
O P T I M A L  S E L E C T I O N  B A S E D  O N  R E L A T I V E  R A N K *  

( t h e  " S e c r e t a r y  P r o b l e m " )  

BY 

Y. S. CHOW, S. MORIGUTI, H. ROBBINS AND S. M. SAMUELS 

ABSTRACT 

n rankable persons appear sequentially in random order. At the ith stage we 
observe the relative ranks of the first i persons to appear, and must either 
select the itb person, in which case the process stops, or pass on to the next 
stage. For that stopping rule which minimizes the expectation of the absolute 
rank of the person selected, it is shown that as n --~ oO this tends to the value 

j=x - - 7  ~ 3.8695. 

1. Introduction. n girls apply for a certain position. If  we could observe them 

all we could rank them absolutely with no ties, from best (rank 1) to worst (rank n). 

However, the girls present themselves one by one, in random order, and Iwhen the 

ith girl appears we can observe only her rank relative to her i -  1 predecessors, 

that is, 1 + the number of her predecessors who are better than she. We may either 

select the ith girl to appear, in which case the process ends, or reject her and go on 

to the (i + 1)th girl; in the latter case the ith girl cannot be recalled. We must 

select one of the n girls. Let X denote the absolute rank of  the girl selected. The 

values o f  X are 1,.. . ,  n, with probabilities determined by our selection strategy. 

What selection strategy (i.e. stopping rule) will minimize the expectation EX = 

expected absolute rank of the girl selected? 

To formulate the problem mathematically, let xl,  . . . ,x ,  denote a random 

permutation of the integers 1,.. . ,  n, all n ! permutations being equally likely. The 

integer 1 corresponds to the best girl, ..., n to the worst. For  any i = 1,-.., n let 

y~=l  + number of  terms xx, " ' , x~- i  which are < x~ (yi=relative rank of ith girl 

to appear). It  is easy to see that the random variables Yx, "", Y, are independent, 

with the distribution 

1 
(1) P(Yf =J )  = 7 (j  ,= 1, ... ,i), 

and that 

(2) P(x, = k[ Yl =Jl,  "",Yt-1 =J,-1,Y, =J)  = P(x, = k I y, = j )  

= ( k - 1  n 
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so that 

(3) e (x i  [Yi =J)  = k ~= t kP(xi = kl Yi =J)  = ni___+____i. + 1 j. 

For any stopping rule z the expected absolute rank of the girl selected is therefore 

E X = E (  n + l  ) ---~-~y, . We wish to minimize this value by optimal choice of T. 

To find an optimal z by the usual method of backward induction we define for 

i =  O, 1, ..., n -  1, c, = c~(n) = minimal possible expected absolute rank of girl 

selected if  we must confine ourselves to stopping rules ~ such that v > i + 1. We 

are trying to find the value Co. Now 

(.+ ) =_1 j = 
(4) c '~ -a=E - n - ~ l  y" n a 2 ' 

and for i = n - 1, n -  2,...,  1, 

(5) ci- a = E min ~ Y i ,  ci = -7- ~ min Z--,---i-J, c~ o 

j = a  

These equations allow us to compute successively the values c,_ a, c,_ 2 , ' " ,  ca, Co 

and contain the implicit definition of an optimal stopping rule. Equation (5) 

can be rewritten more simply if we denote by Ix] the greatest integer < x and set 

i + l  ] ( i = n - - l , . . . , 1 ) ;  
(6) si = -ff--~'~ ci J 

then (5) becomes 

(7) 
I [n+l  } 

ci-1 = -T //---+-1 -(1 + 2 + ... + si) + (i - s~)ci 

1 { n + l  s i ( s i+l )  } 
= -:- + (i - s3ei . 

t i + 1  2 

Defining s, = n, an optimal stopping rule is, stop with the first i > 1 such that 

Yi < si; the expected absolute rank of the girl selected using this rule is Co. 

We observe from (4) and (5) that 

(8) C0 < ¢ 1 < =  = "'" =<~Cn- 1 = - -  

and from(6) and (8) that s i x  i and 

(9) s l < - s 2 <  . . .  

n + l  

2 ' 
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For example, let n = 4. Then from (4), (6),and(7), 

83 

c 3 =-~- , s  3 = 2 , c a  = ~ -  " - ~ +  = ~ - ~ , s 2 = l ,  

q = 3-" + ~  = T '  

15 
S 1 = 0 ,  C o = C  1 = - ~ - ,  

and an optimal stopping rule is given by the vector (s 1, " " , S4 )  = (0, 1,2,4). The 

values of Co for n = 10, 100, 1000 are found by similar computation to be res- 

pectively 2.56, 3.60, 3.83. 

D. V. Lindley [1] has treated this problem heuristically for large n by replacing 

(7) by a single differential equation. His results indicate that for n ~ o% Co should 

approach a finite limit, but his method is too rough to give the value of this limit. 

A more adequate but still heuristic approach involves replacing (7) by an infinite 

sequence of differential equations, one for each value 0, 1,... of si. This method 

indicates that Iim Co (all limits as n ~ c~) has the value 

(10) f i  (j____~_2)l/j+ 1 ~- 3.8695. 
j = l  

It is not clear how to make this heuristic argument rigorous by appealing to known 

theorems on the approximation of difference equations by differential equations. 

Instead, we shall give a direct proof that Co tends to the value (10). 

2. The basic inequalities. We shall derive rather crude upper and lower 

bounds for the constants ci which will permit the evaluation of lira Co. To this end 

we define the constants 

(1) 

From (1.8) it follows that 

(2) 

and (1.7) becomes 

(3) 

For fixed i set 

(4) 

then (3) becomes 

(5) 

i + 1  
t~ -- 1 c~ (i = 0, 1,--., n -- i). 

n +  

// 

t o < t i < ' " < t  n_l = - - f  

ti-1 = si(si + 1) + 2(i - s3t i 
2(i+ 1) , s i = ['tJ (i = 1,..., n - 1). 

t~ = s ~ +  7, 0 <  ~ < 1; 

h(1 + 2i - t3 ~(1 - ~) 

t~_l - 2 ( i+  1) 2(i + 1)' 
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Put 

(6) T(x) - x(1 + 2i - x) . 
2(i + 1) ' 

then for x < i + ½, 

1 + 2i - 2x 
(7) T'(x) = > 0 

2(i + 1) 

so T(x) is increasing for x < i + ½, and by (5), 

(8) tl-1 ~ T(h). 

We now prove the first basic inequality. 

LEMMA 1. 

2n 
(9) t i 

n - - i + 3  

Proof. (9) is true for i~, n - 1 since by (2) 

n 2n 
t.-1 - 2 - 4 "  

(i = 0, . . . ,  n - 1). 

Assume (9) holds for some 1 < i ~  n - 1; we shall prove that it holds for i - 1. 

We know by (1.8) and (1) that  

i i n + l  i 
(10) h - I  =h--'-+-i "c~-1 - n + l  < - -  2 = - - ' 2  

• ° 

I f 2 < = n - i 2 +  4 then (9) holds for i -  1. I f  ~-- > - -  

so by (8), since T(x) is increasing for x < i + ½, 

2n 

n - i + 4  
then i + ~ > 2n 

= n - i + 3 '  

= n - i - - I -  3 = (i + l ) ( n  i + 3) 2 < 4 '  - - = n - - i +  

since the last inequality is equivalent to 

( n -  i + 3) 2 + ( 2 n -  2 i -  1 ) ( n -  i + 3) + 2n >= 0, 

which is true for n - i > 1. Hence (9) holds for i - 1 in this case also, and the 

lemma is proved. 

COROLLARY I. 

(12) Co < 8 (n = 1, 2, ...). 

Proof. In (9) set i = [ 2 ]  . Then 

n + l  n + l  
(13) c o _< c~ = / - -~T t~  =< - - i+1  < 8. 

2n 2n(n + 1) _ _ <  
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We next observe that  

(14) t,_ 1 ~ ~ 1 2(i + 1) (i =-- 1,-.-, n - 1). 

This inequality follows f rom (5) i f  we show that  

t i ( l + 2 i - t i )  ~(1 - ~) i { h } 

2 ( i + 1 )  2~(/-~1) ->- i ~ - l t i  1 2 ( i + 1 )  ' 

which reduces to  

t, ] _>_ a ( t  - = - [ t d ) ,  
(15) t i 1 i + 1  h 

/ 

i + 1 by (10), and if  t~ < 1, since then h = ~. and this is true if  t~ > 1, since t i < 2 .... 

We now establish the second basic inequality. 

LEMMA 2 .  

3(i + 1) 
(16) tt ~_ 2(n -- i + 2) (i = 0 , . . . ,  n - 1). 

Proof.  (16) is true for  i = n - 1; suppose it is true for some 1 < i < n - 1. 

Define 

r ( x ) = x  1 2 ( i + 1 )  ' 

i + 1  
which is increasing for x < i + 1. Since by (10) h <  ~ ,  we have by (14), 

ti-1 > i T(ti)> i__~T( 3( i+1)  ) 
= i + 1  = i + 1  2 ( n - i + 2 )  

3i(4n - 4i + 5) > 3i 

8 ( n - i + 2 ) 2  = 2 ( n - i + 3 ) "  

which is equivalent to i < n - 1. This proves the lemma. 

We have seen (1.9) that  for  any positive integer k, if  n > 2k then sn-t  ~ k. We 

now define for each k = 1,2, ..- and each n >  2k, 

(17) i k - - - -  smallest integer j >_ 1 such that  sj > k. 

We note that s~ - I  = 0 and hence from (1.7), 

(18) Co = cl . . . . .  c , _  I .  
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COROLLARY 2. 

(19) lim i !  > 1 
..... n = 8  • 

Proof .  

by (13), 

I f  ix > In/2] then ix > In/2] + 1 > n/2, ( q / n )  > ½. If  i x < In/2] then 

l < si~ < ti: --  i~--+ l i 1 + 1  i a + l 
n + l Cil < < - - . 8 .  = = = n + l C [ " / 2 ]  n + l  

n + l  
(We remark that  i 1 > 1 for n > 2, since if  i x = 1 then sl = 1 and Co = --~---,  which 

only holds for n =< 2.) 

C O R O L L A R Y  3.  O n  every set 

(20) { 

(21) 

un i formly .  

Proof. From (14) and (9), 

i 
0 =< t , -  q_~ =< t~ i + 1 fi 

< (1 + ti) 2 < ( 
1 

= 2(i + 1) = 

~ < - - = n i  < f l ; 0 < ~ < f l < l } ,  

lim (ti - t _ 1) = 0 

ti } ti it 2 
1 2 ( i + 1 )  -- i + 7  + 2 ( i + 1 )  - - - - - - - -~  

+ - - -  l + ]  --Z-- 1 
< • - -  ---~ O. 

2(i + 1) 2~ n 

COROLLARY 4. For  k = 1,2, . . .  and  n > 12k, 

(22) 
ik__> 1 _ 2  ' 
n 

(23) 
i__L < 1 _ 1 

n = -~/~ 

Proof. By (9), 

2n t k >  1 
Sik > k ~ tik > k => ~ >- k => - - -  

= = n - -  i k - -  n 

which  proves (22). (23) holds  i f  ik < [ 2 ] , for then 

i__Lk < __1 < 1  1 

n = 2 = 2k'  

2 

k '  
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3i k 3n 
< k : ~ - < n - i ~ +  3 : ~ - k < n - i  k + 3 

k 
(1) v~ = t, - ~ .  

Substituting in (2.3) we find that 

k k ( k + l ) + 2 ( / - k )  v ~ + ~ -  

%-1 + -~- = 2(/+ 1) 

i + 1  
(2) vt = i - - k v ~ - l "  

k i - k  

= T  + TFT v'' 

3. P r o o f  o f  the Theorem.  Choose and fix a positive integer k and let n by 

(2.26) be so large that sik =k,  sik+t = k + 1. For i k =< i < i t+ l  define 

1964l 

a n d i f  ik > [ 2  ] then by (16), 

s l k _ x < k ~ h ~ _ l < k =  > 3ik 
2(n - ik + 3) 

3 /__k+3 /~< 1 3 3 1 
~-~ < 1-- - - < 1 - -  for n > 12k. 

n n n - ~ + n  - ~ = 

COROLLARY 5. 

(24) lira hk = lira t~k_ ~ = k 

Proof. t~_~ < k _<_ ttk. 

1 1 
Choose ~, fl so that 0 < u < -8-, 1 - ~ < fl < 1. Then by (19) and (23), 

( 2 5 )  ~ < f~ - ~ < ~</~ 
n n 

for sufficiently large n. Hence by Corollary 3, 

lim(hk -- hk-r) = 0. 

COROLLARY 6. For k = 1,2,... 

(26) sik = k for sufficiently large n, 

(27) lim(ik+l -- ik) = oo. 

Proof. k _<- s,k -<_ ti~ together with (24) proves (26). 

lim (t~ +~ - fi~) = 1 and lim(t~k+, - ttk +1-  ~) = 0 

by (24), and these relations imply (27). 

87 

(k, ?, = 1,2, ...). 
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Hence for i k < i < i k + l ,  

(3) v i = 

and hence 

Y. S. CHOW et al. 

i + 1  i + 1  i ik-t-2 
i - - k  O t - l -  i - k  i - k - 1  ik--k+l vik 

i + 1  i i + l - k  k+l~ i + j - k  ~ 
i k q- 1 i k i k + 1 - k " vik = vik ~I \ ~ j  ~ k ' 

j = l  

k 
(4) tl -~+ ( t t ~ - - ~  ) kH ( i + j - k  ~ 

= j=,  ? F ~ j r : - - k / "  

Set i - -  i k+ 1 - -  1; then 

_ H 
From (2.19) and (2.24) it follows that 

k+l / ) k k l--[ lim/ik+~ + j  - -  k - 1 

k + l  =-2- + T j=,  \ ffk ~-7 L---kk 

and hence 

"2k k (ik+l) k + 1 2  = + _--lim - -  
\ ik 

Thus we have proved the 

THEOREM. 

From (2.22) 

(7) ( 1 - - ~ - ) k f i l (  j ___~ / j+ l  < l i m - - < l - ~ - - i ~  il <~-1~11[ j ~l/J+l 
j = ~ j + 2 /  = , n = n .=  \ j % - T /  " 

Letting k-+ o% 

(8) 

Now by (2.24) and (2.18), 

(9) 

- -  ~ " 
/I j = l  

1 =limt/l_ 1 = l im(  ix ,) lim(  o) 
j ~1/j+1. 

.i=1 

j = l  

[June 
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4. Remarks. 

1. It is interesting to note that c o = co(n ) is a strictly increasing function of n; 

thus in view of the Theorem, 

(1) co(n) < 3.87 (n = 1, 2,...). 

A direct proof that co(n) is strictly increasing based on the formulas of Section 1 

is difficult, since there is no obvious relation between the c~ for different values of n. 

However, a direct probabilistic proof can be given which involves no use of the 

recursion formulas. Let ( s l , . . . , s , , n  + 1) be any stopping rule for the case of 

n + 1 girls such that st < i for i = 1, ..., n (any optimal stopping rule has this 

property). Define for i = 1, ..., n 

(2) tj(i) 

and 

= { s j  for j = l , . . . , i - 1 ,  

Sj+x for j = i , . . . ,n ,  

(3) t l ( n+  i) = ( ~  

for j = 1 , . . . , n -  1, 

for j = n. 

It is easy to see that at least one of the stopping rules defined by (tl(i),..., t,(i)), 

i = 1, ..., n + 1 must give a value of c o for the case n which is less than that given by 

(sl, . . . ,  sn, n + 1) for the case n + 1. Hence Co(n) < co(n + 1). 

2. We assumed that the n girls appear in random order, all n! permutations 

being equally likely. The minimal expected absolute rank of the girl chosen is then 

Co < 3.87 for all n. Suppose now that the order in which the girls are to appear is 

determined by an opponent who wishes to maximize the expected absolute rank 

of the girl we choose. No matter what he does, by choosing at random the first, 

second, ..., last girl to appear we can achieve the value 

E X  = (1 + 2 + ... + n)/n =(n + 1)/2. 

And in fact there exists an opponent strategy such that, no matter what stopping 

rule we use, E X  = (n + 1)/2. Let Xl = 1 or n, each with probability 1/2; let 

Xt÷l = either the largest or the smallest of the integers remaining after x~, ...,x~ 

have been chosen, each with probability 1/2. If  we define for i = 1,..., n 

(4) z I = E(x~ [Yl, "", Y~), ~ = &(Yl, "", Y~), 

then it is easy to see that {z~,&~(i = 1, ...,n)} is a martingale, so that for any 

stopping rule ~, 

(5) g ( x )  -- E (z0  = e ( z l )  = (n + 1)/2. 
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Many extensions and generalizations of the problem considered in this paper 

suggest themselves at once. Some further results will be presented elsewhere. 
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