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On the Practice of Dichotomization of Quantitative Variables

Robert C. MacCallum, Shaobo Zhang, Kristopher J. Preacher, and Derek D. Rucker
Ohio State University

The authors examine the practice of dichotomization of quantitative measures,
wherein relationships among variables are examined after 1 or more variables have
been converted to dichotomous variables by splitting the sample at some point on
the scale(s) of measurement. A common form of dichotomization is the median
split, where the independent variable is split at the median to form high and low
groups, which are then compared with respect to their means on the dependent
variable. The consequences of dichotomization for measurement and statistical
analyses are illustrated and discussed. The use of dichotomization in practice is
described, and justifications that are offered for such usage are examined. The
authors present the case that dichotomization is rarely defensible and often will

yield misleading results.

We consider here some simple statistical proce-
dures for studying relationships of one or more inde-
pendent variables to one dependent variable, where all
variables are quantitative in nature and are measured
on meaningful numerical scales. Such measures are
often referred to as individual-differences measures,
meaning that observed values of such measures are
interpretable as reflecting individual differences on
the attribute of interest. It is of course straightforward
to analyze such data using correlational methods. In
the case of a single independent variable, one can use
simple linear regression and/or obtain a simple corre-
lation coefficient. In the case of multiple independent
variables, one can use multiple regression, possibly
including interaction terms. Such methods are rou-
tinely used in practice.

However, another approach to analysis of such data
is also rather widely used. Considering the case of one
independent variable, many investigators begin by
converting that variable into a dichotomous variable
by splitting the scale at some point and designating
individuals above and below that point as defining
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two separate groups. One common approach is to split
the scale at the sample median, thereby defining high
and low groups on the variable in question; this ap-
proach is referred to as a median split. Alternatively,
the scale may be split at some other point based on the
data (e.g., | standard deviation above the mean) or at
a fixed point on the scale designated a priori. Re-
searchers may dichotomize independent variables for
many reasons—for example, because they believe
there exist distinct groups of individuals or because
they believe analyses or presentation of results will be
simplified. After such dichotomization, the indepen-
dent variable is treated as a categorical variable and
statistical tests then are carried out to determine
whether there is a significant difference in the mean of
the dependent variable for the two groups represented
by the dichotomized independent variable. When
there are two independent variables, researchers often
dichotomize both and then analyze effects on the de-
pendent variable using analysis of variance
(ANOVA).

There is a considerable methodological literature
examining and demonstrating negative consequences
of dichotomization and firmly favoring the use of re-
gression methods on undichotomized variables. Nev-
ertheless, substantive researchers often dichotomize
independent variables prior to conducting analyses. In
this article we provide a thorough examination of the
practice of dichotomization. We begin with numerical
examples that illustrate some of the consequences of
dichotomization. These include loss of information
about individual differences as well as havoc with
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regard to estimation and interpretation of relationships
among variables. We then examine the dichotomiza-
tion approach in terms of issues of measurement of
individual differences and statistical analysis. We
next review current practice, providing evidence of
common usage of dichotomization in applied research
in fields such as social, developmental, and clinical
psychology, and we examine and evaluate justifica-
tions offered by users and defenders of this procedure.
Overall, we present the case that dichotomization of
individual-differences measures is probably rarely
justified from either a conceptual or statistical per-
spective; that its use in practice undoubtedly has se-
rious negative consequences; and that regression and
correlation methods, without dichotomization of vari-
ables, are generally more appropriate.

Numerical Examples
Example Using One Independent Variable

We begin with a series of numerical examples us-
ing simulated data to illustrate and distinguish be-
tween the regression approach and the dichotomiza-
tion approach. Raw data for these numerical examples
can be obtained from Robert C. MacCallum’s Web
site (http://quantrm?2.psy.ohio-state.edu/maccallum/).
Let us first consider the case of one independent vari-
able, X, and one dependent variable, Y. We defined a
simulated population in which the two variables fol-
lowed a bivariate normal distribution with a correla-

tion of py, = .40. Using a procedure described by
Kaiser and Dickman (1962), we then drew a random
sample (N = 50 observations) from this population.
Sample data were scaled such that My = 10, SDy =
2, My, = 20, and SD, = 4. A scatter plot of the
sample data is displayed in Figure 1. We assessed the
linear relationship between X and Y by obtaining the
sample correlation coefficient, which was found to be
ryy = .30, with a 95% confidence interval of (.02,
.53). The squared correlation (1, = .09) indicated
that about 9% of the variance in Y was accounted for
by its linear relationship with X. A test of the null
hypothesis that py, = 0 yielded #48) = 2.19, p =
.03, leading to rejection of the null hypothesis and the
conclusion that there is evidence in the sample of a
nonzero linear relationship in the population. Of
course, the outcome of this test was foretold by the
confidence interval, because the confidence interval
did not contain the value of zero.

We then conducted a second analysis of the rela-
tionship between X and Y, beginning by converting X
into a dichotomous variable. We split the sample at
the median of X, yielding high and low groups on X,
each containing 25 observations. The resulting di-
chotomized variable is designated X,. A scatter plot
of the data following dichotomization of X is shown in
Figure 2. The relationship between X and Y was then
evaluated by testing the difference between the Y
means for the high and low groups on X. Those means
were found to be 21.1 and 19.4, respectively, and a
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Figure 1. Scatter plot of raw data for example of bivariate relationship.



DICHOTOMIZATION OF QUANTITATIVE VARIABLES 21

30

28 -

26 -

24 -

22

20 -

18 -

Continuous Y

16 -

14 -

12 -

10 T

-

Dichotomized X

Figure 2. Scatter plot for example of bivariate relationship after dichotomization of X. (Note
that there is some overlapping of points in this figure.)

test of the difference between them yielded #(48) =
1.47, p = .15, resulting in failure to reject the null
hypothesis of equal population means. From a corre-
lational perspective, the correlation after dichotomi-
zation was ry , = 21 (g, = .04), with a 95%
confidence interval of (-.07, .46). Again, the confi-
dence interval implies the result of the significance
test, this time indicating a nonsignificant relationship
because the interval did include the value of zero. A
comparison of the results of analysis of the associa-
tion between X and Y before and after dichotomization
of X shows a distinct loss of effect size and loss of
statistical significance; these issues are addressed in
detail later in this article.

The dichotomization procedure can be taken one
step further by splitting both X and Y, thereby yielding
a 2 x 2 frequency table showing the association be-
tween X, and Yp,. In the present example, this ap-
proach yielded frequencies of 13 in the low—low and
high-high cells and frequencies of 12 in the low—high
and high—low cells. The corresponding test of asso-
ciation x3(1, N = 50) = 0.08, p = .78, showed a
nonsignificant relationship between the dichotomized
variables, which was also indicated by the small cor-
relation between them, ry , = .06 with a 95% con-
fidence interval of (-.22, .33). Note that the dichoto-
mization of both X and Y has further eroded the
strength of association between them.

Example Using Two Independent Variables

We next consider an example where there are two
independent variables, X, and X,. In practice such
data would appropriately be treated by multiple re-
gression analysis. However, a common approach in-
stead is to convert both X; and X, into dichotomous
variables and then to conduct ANOVA using a 2 x 2
factorial design. We provide an illustration of both
methods. Following procedures described by Kaiser
and Dickman (1962), we constructed a sample (N =
100 observations) from a multivariate normal popu-
lation such that the sample correlations among the
three variables would have the following pattern: ry y
= .70, ry,y = .35, and ry x, = .50. To examine the
relationship of Y to X; and X,, we first conducted
multiple regression analyses. Without loss of gener-
ality, regression analyses were conducted on stan-
dardized variables, Z,, Z,, and Z,. Using a linear re-
gression model with no interaction term, we obtained
a squared multiple correlation of .49 with a 95% con-
fidence interval of (.33, .61)." This squared

! Confidence intervals for squared multiple correlations
are useful but are not commonly provided by commercial
software for regression analysis. A free program offered by
James Steiger, available from his Web site (http://
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multiple correlation was statistically significant, F(2,
97) = 46.25, p < .01. The corresponding standardized
regression equation was

Zy = 70(Z) + .00(Z,).

The coefficient for Z, was statistically significant, 3,
= .70, t(1) = 8.32, p < .01, whereas the coefficient
for Z, obviously was not significant, 3, = .00, #(1) =
0.00, p = 1.00, indicating a significant linear effect of
Z, on Z,, but no significant effect of Z,. Inclusion of
an interaction term Z; = Z,Z, in the regression model
increased the squared multiple correlation slightly to
.50. The corresponding regression equation was

Zy = 72(Z,) - 01(Z,) — .07(Zy).

The standardized regression coefficient for Z, was
statistically significant, B, = .72, #(1) = 8.38, p <
.01, whereas the other two coefficients were not, 3,
= -01,#1) = -0.12, p = .96, and B; = -.07, «(1)
= —1.11, p = .27, indicating no significant linear
effect of Z, and no significant interaction.

We then conducted a second analysis on the same
data, beginning by dichotomizing X, and X, by split-
ting both at the median to create X, and X,. Results
of a two-way ANOVA yielded a significant main ef-
fect for X, F(1, 96) = 42.50, p < .01; a significant
main effect for X,p, F(1, 96) = 5.26, p = .02; and a
nonsignificant interaction, F(1, 96) = 0.19, p = .67.
Total variance accounted for by these effects was .40.
Of special note in these results is the presence of a
significant main effect of X,, that was not present in
the regression analyses but arose only after both in-
dependent variables were dichotomized. This phe-
nomenon is discussed further later in this article. It is
also noteworthy that total variance accounted for was
reduced from .50 prior to dichotomization to .40 after
dichotomization.

Summary of Examples

From these few examples it should be clear that
there exist potential problems when quantitative inde-
pendent variables are dichotomized prior to analysis
of their relationship to dependent variables. The ex-
ample with one independent variable showed a loss of
effect size and of statistical significance following
dichotomization of X. The example with two indepen-

www.interchg.ubc.ca/steiger/homepage.htm) computes
such confidence intervals as well as other useful statistical
information associated with correlation coefficients.

dent variables showed a significant main effect fol-
lowing dichotomization that did not exist prior to di-
chotomization. Although many other cases and
examples could be examined, these simple illustra-
tions reveal potentially serious problems associated
with dichotomization. If phenomena such as those just
illustrated would be common in practice, then di-
chotomization of variables probably should not be
done unless rigorously justified. In the following sec-
tion we examine these phenomena closely, focusing
on the impact of dichotomization on measurement and
representation of individual differences as well as on
results of statistical analyses.

Measurement and Statistical Issues Associated
With Dichotomization

Representing Individual Differences

We first consider the impact of dichotomization on
the measurement and representation of individual dif-
ferences associated with a variable of interest. Sup-
pose we have a single independent variable, X, mea-
sured on a quantitative scale, and we observe a sample
of individuals who vary along that scale, and suppose
the resulting distribution is roughly normal. A distri-
bution of this type is illustrated in Figure 3a, with four
specific individuals (A, B, C, D) indicated along the
x-axis. Assuming approximately interval properties
for the scale of X, these individuals can be compared
with each other with respect to their standing on X.
For instance, Individuals B and C are more similar to
each other than are Individuals A and D. Individuals
A and B are different from each other, and that dif-
ference is greater than the difference between B and
C. When observed in empirical research, such differ-
ences and comparisons among individuals would
seem to be relevant to the understanding of such a
variable and its relationship to other variables. Re-
searchers in psychology typically invest great effort in
the development of measures of individual differences
on characteristics and behaviors of interest. Instru-
ments are developed so as to have adequate levels of
reliability and validity, implying acceptable levels of
precision in measuring individuals, and implying in
turn that individual differences such as those just de-
scribed are meaningful.

Now suppose X is dichotomized by a median split
as illustrated in Figure 3b. Such dichotomization al-
ters the nature of individual differences. After di-
chotomization, Individuals A and B are defined as
equal as are Individuals C and D. Individuals B and C
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Figure 3. Measurement of individual differences before
and after dichotomization of a continuous variable.

are different, even though their difference prior to
dichotomization was smaller than that between A and
B, who are now considered equal. Following dichoto-
mization, the difference between A and D is consid-
ered to be the same as that between B and C. The
median split alters the distribution of X so that it has
the form shown in Figure 3c. Clearly, most of the
information about individual differences in the origi-
nal distribution has been discarded, and the remaining
information is quite different from the original. Such
an altering of the observed data must raise questions.
What was the purpose of measuring individual differ-
ences on X only to discard much of that information
by dichotomization? What are the consequences for
the psychometric properties of the measure of X? And
what is the impact on results of subsequent analyses
of the relationship of X to other variables?

It seems that to justify such discarding of informa-
tion, one would need to make one of two arguments.
First, one might argue that the discarded information
is essentially error and that it is beneficial to eliminate
such error by dichotomization. The implication of

such an argument would be that the true variable of
interest is dichotomous and that dichotomization of X
produces a more precise measure of that true di-
chotomy. An alternative justification might involve
recognition that the discarded information is not error
but that there is some benefit to discarding it that
compensates for the loss of information. Both of these
perspectives are discussed further later in this article.

Impact on Results of Statistical Analyses

Review of types of correlation coefficients and their
relationships. Dichotomization of quantitative vari-
ables affects results of statistical analyses involving
those variables. To examine these effects, it is neces-
sary to understand the meaning of and relationships
among several different types of correlation coeffi-
cients. A correlation between two quantitatively mea-
sured variables is conventionally computed as the
common Pearson product-moment (PPM) correla-
tion. A correlation between one quantitative and one
dichotomous variable is a point-biserial correlation,
and a correlation between two dichotomous variables
is a phi coefficient. The point-biserial and phi coeffi-
cients are special cases of the PPM correlation. That
is, if we apply the PPM formula to data involving one
quantitative and one dichotomous variable, the result
will be identical to that obtained using a formula for
a point-biserial correlation. Similarly, if we apply the
PPM formula to data involving two dichotomous vari-
ables, the result will be identical to that obtained using
a formula for a phi coefficient. The point-biserial and
phi coefficients are typically used in practice for
analyses of relationships involving variables that are
true dichotomies. For example, one could use a point-
biserial correlation to assess the relationship between
gender and extraversion, and one could use a phi co-
efficient to measure the relationship between gender
and smoking status (smoker vs. nonsmoker).

Some variables that are measured as dichotomous
variables are not true dichotomies. Consider, for ex-
ample, performance on a single item on a multiple
choice test of mathematical skills. The measured vari-
able is dichotomous (right vs. wrong), but the under-
lying variable is continuous (level of mathematical
knowledge or ability). Special types of correlations,
specifically biserial and tetrachoric correlations, are
used to measure relationships involving such artificial
dichotomies. Use of these correlations is based on the
assumption that underlying a dichotomous measure is
a normally distributed continuous variable. For the
case of one quantitative and one dichotomous vari-
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able, a biserial correlation provides an estimate of the
relationship between the quantitative variable and the
continuous variable underlying the dichotomy. For
the case of two dichotomous variables, the tetrachoric
correlation estimates the relationship between the two
continuous variables underlying the measured di-
chotomies. Biserial correlations could be used to es-
timate the relationship between a quantitative mea-
sure, such as a measure of neuroticism as a
personality attribute, and the continuous variable that
underlies a dichotomous test item, such as an item on
a mathematical skills test. Tetrachoric correlations are
commonly used to estimate relationships between
continuous variables that underlie observed dichoto-
mous variables, such as two test items.

Note that for the case of one quantitative and one
dichotomous variable, one could calculate a point-
biserial correlation, to measure the observed relation-
ship, or a biserial correlation, to estimate the relation-
ship involving the continuous variable underlying the
dichotomous measure. The biserial correlation will be
larger than the corresponding point-biserial correla-
tion, because of the assumed gain in measurement
precision inherent in the former. In the population,
the relationship between these two correlations is
given by

h
ppb:pb<ﬁ>’ (1)

where p and g are the proportions of the population
above and below the point of dichotomization, and &
is the ordinate of the normal curve at that same point
(Magnusson, 1966). Values of & for any point of di-
chotomization can be found in standard tables of nor-
mal curve areas and ordinates (e.g., Cohen & Cohen,
1983, p. 521).

For the case of two dichotomous variables, one
could compute either a phi coefficient to measure the
observed relationship or the tetrachoric correlation to
estimate the relationship between the underlying di-
chotomies. Again because of the assumed gain in
measurement precision, the tetrachoric correlation is
higher than the corresponding phi coefficient. Al-
though the general relationship between a phi coeffi-
cient and a tetrachoric correlation is quite complex, it
can be defined for dichotomization at the mean as
follows:

pphi = 2'[arCSin(ptetmchoric)]/Fn- (2)

(Lord & Novick, 1968, p. 346). If the assumptions

inherent in the biserial and tetrachoric correlations are
valid, then the corresponding point-biserial correla-
tion and phi coefficient can be seen to underestimate
the relationships of interest because of their failure to
account for the artificial nature of the dichotomous
measures. Given this background on correlation coef-
ficients, we now turn to an examination of how di-
chotomization of a quantitative variable impacts mea-
sures of association between variables.

Analyses of effects of one independent variable.
Various aspects of the impact of dichotomization on
results of statistical analysis have been examined and
discussed in the methodological literature for many
years. Here we review and examine in detail the most
important issues in this area, beginning with the sim-
plest case of dichotomization of a single independent
variable. Basic issues associated with this case were
discussed by Cohen (1983). Suppose that X and Y
follow a bivariate normal distribution in the popula-
tion with a correlation of py,; variance in Y accounted
for by its linear relationship with X is then pgy. If X is
dichotomized at the mean to produce X,, then the
resulting population correlation between X, and Y can
be designated py, . (Note that for a normally distrib-
uted variable, dichotomization at the mean and the
median are equivalent in the population.) To under-
stand the impact of dichotomization on the relation-
ship between the two variables, we must examine the
relationship between pyy and py ,. This relationship
can be seen to correspond to the theoretical relation-
ship between a biserial and point-biserial correlation.
That is, py,y corresponds to a point-biserial correla-
tion, representing the association between a dichoto-
mous variable and a quantitative variable, and py,y is
equivalent to the corresponding biserial correlation,
where X is the continuous, normally distributed vari-
able that underlies Xp. The relationship between a
point-biserial and biserial correlation was given in
Equation 1. Given this relationship, the effect of di-
chotomization on py, can then be represented as

h
Pxpy = Px;(ﬁ)- 3)

The value of h/\/1;1 can be viewed as a constant, to be
designated d, representing the effect of dichotomiza-
tion under normality. For example, if X is dichoto-
mized at the mean to produce Xy, then p = .50, g =
.50, h = 399, yielding d = .798. The effect of di-
chotomization on the correlation is then given by py
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= (.798)pyy, with shared variance being reduced by
piDY = (.637)pzy. To represent the effect of dichoto-
mization at points other than the mean, Figure 4
shows the value of d = h/\/p_q as a function of p, the
proportion of the population above the point of di-
chotomization. It can be seen that as the point of
dichotomization moves further from the mean, the
impact on the correlation coefficient increases.
Clearly there is substantial loss of effect size in the
population due to dichotomization at any point. This
quantification of the loss is consistent with the sub-
jective impression conveyed by Figures 1 and 2,
where the linear relationship between X and Y appears
to be weakened by dichotomization of X.

The results in our numerical example reported ear-
lier are consistent with these theoretical results. Our
sample was drawn from a population where py, = .40
and p%y = .16. Following dichotomization, these
population values would become py , = (.798)(.40)
= 32and px y = (.637)(.16) = .10. In our sample
we found that dichotomization reduced ry, = .30 to
Ix,y = -21, and the corresponding squared correlation
from .09 to .04. Thus, the proportional reduction of
effect size in our sample was slightly larger than
would have occurred in the population.

Of course, there would be sampling variability in
the degree of change from ryy to ry . If we were to
generate a new sample (N = 50) for our illustration,

1.0

we would obtain different values of ryy and ry ,. The
impact of dichotomization would vary from sample to
sample. An interesting question is whether dichoto-
mization could cause ry, to increase, even under nor-
mality, simply because of sampling error. This point
is relevant because researchers sometimes justify di-
chotomization because of a finding that it yielded a
higher correlation. To examine this issue, we con-
ducted a small-scale simulation study. We defined
five levels of population correlation, py, = .10, .30,
.50, .70, .90. We then generated repeated random
samples from bivariate normal populations at each
level of pyy, using six different levels of sample size,
N = 50, 100, 150, 200, 250, 300. We generated
10,000 such samples for each combination of levels of
sample size and py,. In each sample we computed ryy,
then dichotomized X at the median and computed
r'x,y- For each combination of pyy and sample size, we
then simply counted the number of times, out of
10,000, that ry_y > ryy, that is, the number of times
where dichotomization resulted in an increase in the
correlation. Results are shown in Table 1. Of interest
is the fact that when sample size and py, were rela-
tively small, it was not unusual to find that dichoto-
mization resulted in an increase in the correlation be-
tween the variables, simply due to sampling error.
That is, even though, under bivariate normality, di-
chotomization must cause the population correlation
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Figure 4. Proportional effect of dichotomization of X on correlation between X and Y as a
function of point of dichotomization; p and ¢ are the proportions of the population above and
below the point of dichotomization, and / is the ordinate of the normal curve at the same point.
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Table 1

Frequency of Increase in Correlation Coefficient After
Dichotomization of Independent Variable for Various
Levels of Population Correlation (pyy) and Sample Size

N
Pxy 50 100 150 200 250 300

10 4,126 3,760 3,435 3,277 3,015 2,882
30 2,430 1,620 1,109 776 612 434

S50 1,015 371 127 56 25 2
.70 173 12 3 1 0 0
90 0 0 0 0 0 0

Note. Entries indicate the number of trials out of 10,000 in which
Ixpy > Txy-

to decrease, application of this approach in small
samples or when py, is relatively small can easily
result in an increase in the sample correlation. Un-
doubtedly in some cases such increases would cause a
correlation that was not statistically significant prior
to dichotomization to become so after dichotomiza-
tion. These results must raise a caution about potential
justification of dichotomization in practice. A finding
that ry y > ryy must not be taken as evidence that
dichotomization was appropriate or beneficial. In fact,
under conditions typically found in psychological re-
search, dichotomization will cause the population cor-
relation to decrease; an observation of an increase in
the sample correlation in practice is very possibly
attributable to sampling error. Failure to understand
this phenomenon could easily cause inappropriate
substantive interpretations.

The loss of effect size in the population following
dichotomization, and corresponding expected loss in
the sample, can affect the outcome of tests of statis-
tical significance. In our earlier example, the 7 statistic
for testing the significance of r dropped from 2.19
prior to dichotomization to 1.47 after, and statistical
significance was lost. This loss of statistical signifi-
cance can be attributed directly to loss of statistical
power. Considering the power of the test of the null
hypothesis of zero correlation, we note that in our
example, prior to dichotomization power was .84,
based on py, = .40, N = 50, a = .05, two-tailed test.
After dichotomization of X, power was reduced to .63,
based on py y = (.798)(.40) = .32. Such a loss of
power would become more severe as the point of
dichotomization moves away from the mean, because
the loss of effect size would be greater (see Figure 4).
As noted by Cohen (1983), the loss of power caused
by dichotomization can be viewed alternatively as an
effective loss of sample size. For instance, in our ex-

ample, prior to dichotomization, power of .63 could
have been achieved with a sample size of only 32.
Thus, the reduction in power from .84 to .63 due to
dichotomization was equivalent to reducing sample
size from 50 to 32, or discarding 36% of our sample.
For a two-tailed test of the null hypothesis of zero
correlation, using o = .05, this effective loss of
sample size resulting from a median split will be con-
sistently close to 36%. It will deviate from this level
when any of these aspects is altered, in particular
becoming greater when the point of dichotomization
deviates from the mean.

Let us next consider the case where both the inde-
pendent variable X and the dependent variable Y are
dichotomized, thereby converting a correlation ques-
tion into analysis of a 2 x 2 table of frequencies. We
can examine the impact of double dichotomization by
focusing on the relationship between pyy and py v,
the correlations before and after double dichotomiza-
tion. The relationship between these values corre-
sponds to the relationship between a phi coefficient
and the corresponding tetrachoric correlation, assum-
ing bivariate normality. The value py, , is a phi co-
efficient, a correlation between two dichotomous vari-
ables, and the value py, is the corresponding
tetrachoric correlation, the correlation between nor-
mally distributed variables, X and Y, that underlie the
two dichotomies, X, and Y. For dichotomization at
the mean, the relationship between the phi coefficient
and the tetrachoric correlation was given in Equation
2. In the present context, this relationship becomes

Px, v, = 2[arcsin(pyy) ]/ @

and thus represents the impact of double dichotomi-
zation on the correlation of interest.” This relationship
is shown in Figure 5, indicating the association be-
tween population correlations obtained before di-
chotomization (analogous to tetrachoric correlation,
on horizontal axis) and after dichotomization (analo-
gous to phi coefficient, on vertical axis). For instance,
the value of py, = .40 in our example would be
reduced to py = .26. Our sample result showed an
even larger reduction, from ry, = .30 to ry , = .06.

% For the case of dichotomization of both variables, Co-
hen (1983) incorrectly assumed that the effect on py, would
be the square of the effect of single dichotomization; for
example, py = (.798)* pyy for dichotomization at the
mean. This same error occurs in Peters and Van Voorhis
(1940) and was recognized by Vargha et al. (1996).
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Figure 5. Relationship between phi and tetrachoric corre-
lation for dichotomization of X and Y at their means.

In general, loss of effect size is greater when both
variables are dichotomized than when only one is di-
chotomized. As the point of dichotomization moves
away from the mean, the relationship between the phi
coefficient and tetrachoric correlation becomes much
more complex (Kendall & Stuart, 1961; Pearson,
1900), and the difference between the two coefficients
becomes greater.

As in the case of dichotomization of only X, the
loss of effect size under double dichotomization can
be represented as a loss of statistical power. In our
example, power of the test of zero correlation would
be reduced from .84 prior to dichotomization to only
45 after dichotomization of both X and Y. And as
before, such loss of power could be represented as an
effective discarding of a portion of the original
sample. Loss of power, or effective loss of sample
size, becomes more severe if either or both of the
variables are dichotomized at points away from the
mean.

It is important to keep in mind that the effects of
dichotomization of X, or of both X and Y, just de-
scribed are based on the assumption of bivariate nor-
mality of X and Y. It may be tempting to conclude that
in empirical populations these effects would not hold.
However, Cohen (1983) emphasized that these phe-
nomena would be altered only marginally by nonnor-
mality. It would require extreme skewness, hetero-
scedasticity, or nonlinearity to substantially alter these
consequences of dichotomization, conditions that
probably are rather uncommon in social science data.
When such conditions are present, that situation sim-

ply means that the formulas provided above for the
influence of dichotomization on correlations might
not hold closely. Such a complication does not pro-
vide justification for dichotomization of variables.
Rather, it would still be advisable not to dichotomize,
but instead to retain information about individual dif-
ferences and to consider resolving the extreme skew-
ness, heteroscedasticity, or nonlinearity by use of
transformations of variables or nonlinear regression.

The issue of nonlinearity merits special attention.
Suppose that the original relationship between X and
Y were nonlinear, such that a scatter plot such as that
in Figure 1 revealed a clear nonlinear association.
Such a relationship could be represented easily using
nonlinear regression, and the investigator could obtain
and present a clear picture of the association between
the variables. However, if X, or both X and Y, were
dichotomized, that nonlinear relationship would be
completely obscured. Presentation of results based on
analyses conducted after such dichotomization would
be misleading and invalid. Such errors can easily oc-
cur accidentally if researchers dichotomize variables
without examining the nature of the association be-
tween the original variables.

Analyses of effects of two independent variables.
We next examine statistical issues for the case of two
independent variables, X, and X,, and one dependent
variable, Y. The linear relationship of X; and X, to ¥
can be studied easily using regression methods. Stan-
dard linear regression can be extended to investigate
interactive effects of the independent variables by in-
troducing product terms (e.g., X5 = X,X,) into the
regression model (Aiken & West, 1991). However, in
practice it is not uncommon for investigators to di-
chotomize both X, and X, prior to analysis and to use
ANOVA rather than regression. Over a period of
more than 30 years, a number of methodological pa-
pers have examined the impact of such an approach
on statistical results and conclusions. Humphreys and
colleagues investigated several issues in this context
in a series of articles. Humphreys and Dachler (1969a,
1969b) discussed an approach that they called a
pseudo-orthogonal design in which individuals are
selected in high and low groups on both X, and X, so
as to produce a 2 x 2 design with equal sample sizes
in each cell. This approach does not involve dichoto-
mization of X, and X, after data have been collected
but does involve treating individual-differences mea-
sures as if they were categorical with only two levels.
Such a design had been used by Jensen (1968) in a
study of the relationship of intelligence (X,) and so-
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cioeconomic status (X,) to a measure of rote learning
(Y). Humphreys and Dachler (1969a, 1969b) pointed
out that this approach forces the independent variables
into an orthogonal design when in fact the original X,
and X, may well be correlated. They showed that an
ensuing ANOVA would yield biased estimates of dif-
ferences among means as a result of ignoring the cor-
relation between X; and X,. Humphreys and Fleish-
man (1974) provided further discussion of potentially
misleading results from a pseudo-orthogonal design
and also examined the approach wherein measures of
X, and X, are dichotomized after data are gathered.
Humphreys and Fleishman focused on the fact that
this approach will generally yield unequal sample
sizes in the resulting 2 x 2 design, and they reviewed
various ways to analyze such data using ANOVA.
They showed how ANOVA results would be related
to regression results and described the expected loss
of effect size attributable to dichotomization, as well
as the potential occurrence of spurious interactions. In
yet another article on this matter, Humphreys (1978a),
commenting on an applied article by Kirby and Das
(1977), again cautioned against dichotomization of
independent variables to construct a 2 x 2 ANOVA
design and reiterated the impact in terms of loss of
effect size and power as well as distortion of effects.
Throughout this series of articles Humphreys and
colleagues repeated the general theme of negative
consequences associated with dichotomization of con-
tinuous independent variables, either by selection of
high and low groups or by dichotomization of col-
lected data. They emphasized the loss of information
about individual differences and the bias in estimates
of effects. They argued that ANOVA methods are
inappropriate (“‘unnecessary, crude, and misleading”;
Humphreys, 1978a, p. 874) when independent vari-
ables are individual-differences measures and that it is
preferable to use regression and correlation methods
in such situations so as to retain information about
individual differences and avoid negative conse-
quences incurred by dichotomization (Humphreys,
1978b).

The case of dichotomization of two independent
variables was examined further by Maxwell and
Delaney (1993). After citing numerous empirical
studies that followed such a procedure, Maxwell and
Delaney showed that the impact of dichotomization
on main effects and interactions depends on the pat-
tern of correlations among independent and dependent
variables. Although under many conditions dichoto-
mization of two independent variables will result in

loss of effect size for main effects and interaction, it
was shown that under some conditions dichotomiza-
tion can yield a spurious main effect. The reader will
recall that our numerical example presented earlier
exhibited such a phenomenon. Our regression analy-
ses showed a near zero effect for one of the indepen-
dent variables, but ANOVA using dichotomized in-
dependent variables yielded a significant main effect
for that same variable. Maxwell and Delaney showed
that when the partial correlation of one independent
variable with the dependent variable is near zero and
the independent variables are correlated with each
other, a spurious significant main effect is likely to
occur after dichotomization of both predictors. Our
earlier numerical example had this property: The two
predictors were substantially correlated (.50), and the
partial correlation of X, with Y was zero. The regres-
sion analysis properly revealed no effect of X, on ¥,
whereas ANOVA after dichotomization of X, and X,
yielded a spurious main effect of X,. Maxwell and
Delaney demonstrated that there would be highly in-
flated Type I error rates for tests of main effects in
such situations and that these spurious effects were a
result of bias in estimating population effects and
were not attributable to sampling error. Finally, Max-
well and Delaney also showed that spurious signifi-
cant interactions can occur when two independent
variables are dichotomized. Such an event can occur
when there are direct nonlinear effects of one or both
of X, and X, on Y but no interaction in the regression
model. After dichotomization of X; and X, a subse-
quent ANOVA will often yield a significant interac-
tion simply as a misrepresentation of the nonlinearity
in the effect of X; and/or X,.

Vargha, Rudas, Delaney, and Maxwell (1996) ex-
tended the work of Maxwell and Delaney (1993) by
further examining the case of two independent vari-
ables and one dependent variable. They carefully de-
lineated the loss of effect size or the likely occurrence
of spurious significant effects under various combi-
nations of dichotomized and nondichotomized vari-
ables, showing that the impact of dichotomization de-
pends on the pattern of correlations among the three
variables.

In some instances where effects of two quantitative
independent variables are to be investigated, data are
analyzed by dichotomizing only one of the two vari-
ables, leaving the other intact. Such an approach has
been used to study moderator effects. For instance, if
it is hypothesized that the influence of X, on Y de-
pends on the level of X,, the researcher might dichoto-
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mize X, and then conduct separate regression analyses
of Y on X, for each level of X,. Moderation is then
assessed by testing the difference between the two
resulting values of ry y, with a significant difference
supposedly indicating a moderator effect. It is impor-
tant to note that most methodologists would advise
against such an approach for investigating moderator
effects and would recommend instead the use of stan-
dard regression methods that incorporate interactions
of quantitative variables (Aiken & West, 1991).

Bissonnette, Ickes, Bernstein, and Knowles (1990)
conducted a simulation study to compare the dichoto-
mization approach to the regression approach for ex-
amining moderator effects. When no moderator effect
was present in the population, they found high Type I
error rates under the dichotomization approach, indi-
cating common occurrence of spurious interactions.
Under the regression approach, Type I error rates
were nominal. When moderator effects were present
in the population, they found a higher rate of correct
detection of such effects using the regression ap-
proach than the dichotomization approach. Given the
distortion of information incurred by dichotomization
along with the inflated Type I error rates or loss of
power, as well as the straightforward capacity of stan-
dard regression to test for moderator effects, the use
of the dichotomization method in this context seems
unwarranted and risky.

Finally, it should be noted that although our pre-
sentation here has been limited to the cases of one or
two independent variables, the issues and phenomena
we have examined are not limited to those cases. The
same issues apply for designs with three or more in-
dependent variables, although further complexities
arise depending on the pattern of correlations among
the variables and how many variables are dichoto-
mized.

Aggregation and comparison of results across stud-
ies. Regardless of the number of independent vari-
ables, dichotomization raises issues regarding com-
parison and aggregation of results across studies.
Allison, Gorman, and Primavera (1993) cautioned
that dichotomization may introduce a lack of compa-
rability of measures and results across studies. For
example, groups defined as high or low after dichoto-
mization may not be comparable between studies, es-
pecially if the point of dichotomization is data depen-
dent (e.g., the median). That is, the point of
dichotomization may vary considerably between stud-
ies, thus making groups not comparable. Even when
dichotomization is conducted using a predefined scale

point, resulting groups may differ considerably de-
pending on the nature of the population from which
the sample was drawn.

Hunter and Schmidt (1990) discussed problems
caused by dichotomization when results from differ-
ent studies are to be aggregated using meta-analysis.
They showed that dichotomization of one or more
independent variables will tend to cause downward
distortion of aggregated measures of effect sizes as
well as upward distortion of measures of variation of
effect sizes across studies. They suggested methods
for correcting these distortions in meta-analytic stud-
ies. However, those methods do not resolve the prob-
lem because they rely on their own assumptions and
estimation methods. Such corrections are necessary
only because of the persistent use of dichotomization
in applied research.

Summary of Impact of Dichotomization on
Measurement and Statistical Analyses

In this section we have reviewed literature on the
variety of negative consequences associated with di-
chotomization. These include loss of information
about individual differences, loss of effect size and
power, the occurrence of spurious significant main
effects or interactions, risks of overlooking nonlinear
effects, and problems in comparing and aggregating
findings across studies. To our knowledge, there have
been no findings of positive consequences of dichoto-
mization. Given this state of affairs, it would seem
that use of dichotomization in applied research would
be rather rare, but that is not at all the case. We now
examine such usage in selected areas of applied re-
search in psychology.

The Use of Dichotomization in Practice
Method

We selected six journals publishing research ar-
ticles in clinical, social, personality, applied, and de-
velopmental psychology. The specific journals se-
lected were Journal of Personality and Social
Psychology, Journal of Consulting and Clinical Psy-
chology, Journal of Counseling Psychology, Develop-
mental Psychology, Psychological Assessment, and
Journal of Applied Psychology. These journals are
known for publishing research articles of high quality.
The rationale behind selecting leading journals is
simple. Leading journals are known for their high
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standards, especially when statistical and method-
ological considerations are present. If we were to find
common use of dichotomization in high-quality jour-
nals, this would suggest not only that uses of dichoto-
mization must appear in other journals as well but also
that leading researchers, as well as editors and review-
ers, may be relatively unaware of the consequences
associated with the use of dichotomization.

For each journal, we set out to examine all articles
published from January 1998 through December
2000. This time interval was selected so as to reflect
current practice. We limited our review to articles
containing empirical studies, and we examined each
such article to determine if any measured variables
had been dichotomized prior to statistical analyses.
An examination of articles published in 1998 in these
six journals showed relatively frequent use of dichoto-
mization in three of the journals—Journal of Person-
ality and Social Psychology, Journal of Consulting
and Clinical Psychology, and Journal of Counseling
Psychology—but relatively rare usage in the other
three—Developmental Psychology, Psychological As-
sessment, and Journal of Applied Psychology. (Al-
though Developmental Psychology contained rela-
tively few uses of dichotomization per se, it did
contain an abundance of examples wherein subjects
were divided into several groups based on chronolog-
ical age.) Therefore, the full 3-year literature review
was conducted only on the former set of three jour-
nals. In our review, we tabulated information about
various forms of dichotomization, including median
splits, mean splits, and other splits at selected scale
points. We also noted other types of splits, such as
tertiary splits or selection of extreme groups, although
such splits are not examined directly in this article.
For each instance of dichotomization we noted the
variable that was split. In addition, we noted whether
or not a justification for the split was given and what
that justification was.

Results

In the three journals examined, there were a total of
958 articles. Of the 958 articles we found that a total
of 110 articles, or 11.5%, contained at least one in-
stance of dichotomization of a quantitatively mea-
sured variable. For those 110 articles a total of 159
instances of dichotomization were identified. For
practical reasons, we did not count multiple median
splits performed on the same variable within a given
article. Summary information about our literature sur-
vey is presented in Table 2.

Table 2
Summary of Literature Search
No. of Percentage No. of
No. of articles of articles articles with

Journal articles with splits* with splits double splits
JPSP 518 82 (123) 15.8 7
JCCP 312 20 (27) 6.4 1
JCP 128 8(9) 6.3 1

Total ~ 958 110 (159) 11.5 9

Note. The literature search was conducted on all articles pub-
lished in JPSP, JCCP, and JCP from January 1998 through Decem-
ber 2000.

JPSP = Journal of Personality and Social Psychology, JCCP =
Journal of Consulting and Clinical Psychology; JCP = Journal of
Consulting Psychology.

# Numbers in parentheses refer to total number of variables split.

As stated earlier, we also examined justifications
offered for use of dichotomization. Of the 110 cases
in which dichotomization was conducted, only 22 of
those cases (20%) were accompanied by any justifi-
cation. Thus, dichotomization seems to be most often
used without any explicit justification. Some of the
justifications offered for dichotomization included (a)
following practices used in previous research, (b) sim-
plification of analyses or presentation of results, (c)
gaining a capability for examining moderator effects,
(d) categorizing because of skewed data, (e) using
clinically significant cutpoints, and (f) improving sta-
tistical power. In most cases, however, as noted
above, no justification at all was offered, and it is not
clear that this matter was even considered. Variables
that were split were most often self-rated psychologi-
cal scales. Scores on instruments assessing depres-
sion, anxiety, marital satisfaction, self-monitoring, at-
titudes, self-esteem, need for cognition, narcissism,
and so forth were frequently dichotomized, although
these examples represent only a small subset of the
dichotomized variables encountered. Chronological
age was the subject of frequent dichotomization, al-
though it was more often segmented into several “age
groups” based on arbitrary cutpoints.

Potential Justifications for Dichotomization

We now consider the question of why there seems
to be persistent use of dichotomization in applied re-
search in psychology in spite of the methodological
case against it. We examine here a variety of possible
reasons or justifications for such usage and offer our
own assessment of each. Some of these justifications
are extracted from explicit statements in published
studies, whereas others are drawn from numerous dis-
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cussions with colleagues and applied researchers over
a period of many years. Many researchers who use
dichotomization are eager to defend the practice in
such discussions, and in the following sections we try
to provide a fair representation of such defenses.

Lack of Awareness of Costs

Some researchers who use dichotomization may
simply be unaware of its likely costs and negative
consequences as delineated earlier in this article.
When made aware of such costs, some of these indi-
viduals may be eager to use more appropriate regres-
sion methods and thereby avoid the costs and enhance
the measurement and statistical aspects of their stud-
ies. We hope that the present article will have such an
impact on researchers.

Perceiving Costs as Benefits

Some investigators acknowledge the costs but ar-
gue that those very costs provide a justification for
dichotomization. This argument is that because di-
chotomization typically results in loss of measure-
ment information as well as effect size and power, it
must yield a more conservative test of the relationship
between the variables of interest. Therefore, a finding
of a statistically significant relationship following di-
chotomization is more impressive than the same find-
ing without dichotomization; the relationship must be
especially strong to still be found even when effect
size and power have been reduced. Essentially, this
argument reduces to the position that a more conser-
vative statistical test is a benefit if it yields a signifi-
cant result.

Let us consider this defense carefully. The argu-
ment focuses on results of a test of statistical signifi-
cance and also rests on the premise that dichotomiza-
tion will make such tests and corresponding measures
of effect size more conservative. The focus on statis-
tical significance is unfortunate, and the premise is
false. First, regarding a focus on statistical signifi-
cance, the American Psychological Association
(APA) Task Force on Statistical Inference (Wilkinson
and the Task Force on Statistical Inference, 1999)
urged researchers to pay much less attention to ac-
cept-reject decisions and to focus more on measures
of effect size, stating that “reporting and interpreting
effect sizes . . . is essential to good research” (p. 599).
In addition, the Publication Manual of the American
Psychological Association (5th ed.; APA, 2001) em-
phasized that significance levels do not reflect the

magnitude of an effect or the strength of a relationship
and stated the following with respect to reporting re-
sults: “For the reader to fully understand the impor-
tance of . . . [a researcher’s] findings, it is almost al-
ways necessary to include some index of effect size or
strength of relationship in ... [the article’s] Results
section” (p. 25). With regard to the present issue, this
perspective implies that it is misguided to focus
merely on whether or not a statistical test yields a
significant result after dichotomization. Rather, it is
important to consider the size of the effect of interest.
Our review of methodological issues presented earlier
emphasized that dichotomization can play havoc with
measures of effect size, generally reducing their mag-
nitude in bivariate relationships and potentially reduc-
ing or increasing them in analyses involving multiple
independent variables. Second, the belief that statis-
tical tests will always be more conservative after di-
chotomization is mistaken. Although this will tend to
be true in the case of dichotomization of a single
independent variable, it is by no means always true.
Our earlier results (see Table 1) showed that dichoto-
mization may cause an increase in effect size simply
due to sampling error, thus producing a less conser-
vative test. In addition, statistical tests may not be
more conservative when two or more independent
variables are dichotomized. In that case, as illustrated
earlier, spurious significant main effects or interac-
tions may arise depending on the pattern of intercor-
relations between the variables. Thus, it is not at all
the case that dichotomization will always make a sta-
tistical test or a measure of effect size more conser-
vative.

Even if dichotomization did routinely yield more
conservative statistical tests and measures of effect
size, such a defense of its usage is highly suspect.
Researchers typically design and conduct studies so as
to enhance power and measures of effect size, as re-
flected in efforts to use reliable measures, obtain large
samples, and use moderate alpha levels in hypothesis
testing. If in fact more conservative tests were more
desirable and defensible, then perhaps researchers
should use less reliable measures, smaller samples,
and small levels of alpha. One might then argue that
if significant effects were still found, those effects
must be quite strong and robust. Of course, such an
approach to research would be counterproductive as
are most uses of dichotomization. Our general view is
that this defense of dichotomization is not supportable
on statistical grounds and is inconsistent with basic
principles of research design and data analysis.
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Lack of Awareness of Proper Methods
of Analysis

Over a period of many years, in discussions about
dichotomization, we have encountered numerous re-
searchers who simply have been unaware that re-
gression/correlation methods are generally more ap-
propriate for the analysis of relationships among
individual-differences measures. This is especially
true of individuals whose primary training and expe-
rience in the use of statistical methods is limited to or
heavily emphasizes ANOVA. Of course, ANOVA is
an important tool for data analysis in psychological
research. However, difficulties and serious conse-
quences arise when a problem that is best handled by
regression/correlation methods is transformed into an
ANOVA problem by dichotomization of independent
variables. We are convinced that many researchers are
not sufficiently familiar with or aware of regression/
correlation methods to use them in practice and there-
fore often force data analysis problems into an
ANOVA framework. This seems especially true in
situations where there are multiple independent vari-
ables and the investigator is interested in interactions.
We have repeatedly encountered the argument that
dichotomization is useful so as to allow for testing of
interactions, under the (mistaken) belief that interac-
tions cannot be investigated using regression meth-
ods. In fact, it is straightforward to incorporate and
test interactions in regression models (Aiken & West,
1991), and such an approach would avoid problems
described earlier in this article regarding biased mea-
sures of effect size and spurious significant effects.
Furthermore, regression models can easily incorpo-
rate higher way interactions as well as interactions of
a form other than linear x linear—for example, a lin-
ear x quadratic interaction. Thus, we encourage re-
searchers who use dichotomization out of lack of fa-
miliarity with regression methods to invest the modest
amount of time and effort necessary to be able to
conduct straightforward regression and correlational
analyses when independent variables are individual-
differences measures.

A related issue, or underlying cause of this lack of
awareness of appropriate statistical methods, involves
training in statistical methodology in graduate pro-
grams in psychology. Results of surveys of such train-
ing (Aiken, West, Millsap, & Taylor, 2000; Aiken,
West, Sechrest, & Reno, 1990) indicate that education
in statistical methods is somewhat limited for many
graduate students in psychology and often focuses
heavily on ANOVA methods. Although training in

regression methods is certainly available in many pro-
grams, it receives less emphasis and is less often part
of a standard program. Clearly, enhanced training in
basic methods of regression analysis could increase
awareness and usage of appropriate methods for
analysis of measures of individual differences and
help to avoid some of the problems resulting from
overreliance on ANOVA, such as the common usage
of dichotomization.

Dichotomization Resulting in
Higher Correlation

It is not rare for an investigator to dichotomize an
independent variable, X, and to find that the correla-
tion between X and the dependent variable, Y, is
higher after dichotomization than before dichotomi-
zation; that is, ry_y > ryy. Under such circumstances it
may be tempting for the investigator to believe that
such a finding justifies the use of dichotomization. It
does not. In our earlier discussion of the impact of
dichotomization on results of statistical analyses, we
reviewed how population correlations would gener-
ally be reduced. We also showed by means of a simu-
lation study that this effect will not always hold in
samples (see the results in Table 1). That is, simply
because of sampling error, sample correlations may
increase following dichotomization, especially when
sample size is small or the sample correlation is small.
Such an occurrence in practice may well be a chance
event and does not provide a sound justification for
dichotomization.

Dichotomization as Simplification

A common defense of dichotomization involves, in
one form or another, an argument that analyses and
results are simplified. In terms of analyses, this argu-
ment rests on the premise that an analysis of group
differences using ANOVA is somehow simpler than
an analysis of individual differences using regression/
correlation methods. We suggest that proponents of
this position may simply be more familiar and com-
fortable with ANOVA methods and that the analyses
and results themselves are not simpler. Both ap-
proaches can be applied in routine fashion, and results
can be presented in standard ways using statistics or
graphics. For instance, from our example of a bivari-
ate relationship presented early in this article, corre-
lational results showed ryy = .30, 1%y, = .09, #(48) =
2.19, p = .03. Figure 1 shows a scatter plot of the raw
data, which conveys an impression of strength of as-
sociation. Results after dichotomization would be pre-
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sented in terms of a difference between group means.
Means of Y for the high and low groups on X were
21.1 and 19.4, respectively. The test of the difference
between these means yielded #48) = 1.47, p = .15.
Both sets of results are straightforward to present, and
we see no real gain in simplicity by using ANOVA
instead of regression.

For designs with two independent variables, the
same principle holds. ANOVA results are typically
presented in terms of tables or graphs of cell means.
Regression results would be presented in terms of
regression coefficients and associated information.
An extremely useful mechanism for presenting inter-
actions in a regression analysis is to display a plot of
several regression lines. For example, a finding of a
significant interactive effect of X, and X, on Y could
be portrayed in terms of three regression lines. The
first represents the regression of Y on X, for an indi-
vidual low on X, (e.g., | standard deviation below the
mean), the second represents the regression of Y on X,
for an individual at the mean of X,, and the third
represents the regression of Y on X, for an individual
high on X, (e.g., 1 standard deviation above the
mean). All three lines can be displayed in a single
plot, which can provide a simple and clear basis for
understanding the nature of the interaction. This ap-
proach to presenting interactions is described and il-
lustrated in detail by Aiken and West (1991). Again,
we see no loss in simplicity of analysis or results for
regression versus ANOVA.

We do recognize that for some individuals it may
be conceptually simpler to view results in terms of
group differences rather than individual differences.
However, this conceptual simplification, to whatever
extent it is real, is achieved only at a high cost—Iloss
of information about individual differences, havoc
with effect sizes and statistical significance, and so
forth. Furthermore, the acceptance of such a simpli-
fied perspective will be misleading if the “groups”
yielded by dichotomization are not real but are simply
an artifact of arbitrarily splitting a sample and dis-
carding information about individual differences. We
consider the notion of groups shortly.

In considering the argument that dichotomization
provides simplification, Allison et al. (1993) coun-
tered with the view that in fact dichotomization intro-
duces complexity. They emphasized complications
arising when two or more independent variables are
dichotomized. Such a procedure typically creates a
nonorthogonal ANOVA design, with its associated
problems of analysis and interpretation, and also plays

havoc with effect sizes and interpretations as de-
scribed earlier. In fact, regression analyses are much
simpler and allow the researcher to avoid these prob-
lems and the associated chance of being misled by
results.

One additional perspective regarding the defense of
simplification should be considered. Some research-
ers may dichotomize variables for the sake of the
audience, believing that the audience will be more
receptive to and will more easily understand analyses
and results conveyed in terms of group differences
and ANOVA. Although this perspective may be par-
tially valid at times, we urge researchers and authors
to avoid this trap. Clearly such a concession has nega-
tive consequences that far outweigh any perceived
gains, very possibly including the drawing of incor-
rect conclusions about relationships among variables.
No real interests are served if researchers use methods
known to be inappropriate and problematic in the be-
lief that the target audience will better understand
analyses and results, especially when the results may
be misleading and proper methods are simple and
straightforward. All parties would be better served by
obtaining and implementing the basic knowledge nec-
essary for selection and use of appropriate statistical
methods as well as for reading and understanding re-
sults of corresponding analyses.

Representing Underlying Categories
of Individuals

Perhaps the most common defense of dichotomiza-
tion is that there actually exist distinct groups of in-
dividuals on the variable in question, that a dichoto-
mized measure more appropriately represents those
groups, and that analyses should be conducted in
terms of group differences rather than individual dif-
ferences. Such an argument is potentially controver-
sial both statistically and conceptually and must be
examined closely.

There seem to be two distinct perspectives regard-
ing the construction or existence of distinct groups of
individuals on psychological attributes. These views
have been discussed in the personality research litera-
ture. Block and Ozer (1982) discussed the type-as-
label versus type-as-distinctive form perspectives.
Drawing a similar distinction, Gangestad and Snyder
(1985) described phenetic versus genetic bases for
classes and also expressed the view that some psy-
chological variables are dimensional, wherein indi-
vidual differences are a matter of degree, whereas
others are discrete, wherein individual differences
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represent discrete classes. The type-as-label or phe-
netic view is that classes are merely constructed from
data and have no underlying meaning. That is, they do
not represent distinct categories of individuals but are
essentially arbitrary groups defined by partitioning a
sample according to scores on variables of interest.
The partitioning may be carried out by an arbitrary
splitting of one or more scales or may be the result of
some more sophisticated approach such as cluster
analysis. Regardless, the resulting groups have no
substantive meaning as distinct categories. The type-
as-distinctive-form or genetic view is based on the
notion that there exists a discrete structure of indi-
vidual differences underlying the observed variation
on quantitative measures. The underlying categories
have a genetic basis and a causal role with regard to
observed measures. Meehl (1992) referred to such
classes as taxons, and stated that quantitative mea-
sures may distinguish among taxons in the sense that
those classes differ in kind as well as degree.

In the context of psychological research, it is clear
that, to use Gangestad and Snyder’s (1985) terms,
phenetically defined groups are not as interesting or
important as genetically defined groups. The former
do not provide any insight about variables of interest,
nor about relationships of those variables to others. In
fact, basing analyses and interpretation on such arbi-
trary groups is probably an oversimplification and po-
tentially misleading. Genetically defined groups are
clearly more interesting, but also somewhat contro-
versial when their existence is inferred from indi-
vidual-differences measures. It would seem difficult
to make a case that groups defined by dichotomization
of measures of such attributes as self-esteem, anxiety,
and need for cognition are genetically based and rep-
resent a discrete structure of individual differences.
This is not to say that such structures do not exist.
Meehl (1992; Waller & Meehl, 1998) suggested that
there is ample empirical evidence to support the ex-
istence of taxons, especially in the areas of personality
and clinical assessment.

An interesting case study regarding the potentially
controversial nature of this issue began with an article
by Gangestad and Snyder (1985), who presented a
conceptual argument along with research results at-
tempting to make the case that the variable self-
monitoring has a discrete underlying structure. As-
suming the observed distribution of scores on a self-
monitoring measure to represent distinct classes, and
using methods for identifying latent classes or taxons
(see Waller & Meehl, 1998), Gangestad and Snyder

made a case for the existence of discrete high and low
groups that were split at about a 60:40 ratio. Miller
and Thayer (1989) attempted to refute this purported
class structure for self-monitoring based on various
correlational analyses that, they argued, supported the
systematic structure of individual differences beyond
the differences represented by a simple high—low di-
chotomy. In a subsequent article, Gangestad and
Snyder (1991) argued that the results obtained by
Miller and Thayer were not germane to the view that
there existed an underlying class structure for self-
monitoring.

Regardless of which party had the upper hand in
this exchange and regardless of whether or not there
exist two distinct categories of individuals with re-
spect to self-monitoring, a critical point is that the
existence of such classes is subject to study and analy-
sis and must not be assumed. As emphasized by
Meehl (1992), the question of whether a particular
phenomenon is most appropriately viewed as dimen-
sional, taxonic, or some mix of these is an empirical
question. Such issues can be examined using methods
for identifying distinct classes or distributions of in-
dividuals, given measures for a sample of individuals
on one or more variables. Waller and Meehl (1998)
used the generic term faxometric methods for such
techniques. Taxometric methods include a variety of
techniques such as cluster analysis (methods for iden-
tifying clusters of individuals from multivariate data;
Arabie, Hubert, & De Soete, 1996), mixture models
(methods for identifying distinct distributions of indi-
viduals that combine to form an observed overall dis-
tribution; Arabie et al., 1996; Waller & Meehl, 1998),
and latent class analysis (methods for identifying
types of individuals based on multivariate categorical
data; McCutcheon, 1987). In the present context
where we are considering the possible existence of
distinct types or groups of individuals on single mea-
sured variables, relevant taxometric methods would
probably be limited to univariate mixture models and
some clustering methods that could be applied to
single variables. Regardless, whenever the researcher
wishes to investigate or argue for the existence of
distinct taxons, types, or classes, he or she should
support the argument with taxometric analyses, rather
than assume its validity.

Given this background, let us consider the defense
of dichotomization as a technique for representing
types of individuals. It should be immediately clear
that dichotomization is not a taxometric method but is
rather a simple method for grouping individuals into
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arbitrarily defined classes. Even if discrete latent
classes actually exist in a given case, the groups re-
sulting from dichotomization may bear little or no
resemblance to those latent classes. Dichotomization
assumes that the number of taxons is two and does not
allow for the possibility that there are more than two.
Furthermore, dichotomization at the median assumes
that the base rate for each of those two taxons is 50%.
Dichotomization at some other scale point is probably
no less arbitrary in terms of unjustifiable assumptions
about the number of taxons and their base rates. Al-
though Meehl (1992) argued for the existence of tax-
ons in some cases, he clearly saw little value in di-
chotomization, cautioning that categories concocted
by dichotomization of some measure are simply arbi-
trary classes and are not of interest to psychologists.
In short, even if a researcher believes that there exist
distinct groups or types of individuals and an under-
lying taxonic structure, dichotomization is not a use-
ful technique. It is based on untenable assumptions
and defines arbitrary classes that are unlikely to have
much empirical validity. Rather, in such situations, a
researcher should apply taxometric methods to assess
the presence of latent classes and classify individuals
into groups for subsequent analyses.

Dichotomization and Reliability

In questioning colleagues about their reasons for
use of dichotomization, we have often encountered a
defense regarding reliability. The argument is that the
raw measure of X is viewed as not highly reliable in
terms of providing precise information about indi-
vidual differences but that it can at least be trusted to
indicate whether an individual is high or low on the
attribute of interest. Based on this view, dichotomi-
zation, typically at the median, would provide a “more
reliable” measure. Cohen (1983) mentioned this pos-
sible justification but claimed that dichotomizing
would in fact reduce reliability by introducing errors
of discreteness. He did not elaborate on the effect of
dichotomization on measurement reliability. We ex-
amine this issue in detail here and show that, under
principles of classical measurement theory, dichoto-
mization of a continuous variable does not refine the
original measurement, but on the contrary, makes re-
liability substantially worse.

In classical measurement theory, an observed vari-
able score, X, is assumed to be the sum of the true
score, T, and random error, e:

X=T+e. ®))

Under classical assumptions, reliability, pyy, is then

defined as the ratio of true variance to total variance
(Allen & Yen, 1979; Magnusson, 1966):

2 2

Or a7

Pxx 0_; + 0_5 0_}2( . (6)
To examine points of interest in the present context, it
is especially useful to consider the correlation be-
tween observed and true scores, pys, wWhich has a
simple relationship to reliability. The correlation be-
tween observed and true scores can be shown to be
equal to the square root of reliability:?

pxr = Vpxx- 7

The value of py; is called the reliability index and is
designated here as pyy, so that
Pxx = Pxr = \/E( 3
When the observed variable X is dichotomized to
yield X, the value of the reliability index will change,
and our interest is in the nature and degree of such
change. After dichotomization we can define the re-
liability index as py . This definition is problematic,
however, because there are several ways in which T
can be defined after X has been dichotomized. We
consider here three different definitions of 7' for a
dichotomized X, and for each definition of 7 we de-
fine a corresponding reliability index. These three
versions of the reliability index will be designated
Pxx(1) Pxx2y aNd Pyx).
The first such index is based on the notion that the
true score is unchanged by dichotomization of X.
Then the reliability index for X, could be defined as

Pxxy = Px,r )
Note that if X is normal, the relationship between
Pxxc1) and Pxy (or between py, rand pyy) is effectively
the relationship between a point-biserial correlation
and a biserial correlation, respectively. That is, 7' is a
continuous variable, and X is a continuous, normally
distributed variable underlying Xp,. The relationship
between the point-biserial and biserial correlations
was mentioned earlier in another context and was

3 The relationship between reliability and the correlation
of observed and true scores can be shown as follows:

Oxr E(XT) B E(T+e)T

Pxr= O'XO'T_ OxOr - Ox0Or
E(T* +E(Te) ET*+0 o7 o N/
B Ox0r - OxOr B 0'XO'T_ Ox - Px

where E is the expected value operator.
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specified in Equation 1. Adapting Equation 1 to the
present context yields

h
f’XX(l): f’xx(ﬁ)' (10)

For any specific dichotomizing point, Py, is a con-
stant proportion of the corresponding pyy, Where
the constant is given by d = h/\/[;I. For dichotomi-
zation at any specified point, the effect on the reli-
ability index is then given by fyyq, = dpxy. For
dichotomization at the mean, d = .798 (based onp =
.50, g = .50, h = .399). For dichotomization at 0.5
standard deviations from the mean, d = .762 (based
onp = .691,q = .309, h = .352). For more extreme
dichotomization at 1.0 standard deviation, d = .662
(based on p = .841, ¢ = .159, h = .242). These
values indicate the reduction in reliability due to di-
chotomization, considering 7 as unaltered. Figure 4,
presented earlier in another context, can now be
viewed as portraying the reduction in the reliability
index caused by dichotomization at any specified
point on a normally distributed X.

We now consider a second way to conceptualize
the reliability of X,. Suppose we conceive of the di-
chotomized measure X, as a measure of a dichoto-
mized true variable, T,. That is, a perfectly reliable
X, would indicate without error whether each indi-
vidual is above or below the dichotomization split
point on the true score distribution. From this perspec-
tive, the reliability index for X, could be defined as

Pxx2) = PxyTy (11)
Note that pyx,) is a correlation between two dichoto-
mous variables and is thus a phi coefficient. From this
perspective, if X and T are both normal, then the origi-
nal reliability index, or pyy, is effectively the corre-
sponding tetrachoric correlation. The effect on reli-
ability of dichotomization of both X and T is then
given by the relationship between a phi coefficient
and a corresponding tetrachoric correlation. For the
case when both variables are dichotomized at the
mean, this relationship was specified in Equation 2 in
another context. Adapting Equation 2 to the present
context yields

f)XX(z) = 2[arcsin(Pyx) /. (12)
Figure 5, presented earlier, can also be applied to the
present context as showing the impact on reliability
when both X and T are dichotomized at the mean. For
dichotomization away from the mean, the relationship
between a phi coefficient and the corresponding tet-
rachoric correlation becomes very complex with the

difference increasing as the split point deviates further
from the mean, implying a greater impact on reliabil-
ity in the present context.

A third definition of the reliability index after di-
chotomization is based on defining the true score,
according to classical measurement theory, as the ex-
pected value of the observed measurement. If an in-
dividual takes the same measurement repeatedly un-
der appropriate conditions, or if he or she takes
parallel tests, his or her true score would be equal to
the mean of an infinite number of such repeated mea-
sures or parallel tests. This mean over an infinite num-
ber of testings is represented formally using the ex-
pected value operator, E, which indicates more
generally the mean of a random variable over an in-
finite number of samplings. In the present context, we
express the true score for individual i as the expected
value of the observed score:

T, = E(X). (13)

If the observed variable X is dichotomized, the corre-
sponding true score 7% becomes

T} = E(Xp,). (14)

For dichotomization at the split point c, if the dichoto-
mized observed variable X is coded as 1 if it is greater
than ¢ or as zero if not, the true score can be further
expressed as

T; =p(Xp;=1)=pX;>cIT). (15)

This true score for an observed variable after dichoto-
mization is the conditional probability of the observed
score being greater than ¢ given the original undi-
chotomized true score. The conditional probability
density function of X; given 7; is normal with mean T;
and variance ¢2. Therefore, the true score of indi-
vidual i after dichotomization is represented by the
area under the normal curve, with mean 7; and vari-
ance o2, above the cutpoint c. Formally, this is written
using the normal probability density function as

T fw ! Sl P (16)
.= ——— |eX - .
> ¢ 2ma? b 207

Note that T'p, is a continuous variable. The correlation
between the dichotomized observed score X, and the
newly defined true score T, can be computed, and a
third version of reliability index is defined as this
correlation:

Pxx(3) = PxpTiy: (17)

It would be desirable to derive the functional relation-
ship between this newly defined index of reliability,
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Pxx3) and the original reliability index, pyy. How-
ever, such an expression may not be tractable. A
simulation study to be presented shortly demonstrates
the relationship for some conditions.

In summary, we have presented three alternative
definitions of the index of reliability when the mea-
sure X is dichotomized. The first index, pyy ), is the
correlation between the dichotomized observed vari-
able and the original true score; the second, pyy o), 18
the correlation between the dichotomized observed
variable and the dichotomized true score; and the
third, Pyy). is the correlation between the dichoto-
mized observed variable and the corresponding clas-
sically defined true score, which is the expected value
of the dichotomized observed score. The relationships
of Pyx(1y and Py o) to the original reliability index pyy
are specified in Equations 10 and 12, respectively.
The relationship of pyy), to pxy probably does not
have a tractable algebraic representation. These rela-
tionships define the impact of dichotomization on re-
liability under classical measurement theory.

To demonstrate and further examine this effect, we
conducted a simple simulation study. Artificial data
were generated under the classical measurement
model using four levels of the reliability coefficient:
.60, .70, .80, and .90. Transformed to the reliability
index, these values correspond to .775, .837, .894, and
.949, respectively. For each of these four conditions,
a single large random sample (N = 10,000) was gen-
erated based on the classical measurement model
(Equation 5). First, true scores and random errors
were generated independently. The true score was as-
sumed unit normally distributed, and the random error
score was normally distributed with a mean of zero
and a variance of 0> = 1/pyy. True scores and ran-
dom errors were then added to create observed scores
for the 10,000 simulated individuals within each level
of reliability.

For each of these four large samples, the measure X
was then dichotomized at the median, and sample
values of Pyx(1y, Pxx) and Pxxa, were computed.
Note that values of Py, and pyx( could be pre-
dicted by Equations 10 and 12, respectively. Table 3
shows squared values of these indices obtained after
dichotomization, along with predicted values for
f’ixm and 5;20((2)- Squared values of the reliability in-
dex correspond to classically defined reliability. Note
first that the values obtained from the simulated data
were very close to the predicted values. More gener-
ally, results show clearly that dichotomization caused
substantial decreases in reliability regardless of how

Table 3
Effect of Dichotomization at Mean on Reliability

Reliability after dichotomization

Observed Predicted

Reliability before
dichotomization

Reliability index (squared): Py,

.600 375 382

.700 442 446

.800 514 .509

.900 572 573
Reliability index (squared): prx(2,

.600 .307 318

.700 .386 .398

.800 .500 497

.900 .642 .632
Reliability index (squared): f)}z(xm

.600 .399

.700 A87

.800 .596

.900 716

Note. Definitions of alternative versions of the reliability index,
Pxxc1) Pxxca) and Pyys), are provided in Equations 10, 12, and 17,
respectively.

the true score is defined. The impact of dichotomiza-
tion varied across levels of reliability and among the
different indexes examined but was always substan-
tial.

This simulation study was extended to examine the
effect of dichotomization at points away from the
mean. As expected, as the point of dichotomization
deviated further from the mean, the impact on reli-
ability increased. Detailed results are not presented
here but may be obtained from Robert C. MacCallum.

In summary, the foregoing detailed analysis shows
that dichotomization will result in moderate to sub-
stantial decreases in measurement reliability under as-
sumptions of classical test theory, regardless of how
one defines a true score. As noted by Humphreys
(1978a), this loss of reliable information due to cat-
egorization will tend to attenuate correlations involv-
ing dichotomized variables, contributing to the nega-
tive statistical consequences described earlier in this
article. To argue that dichotomization increases reli-
ability, one would have to define conditions that were
very different from those represented in classical mea-
surement theory.

General Comments on Defenses
of Dichotomization

We have considered a variety of defenses and jus-
tifications that have been offered for the practice of
dichotomization of individual-differences measures.
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We believe that under close examination each of these
defenses breaks down. Without valid justification, re-
searchers who dichotomize individual-differences
measures are in a position of using a method that does
considerable harm to the analysis and understanding
of their data, with no clear beneficial effects.

Legitimate Uses of Dichotomization?

Given that we have called into question a wide
range of justifications that are often offered for di-
chotomization, it is interesting to consider the ques-
tion as to whether dichotomization is ever justified.
Although we believe that there may be occasional
cases where it is justified, we emphasize that we be-
lieve such cases to be very rare. Two such cases are
considered here. One would be a situation in which
taxometric analyses provided clear support for the ex-
istence of two types or taxons within the observed
sample, along with a clear scale point that differenti-
ated the classes. Of importance, the existence of types
must be supported by such analyses and must not be
assumed or theorized. Even when such support is ob-
tained, the classes in question almost certainly could
not be identified by the commonly used median split
approach because of the arbitrariness of the point of
dichotomization. Furthermore, the researcher must
recognize that, even given clear evidence for the ex-
istence of distinct groups, dichotomization would
likely result in the loss of reliable information about
individual differences within the groups, as well as
misclassification of some individuals. Claims of the
existence of types, and corresponding dichotomiza-
tion of quantitative scales and analysis of group dif-
ferences, simply must be supported by compelling
results from taxometric analyses.

A second possible setting in which dichotomization
might be justified involves the occasional situation
where the distribution of a count variable is extremely
highly skewed, to the extent that there is a large num-
ber of observations at the most extreme score on the
distribution. For example, suppose research partici-
pants were asked how many cigarettes they smoked
per day. A large number of people would give a re-
sponse of “zero,” and the remainder of the sample
would show a distribution of nonzero values. Such a
distribution indicates the presence of two groups of
people, smokers and nonsmokers. Corresponding di-
chotomization of the measured variable would yield a
dichotomous indicator of smoking status, which may
be useful for subsequent analyses. However, an in-

vestigator following such a procedure must recognize
that such dichotomization involves loss of all infor-
mation about variation among those individuals not at
the extreme scale point (e.g., variation in smoking
frequency among smokers). If such information is to
be retained and the variable is left intact, it is essential
to use specialized regression methods for analysis of
such variables; readers are referred to a discussion of
regression models for count variables in Long (1997).

Although there may be an occasional situation in
which dichotomization is justified, we submit that
such circumstances are very rare in practice and do
not represent common usage of dichotomization. In
common usage, dichotomization is typically carried
out without apparent justification and without serious
awareness or regard for its consequences. Such ad hoc
procedures are simply inappropriate and incur sub-
stantial costs.

Summary and Conclusions

The methodological literature shows clearly and
conclusively that dichotomization of quantitative
measures has substantial negative consequences in
most circumstances in which it is used. These conse-
quences include loss of information about individual
differences; loss of effect size and power in the case
of bivariate relationships; loss of effect size and
power, or spurious statistical significance and overes-
timation of effect size in the case of analyses with two
independent variables; the potential to overlook non-
linear relationships; and, as shown in this article, loss
of measurement reliability. These consequences can
be easily avoided by application of standard methods
of regression and correlational analysis to original
(undichotomized) measures.

Despite these circumstances, many researchers
continue to apply dichotomization to measures of in-
dividual differences. This practice may be due to fac-
tors such as a lack of awareness of the consequences
or of appropriate methods of analysis, a belief in the
presence of types of individuals, or a belief that di-
chotomization improves reliability. Such justifica-
tions have been examined in the present article and,
we believe, have been shown to be invalid.

Cases in which dichotomization is truly appropriate
and beneficial are probably rare in psychological re-
search and probably could be recognized only through
taxometric analyses. Thus, we urge researchers who
are in the habit of dichotomizing individual-
differences measures to carefully examine whether
such a practice is justified. We also urge journal edi-
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tors and reviewers to caution authors against the use
of dichotomization in most situations, and we caution
consumers of research to be skeptical regarding re-
sults of studies wherein individual-differences mea-
sures have been dichotomized. We hope that such
efforts will drastically reduce the practice of dichoto-
mization and its negative impact on our scientific en-
deavors.
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