OPTIMAL SELECTION BASED ON RELATIVE RANK*
(the “Secretary Problem™)

BY
Y. S. CHOW, S. MORIGUTI, H. ROBBINS AND S. M. SAMUELS

ABSTRACT

n rankable persons appear sequentially in random order. At the ith stage we
observe the relative ranks of the first i persons to appear, and must either
select the ith person, in which case the process stops, or pass on to the next
stage. For that stopping rule which minimizes the expectation of the absolute
rank of the person selected, it is shown that as # — o0 this tends to the value

© . 1/j+1
I1 (11—2) ! & 3.8695.
i=1 J

1. Introduction. n girls apply for a certain position. If we could observe them
all we could rank them absolutely with no ties, from best (rank 1) to worst (rank n).
However, the girls present themselves one by one, in random order, and {when the
ith girl appears we can observe only her rank relative to her i— 1 predecessors,
that is, 1 + the number of her predecessors who are better than she. We may either
select the ith girl to appear, in which case the process ends, or reject her and go on
to the (i + 1)th girl; in the latter case the ith girl cannot be recalled. We must
select one of the n girls. Let X denote the absolute rank of the girl selected. The
values of X are 1,..-, n, with probabilities determined by our selection strategy.
What selection strategy (i.e. stopping rule) will minimize the expectation EX =
expected absolute rank of the girl selected?

To formulate the problem mathematically, let x,,-:-,x, denote a random
permutation of the integers 1, ---,n, all n! permutations being equally likely. The
integer 1 corresponds to the best girl,---,n to the worst. For any i =1,---,n let
y;=1+ number of terms x,, ---,x;_; which are < x; (y;=relative rank of ith girl

to appear). It is easy to see that the random variables y,-+-, y, are independent,
with the distribution

. 1 ) ;
(1) Py=j) =+ (=1,-,0),
and that

2 Plx, = kIJ’1 =j1s s V-1 =i =) =Px, = kl yi=J)

_(k—l (n-—k / n
“\j-1/\i=j i)’
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so that
n+1,

® E(xily=j) = X kPG =k|yi=)) = 577 )

For any stopping rule ¢ the expected absolute rank of the girl selected is therefore
n+1
EX=E ( Tri Vs
To find an optimal 7 by the usual method of backward induction we define for
i=0,1,---,n—1, ¢; = ¢c(n) = minimal possible expected absolute rank of girl
selected if we must confine ourselves to stopping rules 7 such that 7> i + 1. We
are trying to find the value c¢,. Now

n+1 1 < n+1
4 R = = —— j = —
() Cz;—l E(n_l_lyn) n ?J >

) . We wish to minimize this value by optimal choice of 7.

andfori=n—-1,n-2,---,1,

. (nt1 1 & . (n+1.
(5) Ciq1 = (mm (T-I-—i_yi’ Ci) ) —TJE min (i___i__i_‘]’ci)'

These equations allow us to compute successively the values ¢,_y, €,-2,",¢1,¢
and contain the implicit definition of an optimal stopping rule. Equation (5)
can be rewritten more simply if we denote by [x] the greatest integer < x and set

i+ 1 . .
(6) S; = [n__{_—ici] (l =hn- 13' :1)_)
then (5) becomes
1 fn+1 ,
(7) ci-l ——i—{i+1(1+2+"'+S,~)+(l-—s,v)ci}

L fn4+1 s{s+1) .
‘T{i+1 7 si)ci}‘
Defining s, = n, an optimal stopping rule is, stop with the first i 2 1 such that
y; £ s;; the expected absolute rank of the girl selected using this rule is co.
We observe from (4) and (5) that

1
(8) oo <o, = BEL

[\

and from (6) and (8) that 5; < i and

) §; S5, S ésn—1=[
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For example, let n = 4. Then from (4), (6),and(7),

P S P (I AL I R S
PR o3\4 2 T 2) v

(s 12 25\ 15 o 15
“T2\3 2 T) Ty W eTAaTg

and an optimal stopping rule is given by the vector (s;,---,54) =(0,1,2,4). The
values of ¢, for n =10, 100, 1000 are found by similar computation to be res-
pectively 2.56, 3.60, 3.83.

D. V. Lindley [1] has treated this problem heuristically for large n by replacing
(7) by a single differential equation. His results indicate that for n — oo, ¢, should
approach a finite limit, but his method is too rough to give the value of this limit.
A more adequate but still heuristic approach involves replacing (7) by an infinite
sequence of differential equations, one for each value 0,1, .+ of 5;. This method
indicates that lim ¢, (all limits as n — o) has the value

o . 1/j+1
(10) I1 ( J—+.—2~) & 3.8695.
=1\ J
It is not clear how to make this heuristic argument rigorous by appealing to known
theorems on the approximation of difference equations by differential equations.
Instead, we shall give a direct proof that ¢4 tends to the value (10).

2. The basic inequalities. We shall derive rather crude upper and lower
bounds for the constants ¢; which will permit the evaluation of lim ¢,. To this end
we define the constants

) L= e (i=0,1,--,n —1).
From (1.8} it follows that

@) t0<t,.<~-<t,,_1=%

and (1.7) becomes

3) tioy = s,-(sizz: Jlr);)r =5 (416 = Ly — D).

For fixed i set
“ L=s;+a, 0Za<t;

then (3) becomes
(1 +2i-t) ol —ow)
©) SUTTOGEFD TG F )
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x(1+2i—-x)
6 =
then for x <i+ 4,
142i~2x
7 ! R ——
Q T'() = i1 29
so T(x) is increasing for x < i+ %, and by (5),
® -1 S T().
We now prove the first basic inequality.
Lemma 1.
2n .
&) t;‘§n—_m (i=0,--,n—-1.
Proof. (9) is true for i=n — 1 since by (2)
L _n
R T

Assume (9) holds for some 1< i< n — 1; we shall prove that it holds for i — 1.
We know by (1.8) and (1) that

i i n+1 i
(10) (e iy LA e R X
i 2n i 2n 1 2n
—_ L —— 9 h i—1.1f—> ——— b
Ifz_n_i+4then() olds fori—1.1 2 >n-—i+4thenl+2—n—i+3’

so by (8), since T(x) is increasing for x < i + %,

2n ) _ Md+2)(n—i+3)—2n} _  2n
n—i+3) G+Dn—i+32? “n—-i+4

A1) 4 ST < T(

since the last inequality is equivalent to
m—=i+3)2+@2n-2i-D(n—-i+3)+2n=0,
which is true for n — i 2 1. Hence (9) holds for i — 1 in this case also, and the
lemma is proved.
COROLLARY 1.
(12 <8 (n=12--).

Proof. In (9) seti = [—;—] . Then

n+1 n+1 2n 2n(n + 1)
= < . <
(13 =G i+1t'=i+1 n—i+3_n(l+3)

2172

< 8.
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We next observe that

i 4 . _
14 o2 i+1{1 2(i+1)} (i=1-,n-1).

This inequality follows from (5) if we show that

Hl+2i—1) ell—a) i t_{l_ t }
26+ 1) 26+1) Ti+17 2i+1)°

which reduces to

4

(15) n(1- iy ) 2o -0 (=t~ [,

i+1

5 by (10), and if ¢; <1, since then ¢, = a.

and this is true if ¢; = 1, since ; <

We now establish the second basic inequality.

LeEmMA 2.
3G + 1) o
(16) tl_m (l-—o,"',n—l).

Proof. (16) is true for i =n — 1; suppose it is true for some 1<i<n-—1.
Define

T(x)=x{1—2—(i-i+T)}.

which is increasing for x < i -+ 1. Since by (10) {,< i——-;—l—, we have by (14),

i i 3+ 1)
> T(1) >
li-1 2 i+1T(t')=i+1T(2(n—i+2))

_3in—4i+5)_  3i
T 8m—i+22 T2n—i+3)

which is equivalent to i £ n — 1. This proves the lemma.
We have seen (1.9) that for any positive integer k, if n = 2k then s,—, = k. We
now define for each k =1,2,--- and each n=> 2k,

an i, =smallest integer j =1 such that s; = k.
We note that s;, -y = 0 and hence from (1.7),

(18) Co =€ =+ =Cy-y-
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COROLLARY 2.

i 1
19 im X+ >=.
(19) lim —- 2 2

v

Proof. If i; > [n/2] then i, = [#/2] + 1> n/2, (iy/n)> 4. If i; < [n/2] then
by (13),

iy +1 i +1 ip+1
1<s, <t =-L L < ar- .
5,54, n+lc“_ n+1c["/2]<n+1 8
(We remark that i; >1for n > 2, sinceif iy =1thens;, =land ¢, = _n_iz-__l’ which
only holds for n £ 2.)
COROLLARY 3. On every set
(20) {a§%§ﬂ;0<a<ﬁ<1},
@1 lim(t, —¢t_,) =0
uniformly.
Proof. From (14) and (9),
i t; t; it}
<t -t _,<t; — ——1; —_ L = i i
Ost—t-1 36— ot {1 2(i+1)} i+1 2+ )2

(i} (oot
2 = T

S(1+tl) _<_ n—1 < l—ﬂ -_l_)o.
T+ 17T 2(i+1) = 20 n

COROLLARY 4. For k=1,2,--- and n 2 12k,

hyq 2
(22) 215,
LR
@3 n=1 2k
Proof. By (9),
G 2kot 2k ks zg o 2
- n—i, n k

which proves (22). (23) holds if i, £ [ %] , for then
i 1 1

T e sl

A
IIA
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and if i, > [%] then by (16),
3i, 3i, , 3n .
Sik_1<k:>tik—1<k$m<k=>27<n lk+3=>-4—:,z<n lk+3
3 L3 i 3 3 1 -
=>3:E<1 n+n=>n<1 4k+n§1 2kforn=12k.

COROLLARY 5.
24 limg, =lim¢,_, =k (k,y =1,2,---).

Proof. ¢, _,<k=<t,.

Choose a, f so that 0 < a < %—, 1- -2%< B < 1. Then by (19) and (23),
25) acdZl chop
for sufficiently large n. Hence by Corollary 3,
lim(t, —t,-,)=0.

COROLLARY 6. For k =1,2,.-
(26) s, = k for sufficiently large n,
27 lim (i 4q — i) = c0.

Proof. k <5, <t together with (24) proves (26).

lim(t,,, - t,) =1 and lim(t,,, —#,,,- ) =0

by (24), and these relations imply (27).

3. Proof of the Theorem. Choose and fix a positive integer k and let n by
(2.26) be so large that 5;, =k, s;,,, = k + 1. For i, £ i <iy, define

k
(1) v‘=t; —7.

Substituting in (2.3) we find that

: k
k(k+1)+2(1—-k)(vi+—) v ik

LA 2
U1+ 5= AT+ 77

= TEL
i+l
i—k v

) by =
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Hence for i, < i <iyy,

i+1 i+1 i i, +2
3 . = _ = oo k .
R =5 Sl yy Ay Ry o

, . . _ k+1 L

_ f+1-__l..._l+1 k'vik=l’ikH(-l+J- k ’

lk+1 I lk+1—k i=1 lk+]—k

and hence
k ky*(i+j—k

4 = e - —_— .
@ ki 2+("k 2)j=1(ik+j—k)

Set i =iy, — 1; then

k k k+1
(5) liga1=1 =7+(tik—_2')

From (2.19) and (2.24) it follows that

k k kti1 . ik'*‘l +j—k—1 k k . ik+1 k+1
k+1—7+—5j1:[111m( Ptk )_7+_2_11m( i )
and hence
. k4 2\* g g e RA oML
6) lim XL = (——-———) ,Hm -t =lim '~ = (——) .
© i k i iy/n J-I;Il j+2
From (2.22)

2\ k-1 i\t PR R =LY B VAL
. o <lim L <fim + < [T (- .
o (1 k),-UI(HZ) stim < iw 2s (747
Letting k— oo,
. © 175+1
L0 j
8) hmn_H(—j+2) .

Now by (2.24) and (2.18),

. . i . i
1=lim¢;, _; = lim (n-l-_llc““‘ ) = llm(—nl—co)

(9) 0 j 1/ji+1
= lime¢g - (——) .
0 jl=—[1 ]+2

Thus we have proved the

. @© . 2 1/j+1
THEOREM. lime, =[] (!—-;——) .
i1
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4, Remarks.

1. It is interesting to note that ¢, = cy(n) is a strictly increasing function of n;
thus in view of the Theorem,

¢)) co(n) < 3.87 (n=1,2,).

A direct proof that cy(n) is strictly increasing based on the formulas of Section 1
is difficult, since there is no obvious relation between the c; for different values of n.
However, a direct probabilistic proof can be given which involves no use of the
recursion formulas. Let (s,::-,s,,n + 1) be any stopping rule for the case of
n+ 1 girls such that s; <i for i =1,.--,n (any optimal stopping rule has this
property). Define for i =1,--,n

s; for j=1,-,i—1,
(2 t(i) =

Sj+1 for j=i,-)n,
and
s; for j=1,-,n-1

s

® tyn + 1) = {

n for j=n,

It is easy to see that at least one of the stopping rules defined by (¢,(i), -+, £,(i)),
i=1,--,n 4+ 1 must give a value of ¢, for the case n which is less than that given by
(s4,+++» 8y n + 1) for the case n + 1. Hence ¢o(n) < co(n + 1).

2. We assumed that the n girls appear in random order, all n! permutations
being equally likely. The minimal expected absolute rank of the girl chosen is then
o < 3.87 for all n. Suppose now that the order in which the girls are to appear is
determined by an opponent who wishes to maximize the expected absolute rank
of the girl we choose. No matter what he does, by choosing at random the first,
second, ---, last girl to appear we can achieve the value

EX=(1+2+4 -+ n)n=(n+ 1)

And in fact there exists an opponent strategy such that, no matter what stopping
rule we use, EX =(n +1)/2. Let x; =1 or n, each with probability 1/2; Iet
X;+y = either the largest or the smallest of the integers remaining after x,, -, x;
have been chosen, each with probability 1/2. If we define fori =1, ---,n

“ Z; = E(x:l)’n Vi) Bi=B(Y1 W),

then it is easy to see that {z,,%;(i =1,.--,n)} is a martingale, so that for any
stopping rule 7,

® E(X) = E(z,) = E(z;) = (n +1)/2.
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Many extensions and generalizations of the problem considered in this paper
suggest themselves at once. Some further results will be presented elsewhere.
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