDCCAGS 10025912019
rs10926975 0.56 15 154 Prefrontal cortex 1.0x10° SDCCAGS 10025912019
rs7980687 rs7304782 0.57 103 267 Prefrontal cortex 1.1x10® SBNOI 10025903955
rs1727302 0.81 189 781 Prefrontal cortex 2.0x10° SBNOI 10025903955
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15655293 0.74 294 306 Cerebellum 5.6x10'° CI20RF65 10025904993
rs1060105 0.94 164 920 Cerebellum 1.5x107 CI20RF65 10025904993
1s1060105 0.94 164 920 Visual cortex 5.8x107 CI20RF65 10025904993
rs7304782 0.69 103 267 Visual cortex 2.4x10° CI20RF65 10025904993
11790098 0.80 167 230  Prefrontal cortex 2.9x10® CI20RF65 10025904993
rs1060105 0.94 164 920 Prefrontal cortex 1.1x10° CI20RF65 10025904993
1s937564% 0.70 345400 Cerebellum 1.5x107 MPHOSPHY* 10025905642
rs1892700 159647066 0.84 13 801 Prefrontal cortex 1.3x10°% TMEMS50B 10023807235
rs8971 0.77 132519 Cerebellum 7.7x10° GART 10025903876
rs2834213 0.66 223227 Cerebellum 2.8x107 IFNGR2 10025902355
rs3783006 rs9517337 0.59 70 438 Cerebellum 2.1x10°  AK026896 10025930847
rs7338549 0.64 31536 Visual cortex 2.6x10°  AF339799 10025928383
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Table S12. Results of gene function prediction analysis in 80,000 gene expression profiles. Pathway terms originate from several databases: (1) Gene Ontology Biological
Processes [GO-BioProc], (2) Gene Ontology Molecular Function [GO-MolFunc], (3) Gene Ontology Cellular Component [GO-CellComp], (4) REACTOME, and (5) KEGG.
Table lists only genes with terms directly related to neuronal or central nervous system function — full predictions are available at — http://www.ssgac.org’. P-values refer to
the correlation between the Gene principal component profile and the reconstituted Term principal component profile, uncorrected for multiple testing; all reported terms
meet False Discovery Rate < 0.05. The Annotated column indicates if the gene has previously been listed as a member of that term (Y) or not (N). Results are sorted
alphabetically by gene name.

Gene name Database Pathway term Annotated P-value
ATXN2L GO-CellComp npBAF complex N 1.4x10°®
ATXN2L GO-CellComp nBAF complex N 3.0x107
ATXN2L GO-CellComp chromatin remodeling complex N 7.0x107
ATXN2L GO-CellComp SWI/SNF-type complex N 1.4x10°¢
ATXN2L GO-CellComp SWI/SNF complex N 4.7x10°®
CRYZLI GO-BiolProc synaptic vesicle endocytosis N 9.1x10°
FARPI GO-BiolProc Axonogenesis N 8.0x10°1°
FARPI GO-BiolProc axon guidance N 2.0x10°
FARPI GO-CellComp Actomyosin N 1.1x108
FARPI GO-CellComp Synapse N 2.0x108
FARPI KEGG Axon guidance N 5.6x10*
FARPI REACTOME Cell-extracellular matrix interactions N 1.8x108
FARPI REACTOME Axon guidance N 5.9x108
KCNMAI GO-BiolProc calcium ion transmembrane transport N 2.8x1012
KCNMAI GO-BiolProc calcium ion transport N 2.6x10°¢
KCNMAI GO-BiolProc synapse organization N 3.9x10°°
KCNMAI GO-CellComp Synapse Y 1.4x10¢
KCNMAI GO-CellComp synapse part Y 2.8x10°
KCNMAI GO-CellComp Costamere N 3.0x10°
KCNMAI GO-CellComp voltage-gated calcium channel complex N 8.8x10°
KCNMAI GO-CellComp calcium channel complex N 1.3x10°¢
KCNMAI GO-CellComp postsynaptic density N 3.1x107

3 The link will be activated on the day of publication of this article. The materials that will be posted online are included as a separate appendix to the submitted manuscript.
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KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI
KCNMAI

GO-CellComp
GO-CellComp
GO-CellComp
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
KEGG

KEGG

KEGG
REACTOME
REACTOME
REACTOME
REACTOME
REACTOME
REACTOME
REACTOME
REACTOME

dendritic spine head

Dendrite

neuron projection terminus

calcium channel activity
voltage-gated calcium channel activity
cation channel activity
voltage-gated cation channel activity
gated channel activity

solute:cation antiporter activity

ion channel activity
substrate-specific channel activity
passive transmembrane transporter activity
channel activity

cation:cation antiporter activity
glutamate receptor binding
voltage-gated channel activity
voltage-gated ion channel activity
calmodulin binding

ion gated channel activity

Calcium signaling pathway
Long-term potentiation

Vascular smooth muscle contraction
Voltage gated Potassium channels

Neuronal System

Unblocking of NMDA receptor, glutamate binding and activation

Potassium Channels

Depolarization of the Presynaptic Terminal Triggers the Opening of Calcium Channels

Reduction of cytosolic Ca++ levels
Smooth Muscle Contraction

Platelet calcium homeostasis
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3.1x10°
4.0x107
4.7%10°°
2.5%107°
1.1x108
1.6x108
5.6x108
5.6x107
7.4x107
1.2x10°°
1.6x10°
3.3x10°
3.3x10°°
5.1x10°°
9.1x10°
1.7x10°°
1.7x10°®
2.1x10°
2.3x107
3.4x107
1.9x107
1.0x10*
2.1x10°
5.7x107°
1.1x107
5.2x107
2.6x10°
5.0x10°
5.5x10°
7.5%10°°



KCNMAI REACTOME CREB phosphorylation through the activation of CaMKII N 7.7x10°°
KCNMAI REACTOME Transmission across Chemical Synapses N 1.0x107
KCNMAI REACTOME Ras activation uopn Ca2+ infux through NMDA receptor N 1.7x107
KCNMAI REACTOME Activation of NMDA receptor upon glutamate binding and postsynaptic events N 2.3x10°
KCNMAI REACTOME Glutamate Binding, Activation of AMPA Receptors and Synaptic Plasticity N 4.3%107
KCNMAI REACTOME Trafficking of AMPA receptors N 4.3x107
KIFC2 GO-BiolProc neurotransmitter secretion N 2.3x10°
KIFC2 GO-BiolProc regulation of synaptic transmission N 8.7x10°
KIFC2 GO-BiolProc regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole N 3.9x10°8
KIFC2 GO-BiolProc regulation of transmission of nerve impulse N 4.4x10°8
KIFC2 GO-BiolProc regulation of neurological system process N 9.5x108
KIFC2 GO-BiolProc synaptic vesicle transport N 3.3x107
KIFC2 GO-BiolProc regulation of neurotransmitter levels N 6.2x107
KIFC2 GO-BiolProc regulation of synaptic plasticity N 8.3x107
KIFC2 GO-BiolProc synaptic vesicle exocytosis N 9.0x108
KIFC2 GO-BiolProc glutamate secretion N 1.0x10¢
KIFC2 GO-BiolProc generation of a signal involved in cell-cell signaling N 2.3x10°
KIFC2 GO-CellComp Dendrite N 1.3x107
KIFC2 GO-CellComp dendritic spine head N 1.7x107
KIFC2 GO-CellComp postsynaptic density N 1.7x107
KIFC2 GO-CellComp Synaptosome N 1.8x107
KIFC2 GO-CellComp dendritic spine N 2.8x107
KIFC2 GO-CellComp neuron spine N 2.8x107
KIFC2 GO-CellComp voltage-gated calcium channel complex N 3.0x107
KIFC2 GO-CellComp synapse part N 1.1x10°°
KIFC2 GO-CellComp Synapse N 1.1x10¢
KIFC2 GO-CellComp ciliary rootlet N 2.3x10°¢
KIFC2 GO-CellComp cell body N 1.4x107
KIFC2 GO-CellComp synaptic membrane N 2.2x10°
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KIFC2 GO-CellComp calcium channel complex N 2.2x107
KIFC2 GO-MolFunc voltage-gated calcium channel activity N 1.5x10°
KIFC2 REACTOME Ras activation uopn Ca2+ infux through NMDA receptor N 6.8x107°
KIFC2 REACTOME Depolarization of the Presynaptic Terminal Triggers the Opening of Calcium Channels N 1.2x108
KIFC2 REACTOME CREB phosphorylation through the activation of CaMKII N 9.7x108
KIFC2 REACTOME Transmission across Chemical Synapses N 3.4x107
KIFC2 REACTOME GABA synthesis, release, reuptake and degradation N 4.2x10°
KIFC2 REACTOME Neuronal System N 1.1x10°
KIFC2 REACTOME Dopamine Neurotransmitter Release Cycle N 2.3x10°3
KIFC2 REACTOME Serotonin Neurotransmitter Release Cycle N 2.3x10°
KIFC2 REACTOME Trafficking of AMPA receptors N 2.9x10°
KIFC2 REACTOME Glutamate Binding, Activation of AMPA Receptors and Synaptic Plasticity N 2.9x10°
KIFC2 REACTOME Post NMDA receptor activation events N 3.0x107
KIFC2 REACTOME NCAM signaling for neurite out-growth N 3.1x10°7
KIFC2 REACTOME Neurotransmitter Release Cycle N 3.4x10°
KIFC2 REACTOME CREB phosphorylation through the activation of Ras N 3.4x10°
KIFC2 REACTOME Glutamate Neurotransmitter Release Cycle N 3.7x107
NRXNI GO-BiolProc glutamate signaling pathway N 2.6x10°"°
NRXNI GO-BiolProc neurotransmitter secretion N 1.5x1016
NRXNI GO-BiolProc gamma-aminobutyric acid signaling pathway N 5.6x10°16
NRXNI GO-BiolProc synaptic vesicle exocytosis N 7.5x10°1
NRXNI GO-BiolProc regulation of neurotransmitter levels N 3.6x10°1*
NRXNI GO-BiolProc regulation of synaptic transmission Y 8.4x10°14
NRXNI GO-BiolProc neurotransmitter transport N 8.7x10714
NRXNI1 GO-BiolProc regulation of neurological system process Y 2.9x10°1
NRXNI GO-BiolProc regulation of transmission of nerve impulse Y 8.0x1014
NRXNI1 GO-BiolProc neuron-neuron synaptic transmission Y 1.1x10°'2
NRXNI GO-BiolProc glutamate secretion N 1.1x10°"2
NRXNI GO-BiolProc synaptic vesicle transport N 5.8x1012
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NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI1
NRXNI
NRXNI1
NRXNI

GO-BiolProc
GO-BiolProc
GO-BiolProc
GO-BiolProc
GO-BiolProc
GO-BiolProc
GO-BiolProc
GO-BiolProc
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-MolFunc
GO-MolFunc

synaptic transmission, glutamatergic

signal release

generation of a signal involved in cell-cell signaling

learning or memory
cellular potassium ion transport
potassium ion transmembrane transport

Axonogenesis

regulation of excitatory postsynaptic membrane potential

presynaptic membrane

Synapse

Axon

axon part

synapse part

synaptic membrane

ion channel complex

outer membrane-bounded periplasmic space
periplasmic space

cation channel complex

main axon

Dendrite

external encapsulating structure part
cell envelope

postsynaptic membrane

synaptic vesicle membrane
Axolemma

terminal button

external encapsulating structure
voltage-gated sodium channel complex
glutamate receptor activity

gated channel activity
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1.3x10°16
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NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI
NRXNI1
NRXNI
NRXNI1
NRXNI

GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
KEGG

KEGG

KEGG

KEGG

KEGG

KEGG

KEGG

REACTOME
REACTOME
REACTOME
REACTOME
REACTOME
REACTOME
REACTOME
REACTOME
REACTOME

substrate-specific channel activity

GABA receptor activity

passive transmembrane transporter activity
extracellular ligand-gated ion channel activity
GABA-A receptor activity

voltage-gated channel activity
voltage-gated ion channel activity
ionotropic glutamate receptor activity
extracellular-glutamate-gated ion channel activity
ligand-gated channel activity

ligand-gated ion channel activity
voltage-gated cation channel activity
cation channel activity

voltage-gated sodium channel activity
Neuroactive ligand-receptor interaction
Axon guidance

ErbB signaling pathway

Long-term potentiation

Amyotrophic lateral sclerosis (ALS)
Long-term depression

Cell adhesion molecules (CAMs)

GABA A receptor activation

Neuronal System

Ligand-gated ion channel transport
Transmission across Chemical Synapses

Interaction between L1 and Ankyrins

Neurotransmitter Receptor Binding And Downstream Transmission In The Postsynaptic Cell

GABA receptor activation

Class C/3 (Metabotropic glutamate/pheromone receptors)

Unblocking of NMDA receptor, glutamate binding and activation
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NRXNI REACTOME Potassium Channels N 5.4x101
NRXNI REACTOME Ion channel transport N 3.9x10°13
NRXNI REACTOME Serotonin Neurotransmitter Release Cycle N 7.6x10713
NRXNI REACTOME Dopamine Neurotransmitter Release Cycle N 7.6x10°13
NRXNI REACTOME Voltage gated Potassium channels N 1.7x10°!
NRXN1 REACTOME L1CAM interactions N 5.0x10°!!
NRXNI REACTOME GABA synthesis, release, reuptake and degradation N 8.5x10°10
NRXNI REACTOME Norepinephrine Neurotransmitter Release Cycle N 1.7x10°
NRXNI REACTOME Activation of NMDA receptor upon glutamate binding and postsynaptic events N 2.2x107
NRXNI REACTOME Glutamate Neurotransmitter Release Cycle N 5.7x108
NRXNI REACTOME Tonotropic activity of Kainate Receptors N 5.9x108
PITPNM?2 GO-CellComp cation channel complex N 1.7x10°
PITPNM?2 GO-CellComp asymmetric synapse N 2.3x10°3
PITPNM?2 GO-MolFunc diacylglycerol kinase activity N 7.03%107
PITPNM?2 GO-MolFunc cation channel activity N 5.7x10°¢
PITPNM?2 GO-MolFunc voltage-gated cation channel activity N 2.5%10°7
PITPNM?2 GO-MolFunc GTPase regulator activity N 3.3x10°7
PITPNM?2 GO-MolFunc nucleoside-triphosphatase regulator activity N 4.3x10?
PITPNM?2 GO-MolFunc ion channel activity N 5.0x107
PITPNM?2 GO-MolFunc gated channel activity N 6.0x107
PITPNM?2 GO-MolFunc calmodulin-dependent protein kinase activity N 6.1x107
PITPNM?2 GO-MolFunc substrate-specific channel activity N 6.6x107
PITPNM?2 GO-MolFunc voltage-gated channel activity N 1.0x10*
PITPNM?2 GO-MolFunc voltage-gated ion channel activity N 1.0x10*
PITPNM?2 KEGG Calcium signaling pathway N 1.4x10*
PITPNM?2 REACTOME Voltage gated Potassium channels N 1.3x10°¢
PITPNM?2 REACTOME Potassium Channels N 1.4x10°6
PITPNM?2 REACTOME Effects of PIP2 hydrolysis N 2.1x10°¢
PITPNM?2 REACTOME Ras activation uopn Ca2+ infux through NMDA receptor N 1.5%10°
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PITPNM?2 REACTOME Neuronal System N 2.2x107
PITPNM?2 REACTOME PLC-gammal signalling N 6.6x107
PITPNM?2 REACTOME DAG and IP3 signaling N 8.2x10
PITPNM?2 REACTOME Depolarization of the Presynaptic Terminal Triggers the Opening of Calcium Channels N 9.9x10°3
POU3F2 GO-BiolProc central nervous system neuron differentiation N 2.9%x10728
POU3F2 GO-BiolProc forebrain generation of neurons N 4.1x1022
POU3F2 GO-BiolProc forebrain neuron differentiation N 3.1x102!
POU3F2 GO-BiolProc telencephalon development Y 5.8x10°"°
POU3F2 GO-BiolProc forebrain development Y 5.3x10°"?
POU3F2 GO-BiolProc negative regulation of gliogenesis N 9.1x1013
POU3F2 GO-BiolProc astrocyte differentiation Y 1.0x10°"7
POU3F2 GO-BiolProc negative regulation of glial cell differentiation N 2.9x10°7
POU3F2 GO-BiolProc brain development Y 1.6x10716
POU3F2 GO-BiolProc central nervous system neuron development N 2.7x10°16
POU3F2 GO-BiolProc glial cell differentiation Y 4.6x10716
POU3F2 GO-BiolProc regulation of neuron differentiation Y 1.6x10°1
POU3F2 GO-BiolProc pallium development Y 2.8x10715
POU3F2 GO-BiolProc cerebral cortex development Y 4.7x10°%
POU3F2 GO-BiolProc neuron fate commitment N 1.2x101
POU3F2 GO-BiolProc regulation of neurogenesis Y 1.3x10° 1
POU3F2 GO-BiolProc central nervous system projection neuron axonogenesis N 1.5x10°4
POU3F2 GO-BiolProc positive regulation of neural precursor cell proliferation N 2.2x10°14
POU3F2 GO-BiolProc Gliogenesis Y 2.8x10°14
POU3F2 GO-BiolProc cerebral cortex neuron differentiation N 3.0x10°1*
POU3F2 GO-CellComp neuron projection membrane N 2.8x107
POU3F2 GO-CellComp Axolemma N 9.9x107
POU3F2 GO-CellComp Dendrite N 1.2x10®
POU3F2 GO-CellComp external encapsulating structure part N 2.6x10°¢
POU3F2 GO-CellComp cell envelope N 2.6x10°
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POU3F2 GO-CellComp periplasmic space N 7.5%x10°
POU3F2 GO-CellComp outer membrane-bounded periplasmic space N 7.5%10°¢
POU3F2 GO-MolFunc ionotropic glutamate receptor activity N 3.7x10°
POU3F2 GO-MolFunc ephrin receptor activity N 5.0x10°¢
POU3F2 REACTOME CRMPs in Sema3A signaling N 1.1x107
POU3F2 REACTOME Unblocking of NMDA receptor, glutamate binding and activation N 1.3x10°
SCRTI GO-BiolProc potassium ion transport N 9.3x10712
SCRTI GO-BiolProc visual learning N 2.5x10!!
SCRTI GO-BiolProc locomotory behavior N 3.2x10!!
SCRTI GO-BiolProc mating behavior N 2.5x10°1°
SCRTI GO-BiolProc visual behavior N 7.0x101°
SCRTI GO-BiolProc associative learning N 1.1x10°
SCRTI GO-BiolProc Learning N 1.3x10°
SCRTI GO-BiolProc regulation of neurotransmitter levels N 1.4x10°
SCRTI GO-BiolProc ionotropic glutamate receptor signaling pathway N 2.7x107
SCRTI GO-BiolProc neurotransmitter secretion N 2.9x10°
SCRTI GO-BiolProc neurotransmitter transport N 7.5%107
SCRTI GO-BiolProc adult locomotory behavior N 8.1x10°
SCRTI GO-BiolProc response to tropane N 1.3x108
SCRTI GO-BiolProc response to cocaine N 1.3x108
SCRTI GO-BiolProc neuron-neuron synaptic transmission N 1.3x108
SCRTI GO-BiolProc neuromuscular process N 2.8x108
SCRTI GO-BiolProc reproductive behavior N 4.3x10®
SCRTI GO-BiolProc regulation of postsynaptic membrane potential N 5.4x108
SCRTI GO-BiolProc membrane hyperpolarization N 6.4x108
SCRTI GO-BiolProc synaptic transmission, glutamatergic N 1.0x107
SCRTI GO-CellComp axon part N 2.2x1012
SCRTI GO-CellComp main axon N 1.1x10°1°
SCRTI GO-CellComp synapse part N 1.2x1078
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SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI
SCRTI

GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc

Axon

voltage-gated potassium channel complex
potassium channel complex

cation channel complex

Synapse

neuron projection terminus

neuronal cell body

cell body

axon terminus

terminal button

dendritic spine head

postsynaptic density

ion channel complex

synaptic membrane

synaptic vesicle membrane

ionotropic glutamate receptor complex

periplasmic space

potassium ion transmembrane transporter activity

potassium channel activity

dopamine binding

voltage-gated potassium channel activity
voltage-gated cation channel activity
voltage-gated ion channel activity
voltage-gated channel activity

cation channel activity

gated channel activity

delayed rectifier potassium channel activity
extracellular-glutamate-gated ion channel activity

inorganic cation transmembrane transporter activity

ionotropic glutamate receptor activity
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1.2x108
1.5x108
1.5x108
3.0x108
1.2x107
2.9x107
3.0x107
7.0x107
1.4x10¢
2.8x10°
5.8x10%
5.8x10°°
7.2x10°
8.8x10°
9.2x10°
9.9x10°°
3.4x107
4.5%x10710
3.4x107
4.5x10°
7.4x107°
2.6x108
2.4x107
2.4x107
9.1x107
1.8x10°°
2.3x10%
4.7x10°°
6.2x10°
1.8x10°



SCRTI KEGG Neuroactive ligand-receptor interaction N 2.92E-06
SCRTI KEGG Calcium signaling pathway N 6.67E-04
SCRTI REACTOME Voltage gated Potassium channels N 7.6x10712
SCRTI REACTOME Neuronal System N 6.8x10!!
SCRTI REACTOME Potassium Channels N 2.1x1071°
SCRTI REACTOME Unblocking of NMDA receptor, glutamate binding and activation N 1.7x10°¢
SCRTI REACTOME Transmission across Chemical Synapses N 7.6x10°°
SCRTI REACTOME CREB phosphorylation through the activation of CaMKII N 8.0x10°
SCRTI REACTOME GABA synthesis, release, reuptake and degradation N 3.5%107
SCRTI REACTOME Trafficking of AMPA receptors N 3.8x10°7
SCRTI REACTOME Glutamate Binding, Activation of AMPA Receptors and Synaptic Plasticity N 3.8x107
SCRTI REACTOME Amine ligand-binding receptors N 4.0x10
SCRTI REACTOME Neurotransmitter Release Cycle N 4.6x10
SCRTI REACTOME Ras activation uopn Ca2+ infux through NMDA receptor N 5.7x10°
SCRTI REACTOME Dopamine Neurotransmitter Release Cycle N 7.0x10°5
SCRTI REACTOME Serotonin Neurotransmitter Release Cycle N 7.0x107
TBRI GO-BiolProc behavioral defense response N 1.8x10%
TBRI GO-BiolProc behavioral fear response N 3.5x10%
TBRI GO-BiolProc fear response N 6.6x102%
TBRI GO-BiolProc hippocampus development N 2.8x10%
TBRI GO-BiolProc pallium development N 8.8x10%
TBRI GO-BiolProc G-protein coupled acetylcholine receptor signaling pathway N 5.3x10%
TBRI GO-BiolProc axonal fasciculation N 2.0x10%!
TBRI GO-BiolProc limbic system development N 9.4x10°13
TBRI GO-BiolProc neuron recognition N 3.5x10°"7
TBRI GO-BiolProc telencephalon development N 2.1x10°16
TBRI GO-BiolProc multicellular organismal response to stress N 2.0x10°14
TBRI GO-BiolProc forebrain development N 4.9x10°
TBRI GO-BiolProc cerebral cortex neuron differentiation N 1.2x10°13
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TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
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TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI

GO-BiolProc
GO-BiolProc
GO-BiolProc
GO-BiolProc
GO-BiolProc
GO-BiolProc
GO-BiolProc
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-CellComp
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc

cerebral cortex radially oriented cell migration
potassium ion transport

synaptic transmission, glutamatergic

ionotropic glutamate receptor signaling pathway
neuron-neuron synaptic transmission

learning or memory

regulation of synaptic plasticity

synapse part

synaptic membrane

cation channel complex

potassium channel complex

voltage-gated potassium channel complex

ion channel complex

presynaptic membrane

Synapse

postsynaptic membrane

Dendrite

asymmetric synapse

site of polarized growth

growth cone

synaptic vesicle membrane

voltage-gated potassium channel activity
potassium channel activity

voltage-gated cation channel activity
voltage-gated channel activity

voltage-gated ion channel activity

acidic amino acid transmembrane transporter activity
L-glutamate transmembrane transporter activity
potassium ion transmembrane transporter activity

gated channel activity
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1.5x1013
1.9x10°13
5.2x1013
3.2x10°1?
8.3x10712
1.6x10!!
2.4x101
1.3x10713
5.1x10713
5.4x1071
6.5x10713
6.5x1071
1.4x1014
4.7x1013
3.6x10°!2
6.2x10710
7.3x10710
5.6x107°
3.0x108
3.5x108
7.1x10°8
2.3x10°"
2.6x10°"7
7.5%x10°"7
1.9x10°°
1.9x10°13
2.3x10°°
1.0x107 14
6.4x10°13
3.8x1012



TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI
TBRI

GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
GO-MolFunc
KEGG

KEGG

REACTOME
REACTOME
REACTOME
REACTOME
REACTOME
REACTOME
REACTOME
REACTOME
REACTOME

ion channel activity
substrate-specific channel activity

G-protein coupled amine receptor activity

metal ion transmembrane transporter activity

cation channel activity

GABA receptor activity

passive transmembrane transporter activity
channel activity

GABA-A receptor activity

Calcium signaling pathway

Neuroactive ligand-receptor interaction
Voltage gated Potassium channels

GABA A receptor activation

Potassium Channels

Neuronal System

Amine ligand-binding receptors

Glutamate Neurotransmitter Release Cycle
Ligand-gated ion channel transport
Transmission across Chemical Synapses

Sema3A PAK dependent Axon repulsion
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1.2x10°10
1.5x10°1°
1.9x10°"
6.3x101°
8.2x10710
9.1x10°10
1.4x10°
1.4x10°
2.6x107
4.1x10°°
7.7x107
2.4x10°°
4.2x10
4.4x10
5.6x1071
4.4x1013
2.4x101!
3.8x10!!
5.7x10°
1.6x108
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Table S13. Results of mouse phenotype prediction analysis in 80,000 gene expression profiles. Phenotypic annotations are obtained from the Mouse Genetics Initiative
database (www.informatics.jax.org). Table lists only genes and phenotypic annotations directly related to neuronal or central nervous system function or morphology (marked
with an asterix) — full predictions are available at — http://www.ssgac.org*. P-values refer to the correlation between the Gene principal component profile and the
reconstituted phenotypic annotation principal component profile, uncorrected for multiple testing; all reported terms meet False Discovery Rate < 0.05. The Annotated
column indicates if the gene has previously been linked to a specific mouse phenotype (Y) or not (N). Results are sorted alphabetically by gene name.

Gene name Predicted mouse knock-out/-in phenotype Annotated P-value
AKT3 abnormal hippocampus pyramidal cell layer N 1.7x1013
AKT3 small hippocampus N 1.8x10°8
AKT3 abnormal neocortex morphology N 5.6x10°
AKT3 decreased neuron number N 6.5%10°°
AKT3 placental labyrinth hypoplasia N 1.1x10°
AKT3 abnormal brain ventricle morphology N 1.7x107°
AKT3 abnormal sensory capabilities/reflexes/nociception N 1.7x10
AKT3 abnormal hippocampus morphology N 1.9x10*
AKT3 abnormal cerebellar foliation N 1.9x10*
AKT3 abnormal postnatal subventricular zone morphology N 2.5x10*
ARHGAP39 dilated lateral ventricles N 3.2x107
ARHGAP39 abnormal ventral spinal root morphology N 9,0x1073
ARHGAP39 abnormal hippocampus layer morphology N 1.6x10*
ARHGAP39 dilated third ventricle N 2.9x10*
ARHGAP39 abnormal neural crest cell migration N 7.9x10*
ARHGAP39 decreased motor neuron number N 9.0x10*
ATXN2L dilated lateral ventricles N 4.5%x108
ATXN2L increased brain size N 2.9x107
ATXN2L abnormal dendritic cell morphology N 4.8x10*
ATXN2L dilated third ventricle N 6.3x10*
CI120rf65 impaired olfaction N 6.0x1073
C120rf65 abnormal nervous system physiology N 7.5%1073
C12o0rf65 abnormal medulla oblongata morphology N 8.2x1073

4 The link will be activated on the day of publication of this article. The materials that will be posted online are included as a separate appendix to the submitted manuscript.
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CI20rf65 abnormal neural tube closure N 1.4x102
C120rf65 abnormal seizure response to electrical stimulation N 1.6x1072
C12o0rf65 abnormal hippocampus CA1 region morphology N 1.7x102
C120rf65 absent distortion product otoacoustic emissions N 1.8x1072
C120rf65 increased drinking behavior N 1.8x1072
CELF4 abnormal CNS synaptic transmission N 1.1x107%¢
CELF4 abnormal synaptic vesicle number N 7.6x1022
CELF4 abnormal miniature excitatory postsynaptic currents N 4.5%10"
CELF4 increased susceptibility to pharmacologically induced seizures N 1.1x10°1
CELF4 abnormal inhibitory postsynaptic currents N 1.8x10716
CELF4 abnormal synaptic vesicle recycling N 2.8x1071
CELF4 abnormal synaptic vesicle morphology N 8.8x10°1°
CELF4 convulsive seizures N 2.6x10°1
CELF4 reduced long term potentiation N 8.2x10°1
CELF4 abnormal excitatory postsynaptic potential N 2.2x10714
CELF4 increased synaptic depression N 1.4x10°13
CELF4 tonic-clonic seizures Y 6.7x10°13
CELF4 enhanced paired-pulse facilitation N 7.8x10°13
CELF4 abnormal excitatory postsynaptic currents N 4.9x10712
CELF4 abnormal brain wave pattern N 1.6x107!!
CELF4 sporadic seizures N 2.1x10!
CELF4 decreased paired-pulse facilitation N 3.4x10!!
CELF4 impaired coordination N 5.7x101
CELF4 abnormal conditioned taste aversion behaviour N 9.7x10!!
CRYZLI abnormal synaptic vesicle recycling N 2.1x10*
CYHRI abnormal brain white matter morphology N 4.7x10®
CYHRI dilated third ventricle N 5.1x10°?
CYHRI abnormal astrocyte morphology N 1.5x10*
CYHRI thick interventricular septum N 6.7x10*
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DECI hydroencephaly N 3.2x1073
DECI abnormal startle reflex N 5.6x1073
DECI impaired passive avoidance behavior N 1.7x107
DECI abnormal drinking behavior N 2.2x102
FOXHI abnormal anterior visceral endoderm morphology N 1.3x10°"
FOXHI abnormal neural fold formation Y 1.4x10714
ITSN1 decreased brain size N 2.8x107
ITSNI abnormal behavior N 3.1x107
ITSNI microgliosis N 4.1x10°3
ITSNI abnormal hippocampal commissure morphology N 7.2x1073
ITSNI ectopic Purkinje cell N 1.3x10*
ITSNI abnormal otic capsule morphology N 1.5%10*
KCNMAI decreased vasoconstriction N 6.7x10°8
KCNMAI abnormal miniature excitatory postsynaptic currents N 1.2x107
KCNMA1I abnormal brain wave pattern N 3.0x10°
KCNMAI limb grasping N 5.3x10¢
KCNMA1I intracerebral hemorrhage N 8.3x10°
KCNMAI abnormal GAB A-mediated receptor currents N 9.2x10°
KCNMA1I abnormal synaptic plasticity N 1.1x10?°
KCNMAI decreased aggression towards males N 1.7x1073
KIFC2 abnormal miniature excitatory postsynaptic currents N 6.4x107
KIFC2 abnormal inhibitory postsynaptic currents N 2.7x10¢
KIFC2 abnormal spatial learning N 3.8x10°
KIFC2 abnormal excitatory postsynaptic currents N 5.5x10¢
KIFC2 abnormal AMPA-mediated synaptic currents N 5.6x10°¢
KIFC2 reduced long term depression N 7.5x10°°
KIFC2 abnormal hippocampal mossy fiber morphology N 9.4x106
KIFC2 abnormal long term depression N 1.3x107
KIFC2 enhanced long term potentiation N 2.3x10°
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2.7x10°3

KIFC2 enhanced paired-pulse facilitation N

KIFC2 abnormal synaptic vesicle morphology N 4.5%10?°
KIFC2 abnormal excitatory postsynaptic potential N 5.2x10°
KIFC2 abnormal zygomatic bone morphology N 8.3x107
KIFC2 abnormal anxiety-related response N 9.3x10°
KIFC2 abnormal synaptic vesicle recycling N 9.9x107
KIFC2 abnormal brain internal capsule morphology N 1.7x10*
KIFC2 clonic seizures N 2.0x10*
KIFC2 decreased susceptibility to pharmacologically induced seizures N 2.1x10™
KIFC2 abnormal CNS synaptic transmission N 2.1x10*
LRRCI4 impaired coordination N 2.6x107
LRRC14 dilated third ventricle N 1.2x1073
LRRCI14 small cerebellum N 1.3x10°?
LRRCI14 impaired contextual conditioning behavior N 1.4x1073
LRRC14 impaired hearing N 1.6x107
LRRCI14 abnormal axon outgrowth N 1.7x1073
LRRC14 abnormal retinal apoptosis N 2.3x10°3
LRRCI14 abnormal lateral ventricle morphology N 3.2x1073
LRRCI14 dilated lateral ventricles N 3.5x1073
LRRCI14 abnormal brain white matter morphology N 4.1x103
NRXNI abnormal inhibitory postsynaptic currents N 1.6x107%
NRXNI abnormal CNS synaptic transmission N 2.6x10%
NRXNI abnormal GABA-mediated receptor currents N 2.6x102
NRXNI abnormal excitatory postsynaptic currents N 1.2x1022
NRXNI hyperactivity N 6.3x10713
NRXNI abnormal synaptic transmission N 1.4x10"7
NRXNI1 abnormal spatial learning N 7.7x10717
NRXNI abnormal synaptic vesicle number N 3.6x10°1°
NRXNI1 abnormal posture N 6.4x1071°
NRXN1 ataxia N 1.4x10714
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NRXNI abnormal brain wave pattern N 2.4x1071
NRXNI seizures N 6.8x10714
NRXN1 convulsive seizures N 1.4x1071
NRXNI abnormal nervous system electrophysiology N 4.9x1013
NRXN1 abnormal spatial reference memory N 4.9%x1013
NRXNI abnormal excitatory postsynaptic potential N 8.1x10713
NRXN1 abnormal hippocampus morphology N 1.2x1012
NRXNI impaired coordination N 1.4x1012
NRXN] increased startle reflex N 1.5%1012
NRXNI abnormal social/conspecific interaction N 3.9x1012
NUPRI1 increased brain weight N 1.7x107
NUPRI abnormal hippocampus layer morphology N 6.7x10°°
NUPRI abnormal enteric neuron morphology N 1.7x10°
PITPNM?2 reduced long term depression N 4.9%10°
PITPNM?2 abnormal behavior N 1.2x10*
PITPNM?2 abnormal learning/ memory N 2.3x10*
PITPNM?2 impaired cued conditioning behavior N 4.3%x10*
PITPNM?2 abnormal excitatory postsynaptic potential N 5.2x10*
PITPNM?2 impaired contextual conditioning behavior N 6.6x10*
PITPNM?2 abnormal calcium ion homeostasis N 8.6x10*
POU3F2 abnormal brain commissure morphology N 8.2x10°1°
POU3F2 enlarged third ventricle N 1.2x10
POU3F2 abnormal hippocampal mossy fiber morphology N 2.2x10"
POU3F2 small olfactory bulb N 7.7x107"2
POU3F2 abnormal radial glial cell morphology N 1.1x10
POU3F?2 abnormal cerebral cortex morphology N 3.4x10™
POU3F2 abnormal axon guidance N 3.5x10°1°
POU3F2 increased aggression towards mice N 8.5x10°1°
POU3F2 abnormal corticospinal tract morphology N 1.4x1071°



3.4x10°

POU3F2 decreased brain size N

POU3F2 abnormal hippocampus morphology N 8.3x108
POU3F2 abnormal embryonic/fetal subventricular zone morphology N 1.0x10°®
POU3F2 decreased corpus callosum size N 1.6x10°8
POU3F2 abnormal spinal cord interneuron morphology N 1.8x10°8
POU3F2 abnormal cerebellar foliation N 1.9x108
POU3F2 abnormal cerebrum morphology N 3.7x10®
POU3F2 abnormal telencephalon development N 4.2x108
POU3F2 enlarged lateral ventricles N 8.5x10°8
REEP3 abnormal eating behavior N 6.1x107
REEP3 abnormal myelination N 2.2x10°
REEP3 abnormal myelin sheath morphology N 2.9%1073
REEP3 abnormal postural reflex N 3.1x10°
REEP3 abnormal brain white matter morphology N 3.2x1073
SCRTI impaired conditioned place preference behavior N 3.3x10712
SCRTI abnormal spatial learning N 8.6x1012
SCRTI abnormal spike wave discharge N 5.6x107!!
SCRTI impaired behavioral response to addictive substance N 1.2x1071°
SCRTI increased exploration in new environment N 1.6x10°1°
SCRTI absence seizures N 1.2x107°
SCRTI abnormal nervous system electrophysiology N 1.2x107
SCRTI enhanced coordination N 1.8x107°
SCRTI abnormal inhibitory postsynaptic currents N 1.1x10°%
SCRTI decreased vertical activity N 1.6x108
SCRTI abnormal behavioral response to xenobiotic N 1.7x10®
SCRTI sporadic seizures N 2.1x10°8
SCRTI abnormal action potential N 2.2x108
SCRTI abnormal excitatory postsynaptic currents N 2.9x10°8
SCRTI decreased neurotransmitter release N 2.9x10®
SCRTI reduced long term depression N 2.9x10°8
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8.7x10°8

SCRTI ataxia N

SCRTI abnormal brain wave pattern N 2.3%107
SCRTI impaired swimming N 3.2x107
SCRTI impaired coordination N 4.0x107
SNRNP35 abnormal brain morphology N 7.1x10*
SNRNP35 abnormal action potential N 1.5x10*
SNRNP35 astrocytosis N 2.1x1073
SNRNP35 absent T cells N 2.3%1073
SNRNP35 neurodegeneration N 2.5x1073
SNRNP35 seminiferous tubule degeneration N 2.8x1073
SNRNP35 abnormal miniature inhibitory postsynaptic currents N 3.4x107
SPNS1 astrocytosis N 5.2x10°8
SPNS1 Purkinje cell degeneration N 7.8x107
SPNS1 abnormal cued conditioning behavior N 3.5x107
SPNS1 abnormal Reichert's membrane morphology N 2.2x10*
SPNS1 abnormal retinal ganglion layer morphology N 2.8x10*
SPNS1 limb grasping N 3.4x10*
SPNS1 myeloid hyperplasia N 3.8x10*
SPNS1 gliosis N 4.3%x10*
SPNS1 abnormal anterior visceral endoderm morphology N 9.2x10*
SPNS1 microgliosis N 1.1x103
TBRI abnormal inhibitory postsynaptic currents N 2.7x1022
TBRI reduced long term depression N 3.2x1022
TBRI abnormal spatial learning N 1.9x102°
TBRI abnormal brain wave pattern N 1.1x10°"
TBRI absent corpus callosum N 4.7x10°18
TBR1 sporadic seizures N 4.7%x10°16
TBR1 increased startle reflex N 4.8x10°16
TBRI abnormal cerebral cortex morphology N 7.1x10716
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TBRI
TBRI
TBRI
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TBRI

abnormal neocortex morphology

abnormal long term depression
hyperactivity

abnormal CNS synaptic transmission
increased anxiety-related response

abnormal GABA-mediated receptor currents
increased susceptibility to pharmacologically induced seizures
abnormal synaptic vesicle number

abnormal excitatory postsynaptic currents
abnormal thalamus morphology

abnormal telencephalon development

abnormal excitatory postsynaptic potential
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47105
7.9%10°13
1.8x10°4
4.3x10714
4.4x10713
5.1x10°13
5.4x10713
5.9x10°13
2.2x10712
3.2x10°12
1.2x10°!

1.7x10°8
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Table S14. Results of the tissue, organ and tissue type specific expression analysis in 80,000 gene expression profiles. The expression profiles were annotation into tissues,
organs, or cell types using the MeSH database (http://www.nlm.nih.gov/mesh/). Table lists only genes in which show high expression in brain regions or specific nervous
system cells — full predictions are available at http://www.ssgac.org>. Sample count specifies the number of expression profiles annotated with given annotation. AUC (area
under the curve) gives the estimate how much of the variation on given gene expression profile is explained by a given tissue, organ or tissue type. P-values refer to enriched

expression for a given gene in specific tissue, organ or tissue type compared to all other annotation terms. Results are sorted alphabetically by gene name.

Gene name Tissue, organ or cell type Sample count AUC P-value
AKT3 Prefrontal Cortex 46 0.98 6x1073°
AKT3 Frontal Lobe 62 0.95 3x103
AKT3 Visual Cortex 34 0.94 3x10°"°
AKT3 Occipital Lobe 42 0.94 5x10%
AKT3 Cerebral Cortex 276 0.94 3x10714
AKT3 Entorhinal Cortex 83 0.94 2x10™%
AKT3 Temporal Lobe 91 0.94 5x104
AKT3 Cerebellum 36 0.93 3x10°1°
AKT3 Hippocampus 55 0.93 7x10°28
AKT3 Cerebrum 344 0.92 3x107160
AKT3 Parietal Lobe 17 0.91 5%x107
ARHGAP39 Hippocampus 55 0.88 5x10%
ARHGAP39 Visual Cortex 34 0.87 710
ARHGAP39 Neural Stem Cells 11 0.87 3x107
ARHGAP39 Occipital Lobe 42 0.86 5x10°1°
ARHGAP39 Parietal Lobe 17 0.86 3x107
ARHGAP39 Hypothalamus 15 0.85 4x10°¢
ARHGAP39 Ganglia 11 0.83 2x10*
ARHGAP39 Cerebral Cortex 276 0.82 2x1073
ARHGAP39 Entorhinal Cortex 83 0.82 6x1024
ARHGAP39 Cerebrum 344 0.82 1x10°!
ARHGAP39 Temporal Lobe 91 0.81 1x102
ARHGAP39 Brain 1274 0.78 1x1072%2

5 The link will be activated on the day of publication of this article. The materials that will be posted online are included as a separate appendix to the submitted manuscript.
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ARHGAP39 Central Nervous System 1302 0.78 2x10!
C120rf65 Hypothalamus 15 0.68 1x102
CRYZLI Prefrontal Cortex 46 0.95 6x102
CRYZLI Frontal Lobe 62 0.86 1x1022
CRYZLI Cerebellum 36 0.86 9x10714
CRYZLI Substantia Nigra 22 0.73 2x104
CYHRI Hypothalamus 15 0.82 1x10”
CYHRI Putamen 16 0.78 1x10*
CYHRI Parotid Gland 19 0.73 4x10
CYHRI Occipital Lobe 42 0.71 2x10°¢
CYHRI Visual Cortex 34 0.71 2x107
CYHRI Cerebellum 36 0.7 3x107
CYHRI Thalamus 16 0.7 7x107
CYHRI Astrocytes 12 0.69 2x107
CYHRI Hippocampus 55 0.67 8x10°
DECI Substantia Nigra 22 0.78 6x10°
DECI Thalamus 16 0.75 5x10*
DECI Mesencephalon 41 0.74 7x10°8
DECI Hypothalamus 15 0.73 2x107
DECI Subthalamic Nucleus 12 0.68 3x10
FARPI Neural Stem Cells 11 0.96 1x107
FARPI Astrocytes 12 0.84 4x107
FOXHI Substantia Nigra 22 0.86 4x10°
FOXHI Subthalamic Nucleus 12 0.84 5%10°
FOXHI Thalamus 16 0.82 8x107°
FOXHI Mesencephalon 41 0.8 4x10™
FOXHI Parietal Lobe 17 0.77 9x103
FOXHI Occipital Lobe 42 0.75 4x108
FOXHI Visual Cortex 34 0.74 9x107
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FOXHI Hypothalamus 15 0.74 2x10°73
ITSN1 Abdominal Fat 69 0.99 2x10+
ITSN1 Visual Cortex 34 0.98 4x1022
ITSN1 Motor Neurons 12 0.98 1x108
ITSNI Occipital Lobe 42 0.97 4x10%6
ITSN1 Prefrontal Cortex 46 0.97 8x102%6
ITSN1 Frontal Lobe 62 0.96 1x10°3
ITSN1 Entorhinal Cortex 83 0.96 4x104
ITSNI Cerebral Cortex 276 0.96 1x10-10
ITSN1 Temporal Lobe 91 0.95 7x1075!
ITSN1 Hippocampus 55 0.95 7x1073!
ITSNI Spinal Cord 19 0.94 2x10!1
ITSNI Cerebrum 344 0.94 5x10°17%
ITSN1 Cicatrix 19 0.94 3x10°!!
ITSN1 Parietal Lobe 17 0.94 4x10710
ITSNI Cerebellum 36 0.92 1x10718
JMJIDIC Cerebellum 36 0.91 4x10°7
JMJDIC Prefrontal Cortex 46 0.66 2x10*
KCNMAI Visual Cortex 34 0.95 7x1020
KCNMAI Occipital Lobe 42 0.94 4x10%
KCNMAI Prefrontal Cortex 46 0.93 2x102
KCNMAI Entorhinal Cortex 83 0.93 Tx1042
KCNMAI Aortic Valve 10 0.93 2x10°¢
KCNMAI Muscle, Smooth 248 0.92 1107115
KCNMAI Cerebral Cortex 276 0.92 2x1071%
KCNMAI Frontal Lobe 62 0.91 10x10%°
KCNMAI Hippocampus 55 0.9 6x10%
KIFC2 Putamen 16 0.99 9x10°'?
KIFC2 Frontal Lobe 62 0.98 3x10%°
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KIFC2 Parietal Lobe 17 0.98 9x10712
KIFC2 Prefrontal Cortex 46 0.98 4x10%
KIFC2 Cerebral Cortex 276 0.97 6x10-16?
KIFC2 Entorhinal Cortex 83 0.97 7x10°0
KIFC2 Temporal Lobe 91 0.97 3x107%4
KIFC2 Occipital Lobe 42 0.97 9x10°26
KIFC2 Visual Cortex 34 0.97 6x1072!
KIFC2 Hippocampus 55 0.96 6x10732
KIFC2 Cerebrum 344 0.93 4x10°168
KIFC2 Hypothalamus 15 0.92 2x10°8
KIFC2 Thalamus 16 0.88 1x107
KIFC2 Brain 1274 0.82 1x107300
KIFC2 Neural Stem Cells 11 0.81 3x10*
KIFC2 Central Nervous System 1302 0.81 1x103%
KIFC2 Nervous System 1358 0.81 7x107300
KIFC2 Substantia Nigra 22 0.8 7x107
MPHOSPH9 Visual Cortex 34 0.82 5%10°1!
MPHOSPH9 Cerebellum 36 0.78 3x10°
MPHOSPH9 Neural Stem Cells 11 0.74 6x10°3
MPHOSPH9 Occipital Lobe 42 0.74 1x107
NPAS2 Prefrontal Cortex 46 0.93 3x102
NPAS2 Frontal Lobe 62 0.91 1x1028
NPAS2 Putamen 16 0.9 3x10®
NPAS2 Entorhinal Cortex 83 0.85 5x1028
NPAS2 Hippocampus 55 0.85 6x107%°
NPAS2 Cerebral Cortex 276 0.84 3x10786
NRXNI Prefrontal Cortex 46 1 2x103!1
NRXNI Cerebellum 36 0.99 2x1072%
NRXNI Cerebral Cortex 276 0.99 5x104
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NRXNI Temporal Lobe 91 0.99 5x10-8
NRXNI Entorhinal Cortex 83 0.99 5%1073
NRXNI Occipital Lobe 42 0.99 1x10%7
NRXN| Visual Cortex 34 0.98 1x1022
NRXN1 Parietal Lobe 17 0.98 5%10712
NRXNI Ganglia 11 0.98 4x10°8
NRXN1 Thalamus 16 0.97 6x107!
NRXNI Cerebrum 344 0.97 4x1071%
NRXNI Mesencephalon 41 0.97 6x10%
NRXNI Putamen 16 0.96 1x10™1
NRXNI Substantia Nigra 22 0.96 61014
NRXNI Hypothalamus 15 0.96 6x10710
NRXNI Motor Neurons 12 0.95 5%10°8
NRXN1 Subthalamic Nucleus 12 0.95 8x10°8
PITPNM?2 Frontal Lobe 62 0.88 1x10%
PITPNM?2 Hippocampus 55 0.87 9x1022
PITPNM?2 Prefrontal Cortex 46 0.87 7x107®
PITPNM?2 Putamen 16 0.81 1x107
PITPNM?2 Temporal Lobe 91 0.8 1x10%
PITPNM?2 Cerebral Cortex 276 0.8 8x10°7
PITPNM?2 Entorhinal Cortex 83 0.8 8x1072!
PITPNM?2 Heart Ventricles 124 0.79 1x1028
PITPNM?2 Hypothalamus 15 0.78 2x10*
PITPNM?2 Cerebrum 344 0.75 3x107¢
POU3F2 Neural Stem Cells 11 0.98 4x10°8
POU3F?2 Spinal Cord 19 0.97 9x10713
POU3F2 Substantia Nigra 22 0.97 2x10°1
POU3F2 Visual Cortex 34 0.97 5x1072!
POU3F2 Prefrontal Cortex 46 0.97 6x1028
POU3F2 Occipital Lobe 42 0.97 1x10%
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POU3F2 Retinal Pigment Epithelium 12 0.97 2x10°%
POU3F2 Motor Neurons 12 0.97 2x10°8
POU3F2 Mesencephalon 41 0.96 8x10%
POU3F2 Parietal Lobe 17 0.96 4x107!
POU3F2 Frontal Lobe 62 0.96 4x107%
POU3F2 Cerebral Cortex 276 0.96 5%10713!
POU3F2 Putamen 16 0.95 3x1010
POU3F2 Cerebrum 344 0.95 2x107180
POU3F2 Temporal Lobe 91 0.95 2x10%
POU3F2 Entorhinal Cortex 83 0.95 4x10%
POU3F2 Subthalamic Nucleus 12 0.95 9x10°8
POU3F2 Hippocampus 55 0.94 4x107°
REEP3 Retinal Pigment Epithelium 12 0.96 4x108
REEP3 Neural Stem Cells 11 0.84 7x107
RILPLI Subthalamic Nucleus 12 0.97 2x10°8
RILPLI Substantia Nigra 22 0.96 7x10°
RILPLI Mesencephalon 41 0.96 5%10°2
RILPLI Thalamus 16 0.95 4x1071°
RILPLI Putamen 16 0.94 8x10°1°
RILPLI Parietal Lobe 17 0.94 4x101°
RILPLI Temporal Lobe 91 0.93 1x104
RILPLI Spinal Cord 19 0.93 9x10 !
RILPLI Entorhinal Cortex 83 0.93 4x104
RILPLI Neural Stem Cells 11 0.92 1x10°
RILPLI Cerebral Cortex 276 0.92 4x10°1%°
SBNOI Cerebellum 36 0.87 9x10°1
SBNOI Granulocyte Precursor Cells 30 0.86 5%10°12
SBNOI Prefrontal Cortex 46 0.82 41071
SBNOI Visual Cortex 34 0.8 8x10°10
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SBNOI Motor Neurons 12 0.76 2x1073
SBNO1 Frontal Lobe 62 0.76 9x10713
SBNOI Occipital Lobe 42 0.76 7x107?
SLCI5A1 Thalamus 16 0.85 2x10°
SLCI5A1 Putamen 16 0.82 1x107
SLCI15A1 Ganglia 11 0.8 5%10*
SLCI5AI Subthalamic Nucleus 12 0.74 4x1073
SLCI5A1 Mesencephalon 41 0.69 2x107
SLCI5A1 Substantia Nigra 22 0.69 2x10°
SLC15A1 Hypothalamus 15 0.68 2x107
SNRNP35 Visual Cortex 34 0.83 2x10°!
SNRNP35 Occipital Lobe 42 0.81 2x1012
SNRNP35 Subthalamic Nucleus 12 0.76 2x1073
SNRNP35 Hypothalamus 15 0.75 7x10*
SULTIA2 Hypothalamus 15 0.83 9x10°
SULTIA2 Substantia Nigra 22 0.76 3x107
SULTIA2 Ganglia 11 0.75 4x103
TBRI1 Prefrontal Cortex 46 0.99 1x10%
TBRI Frontal Lobe 62 0.99 2x100
TBRI Hippocampus 55 0.92 4x10%7
TBRI Parietal Lobe 17 0.89 3x10°8
TBRI Cerebral Cortex 276 0.88 2x107104
TBR1 Temporal Lobe 91 0.86 1x1032
TBRI Entorhinal Cortex 83 0.85 4x10728
TBRI Subthalamic Nucleus 12 0.81 2x10*
TBRI Cerebrum 344 0.79 3x1078
TBRI Thalamus 16 0.78 1x10*
TBRI Brain 1274 0.75 2x107206
TBRI Central Nervous System 1302 0.75 7x1072%0
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TMEMS50B Motor Neurons 12 0.89 4x10°°
TMEMS50B Thalamus 16 0.87 3x107
TMEMS50B Cerebellum 36 0.87 2x1074
TMEMS50B Neural Stem Cells 11 0.84 8x107
TMEMS50B Ganglia 11 0.81 4x10
TMEMS50B Spinal Cord 19 0.78 2x107
TMEMS50B Neurons 37 0.76 7x10°8
TUFM Neural Stem Cells 11 0.88 1x107
TUFM Astrocytes 12 0.71 1x10
VPS28 Neural Stem Cells 11 0.72 1x1072
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Table S15. Implicated candidate genes in cognitive performance associated genomic loci. Table outlines the levels of supportive biological evidence across several
annotation analysis — 1) functional SNP annotation (Supplementary Table S9); 2) promising eQTLs in blood (Supplementary Table S10) and brain (Supplementary Table
S11); 3) showing relevant coexpression prediction results for reconstituted pathway terms (Supplementary Table S12), mouse phenotypes (Supplementary Table S13) and
high site specific expression profiles (Supplementary Table S14). Two last colums give another layer of supportive evidence from literature — A) clustering into modules
related to neuronal or central nervous system function (neuronal function; synaptic transmission, neurogenesis, neuropeptide hormone, nerve myelination) constructed using
brain derived gene expression profiles (reported in (28)) and B) isolated from the proteasome of human neocortex postsynaptic density [hPSD] (reported in (34)). SNPs
rs1487441 and rs1487441 are located in gene deserts, thus the nearest gene is considered for analysis. Only genes with at least one relevant annotation are listed. SNP ID —
nominally significant cognitive performance associated variant; * — denotes a gene not annotated within the co-expression database;
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rs1487441 POU3F2 Y Y Y Y 4
157923609 JMJIDIC Y Y Y Y 4
REEP3 Y Y 2
rs2721173 LRRCI14 Y Y Y Y Y 5
RECQIA Y 1
LRRC24 Y na na na 1
MFSD3 Y 1
ARHGAP39 Y Y 2
GPT Y 1
PPPIRI6A Y 1
FOXHI Y Y 2
KIFC2 Y Y Y Y Y 5
CYHRI Y Y 2
VPS28 Y Y 2
CPSF1 Y 1
SCRTI Y Y Y 3
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rs8049439 ATXN2L Y Y 2
TUFM Y Y 4
SH2BI 1
EIF3CL na na na 3
NFATC2IP Y Y 3
NUPRI Y 2
SPNS1 Y Y 2
LAT Y 2
SULTIAI Y 1
SULTIA2 Y Y 2
CCDCl101 Y 1
rs1606974 NRXNI Y Y Y Y 5
152970992 NPAS?2 Y 2
NMS na na na Y 1
rs3127447 KCNMAI Y Y Y Y 4
rs7847231 DECI Y Y 2
rs4658552 SDCCAGS Y 4
AKT3 Y Y 2
rs1892700 CRYZLI Y Y Y 3
ITSN1 Y Y Y Y 5
GART Y 3
DNAJC28 2
TMEMS50B Y Y Y 5
IFNGR?2 Y 2
rs7980687 SBNO1 Y 4
SETDS8 Y Y 2
RILPL?2 Y 1
C120rf65 Y Y 5
MPHOSPH9 Y 1
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SNRNP35 2
RILPLI 1
PITPNM?2 3
TMED? 1
rs1187220 CELF4 3
rs3783006 STK24 1
FARPI 3
SLC15A1 1
rs7309 TANK 1
PSMD14 1
TBRI1 4
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Table S16. Regression of cognitive performance on a polygenic score (PGS) in the GS, MCTFR, QIMR, and STR cohorts (coefficients for constructing the PGS are from the
meta-analysis of cognitive performance, with the meta-analysis sample excluding the respective validation sample). Analyses for GS are based on 1,081 siblings from 476
independent families, analyses for MCTFR are based on 1,346 siblings from 673 independent families, analyses for QIMR are based on 1,426 individuals from 628 independent
families, and analyses for STR are based on 810 DZ twins from 405 independent families. AR? is the incremental R? of adding the PGS to the regression. The family dummies
explain 64.3% of the variance for GS, 72.8% for MCTFR, 68.4% for QIMR, and 77.4% for STR. Standard errors are clustered at the family level. The pooled estimates of are
calculated using inverse-variance weighting.

Analysis Pooled
GS MCTFR QIMR STR
Without family dummies Beta 0.05 0.05 0.06 0.07 0.06
S.E. 0.04 0.03 0.03 0.04 0.02
p-value 0.19 0.11 0.03 0.10 8.17x10*
AR? 0.0023 0.0022 0.0041 0.0044 -
With family dummies Beta -0.05 0.05 0.03 0.08 0.03
S.E. 0.07 0.06 0.06 0.07 0.03
p-value 0.41 0.36 0.61 0.26 0.36
AR? 0.0007 0.0007 0.0002 0.0015 -
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Table S17. Simulation Results for Power of Within-Family Analysis

B[R] Model Mean( g ) Mean(Standard Error) Power
Without family dummies 0.044 0.017 78.2%
0.045 [0.20%]
With family dummies 0.043 0.027 31.2%
Without family dummies 0.065 0.017 96.8%
0.065 [0.42%]
With family dummies 0.063 0.027 64.2%
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Table S18. Results from polygenic-score analysis in the Health and Retirement Study. TWR = Total Word Recall, TMS = Total Mental Score, TC = Total Cognition. Standard
errors are clustered per individual in the regression and standard errors of the regression coefficients are given in square brackets below the regression coefficients. The
regressions for ATMS and ATC have the knots of the age spline at 70 and 80 and do not include person-wave observations with age < 60. * p < 0.05; ** p < 0.01. AR*denotes
the increase in R? of a model with the score, and score interactions if applicable, compared to a model with only the age spline and sex.

(1 @) 3) “) (5) (6) (7N 8) ©) (10) (1) 12)
TWR TWR TMS TMS TC TC ATWR ATWR ATMS ATMS ATC ATC
Score 0.040%** 0.047+* 0.062%** 0.072%* 0.057+** 0.075%* -0.003 -0.005 -0.002 -0.008 -0.001 -0.006
[0.007] [0.010] [0.010] [0.012] [0.009] [0.012] [0.002] [0.004] [0.004] [0.006] [0.004] [0.007]
Age < 60 -0.006**  -0.006** -0.006* -0.006* -0.007**  -0.007** -0.002 -0.002

[0.002] [0.002] [0.003] [0.003] [0.002] [0.002] [0.001] [0.001]
Age 60-69 -0.037%*%* -0.037%*%* -0.004* -0.004* -0.031%*%* -0.031%*%* -0.006%* -0.006** -0.013* -0.013* -0.023%%* -0.023%%*
[0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.001] [0.001] [0.006] [0.006] [0.006] [0.006]
Age 70-79 -0.051%*%* -0.051%*%* -0.018%*%* -0.018%*%* -0.047%%* -0.047%%* -0.005%* -0.005%%* -0.007%*%* -0.007%%* -0.006%* -0.006**
[0.002] [0.002] [0.003] [0.003] [0.003] [0.003] [0.001] [0.001] [0.002] [0.002] [0.002] [0.002]

Age > 80 20.056%F  0.056%*  -0.053%F  0.053%%  -0.066%*  -0.067**  -0.006%*  -0.006%*  -0.019%*  _0.019%*  -0.015%*  -0.015%*
[0.004] [0.004] [0.007] [0.007] [0.006] [0.006] [0.002] [0.002] [0.003] [0.003] [0.002] [0.002]
Female 0.345%%  0.344%*  0.169%*  -0.169%*  0.199%%  (.198%* 0.002 0002  -0.018%  -0.018* 20.011 0.011
[0.015] [0.015] [0.019] [0.019] [0.019] [0.019] [0.005] [0.005] [0.009] [0.009] [0.008] [0.008]
Age 60-69 0.000 -0.002 -0.002 0.000
X score [0.002] [0.002] [0.002] [0.001]
Age 70-79 -0.001 0.002 0.000 0.001 0.002 0.002
X score [0.003] [0.003] [0.003] [0.001] [0.001] [0.001]
Age >80 -0.008%* -0.004 -0.008 -0.004* -0.003 -0.005%
X score [0.004] [0.006] [0.005] [0.002] [0.002] [0.002]
Constant 0.107 0.108  0.764%%  0.764%%  0.533%%  (.534% 0.154* 0.155%  1.008%*  1.006%*  1.620%%  1.619%*
[0.124] [0.124] [0.151] [0.151] [0.143] [0.143] [0.072] [0.071] [0.381] [0.381] [0.395] [0.395]
’V\v”a‘V’zrs"“' 49,988 49,988 32,289 32,289 32,289 32,289 40,744 40,744 20,781 20,781 20,781 20,781
N, persons 8,652 8,652 8,539 8,539 8,539 8,539 8,543 8,543 5,248 5,248 5,248 5,248
R 0.164 0.164 0.038 0.038 0.135 0.135 0.002 0.002 0.005 0.005 0.000 0.000
AR? 0.002 0.002 0.004 0.004 0.003 0.004 0.000 0.000 0.000 0.000 0.000 0.000
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Table S19. Results from polygenic-score analysis in the Health and Retirement Study with years of education added as a control variable. TWR = Total Word Recall, TMS =
Total Mental Score, TC = Total Cognition. Standard errors are clustered per individual in the regression and standard errors of the regression coefficients are given in square
brackets below the regression coefficients. The regressions for ATMS and ATC have the knots of the age spline at 70 and 80 and do not include person-wave observations
with age < 60. * p < 0.05; ** p < 0.01. AR? denotes the increase in R of a model with the score, and score interactions if applicable, compared to a model with only the age
spline and sex.

ey @ 3) “ ®) (6) ) ®) (€)) (10) 1) 12)
TWR TWR TMS TMS TC TC ATWR ATWR ATMS ATMS ATC ATC
Score 0.014* 0.022* 0.031** 0.043** 0.024** 0.045%* -0.002 -0.005 -0.003 -0.010 -0.002 -0.007
[0.007] [0.009] [0.009] [0.012] [0.008] [0.011] [0.002] [0.004] [0.004] [0.006] [0.004] [0.007]
Age <60 -0.003 -0.003 -0.000 -0.000 -0.001 -0.001 -0.002 -0.002
[0.002] [0.002] [0.003] [0.002] [0.002] [0.002] [0.001] [0.001]
Age 60-69 -0.032%* -0.032%* -0.002 -0.002  -0.029** -0.029%* -0.006%* -0.006** -0.013* -0.013* -0.023%* -0.023%*

[0.002] [0.002] [0.002] [0.002] [0.002] [0.002] [0.001] [0.001] [0.006] [0.006] [0.006] [0.006]
Age 70-79 -0.050%%* -0.050%** -0.016%* -0.016%* -0.045%%* -0.045%* -0.005%* -0.005%%* -0.007%*%* -0.007%%* -0.006%* -0.006%*
[0.002] [0.002] [0.003] [0.003] [0.003] [0.003] [0.001] [0.001] [0.002] [0.002] [0.002] [0.002]
Age >80 -0.054** -0.054** -0.051%* -0.051** -0.064** -0.064** -0.006** -0.006** -0.019%* -0.019%* -0.015%* -0.015%*
[0.004] [0.004] [0.007] [0.006] [0.006] [0.005] [0.002] [0.002] [0.003] [0.003] [0.002] [0.002]

Female 0.392%* 0.391#* -0.109%* -0.109%** 0.261** 0.261** 0.002 0.002 -0.015 -0.015 -0.010 -0.010
[0.014] [0.014] [0.018] [0.018] [0.017] [0.017] [0.005] [0.005] [0.009] [0.009] [0.008] [0.008]
Years of 0.101** 0.101** 0.120%** 0.120%* 0.127** 0.127%* 0.000 0.000 0.004* 0.004* 0.001 0.001
education [0.003] [0.003] [0.004] [0.004] [0.004] [0.004] [0.001] [0.001] [0.002] [0.002] [0.002] [0.002]
Age 60-69 -0.000 -0.002 -0.002 0.000
X score [0.002] [0.002] [0.002] [0.001]
Age 70-79 -0.002 0.002 -0.000 0.001 0.002 0.002
X score [0.002] [0.003] [0.003] [0.001] [0.001] [0.001]
Age >80 -0.007 -0.004 -0.007 -0.004* -0.003 -0.005*
X score [0.004] [0.006] [0.005] [0.002] [0.002] [0.002]
Constant -1.513%%* -1.512%%* -1.270%%* -1.270%* -1.622%* -1.621%%* 0.149%* 0.149* 0.950%* 0.948* 1.637** 1.636**

[0.124] [0.124] [0.158] [0.158] [0.146] [0.146] [0.074] [0.074] [0.386] [0.386] [0.399] [0.399]

N, person- 49,827 49,827 32,204 32,204 32,204 32,204 40,622 40,622 20,737 20,737 20,737 20,737
wave

N, persons 8,615 8,615 8,504 8,504 8,504 8,504 8,506 8,506 5235 5235 5235 5235
R2 0.225 0.225 0.128 0.128 0.236 0.236 0.002 0.002 0.005 0.005 0.005 0.005
AR? 0.000 0.000 0.001 0.001 0.001 0.001 0.000 0.000 0.000 0.000 0.000 0.000
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Table S20. Power of GWAS on cognitive performance vs. candidate-SNP method in our Cognitive Performance Sample (N = 24,189)

Effect size of SNP on cognitive performance (in R?)

0.02% 0.04% 0.06% 0.08%
GWAS (a = 5x10%) 0.06% 1% 5% 15%
Candidate-SNP (a = .00072) 12% 39% 67% 85%

Source: Authors’ calculations using (22).
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Table S21. Ex ante calculations of the expected number of true positive results, given alternative thresholds of including SNPs associated with educational attainment (EA) in
the second stage on cognitive performance. Calculations are based on the actual sample sizes for EA in stage 1 (N = 106,703) and for cognitive performance in stage 2 (N =
24,189). The calculations assume that the effect of a SNP that is truly associated with EA only operates through cognitive performance and no other mediating factor. Under
this assumption, the effect size of an EA-associated SNP would be attenuated by the imperfect correlation between EA and cognitive performance (see SI Appendix section
15). (1) and (2) are based on actual results of the stage 1| GWAS, after pruning SNPs for LD (the HapMap 2 CEU genotypes were used as reference panel; the physical
threshold for clumping was 1000 kB, and the R? threshold for clumping was 0.01). Power in (3) and (7) was calculated using G*Power 3.1 (48, 49). Posterior beliefs in row
(4) are calculated using Bayes’ formula (21), with prior beliefs equal to 0.01%, power equal to (3), and « equal to the respective p-value threshold of the column. (5) results
from dividing the family-wide significance level of 0.05 by (1). (6) results from dividing (2) by the assumed phenotypic correlation between EA and cognitive performance
(0.6). (8) reports the expected number of true positives in the second stage by multiplying (1) x (4) x (7). (9) is calculated using Bayes’ formula (21), with prior beliefs equal
to (4), power equal to (7), and « equal to (5). Note that the available sample size for stage 2 and the assumed correlation between EA and cognitive performance only affect
the absolute values in (8), whereas the p-value threshold that maximizes (8) depends only on the results of the first-stage GWAS.

p-value threshold for including EA-associated SNPs in the second stage analyses on cognitive performance

5% 108 1 x 107 1x10° 1x107 1x10* 1x103 1 x10? 5x 102

Results of stage 1

(1)  Number of EA-associated candidate 3 4 15 69 198 891 3,013 5,720
SNPs

(2)  Avg R? of SNPs with EA 2.80 x 104 2.73 x 104 2.33 x 104 1.98 x 104 1.65 x 104 1.25 x 104 9.11 x 10 7.05 x 1073

(3)  Ex-post power (two-sided) in first stage 55% 52% 52% 57% 62% 64% 71% 78%

(4) Posterior belief that a candidate SNP 99.9% 99.8% 98.1% 85.1% 38.3% 6.0% 0.7% 0.2%
from (1) is truly associated with EA

Ex-ante expectations for stage 2

(5) Bonferroni-adjusted 1.67 x 1072 1.25 x 1072 3.33x 107 7.25 x 104 2.53 x 104 5.61 x 10 1.66 x 103 8.74 x 106
p-value for second stage

(6) Expected avg R? of SNPs 7.77 x 104 7.59 x 104 6.46 x 104 5.51 x 10 4.57 x 10 3.47 x 104 2.53 x 10 1.96 x 104
in second stage given (2)

(7)  Expected power (two-sided) 97.4% 96.3% 84.6% 60.7% 36.9% 12.9% 3.3% 1.2%
in second stage given (5) and (6)

(8) Expected true positives second stage 3 4 12 36 28 7 7 0

(9)  Posterior belief (truelsignificant), using 100% 100% 100% 100% 99.9% 99.5% 99.5% 75.8%

the p-value threshold of (5)
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