
 22 ;login: VOL. 36, NO. 6

Everyday computer insecurity has only gotten worse, even after many years of

concerted effort. We must be missing some fundamental yet easily applicable

insights into why some designs cannot be secured, how to avoid investing in them

and re-creating them, and why some result in less insecurity than others. We posit

that by treating valid or expected inputs to programs and network protocol stacks

as input languages that must be simple to parse we can immensely improve security.

We posit that the opposite is also true: a system whose valid or expected inputs

cannot be simply parsed cannot in practice be made secure.

In this article we demonstrate why we believe this a defining issue and suggest

guidelines for designing protocols as secure input languages—and, thus, secure

programs. In doing so, we link the formal languages theory with experiences and

intuitions of both program exploitation and secure programming.

Indeed, a system’s security is largely defined by what computations can and cannot

occur in it under all possible inputs. Parts of the system where the input-driven

computation occurs are typically meant to act together as a recognizer for the

inputs’ validity (i.e., they are expected to reject bad inputs). Exploitation—an unex-

pected input-driven computation—usually occurs there as well; thinking of it as an

input language recognizer bug helps find it (as we will show).

Crucially, for complex inputs (input languages) the recognition that matches the

programmer’s expectations can be equivalent to the “halting problem”—that is,

UNDECIDABLE. Then no generic algorithm to establish the inputs’ validity is

The Halting Problems of Network Stack
Insecurity

L E N S A S S A M A N , M E R E D I T H L . P A T T E R S O N , S E R G E Y B R A T U S ,

A N D A N N A S H U B I N A

Len Sassaman was a PhD

student in the COSIC

research group at Katholieke

Universiteit Leuven. His early

work with the Cypherpunks on the Mixmaster

anonymous remailer system and the Tor

Project helped establish the field of anonymity

research, and in 2009 he and Meredith began

formalizing the foundations of language-

theoretic security, which he was working on at

the time of his death in July 2011. He was 31.

Meredith L. Patterson is a

software engineer at Red

Lambda. She developed

the first language-theoretic

defense against SQL injection in 2005 as a

PhD student at the University of Iowa and has

continued expanding the technique ever since.

She lives in Brussels, Belgium.

mlp@thesmartpolitenerd.com

Sergey Bratus is a Research

Assistant Professor of

Computer Science at

Dartmouth College. He sees

state-of-the-art hacking as a distinct research

and engineering discipline that, although not

yet recognized as such, harbors deep insights

into the nature of computing. He has a PhD in

Mathematics from Northeastern University

and worked at BBN Technologies on natural

language processing research before coming to

Dartmouth.

sergey@cs.dartmouth.edu

Anna Shubina chose “Privacy”

as the topic of her doctoral

thesis and was the operator

of Dartmouth’s Tor exit node

when the Tor network had about 30 nodes

total. She is currently a research associate

at the Dartmouth Institute for Security,

Technology, and Society, and manages the

CRAWDAD.org repository of traces and data

for all kinds of wireless and sensor network

research.

ashubina@cs.dartmouth.edu

 ;login: DECEMBER 2011 The Halting Problems of Network Stack Insecurity 23

SIDEBAR

The Chomsky hierarchy ranks languages

according to their expressive power in a strict

classification of language/grammar/automata

classes that establishes a correspondence

between language classes, their grammars,

and the minimum strength of a computational

model required to recognize and parse them.

Regular languages, the weakest class of lan-

guages, need only a finite state machine and

can be parsed with regular expressions.

Unambiguous context-free grammars, the first

class that allows some recursively nested data

structures, need deterministic pushdown

automata (i.e., they require adding a stack to

the limited memory of a finite state machine).

Ambiguous context-free grammars need non-

deterministic pushdown automata to account

for ambiguity.

The more powerful classes of languages,

context-sensitive languages and recursively

enumerable languages, require linear bounded

automata and Turing machines, respectively,

to recognize them. Turing-recognizable lan-

guages are UNDECIDABLE. There is a bound-

ary of decidability which it is unwise for an

input language or protocol designer to cross, as

is discussed in Principle 1 (p. 29, below).

For the regular and deterministic context-free

grammars, the equivalence problem—do two

grammars produce exactly the same lan-

guage?—is DECIDABLE. For all other classes

of grammar, the equivalence problem is

UNDECIDABLE, and they should be avoided

wherever security relies on computational

equivalence of parser implementations, as

Principle 2 posits.

possible, no matter how much effort is put into making the input data

“safe.” In such situations, whatever actual checks the software per-

forms on its inputs at various points are unlikely to correspond to the

programmer assumptions of validity or safety at these points or after

them. This greatly raises the likelihood of exploitable input handling

errors.

A protocol that appears to frustratingly resist efforts to implement it

securely (or even to watch it effectively with an IDS) behaves that way,

we argue, because its very design puts programmers in the position of

unwittingly trying to solve (or approximate a solution to) an UNDE-

CIDABLE problem. Conversely, understanding the flavor of mismatch

between the expected and the required (or impossible) recognizer

power for the protocol as an input language to a program eases the task

of 0-day hunting.

Yet we realize it is all too easy to offer general theories of insecurity

without improving anything in practice. We set the following three-

pronged practical test as a threshold for a theory’s usefulness, and hope

to convince the reader that ours passes it. We posit that a theory of inse-

curity must:

u explain why designs that are known to practitioners as hard to secure

are so, by providing a fundamental theoretical reason for this hard-

ness;
u give programmers and architects clear ways to avoid such designs in

the future, and prevent them from misinvesting their effort into try-

ing to secure unsecurable systems rather than replacing them;
u significantly facilitate finding insecurity when applied to analysis

of existing systems and protocols—that is, either help point out new

classes of 0-day vulnerabilities or find previously missed clusters of

familiar ones.

As with any attempted concise formulation of a general principle,

parts of an up-front formulation may sound similar to some previously

mooted pieces of security wisdom; to offset such confusion, we precede

the general principles with a number of fundamental examples. We

regret that we cannot review the large corpus of formal methods work

that relates to various aspects of our discussion; for this, we refer the

reader to our upcoming publications (see langsec.org).

The Need for a New Understanding of Computer
(In)Security

Just as usefulness of a computing system and its software in particu-

lar has become synonymous with it being network-capable, network-

accessible, or containing a network stack of its own, we are clearly at an

impasse as to how to combine this usefulness with security.

A quote commonly attributed to Einstein is, “The significant problems

we face cannot be solved at the same level of thinking we were at when

we created them.” We possess sophisticated taxonomies of vulnerabili-

ties and, thanks to hacker research publications, intimate knowledge

of how they are exploited. We also possess books on how to program

 24 ;login: VOL. 36, NO. 6

securely, defensively, and robustly. Yet for all this accumulated knowledge and

effort, insecurity prevails—a sure sign that we are still missing this “next level” in

theoretical understanding of how it arises and how to control it.

A Language Theory Look at Exploits and Their Targets

The “common denominator” of insecurity is unexpected computation (a.k.a. “mali-

cious computation”) reliably caused by crafted inputs in the targeted computing

environment—to the chagrin of its designers, implementers, and operators. As we

point out in [2], this has long been the intuition among hacker researchers, leading

them to develop a sophisticated approach that should inform our theoretical next

step.

The exploit is really a program that executes on a collection of the target’s compu-

tational artifacts, including bugs such as memory corruptions or regular features

borrowed for causing unexpected control or data flows. The view of creating

exploits as a kind of macro-assembler programming with such artifacts as “primi-

tives” or macros has firmly established itself (e.g., [3]), the full collection of such

artifacts referred to as a “weird machine” within the target. In these terms, “mali-

cious computation” executes on the “weird machine,” and, vice versa, the weird

machine is what runs the exploit program.

The crucial observation is that the exploit program, whatever else it is, is expressed

as crafted input and is processed by the target’s input processing routines. Fur-

thermore, it is these processing routines that either provide the bugs for the weird

machine’s artifacts or allow crafted input clauses to make their way to such arti-

facts further inside the target.

Thus a principled way to study crafted input exploit programs and targets in

conjunction is to study both the totality of the target’s intended or accepted inputs

as a language in the sense of the formal language theory, and the input-handling

routines as machines that recognize this language. This means, in turn, that evalu-

ating the design of the program’s input-handling units and the program itself based

on the properties of these languages is indispensable to security analysis.

Throughout this article, we refer to a program’s inputs and protocols interchange-

ably, to stress that we view protocols as sequences of inputs, which for every

intended or accepted protocol exchange or conversation should be considered as a

part of the respective input language. Moreover, we speak of applications’ inputs

and network stack inputs interchangeably, as both stack layers and applications

contain input-handling units that form an important part of the overall system’s

attack surface.

Let us now apply this general principle to the study of insecurities and finding

0-days in network stacks. We will then explain how it quantifies the hardness of

secure design and testing, and helps the designers steer around potentially unse-

curable or hard-to-secure designs.

We note that although insecurity obviously does not stop at input handling (which

our own examples of composition-based insecurity will illustrate), a provably

correct input parser will greatly reduce the reachable attack surface—even though

it lacks the magical power to make the system unexploitable. Moreover, the

language-theoretic approach applies beyond mere input-parsing, as it sheds light

on such questions as, “Can a browser comprehensively block ‘unsafe’ JavaScript for

some reasonable security model and what computational power would be required

to do so?” and “Does JSON promote safer Web app development?”

 ;login: DECEMBER 2011 The Halting Problems of Network Stack Insecurity 25

Language-theoretic Attacks on Protocol Parsers

Since the 1960s, programming-language designers have employed automated

parser generators to translate the unique defining grammar of a machine-parsable

language into a parser for that language. Every parser for a given language or

protocol is also a recognizer for that language: it accepts strings (e.g., binary byte

strings) that are valid in its language, and rejects invalid ones—and is therefore a

security-crucial component. Although this approach has been of great benefit to

compiler and interpreter design, it has largely gone unused with respect to protocol

design and implementation—at great detriment to security.

Most protocol implementations, in particular network protocol stacks, are still

built on essentially handwritten recognizers. This leads to implementation errors

that introduce security holes or actually accept a broader set of strings than the

protocol recognizes. This, in turn, propagates security problems into other imple-

mentations that need to accommodate the broken implementation (e.g., several

Web servers incorrectly implement TLS/SSL 3.0 in order to interoperate with

Internet Explorer [9]).

Furthermore, most approaches to input validation also employ handwritten rec-

ognizers, at most using regular expressions to whitelist acceptable inputs and/or

blacklist potentially malicious ones. Such recognizers, however, are powerless to

validate stronger classes of languages allowing for recursively nested data struc-

tures, such as context-free languages, which require more powerful recognizers.

The sidebar (p. 23, above) describes the Chomsky hierarchy of language grammar

classes and their respective recognizer automata classes, by the required computa-

tional strength.

This suggests that our language-theoretic approach should reveal clusters of

potential 0-days in network stacks, starting at the top, and descending through

the middle layers to its very bottom, the PHY layer. Indeed, consider the following

examples.

X.509 Parsing

In [8], Kaminsky, Patterson, and Sassaman observed that ASN.1 requires a

context-sensitive parser, but the specification of ASN.1 is not written in a way con-

ducive to implementing a parser generator, causing ASN.1 parsers to be handwrit-

ten. The parse trees generated by these parsers would thus most likely be different,

and their mismatches would indicate potential vulnerabilities.

The authors examined how different ASN.1 parsers handle X.509 documents,

focusing on unusual representations of their components, such as Common Name.

The results of this examination were numerous vulnerabilities, some of which,

when exploited, would allow an attacker to claim a certificate of any site.

Here are just two examples of the many problems with X.509 they discovered using

this method:

 1. Multiple Common Names in one X.509 Name are handled differently by dif-

ferent implementations. The string CN=www.badguy.com/CN=www.bank.com/

CN=www.bank2.com/CN=* will pass validation by OpenSSL, which returns only

 26 ;login: VOL. 36, NO. 6

the first Common Name, but authenticate both www.bank.com and www.bank2.

com for Internet Explorer, and authenticate all possible names in Firefox.

 2. Null terminators in the middle of an X.509 Name can cause some APIs to see dif-

ferent names than others. In case of the name “www.bank.com00.badguy.com,”

some APIs would see “badguy.com,” but IE’s CryptoAPI and Firefox’s NSS will

see “www.bank.com”. Due to NSS’s permissive parsing of wildcards, it would also

accept a certificate for “*00.badguy.com” for all possible names.

It should be stressed that individual protocol parser vulnerabilities can be found

in other ways; for instance, the second item above was independently discovered

by Moxie Marlinspike. However, by themselves they may look like “random” bugs

and show neither the size of the attack surface nor the systematic nature of the

implementers’ errors, whereas a language-theoretic analysis reveals the roots of

the problem; the difference is that between finding a nugget and striking a gold

mine of 0-days.

SQL Parsing and Validation

In [7], Hansen and Patterson discuss SQL injection attacks against database

applications. SQL injection attacks have been extremely successful, due to both

the complicated syntax of SQL and application developers’ habit of sanitizing SQL

inputs by using regular expressions to ban undesirable inputs, whereas regular

expressions are not powerful enough to validate non-regular languages.

In particular, SQL was context-free until the introduction of the WITH RECUR-

SIVE clause, at which point it became Turing-complete [4] (although in some

SQL dialects it may also be possible to concoct a Turing machine using triggers

and rules; we are indebted to David Fetter for this observation). Mere regular

expressions, which recognize a weaker class of languages, could not validate (i.e.,

recognize) it even when it was context-free. Turing completeness makes validation

hopeless, since recognizing such languages is an undecidable problem. Trying to

solve it in all generality is a misinvestment of effort.

The authors suggest that a correct way to protect from SQL injection is to define a

safe subset of SQL, which is likely to be a very simple language for any particular

application accepting user inputs, and to proceed by generating a parser for that

language. This approach offers complete security from SQL injection attacks.

Generalization: Parse Tree Differential Analysis

In [8] Kaminsky, Sassaman, and Patterson further generalized their analysis

technique to arbitrary protocols, developing the parse tree differential attack, a

powerful technique for discovering vulnerabilities in protocol implementations,

generating clusters of 0-days, and saving effort from being misinvested into incor-

rect solutions. This attack compares parse trees corresponding to two different

implementations of the same protocol. Any differences in the parse trees indicate

potential problems, as they demonstrate the existence of inputs that will be parsed

differently by the two implementations.

This method applies everywhere where structured data is marshalled into a string

of bytes and passed to another program unit, local or remote. In particular, it

should be a required part of security analysis for any distributed system’s design.

We will discuss its further implications for secure composition below.

 ;login: DECEMBER 2011 The Halting Problems of Network Stack Insecurity 27

IDS Evasion and Network Stack Fingerprinting

Differences in protocol parsing at Layers 3 and 4 of TCP/IP network stacks have

long been exploited for their fingerprinting (by Nmap, Xprobe, etc.). Then it was

discovered that the impact of these differences on security was much stronger

than just enabling reconnaissance: network streams could be crafted in ways that

made the NIDS or “smart” firewalls “see” (i.e., have its network stack reassemble)

completely different session contents than the targets they protected.

The seminal 1998 paper by Ptacek and Newsham [10] was the first to broach this

new research direction. A lot of work followed; for a brief summary see [11]. In

retrospect, Ptacek and Newsham’s paper was a perfect example of analysis that

implicitly treated network protocol stacks’ code as protocol recognizers. It also

suggested that the target and the NIDS were parts of a composed system, and a

NIDS’s security contribution was ad hoc at best (and negative at worst, for creating

a false expectation of security) unless it matched the target in this composition.

Digital Radio Signaling

Recent discovery of overlooked signaling issues as deep as the PHY layer of a broad

range of digital radio protocols (802.15.4, Bluetooth, older 802.11, and other popu-

lar RF standards) [6] shows another example of a surprisingly vulnerable design

that might have gone differently had a language-theoretic approach been applied

from the start—and that language-theoretic intuitions have helped to uncover.

The authors demonstrated that the abstraction of PHY layer encapsulation of Link

Layer frames in most forms of unencrypted variable-frame-length digital radio

can be violated simply by ambient noise. In particular, should the preamble or Start

of Frame Delimiter (SFD) be damaged, the “internal” bytes of a frame (belonging

to a crafted higher layer protocol payload) can be received by local radios as a PHY

layer frame. This essentially enables remote attackers who can affect payloads at

Layer 3 and above on the local RF to inject malicious frames without ever owning

a radio.

This is certainly not what most Layer 2 and above protocol engineers expect of

these PHY layer implementations. From the language recognizer standpoint,

however, it is obvious that the simple finite automaton used to match the SFD in

the stream of radio symbols and so distinguish between the noise, signaling, and

payloads can be easily tricked into “recognizing” signaling as data and vice versa.

Defensive Recognizers and Protocols

To complete our outlook, we must point to several successful examples of program

and protocol design that we see as proceeding from and fulfilling related intu-

itions.

The most recent and effective example of software specifically designed to address

the security risks of an input language in common Internet use is Blitzableiter by

Felix ‘FX’ Lindner and Recurity Labs [12, 13]. It takes on the task of safely recog-

nizing Flash, arguably the most complex input language in common Internet use,

due to two versions of bytecode allowed for backward compatibility and the com-

plex SWF file format; predictably, Flash is a top exploitation vector with continu-

ally surfacing vulnerabilities. Blitzableiter (a pun on lightning rod) is an armored

recognizer for Flash, engineered to maximally suppress implicit data and control

flows that help turn ordinary Flash parsers into “weird machines.”

 28 ;login: VOL. 36, NO. 6

Another interesting example is the observations by D.J. Bernstein on the 10 years

of qmail [13]. We find several momentous insights in these, in particular avoid-

ing parsing (i.e., in our terms, dealing with non-trivial input languages) whenever

possible as a way of making progress in eliminating insecurity, and pointing to

handcrafting input-handling code for efficiency as a dangerous distraction. In

addition, Bernstein stresses using UNIX context isolation primitives as a way

of enforcing explicit data flows (in our terms, hobbling construction of “weird

machines”). Interestingly, Bernstein also names the Least Privilege Principle—as

currently understood—as a distraction; we argue that this principle needs to be

updated rather than discarded, and we see Bernstein’s insights as being actually in

line with our proposed update (see below).

There are also multiple examples of protocols designed with easy and unambigu-

ous parsing in mind. Lacking space for a comprehensive review of the protocol

design space, we point the reader to our upcoming publication, and only list a few

examples here:

u The ATM packet format is a regular language, the class of input languages

parsable with a finite-state machine, easiest to parse, which helps avoid signaling

attacks as discussed above. The same is true for other fixed-length formats.
u JSON is arguably the closest to our recommendation for a higher-layer language

for encoding and exchanging complex, recursive objects between parts of a

distributed program. Such a language needs to be context-free (the classic

example of this class is S-expressions), but not stronger.

Language-theoretic Principles of Secure Design

Decidability matters. Formally speaking, a correct protocol implementation is

defined by the decision problem of whether the byte string received by the stack’s

input handling units is a member of the protocol’s language. This problem has two

components: first, whether the input is syntactically valid according to the gram-

mar that specifies the protocol, and second, whether the input, once recognized,

generates a valid state transition in the state machine that represents the logic of

the protocol. The first component corresponds to the parser and the second to the

remainder of the implementation.

The difficulty of this problem is directly defined by the class of languages to which

the protocol belongs. Good protocol designers don’t let their protocols grow up to be

Turing-complete, because then the decision problem is UNDECIDABLE.

In practice, undecidability suggests that no amount of programmer or QA effort is

likely to expose a comprehensive selection of the protocol’s exploitable vulnerabilities

related to incorrect input data validity assumptions. Indeed, if no generic algorithm

to establish input validity is possible, then whatever actual validity checks the

software performs on its inputs at various points are unlikely to correspond to the

programmer’s assumptions of such validity. Inasmuch as the target’s potential

vulnerability set is created by such incorrect assumptions, it is likely to be large

and non-trivial to explore and prune.

From malicious computation as the basis of the threat model and the language-

theoretic understanding of inputs as languages, several bedrock security prin-

ciples follow:

 ;login: DECEMBER 2011 The Halting Problems of Network Stack Insecurity 29

Principle 1: Starve the Turing Beast—Request and Grant Minimal
Computational Power

Computational power is an important and heretofore neglected dimension of the

attack surface. Avoid exposing unnecessary computational power to the attacker.

An input language should only be as computationally complex as absolutely

needed, so that the computational power of the parser necessary for it can be mini-

mized. For example, if recursive data structures are not needed, they should not be

specified in the input language.

The parser should be no more computationally powerful than it needs to be. For

example, if the input language is context-free, then the parser should be no more

powerful than a deterministic pushdown automaton.

For Internet engineers, this principle can be expressed as follows:

u a parser must not provide more than the minimal computational strength neces-

sary to interpret the protocol it is intended to parse;
u protocols should be designed to require the computationally weakest parser

necessary to achieve the intended operation.

An implementation of a protocol that exceeds the computational requirements for

parsing that protocol’s inputs should be considered broken.

Protocol designers should design their protocols to be as weak as possible. Any

increase in computational strength of input should be regarded as a grant of

additional privilege, thus increasing security risk. Such increases should therefore

be entered into reluctantly, with eyes open, and should be considered as part of

a formal risk assessment. At the very least, the designer should be guided by the

Chomsky hierarchy (described in the sidebar, p. 23).

Input-handling parts of most programs are essentially Turing machines, whether

this level of computational power is needed or not. From the previously discussed

malicious computation perspective of exploitation it follows that this delivers the

full power of a Turing-complete environment into the hands of the attacker, who

finds a way of leveraging it through crafted inputs.

Viewed from the venerable perspective of Least Privilege, Principle 1 states that

computational power is privilege, and should be given as sparingly as any other kind

of privilege to reduce the attack surface. We call this extension the Minimal Compu-

tational Power Principle.

We note that recent developments in common protocols run contrary to these

principles. In our opinion, this heralds a bumpy road ahead. In particular, HTML5

is Turing-complete, whereas HTML4 was not.

Principle 2: Secure Composition Requires Parser Computational
Equivalence

Composition is and will remain the principal tool of software engineering. Any

principle that aims to address software insecurity must pass the test of being

applicable to practical software composition, lest it forever remain merely theory.

In particular, it should specify how to maintain security in the face of (inevitable)

composition—including, but not limited to, distributed systems, use of libraries,

and lower-layer APIs.

 30 ;login: VOL. 36, NO. 6

From our language-theoretic point of view, any composition that involves convert-

ing data structures to streams of bytes and back for communications between

components necessarily relies for its security on the different components of the

system performing equivalent computations on the input languages.

However, computational equivalence of automata/machines accepting a language

is a highly non-trivial language-theoretic problem that becomes UNDECIDABLE

starting from non-deterministic context-free languages (cf. the sidebar for the

decidability of the equivalence problem).

The X.509 example above shows that this problem is directly related to insecu-

rity of distributed systems’ tasks. Moreover, undecidability essentially precludes

construction of efficient code testing and/or verification algorithmic techniques

and tools.

On the Relevance of Postel’s Law

This leads to a re-evaluation of Postel’s Law and puts Dan Geer’s observations in

“Vulnerable Compliance” [5] in solid theoretical perspective.

Postel’s Robustness Principle (RFC 793), best known today as Postel’s Law, laid the

foundation for an interoperable Internet ecosystem. In his specification of TCP,

Postel advises to “be conservative in what you do, be liberal in what you accept

from others.” Despite being a description of the principle followed by TCP, this

advice became widely accepted in IETF and general Internet and software engi-

neering communities as a core principle of protocol implementation.

However, this policy maximizes interoperability at the unfortunate expense of

consistent parser behavior, and thus at the expense of security.

Why Secure Composition Is Hard

The second principle provides a powerful theoretical example of why composition—

the developer’s and engineer’s primary strategy against complexity—is hard to do

securely. Specifically, a composition of communicating program units must rely

on computational equivalence of its input-handling routines for security (or even

correctness when defined); yet such equivalence is UNDECIDABLE for complex

protocols (starting with those needing a nondeterministic pushdown automaton as

a recognizer of their input language), and therefore cannot in practice be checked

even for differing implementations of the same communication logic.

Conversely, this suggests a principled approach for reducing insecurity of composi-

tion: keep the language of the messages exchanged by the components of a system

to a necessary minimum of computational power required for their recognition.

Parallels with Least Privilege Principle

The understanding of “malicious computation” programmed by crafted inputs on

the “weird machine” made of a target’s artifacts as a threat naturally complements

and extends the Least Privilege Principle as a means of containing the attacker. In

particular, just as the attacker should not be able to spread the compromise beyond

the vulnerable unit or module, he should not be able to propagate it beyond the

minimal computational power needed. This would curtail his ability to perform

malicious computations.

 ;login: DECEMBER 2011 The Halting Problems of Network Stack Insecurity 31

Thus the Least Privilege Principle should be complemented by the Minimal Com-

putational Power Principle. This approach should be followed all the way from the

application protocol to hardware. In fact, we envision hardware that limits itself

from its current Turing machine form to weaker computational models according

to the protocol parsing tasks it must perform, lending no more power to the parsing

task than the corresponding language class requires—and therefore no more power

for the attacker to borrow for exploit programs in case of accidental exposure,

starving the potential “weird machines” of such borrowed power. This restriction

can be accomplished by reprogramming the FPGA to only provide the appropri-

ate computational model—say, finite automaton or a pushdown automaton—to

the task, with appropriate hardware-configured and enforced isolation of this

environment from others (cf. [1]).

Conclusion

Computer security is often portrayed as a never-ending arms race between attack-

ers seeking to exploit weak points in software and defenders scrambling to defend

regions of an ever-shifting battlefield. We hold that the front line is, instead, a

bright one: the system’s security is defined by what computations can and can-

not occur in it under all possible inputs. To approach security, the system must be

analyzed as a recognizer for the language of its valid inputs, which must be clearly

defined by designers and understood by developers.

The computational power required to recognize the system’s valid input lan-

guage(s) must be kept at a minimum when designing protocols. This will serve

to both reduce the power the attacker will be able to borrow, and help to check

that handling of structured data across the system’s communicating compo-

nents is computationally equivalent. The lack of such equivalence is a core cause

of insecurity in network stacks and in other composed and distributed systems;

undecidability of checking such equivalence for computationally demanding (or

ambiguously specified) protocols is what makes securing composed systems hard

or impossible in both theory and practice.

We state simple and understandable but theoretically fundamental principles that

could make protection from unexpected computations a reality, if followed in the

design of protocols and systems. Furthermore, we suggest that in future designs

hardware protections should be put in place to control and prevent exposure of

unnecessary computational power to attackers.

References

[1] Sergey Bratus, Michael E. Locasto, Ashwin Ramaswamy, and Sean W. Smith,

“New Directions for Hardware-Assisted Trusted Computing Policies” (position

paper), 2008.

[2] Sergey Bratus, Michael Locasto, Meredith L. Patterson, Len Sassaman, and

Anna Shubina, “Exploit Programming: From Buffer Overflows to Theory of Com-

putation,” in preparation.

[3] Thomas Dullien, “Exploitation and State Machines: Programming the ‘Weird

Machine,’ Revisited,” Infiltrate Conference, April 2011: http://www.immunityinc

.com/infiltrate/presentations/Fundamentals_of_exploitation_revisited.pdf.

[4] David Fetter, “Lists and Recursion and Trees, Oh My!” OSCON, 2009.

 32 ;login: VOL. 36, NO. 6

[5] Dan Geer, “Vulnerable Compliance,” ;login:, vol. 35, no. 6 (December 2010):

http://www.usenix.org/publications/login/2010-12/pdfs/geer.pdf.

[6] Travis Goodspeed, Sergey Bratus, Ricky Melgares, Rebecca Shapiro, and Ryan

Speers, “Packets in Packets: Orson Welles’ In-Band Signaling Attacks for Modern

Radios,” 5th USENIX Workshop on Offensive Technologies, August 2011: http://

www.usenix.org/events/woot11/tech/final_files/Goodspeed.pdf.

[7] Robert J. Hansen and Meredith L. Patterson, “Guns and Butter: Towards

Formal Axioms of Input Validation,” Black Hat USA, August 2005: http://

www.blackhat.com/presentations/bh-usa-05/BH_US_05-Hansen-Patterson/

HP2005.pdf.

[8] Dan Kaminsky, Len Sassaman, and Meredith Patterson, “PKI Layer Cake: New

Collision Attacks against the Global X.509 Infrastructure,” Black Hat USA, August

2009: http://www.cosic.esat.kuleuven.be/publications/article-1432.pdf.

[9] Katsuhiko Momoi, “Notes on TLS-SSL 3.0 Intolerant Servers”: http://developer

.mozilla.org/en/docs/Notes_on_TLS_-_SSL_3.0_Intolerant_Servers, 2003.

[10] Thomas H. Ptacek and Timothy N. Newsham, “Insertion, Evasion, and Denial

of Service: Eluding Network Intrusion Detection, “ technical report, Secure Net-

works, Inc., January 1998: http://insecure.org/stf/secnet_ids/secnet_ids.html.

[11] Sumit Siddharth, “Evading NIDS, Revisited”: http://www.symantec.com/

connect/articles/evading-nids-revisited.

[12] Stefan Krempl, “Protection against Flash Security Holes,” December 30, 2009:

http://www.h-online.com/security/news/item/26C3-Protection-against-Flash

-security-holes-893689.html.

[13] Felix “FX” Lindner, “The Compromised Observer Effect,” McAfee Security

Journal, 6 (2010): 16–19.

[13] Daniel J. Bernstein, “Some Thoughts on Security after 10 Years of qmail 1.0,”

November 1, 2007: cr.yp.to/qmail/qmailsec-20071101.pdf.

